ISO/TEC DTR 13211-5:2007
Prolog multi-threading support

Editor: Paulo Moura
pmoura@di.ubi.pt

October 28, 2008

Introduction

This technical recommendation (TR) is an optional part of the International
Standard for Prolog, ISO/IEC 13211. Prolog systems wishing to implement
multi-threading supporting predicates should do so in compliance with this TR.

Multi-thread predicates are based on the semantics of POSIX threads. They
have been implemented in some Prolog systems. As such, they are deemed a
worthy extension to the ISO/TEC 13211 Prolog standard.

This TR was designed to follow the predicate naming conventions found on other
Prolog standard documents. In addition, the specified set of built-in predicates
allow for extension by Prolog vendors in a controlled way aimed to prevent
future sources of incompatibilities.

This draft may contain in several places informative text, type-set in italics.
Such informative text is used for editorial comments deemed useful during the
development of this draft and may not be included in the final version.

Previous editors and draft documents

e Paulo Nunes (April 12, 2006 — July 31, 2006).

Draft document comments

e None.

Contributors

e Jan Wielemaker (Netherlands)
e Manuel Carro (Spain)

e Paulo Moura (Portugal)



1 SCOPE 2

Paulo Nunes (Portugal)

Peter Robinson (Australia)

Rui Marques (Portugal)

Terrance Swift (USA)

Ulrich Neumerkel (Austria)

Victor Santos Costa (Portugal)

1 Scope

This TR is designed to promote the portability of multi-threaded Prolog appli-
cations. As such, this TR specifies:

a) A set of built-in predicates for thread management, monitoring, and com-
munication.

b) A set of built-in predicates for thread synchronization using mutexes.

¢) A set of built-in predicates for message queue management, monitoring,
and communication.

This TR specifies both mandatory and optional built-in predicates. All the
optional built-in predicates are related to statistical information that, although
sometimes useful, imply a runtime overhead that a conforming implementation
may prefer to avoid.

2 Language concepts and semantics

2.1 Types

2.1.1 Kibibyte

A kibibyte is 1024 bytes. The unit kibibyte (KiB) is specified by the IEC
60027-2 standard.

2.1.2 Thread and message queue aliases

The predicates specified in this TR allow the definition of thread aliases and

message queue aliases, which share the same namespace.

NOTE — Each thread is associated with its own message queue, accessed using
the thread identifier. Thus, in order to avoid ambiguities, the alias of a new
thread may not be in use as a queue alias. Likewise, the alias of a new queue
may not be in use as a thread alias.



2 LANGUAGE CONCEPTS AND SEMANTICS 3

2.1.3 Thread status
The thread status shall include:

exception(Exception) — The thread goal has been terminated due to an
uncaught exception, represented by the term Exception.

exited(ExitTerm) — The thread goal has been terminated using the built-in
predicate thread_exit/1 (3.2.7) with ExitTerm as its argument.

false — The thread goal has been completed and failed.

running — The thread is running. This is the initial status of a thread (note
that threads suspended or waiting are also considered as running).

true — The thread goal has been completed and succeeded.

2.2 Thread-creation options

Thread-creation options may be used with the thread_create/3 (3.2.1) built-in
predicate in order to bypass default creation options.

2.2.1 Mandatory options

The supported thread-creation options shall include:

alias(Alias) — Specifies that the atom Alias is to be an alias for the thread.

detached(Bool) — When Bool is false, the thread can be waited for using the
built-in predicate thread_join/2 (3.2.5). When Bool is true, is expected
that the system will reclaim all associated resources automatically after
the thread finishes.

2.2.2 Optional data area options

The thread-creation data area options supported may include:

local (KiB) — Sets the size limit to the local stack of the thread. When omit-
ted, a default size value is used.

global (KiB) — Sets the size limit to the global stack of the thread. When
omitted, a default size value is used.

trail (KiB) — Sets the size limit to the trail stack of the thread. When omit-
ted, a default size value is used.

stack(KiB) — Sets the size limit to the system stack of the thread. When
omitted, a default size value is used.

NOTE — The default size values are implementation defined (3.2.2)).



2 LANGUAGE CONCEPTS AND SEMANTICS 4

2.2.3 Optional scheduling options

The thread-creation scheduling options supported may include:

scheduling scope(Value) — The possible values of scheduling scope Value
shall include:
system — Kernel threads.

process — User Threads.
policy(Value) — The possible values of policy Value shall include:

round_robin — Round Robin.
fifo — First in first out.
other — Other.
priority(Value) — Value is an integer value between 0 (minimum priority)

and 31 (maximum priority). Priority is settable at thread creation time
or dynamically.

NOTE — The interval [0, 31] is a virtual priority range that must be
mapped to real priority values, which are implementation and operating-
system dependent. This virtual range follows the POSIX 1b recommen-
dation and the current practice on Microsoft Windows operating-systems.

yield(Value) — The possible values of yield Value shall include:
round robin — Round Robin.

fifo — First in first out.

other — Other.

NOTE — round robin and fifo only yields to a thread of the same
priority.

scheduling inheritance(Value) — The possible values of scheduling inheri-
tance Value shall include:
inherit — Inherits scheduling attributes from the parent thread.

explicit — Uses thread specific scheduling attributes.

2.3 Thread-creation options list

A thread-creation options list is a list of thread-creation options which may be
used with the built-in predicate thread create/3 (3.2.1) in order to bypass
default creation options.



2 LANGUAGE CONCEPTS AND SEMANTICS 5

2.4 Thread properties

Thread properties include the thread creation options specified in section [2.2]
plus the following one:

status(Status) — Status is the state of the thread (2.1.3).

2.5 Mutex-creation options

Mutex-creation options may be used with the built-in predicate mutex_create/2
(3.4.1) in order to bypass default creation options. The supported mutex-
creation options shall include:

alias(Alias) — Specifies that the atom Alias is to be an alias for the mutex.

2.6 Mutex-creation options list

A mutex-creation options list is a list of mutex-creation options ([2.5) which may
be used with the built-in predicate mutex_create/2 (3.4.1) in order to bypass
default creation options.

2.7 Mutex properties

Mutex properties include the mutex creation options specified in section [2.5]
plus the following optional one:

status(Status) — the status of the mutex is Status.

The possible mutex status are:

locked(ThreadOrAlias, Count) — ThreadOrAlias is the identifier of, or
an alias to, the holding thread, and Count is the recursive count of the
mutex.

unlocked — the mutex is unlocked.
NOTE — Implementations shall return thread aliases, when defined, instead of
thread identifiers.

2.8 Queue-creation options

Queue-creation options may be used with the message_queue_create/2 built-in
predicate (3.5.1]) in order to bypass default creation options.

alias(Alias) — Specifies that the atom Alias is to be an alias for the queue.

max_size(MaxSize) — Sets the size limit to the queue. When omitted, the
maximum value of items in a message queue is expected to be resource
bound.



2 LANGUAGE CONCEPTS AND SEMANTICS 6

2.9 Queue-creation options list

A queue-creation options list is a list of queue-creation options (2.8) that may
be used with the built-in predicate message_queue_create/2 (section |3.5.1)) in
order to bypass default creation options.

2.10 Queue properties

Queue properties include the queue creation options specified in section [2.8]
plus the following one:

size(8ize) — Size is the number of elements on the message queue.

NOTE — Due to concurrent access, the value of this property may be out-
dated before it is returned (3.5.3)). Nevertheless, this property may be used for
debugging purposes.

2.11 Database
The Prolog database is shared with all threads.

2.11.1 Dynamic predicates

It is possible to use dynamic predicates for thread communication. Compliant
implementations shall ensure that access to a dynamic predicate is properly
synchronized in order to guarantee both the logical update semantics of single-
threaded Prolog when two threads call the same dynamic predicate and the
consistency of the dynamic predicate when two threads assert or retract clauses
for the same dynamic predicate.

2.12 Executing a threaded Prolog goal

Executing a Prolog goal in a thread works by first making a copy of the goal
term and then executing the copy in the thread Prolog engine. This implies that
further instantiation of the goal term in one thread does not have consequences
for the other thread; i.e. any variable bindings are lost when a goal is proved
using another thread.

2.13 Flags
The following flags are added to those of section 7.11 of ISO/IEC 13211-1.

2.13.1 Flag: max _threads

Possible values: undefined, positive integer value
Default value: implementation defined
Changeable: No



2 LANGUAGE CONCEPTS AND SEMANTICS 7

Description: If the value of this flag is undefined, the number of threads that
can coexist at any given time on a Prolog process is not defined.

If the value of this flag is a positive integer value, the number of Prolog threads
that can coexist at any given time is limited to this value. The actual number
of threads that can be created by the user may be lower as the Prolog runtime
itself may create threads for its own internal bookkeeping.

2.13.2 Flag: hardware_threads

Possible values: undefined, positive integer value
Default value: implementation defined
Changeable: Yes

Description: If the default value of this flag is undefined, the maximum number
of hardware supported simultaneous threads is not defined.

If the default value of this flag is a positive integer value, the maximum num-
ber of hardware supported simultaneous threads is given by this value. The flag
value can be modified by the programmer in order to simulate running an appli-
cation in hardware with a greater or a lower number of supported simultaneous
threads.

2.14 Errors

The following errors are defined in addition to those defined in section 7.12 of
ISO/IEC 13211-1.

2.14.1 Error classification

The following types are added to the classification of 7 12.2 of ISO/IEC 13211-1.

a) The list of valid domains is extended by the addition of mutex_or_alias,
mutex_option, thread_or_alias, thread_option, thread_property,
queue_or_alias, queue option, and queue property (see 7 12.2 ¢ of

ISO/IEC 13211-1).

b) The list of object types is extended by the addition of mutex, queue, and
thread (see 7 12.2 d of ISO/IEC 13211-1).

c¢) The list of operations is extended by the addition of detach, join, unlock,
cancel, and destroy; the list of permission types is extended by mutex,
queue, thread, and thread option (see 7 12.2 e of ISO/IEC 13211-1).

d) The list of valid flags is extended by the addition of max_threads (see 7
12.2 f of ISO/IEC 13211-1).



3 BUILT-IN PREDICATES 8

2.15 Main Prolog thread

When starting a multi-threading enabled Prolog process, there shall be a main
thread, referenced by the alias main. This thread shall be automatically created
and cannot be canceled during the lifetime of the Prolog process.

2.16 Signaling threads

This TR specifies a predicate, thread_signal/1, to make a thread execute some
goal as an interrupt . Conforming implementations shall ensure that these
interrupts are only checked at safe points in their virtual machines. These safe
points shall include thread sleep, thread suspended waiting for a message (from
a queue), and stream read operations. Signaling should always be handled with
care as the receiving thread may hold a mutex.

Signaling may be used to start debugging a thread or to cancel no-longer-needed
threads with throw/1, where the receiving thread should be designed carefully
to handle exceptions at any point.

2.17 Thread message queues

Each thread owns a private message queue that can be accessed using the thread
identifier or the thread alias. For a non-detached thread, its private message
queue is only destroyed when thread is joined. For a detached thread, its private
message queue is destroyed when the thread exits.

3 Built-in predicates

3.1 The format of built-in predicate definitions

These subclauses define the format of the definitions of built-in predicates.

3.1.1 Description

The description of the built-in predicate assumes that no error condition is sat-
isfied, and is in two parts: (1) the logical condition for the built-in predicate
to be true, and (2) a procedural description of what happens when a goal is
executed and whether the goal succeeds or fails.

Most built-in predicates are not re-executable; the description mentions the
exceptional cases explicitly.

3.1.2 Templates and modes
3.1.2.1 Type of an argument



3 BUILT-IN PREDICATES 9

This TR defines the following additional argument types, augmenting those
found on the ISO/IEC 13211 Prolog standard:

mutex — a term identifying a mutex (shall be regarded as an opaque type)
mutex_or_alias — a mutex or an atom acting as a mutex alias
mutex_property — a mutex property

queue — a term identifying a queue (shall be regarded as an opaque type)
queue_option — a queue option

queue_options — a list of queue options (2.8)

queue_or_alias — a queue or an atom acting as a queue alias
queue_property — a message queue property

thread — a term identifying a thread (shall be regarded as an opaque type)
thread_option — a thread option

thread_options — a list of thread options

thread _or_alias — a thread or an atom acting as a thread alias

thread_property — a thread property (2.4))
thread_status — a thread status (2.1.3))

NOTE — The types queue and queue_or_alias also include, respectively, the
types thread and thread_or_alias given that each thread is associated with a
queue identified by the thread identifier or the thread alias.

3.2 Thread management

These built-in predicates enable threads to be created, detached, joined, and
destroyed. They include predicates for setting and querying default thread cre-
ation options.

The examples provided for these built-in predicates assume the environment
created from the following Prolog text:

:— initialization(management) .

thread_goal :-
thread_get_message (M),
write(M) .

signal_goal :-



3 BUILT-IN PREDICATES

write(’Hello, from signal goal!’).

hello :-
write(’Hello!’).
dog.
management :-
thread_create(thread_goal, _
[detached(true), alias(thread_detached)]),
thread_create(hello, _,
[alias(thread_hello), local(512)]1),
thread_create(thread_goal, _, [alias(thread)]).
3.2.1 thread_create/3, thread_create/2, thread_create/1

3.2.1.1 Description

10

thread_create(Goal, Thread, Options) creates a new thread and starts it

by executing Goal. If the thread is created successfully, the thread identifier

of the created thread is unified to Thread. Options is a list of thread options

3.

The Goal argument is copied to the new Prolog engine. This implies

further instantiation of this term in either thread does not have consequences
for the other thread.

3.2.1.2 Template and modes

thread create(@callable_term, -thread, @thread_options)

3.2.1.3 Errors

2)

b)

Goal is a variable
— instantiation_error

Goal is neither a variable nor a callable term
— type_error(callable, Goal)

Thread is not a variable
— type_error(variable, Thread)

Options is a partial list or a list with an element E which is a variable
— instantiation_error

Options is neither a partial list nor a list
— type-error(list, Options)

An element of E of the Options list is not a valid thread option
— domain_error (thread_option, E)



3 BUILT-IN PREDICATES 11

g) The maximum number of threads has been reached
— resource_error (threads)

h) There is no memory available for creating the thread data areas
— resource_error (memory)

i) An element E of the Options list is alias(A) and A is already associated
with an existing thread or queue
— permission_error(create, thread, alias(A))

NOTE — When the maximum number of threads is known by the Prolog com-
piler, its value shall be available using the Prolog flag max_threads (2.13.1]).

3.2.1.4 Bootstrapped built-in predicates

The built-in predicates thread_create/2 and thread_create/1 provide similar
functionality to the built-in predicate thread_create/3.

Goal thread create(Goal, Thread) creates a new thread using default options
(3-2.2). Goal thread create(Goal) creates a new detached thread using default

options (3.2.2)

thread_create(Goal, Thread) :-
thread_create(Goal, Thread, []).

thread_create(Goal) :-
thread_create(Goal, _, [detached(true)]).

3.2.1.5 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section [3.2

thread_create(hello, Thread, []).
Succeeds.
[It creates a thread, unifies Thread
with a thread-term for the thread.]

thread_create(hello, Thread).
Succeeds.
[It creates a thread using de default
thread-creation options, unifies Thread
with a thread-term for the thread.]

thread_create(thread_goal, Thread, [alias(threadi1)]).
Succeeds.
[It creates a thread, unifies Thread



3 BUILT-IN PREDICATES 12

with a thread-term for the thread, and
associates the alias ‘threadll’ with the thread.]

thread_create(Goal, Thread, []).
instantiation_error.

thread_create(4, Thread, []).
type_error(callable, 4).

thread_create(hello, thread, []).
type_error(variable, thread).

thread_create(hello, Thread, Options).
instantiation_error.

thread_create(hello, Thread, [alias(thread_x), X]).
instantiation_error.

thread_create(thread_goal, Thread, options).
type_error(list, options).

thread_create(thread_goal, Thread, [name(paul)]).
domain_error (thread_option, name(paul)).

thread_create(thread_goal, Thread, [alias(thread)]).
permission_error(create, thread, alias(thread)).
[Assuming that there already exists a thread
named ‘thread’.]

3.2.2 thread_default/1
3.2.2.1 Description

thread_default (Default) gets the default options used when a new thread is
created. The allowed values for Default are listed in section Depending
on the implementation, some default options may be read-only and thus not
modifiable. The order in which thread options are found by thread default/1
is implementation dependent.

NOTE — There is no default value for the option alias/1.

Procedurally, thread_default (Default) is executed as follows:

a) Create a Setp of all terms (D) such that D is a default option for thread
creation,

b) If Setp is empty, the goal fails,



3 BUILT-IN PREDICATES 13

c¢) Else, chooses a member (DD) of Setp and removes it from the set,

e

)

d) Unifies DD with Default,
) If unification succeeds, the goal succeeds,
)

f) Else proceeds to|3.2.2.1| b.

thread default (Default) is re-executable. On backtracking, continue at3.2.2.1
b.

3.2.2.2 Template and modes

thread default(?thread_option)

3.2.2.3 Errors

a) Default is neither a variable nor a thread option
— domain_error (thread_option, Default)

3.2.2.4 Examples

thread_default(detached(Boolean)) .
Succeeds, unifying Boolean with the
current detached default value.

thread_default (cpu(X)).
domain_error (thread_option, cpu(X)).

3.2.3 thread_set_default/1
3.2.3.1 Description
thread_set_default (Default) sets a default option for thread creation. The

items allowed in Default are listed in section Some implementations may
not support changing the value of some thread options.

NOTE — It is not possible to set a default value for the option alias/1.

3.2.3.2 Template and modes

thread_set_default (+thread_option)



3 BUILT-IN PREDICATES 14

3.2.3.3 Errors

a) Default is a variable
— instantiation_error

b) Default is neither a variable nor a thread option
— domain_error (thread option, Default)

¢) The thread option is read-only or does not support a default value
— permission_error(modify, thread option, Default)

3.2.3.4 Examples

thread_set_default(detached(true)).
Succeeds.

thread_set_default (Default).
instantiation_error.

thread_set_default (cpu(100)).
domain_error (thread_option, cpu(100)).

thread_set_default(detached(yes)).
domain_error (thread_option, detached(yes)).

3.2.4 thread_self/1
3.2.4.1 Description

thread_self (ThreadOrAlias) is true when ThreadOrAlias is the identifier or
an alias of the calling thread.

3.2.4.2 Template and modes

thread_self (+thread_or_alias)
thread_self (-thread)

3.2.4.3 Errors

a) ThreadOrAlias is neither a variable nor a thread-term or alias
— domain_error (thread_or_alias, ThreadOrAlias)

3.2.4.4 Examples

The goal thread_self (Thread) succeeds, unifying Thread with miguel.



3 BUILT-IN PREDICATES 15

:- initialization(main(paulo, miguel)).

child(Parent) :-
thread_self (Thread),
write(’I\’am ’),
write(Thread),
write(’ child of ’),
write(Parent),
write(’.’).

main(Parent, Child):-
thread_create(child(Parent), T,
[alias(Child), detached(false)]).

%

% Second example

yA

child(Parent) :-
thread_self (thread_s),

domain_error(thread_or_alias, thread_s).
3.2.5 thread_join/2
3.2.5.1 Description

thread_join(ThreadOrAlias, Status) waits for the termination of thread
with given ThreadOrAlias, unifying the result-status of the thread with Status.
After this call, the ThreadOrAlias identifier or alias becomes invalid.

NOTES

1 After this call it is expected that all resources associated with the thread
be reclaimed.
2 Threads with the property detached(true) cannot be joined.

3.2.5.2 Template and modes

thread_join(+thread or_alias, -thread_status)

3.2.5.3 Errors

a) ThreadOrAlias is a variable
— instantiation_error

b) ThreadOrAlias is neither a variable nor a thread-term or alias
— domain_error(thread_or_alias, ThreadOrAlias)



3 BUILT-IN PREDICATES 16

¢) ThreadOrAlias is not associated with a current thread
— existence_error(thread, ThreadOrAlias)

d) ThreadOrAlias does not correspond to a joinable thread
— permission_error(join, thread, ThreadOrAlias)

e) Status is not a variable
— type-error(variable, Status)

3.2.5.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section

thread_join(thread, Status).
Succeeds, unifying Status with true.
[After the thread receives a message.]

thread_join(Thread, Status).
instantiation_error.

thread_join(dog, Status).
domain_error (thread_or_alias, dog).

thread_join(thread5, Status).
existence_error(thread, thread5).

thread_join(thread_detached, true).
permission_error(join, thread, thread_detached).

thread_join(thread, status).
type_error(variable, status).

:- initialization(main_join).

thread_goal :-
thread_self (T),
write(’I\’am ’),
write(T), nl.

main_join :-
write(’I\’m main.’), nl,
thread_create(thread_goal, T, [alias(t1)]),
thread_join(tl, Status),
write(Status).

The predicate thread_join(tl, Status) in the previous example succeeds,
unifying Status with true.



3 BUILT-IN PREDICATES 17

3.2.6 thread_detach/1
3.2.6.1 Description

thread_detach(ThreadOrAlias) switches a thread into detached-state at run-
time. ThreadOrAlias is the identifier of, or an alias to, the thread to be placed
in a detached state.

Threads that are created as detached are expected to leave no traces if they
terminate. Threads nobody is waiting for may be created normally and de-
tach themselves just before completion. This way they leave no traces on nor-
mal completion and their reason for failure can be inspected. This guarantees
that the resources consumed by the thread will be freed immediately when the
thread terminates. However, this prevents other threads from synchronizing
on the termination of ThreadOrAlias using thread_join/2 . If, when
thread_detach/1 is called, the thread has already terminated, all remaining
threads resources will be freed.

3.2.6.2 Template and modes

thread_detach(+thread_or_alias)

3.2.6.3 Errors

a) ThreadOrAlias is a variable
— instantiation_error

b) ThreadOrAlias is neither a variable nor a thread-term nor an alias
— domain_error(thread_or_alias, ThreadOrAlias)

¢) ThreadOrAlias is not associated with a current thread
— existence_error(thread, ThreadOrAlias)

d) ThreadOrAlias is not joinable
— permission_error(detach, thread, ThreadOrAlias)

3.2.6.4 Examples

thread_detach(thread) .
Succeeds.

thread_detach(Thread) .
instantiation_error.

thread_detach(dog) .
domain_error(thread_or_alias, dog).

thread_detach(thread5).



3 BUILT-IN PREDICATES 18

existence_error(thread, thread5).

thread_detach(thread_detached) .
permission_error(detach, thread, thread_detached).
[Assumes that the thread has the thread-creation
option detached(true).]

3.2.7 thread_exit/1
3.2.7.1 Description

thread_exit(Term) terminates the thread immediately, leaving exited(Term)
as result-state for thread_join/2 (3.2.5)). If the thread has the thread-creation
option detached(true) it terminates, but its exit status cannot be retrieved
using thread_join/2 making the value of Term irrelevant.

3.2.7.2 Template and modes

thread_exit (@nonvar)

3.2.7.3 Errors

a) Term is a variable
— instantiation_error.

b) the calling thread is the main Prolog process thread
— permission_error(cancel, thread, main)

3.2.7.4 Examples

:— initialization(main).

goal :-
repeat,
thread_get_message(M),
( == Jexit’ ->
thread_exit(write (’Exit’))
; write(M), nl, fail

main :-
thread_create(goal, _, [alias(t)]).

thread_join(t, Term).
Succeeds, unifying Term with exited(write(’Exit’)).
[Immediately after the execution:
thread_send_message(t, exit).]



3 BUILT-IN PREDICATES 19

3.2.8 thread_signal/2
3.2.8.1 Description

thread_signal (ThreadOrAlias, Goal) makes thread ThreadOrAlias execute
Goal at the first opportunity. The predicate thread_signal/2 places Goal into
the signaled thread’s signal queue and returns immediately. Goal can be any
valid Prolog goal, including throw/1 to make the receiving thread generate an
exception.

3.2.8.2 Template and modes

thread_signal (+thread or_alias, @callable_term)

3.2.8.3 Errors

a) ThreadOrAlias is a variable
— instantiation_error

b) ThreadOrAlias is neither a variable nor a thread-term or alias
— domain_error (thread_or_alias, ThreadOrAlias)

¢) ThreadOrAlias is not associated with a current thread
— existence_error(thread, ThreadOrAlias)

d) Goal is a variable
— instantiation_error

e) Goal is neither a variable nor a callable term
— type_error(callable, Goal)

3.2.8.4 Examples

thread_signal (thread_detached, signal_goal).
Succeeds.

thread_signal(Thread, signal_goal).
instantiation_error.

thread_signal (dog, signal_goal).
domain_error(thread_or_alias, dog).

thread_signal (thread5, signal_goal).
existence_error(thread, thread2).

thread_signal (thread, Goal).
instantiation_error.



3 BUILT-IN PREDICATES 20

thread_signal (thread, 4).
type_error(callable, 4).

In the following example, the predicate main creates two threads with alias
thread_1 and thread 2. Then thread 2 sends a signal to thread_1 with goal
write(‘from thread2’).

:— initialization(main).

thread_1 :-
thread_self (T),
write(’Thread ’),
write(T), nl,
write(’Send work to thread_2.’), nl
thread_signal(t2, write(’from thread_1’)).

thread_2 :-
thread_self (T),
write(’Thread ),
write(T), nl,
write(’Receives from thread_1: ’),
write(M), nl.

main :-
thread_create(thread_1, _, [alias(t1)]),
thread_create(thread_2, _, [alias(t2)]).

3.2.9 thread _cancel/1
3.2.9.1 Description

thread_cancel (ThreadOrAlias) cancels a thread. Any mutexes held by the
thread shall be automatically released. The main Prolog thread ([2.15) cannot
be cancelled. Other than this, any thread can cancel any other thread.

NOTE — It is expected that all the resources consumed by a thread will be
released upon thread cancellation.

3.2.9.2 Template and modes

thread_cancel (+thread_or_alias)

3.2.9.3 Errors

a) ThreadOrAlias is a variable
— instantiation_error



3 BUILT-IN PREDICATES 21

b) ThreadOrAlias is neither a variable nor a thread-term or alias
— domain_error (thread_or_alias, ThreadOrAlias)

¢) ThreadOrAlias is not associated with a current thread
— existence_error(thread, ThreadOrAlias)

d) ThreadOrAlias is the main Prolog process thread

— permission_error(cancel, thread, main)

3.2.9.4 Examples

thread_cancel (thread) .
Succeeds.

thread_cancel (main) .
permission_error(cancel, thread, main).

3.2.10 thread_yield/0
3.2.10.1 Description

thread_yield forces the calling thread to relinquish use of its processor and to
wait in the run queue before it is scheduled again. If the run queue is empty
when the thread_yield/0 predicate is called, the calling thread is immediately
rescheduled.

3.2.10.2 Template and modes

thread_yield

3.2.10.3 Errors

None.

3.2.10.4 Examples
thread_yield.

Succeeds.
3.2.11 thread_sleep/1
3.2.11.1 Description

thread_sleep(Seconds) suspends the current threads execution until Seconds
seconds elapsed. When the number of seconds is zero or a negative value, the
call succeeds and returns immediately.

NOTE — The thread shall not be awakened before this time but, depending on
the implementation of the thread scheduler, it might be awakened later.



3 BUILT-IN PREDICATES 22

3.2.11.2 Template and modes

thread_sleep (+number)

3.2.11.3 Errors

a) Seconds is a variable
— instantiation_error

b) Seconds is neither a variable nor a number
— type_error (number, Seconds)

3.2.11.4 Examples

thread_sleep(Seconds) .
instantiation_error.

thread_sleep(dog) .
type_error (number, dog) .

thread_sleep(1.5).
Succeeds.

thread_sleep(-10).
Succeeds.

b

% The thread simply count from 1 to N,
% incremented one time per second.

)

:— initialization(counter(10)).

counter(N) :-
thread_create(do_counter(N), _, [detached(true)]).

do_counter(0) :- !.

do_counter(N) :-
Mis N - 1,
thread_sleep(1),
write(M), nl,
do_counter (M) .

3.3 Monitoring threads

The predicates described in this section are provided for diagnosing and moni-
toring threads. Most multi-threaded applications should not need the predicates
from this section because almost any usage of these predicates is unsafe. For



3 BUILT-IN PREDICATES 23

example checking the existence of a thread before signaling it is of no use as it
may vanish between the two calls. Catching exceptions using catch/3 is the
only safe way to deal with thread-existence errors.

3.3.1 thread _property/2, thread_property/1
3.3.1.1 Description

thread_property(ThreadOrAlias, Property) enumerates thread properties.

Procedurally, thread _property(ThreadOrAlias, Property) is executed as fol-
lows:

a) Create a Setpp of all terms (T, P) such that T is a current thread which
has property P,

=3

If Setrp is empty, the goal fails,

o

Else, chooses a member (TT, PP) of Setrp and removes it from the set,

oL

@

)
)
) Unifies TT with ThreadOrAlias, and PP with Property,
) If unification succeeds, the goal succeeds,

)

—h

Else proceeds to|3.3.1.1| b.

thread_property(ThreadOrAlias, Property) isre-executable. On backtrack-
ing, continue at [3.3.1.1] b.

3.3.1.2 Template and modes

thread_property(?thread or_alias, ?thread_property)

3.3.1.3 Errors

a) ThreadOrAlias is neither a variable nor a thread-term or alias
— domain_error(thread_or_alias, ThreadOrAlias)

b) ThreadOrAlias is not associated with a current thread
— existence_error(thread, ThreadOrAlias)

¢) Property is neither a variable nor a thread property
— domain_error (thread_property, Property)



3 BUILT-IN PREDICATES 24

3.3.1.4 Bootstrapped built-in predicate

The built-in predicate thread property/1 provides similar functionality to the
built-in predicate thread_property/2.

Goal thread_property(Property) allows access to the properties of the calling
thread.

thread_property(Property) :-
thread_self (Thread),
thread_property(Thread, Property).

3.3.1.5 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section

thread_property(thread, alias(thread)).
Succeeds.

thread_property(thread, alias(N)).
Succeeds, unifying N with thread.

thread_property(thread, status(Status)).
Succeeds, unifying Status with running.

thread_property(thread, P).
Succeeds, unifying P with a property of the thread.
On re-execution, succeeds, in turn with
each property of the thread.

thread_property(T, P).
Succeeds, unifying T with the thread and P with a
property of the thread.
On re-execution, succeeds, in turn with
each property of the thread and in turn with thread.

thread_property(thread_detached, detached(false)).
Fails.

thread_property(dog, P).
domain_error(thread_or_alias, dog).

thread_property(thread_detacehd, man(paul)).
domain_error (thread_property, man(paul)).



3 BUILT-IN PREDICATES 25

3.3.2 thread_statistics/3, thread_statistics/2
3.3.2.1 Description

thread_statistics(ThreadOrAlias, Key, Value) obtains statistical informa-
tion on thread ThreadOrAlias. The possible values of Key are implementation
defined. The order in which the keys are found is implementation dependent.
The implementation of this predicate is optional for Prolog compilers compliant
with this TR due to the implied computation overhead in keeping statistical
information.

Procedurally, thread statistics(ThreadOrAlias, Key, Value) is executed
as follows:

a) Create a Setrgy of all terms (T, K, V) such that T is a current thread
with statistics K which has the value V,

b) If Setrxp is empty, the goal fails,

¢) Else, chooses a member (TT, KK, VV) of Setrgy and removes it from
the set,

d) Unifies TT with ThreadOrAlias, KK with Key, and VV with Value,
e) If unification succeeds, the goal succeeds,

f) Else proceeds to[3.3.2.1| b.

thread_statistics(ThreadOrAlias, Key, Value) is re-executable. On back-

tracking, continue at [3.3.2.1] b.

3.3.2.2 Template and modes

thread_statistics(?thread_or_alias, 7key, 7value)

3.3.2.3 Errors

a) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error (mutex_or_alias, MutexOrAlias)

b) Key is neither a variable nor an atom
— type_error(atom, Key)

¢) Value is neither a variable nor an atom
— type-error(variable, Value)



3 BUILT-IN PREDICATES 26

3.3.2.4 Bootstrapped built-in predicate

The built-in predicate thread_statistics/2 provides similar functionality to
the built-in predicate thread_statistics/3.

Goal thread _statistics(Key, Value) allows access to the statistics informa-
tion of the calling thread.

thread_statistics(Key, Value) :-
thread_self (Thread),
thread_statistics(Thread, Key, Value).

3.3.2.5 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section [3.2

thread_statistics(thread, cputime, Time).
Succeeds, unifying Time with the CPU time.
[Assumes that the cputime key are defined.]

thread_statistics(thread, disktime, Time).
Fails.
[Assumes that the disktime key are not defined.]

thread_statistics(dog, cputime, Time).
domain_error(thread_or_alias, dog).

thread_statistics(thread, 1, Time).
type_error (atom, Key).

3.4 Thread synchronization

These built-in predicates enable thread synchronization using a mutex, which
is an abbreviation for mutual exclusion. Mutex built-in predicates provide for
creating, destroying, locking, and unlocking mutexes. In addition, predicates
for getting runtime mutex usage statistics are also specified.

All internal Prolog operations are thread-safe. This implies two Prolog threads
can operate on the same dynamic predicate without corrupting the consistency
of the predicate. A mutex is a MUTual EXclusive device, which implies at most
one thread can hold a mutex.

Mutexes are used to realize related updates to the Prolog database. With re-
lated, we refer to the situation where a transaction implies two or more changes
to the Prolog database. For example, we have a predicate address/2, represent-
ing the address of a person and we want to change the address by retracting the



3 BUILT-IN PREDICATES 27

old and asserting the new address. Between these two operations the database
is invalid: this person has either no address or two addresses, depending on the
assert/retract order.

The examples provided for these built-in predicate assume the environment
created from the following Prolog text:

:— initialization(init).

init :-

mutex_create(_, [alias(mutex1)]),
mutex_create(_, [alias(mutex2)]),
mutex_create(_, [alias(mutex3)]),
mutex_create(_, [alias (mutex21)]),
mutex_create(_, [alias(mutex22)]),
mutex_create(_, [alias(mutex33)]),
mutex_lock (mutex22),

mutex_create(_, [alias(bank)]),
mutex_create(_, [alias(addressbook)]).
cat.
dog.
:- dynamic(balance/2) .

balance(paul, 1000).

bank_transation(Id, Deposit) :-
balance(Id, V),
T is V + Deposit,
retractall(balance(Id, _)),
asserta(balance(Id, T)).

:— dynamic(address/2) .
address(paul, guarda).

change_address (Id, Address) :-
mutex_lock(addressbook),
retractall (address(Id, _)),
asserta(address(Id, Address)),
mutex_unlock (addressbook) .

3.4.1 mutex_create/2, mutex_create/1

3.4.1.1 Description



3 BUILT-IN PREDICATES 28

mutex_create (Mutex, Options) creates a new mutex using the given list of
options. The variable Mutex is unified with the mutex identifier.

3.4.1.2 Template and modes

mutex_create(-mutex, @mutex_options)

3.4.1.3 Errors

a) Mutex is not a variable
— type_error(variable, Mutex)

b) Options is a partial list or a list with an element Option which is a variable
— instantiation_error

¢) Options is neither a partial list nor a list
— type_error(list, Options)

d) An element of Option of the Options list is not a valid mutex option
— domain_error (mutex_option, Option)

e) An element Option of the Options list is alias(Alias) and Alias is not
an atom
— type_error(atom, Alias)

f) An element Option of the Options list is alias(Alias) and Alias is
already associated with an existing mutex
— permission_error(create, mutex, Alias)

3.4.1.4 Bootstrapped built-in predicate

The built-in predicate mutex_create/1 provides similar functionality to the
built-in predicate mutex_create/2.

Goal mutex_create(Mutex) creates a new mutex with alias Mutex when the
argument is instantiated to an atom; otherwise Mutex must be a variable which
will be instantiated to a new mutex identifier. I.e the predicate behaves as
defined by the following clause:

mutex_create (Mutex) :-
(  atom(Mutex) ->
mutex_create(_, [alias(Mutex)])
; mutex_create(Mutex, [])



3 BUILT-IN PREDICATES 29

3.4.1.5 Examples

mutex_create(Mutex, [J).
Succeeds.
[It creates a mutex using the default mutex-creation
options, unifying Mutex with the new mutex identifier.]

mutex_create(Mutex) .
Succeeds.
[It creates a mutex using the default mutex-creation
options, unifying Mutex with the new mutex identifier.]

mutex_create(Mutex, [alias(mutex_1)]).
Succeeds.
[It creates a mutex, unifying Mutex with a mutex-term
for the mutex, and associating the alias ‘mutex_1’
with the mutex.]

mutex_create(mutex, [1).
type_error(variable, mutex).

mutex_create(mutex, [alias(mutex_x), X]).
instantiation_error.

mutex_create(Mutex, options).
type_error(list, options).

mutex_create (Mutex, [alias(mutex_1), size(512)]).
domain_error (mutex_option, size(512))

mutex_create (Mutex, [alias(mutex1)]).

permission_error(create, mutex, mutexl).
[The mutex named mutexl, has been created previously]

3.4.2 mutex_destroy/1
3.4.2.1 Description

mutex_destroy(MutexOrAlias) destroys a mutex. After this call, the mutex
identifier or alias, MutexOrAlias, becomes invalid.

3.4.2.2 Template and modes

mutex_destroy (+mutex_or_alias)

3.4.2.3 Errors



3 BUILT-IN PREDICATES 30

a) MutexOrAlias is a variable
— instantiation_error

b) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error(mutex_or_alias, MutexOrAlias)

¢) MutexOrAlias is not associated with a current mutex
— existence_error (mutex, MutexOrAlias)

d) MutexOrAlias the mutex is locked
— permission_error(destroy, mutex, MutexOrAlias)

3.4.2.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section

mutex_destroy (mutexl) .
Succeeds.

mutex_destroy(Mutex) .
instantiation_error.

mutex_destroy(cat).
domain_error (mutex_or_alias, cat).

mutex_destroy(mutex112).
existence_error (mutex, mutex112).

mutex_lock(mutexl), mutex_destroy(mutexl).
permission_error(destroy, mutex, mutexl).

3.4.3 with_mutex/2
3.4.3.1 Description

with mutex (MutexOrAlias, Goal) executes Goal while holding MutexOrAlias.
The call blocks if the mutex is not available until it is released. If Goal leaves
choice-points, these are destroyed. The mutex is unlocked regardless of whether
Goal succeeds, fails, or raises an exception. An exception thrown by Goal is
re-thrown after the mutex has been successfully unlocked.

NOTE — The predicate with mutex/2 allows the execution of a Goal as an
atomic transaction, without the need for explicit synchronization by the pro-
grammer.



3 BUILT-IN PREDICATES 31

3.4.3.2 Template and modes

withmutex(+mutex_or_alias, +callable_term)

3.4.3.3 Errors

a) MutexOrAlias is a variable
— instantiation_error

b) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error (mutex_or_alias, MutexOrAlias)

¢) MutexOrAlias is not associated with a current mutex
— existence_error (mutex, MutexOrAlias)

d) Goal is a variable
— instantiation_error

e) Goal is neither a variable nor a callable term
— type_error(callable, Goal)

3.4.3.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section

with_mutex(bank, bank_transation(paul, 200)).
Succeeds, noting the list of clauses to be retracted
= [ balance(paul, 1000) ], and the list of clauses
to be asserted = [ balance(paul, 1200).]

with_mutex(M, bank_transation(paul, 200)).
instantiation_error.

with_mutex(dog, bank_transation(paul, 200)).
domain_error(mutex_or_alias, dog).

with_mutex(mutex_bank, bank_transation(paul, 200)).
existence_error(mutex, mutex_bank).

with_mutex(bank, Goal).
instantiation_error.

with_mutex(bank, (bear :- 4)).
type_error(callable, 4).



3 BUILT-IN PREDICATES 32

3.4.4 mutex_lock/1
3.4.4.1 Description

mutex_lock(MutexOrAlias) locks a mutex. Prolog mutexes shall act as recur-
sive mutexes, enabling them to be locked multiple times by the same thread.
Only after unlocking it as many times as it is locked, the mutex shall become
available for locking by other threads. If another thread has locked the mutex
the calling thread is suspended until to mutex is unlocked.

NOTE — Locking and unlocking mutexes should be paired carefully in order
to avoid deadlocks. In particular, the programmer shall ensure that mutexes
are properly unlocked even if the protected code fails or raises an exception.
For most common cases, the built-in predicate with mutex/2 provides a
safer way for using mutexes.

3.4.4.2 Template and modes

mutex_lock (+mutex_or_alias)

3.4.4.3 Errors

a) MutexOrAlias is a variable
— instantiation_error

b) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error (mutex_or_alias, MutexOrAlias)

c) MutexOrAlias is not associated with a current mutex
— existence_error (mutex, MutexOrAlias)

3.4.4.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section

mutex_lock (mutex1).
Succeeds.

mutex_lock(mutexl), mutex_lock(mutexl).
Succeeds.

[A mutex may be locked several times by the same thread.]

mutex_lock(M) .
instantiation_error.

mutex_lock(dog) .



3 BUILT-IN PREDICATES 33

domain_error(mutex_or_alias, dog).

mutex_lock(mutex4) .
existence_error(mutex, mutex4).

change_address(paul, alfarazes).
Succeeds, noting the list of clauses to be retracted
= [ address(paul, guarda) ], and the list of clauses
to be asserted = [ address(paul, alfarazes).]

3.4.5 mutex_trylock/1
3.4.5.1 Description

mutex_trylock(MutexOrAlias) as mutex_lock/1 (3.4.4), but if the mutex is
held by another thread, this predicates fails immediately.

3.4.5.2 Template and modes

mutex_trylock(+mutex or_alias)

3.4.5.3 Errors

a) MutexOrAlias is a variable
— instantiation_error

b) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error (mutex_or_alias, MutexOrAlias)

¢) MutexOrAlias is not associated with a current mutex
— existence_error (mutex, MutexOrAlias)

3.4.5.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section

mutex_trylock(mutexl).
Succeeds.

mutex_trylock(mutex22) .
Fails.
[The mutex named mutex22 has been locked.]

mutex_trylock(M).
instantiation_error.



3 BUILT-IN PREDICATES 34

mutex_trylock(dog) .
domain_error (mutex_or_alias, dog).

mutex_trylock(mutex4) .
existence_error(mutex, mutex4).
3.4.6 mutex_unlock/1
3.4.6.1 Description

mutex_unlock (MutexOrAlias) unlocks a mutex. This predicate must be called
by the thread holding the mutex.

3.4.6.2 Template and modes

mutex_unlock (+mutex_or_alias)

3.4.6.3 Errors

a) MutexOrAlias is a variable
— instantiation_error

b) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error (mutex_or_alias, MutexOrAlias)

¢) MutexOrAlias is not associated with a current mutex
— existence_error(mutex_or_alias, MutexOrAlias)

d) the calling thread do not hold the mutex MutexOrAlias

— permission_error(unlock, mutex, MutexOrAlias)

3.4.6.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section [3.4

mutex_lock (mutex22) .
Succeeds.

mutex_unlock(dog) .
domain_error (mutex_or_alias, dog).

mutex_unlock (mutex4) .
existence_error(mutex, mutex4).

mutex_unlock (mutex3) .
permission_error(unlock, mutex, mutex3).
[Mutex was not locked previously.]



3 BUILT-IN PREDICATES 35

3.4.7 mutex_unlock_all/0
3.4.7.1 Description

mutex_unlock_all unlocks all mutexes held by the current thread.

3.4.7.2 Template and modes

mutex_unlock_all

3.4.7.3 Errors

None.

3.4.7.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section [3.4]

mutex_unlock_all.
Succeeds.

3.4.8 mutex_property/2
3.4.8.1 Description

mutex_property(MutexOrAlias, Property) enumerates the properties of all
current mutexes.

Procedurally, mutex_property(MutexOrAlias, Property) is executed as fol-
lows:

a) Create a Setpp of all terms (M, P) such that Mis a current mutex which
has property P,

=3

If Setasp is empty, the goal fails,

o

Else, chooses a member (MM, PP) of Sety;p and removes it from the set,

oL

@

If unification succeeds, the goal succeeds,

—+

)
)
) Unifies MM with MutexOrAlias, and PP with Property,
)
)

Else proceeds to[3.4.8.1| b.

mutex_property(MutexOrAlias, Property) is re-executable. On backtrack-

ing, continue at [3.4.8.1| b.



3 BUILT-IN PREDICATES 36

3.4.8.2 Template and modes

mutex_property(?mutex_or_alias, ?Pmutex_property)

3.4.8.3 Errors

a) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error (mutex_or_alias, MutexOrAlias)

b) MutexOrAlias is not associated with a current mutex
— existence_error(mutex, MutexOrAlias)

¢) Property is neither a variable nor a mutex property
— domain_error (mutex_property, Property)

3.4.8.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of section

mutex_property(mutex21, alias(mutex21)).
Succeeds.

mutex_property(mutex21, alias(A)).
Succeeds, unifying A with mutex21.

mutex_property(mutex21, status(locked(main, C))).
Succeeds, unifying C with 1.

mutex_property(mutex22, status(locked(main, C))).
Succeeds, unifying C with 2.

mutex_property(Mutex, Property).
Succeeds, unifying Mutex with a mutex-term of an existing mutex
and Property with a property of the mutex.
On re-execution, succeeds, in turn with
each property of the mutex.

mutex_property(Mutex, status(locked(Thread, 1))).
Succeeds, unifying Mutex with a mutex-term of an existing
mutex and Thread with the thread that holding the mutex, and has
locked one time.
On re-execution, succeeds, in turn with each mutex.

mutex_property(mutex22, status(locked(main, 1))).
Fails.



3 BUILT-IN PREDICATES 37

mutex_property(dog, status(locked(main, 1))).
domain_error (mutex_or_alias, dog).

mutex_property(mutex4, status(locked(main, 1))).
existence_error(mutex, mutex4).

mutex_property(mutex4, status(locked(dog, 1))).
domain_error (thread_or_alias, dog)}

mutex_property(mutex22, status(locked(main, -2))).
domain_error(not_less_than_zero, -2).
3.4.9 mutex_statistics/3
3.4.9.1 Description

mutex_statistics(MutexOrAlias, Key, Value) obtains statistical informa-
tion of the MutexOrAlias for the calling thread. The possible values of Key
are implementation defined. The implementation of this predicate is optional
for Prolog compilers compliant with this TR due to the implied computation
overhead in keeping statistical information.

NOTE — Two suggested key values are acquisitions (the number of times
the thread acquired the mutex) and collisions (the number of times a thread
failed to acquire the mutex).

Procedurally, mutex_statistics(MutexOrAlias, Key, Value) is executed as
follows:

a) Create a Setpriy of all terms (M, K, V) such that M is a current mutex
with statistics K which has the value V,

b) If Setykp is empty, the goal fails,

c) Else, chooses a member (MM, KK, VV) of Sety kv and removes it from
the set,

d) Unifies MM with MutexOrAlias, KK with Key, and VV with Value,

e) If unification succeeds, the goal succeeds,

f) Else proceeds to[3.4.9.1 b.

mutex_statistics(MutexOrAlias, Key, Value) is re-executable. On back-

tracking, continue at b.

3.4.9.2 Template and modes

mutex_statistics(?mutex_or_alias, 7key, 7value)



3 BUILT-IN PREDICATES 38

3.4.9.3 Errors

a) MutexOrAlias is neither a variable nor a mutex-term or alias
— domain_error (mutex_or_alias, MutexOrAlias)

b) Key is neither a variable nor an atom
— type_error (atom, Key)

¢) Value is neither a variable nor an atom
— type_error(variable, Value)

3.4.9.4 Examples

3.5 Message queues

Prolog threads may exchange data using dynamic predicates. However, these
provide no suitable means to wait for data or a condition as they can only
be checked in an expensive polling loop. Message queues provide a means for
threads to wait for data or conditions without consuming computation time.
Explicit message queues are commonly used when implementing worker-pool
models, where multiple threads wait on a single queue and pick up the first goal
to execute.

The built-in predicates presented in this section enables message queue man-
agement, monitoring, and communication.

NOTE — Each thread has a message queue attached to it that is identified by
the thread.

The examples provided for these built-in predicate assume the pool created from
the following Prolog text:

:— initialization(main).

main :-
thread_create(thread_goal, _, [alias(t1)]),
message_queue_create(_, [alias(q1)]),
message_queue_create(_, [alias(q2), max_size(20)]).
noqueue.

thread_goal :-
repeat,
thread_get_message(q2, M),
write(M), nl,
fail.



3 BUILT-IN PREDICATES 39

3.5.1 message_queue_create/2, message_queue_create/1

3.5.1.1 Description

message_queue_create(Queue, Options) creates a new queue using the given
list of options. The variable Queue is unified with the queue identifier.

3.5.1.2 Template and modes

message_queue_create(-queue, Qqueue_options)

3.5.1.3 Errors

a) Queue is not a variable
— type_error(variable, Queue)

b) Options is a partial list or a list with an element E which is a variable
— instantiation_error

¢) Options is neither a partial list nor a list
— type_error(list, Options)

d) An element of E of the Options list is not a valid queue option
— domain_error (queue_option, E)

e) An element E of the Options list is alias(A) and A is already associated
with an existing thread or queue
— permission_error(create, queue, alias(A))

3.5.1.4 Bootstrapped built-in predicate

The built-in predicate message_queue_create/1 provides similar functionality
to the built-in predicate message_queue_create/2.

Goal message_queue_create (Queue) creates a new queue using default options.

message_queue_create(Queue) :-
message_queue_create (Queue, [1).

3.5.1.5 Examples

message_queue_create (Queue, []).
Succeeds.
[It creates a queue, unifying Queue
with a queue-term for the queue.]

message_queue_create (Queue) .



3 BUILT-IN PREDICATES 40

Succeeds.

[It creates a queue using de default
queue-creation options, unifying Queue
with a queue-term for the queue.]

message_queue_create(Queue, [alias(q3)]).
Succeeds.
[It creates a queue, unifies Queue with a
queue-term for the queue, and associates
the alias ‘g3’ with the queue.]

message_queue_create(Queue, [alias(q3), max_size(20)]).
Succeeds.
[It creates a queue with maximum size 20, unifies Queue
with a queue-term for the new queue, and
associates the alias ‘q3’ with the queue.]

message_queue_create(queue) .
type_error(variable, queue).

message_queue_create(Queue, [alias(q3), X]).
instantiation_error.

message_queue_create(Queue, options).
type_error(list, options).

message_queue_create(Queue, [alias(q2), name(g2)]).
domain_error(queue_option, name(q2)).

message_queue_create(Q, [alias(q1)]).
permission_error(create, queue, alias(ql)).
[Assume that already exists one
queue named ’ql’.]

3.5.2 message_queue_destroy/1
3.5.2.1 Description

message_queue_destroy(QueueOrAlias) destroys a message queue created with
message_queue_create/1-2 built-in predicates (3.5.1)). It is not allowed to de-
stroy the queue of a thread. Neither is it allowed to destroy a queue other
threads are waiting for or may try to wait for later.

3.5.2.2 Template and modes

message_queue_destroy(+queue_or_alias)



3 BUILT-IN PREDICATES 41

3.5.2.3 Errors

a) QueueOrAlias is a variable
— instantiation_error

b) QueueOrAlias is neither a variable nor a queue-term or alias
— domain_error (queue or_alias, QueueOrAlias)

¢) QueueOrAlias is the identifier of an existing thread
— permission_error(destroy, thread queue, QueueOrAlias)

d) QueueOrAlias there are threads waiting for, or for anonymous message
queues
— permission_error(destroy, queue, QueueOrAlias)

e) QueueOrAlias is not associated with a current queue

— existence_error(queue, QueueOrAlias)

3.5.2.4 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of

message_queue_destroy(queuel) .
Succeeds.

message_queue_destroy(Queue) .
instantiation_error.

message_queue_destroy (noqueue) .
domain_error(queue_or_alias, noqueue).

message_queue_destroy(t1).
permission_error(destroy, thread_queue, t1).
[It is not allowed to destroy the queue of a thread]

message_queue_destroy(q2) .
permission_error(destroy, queue, g2).
[The thread named t1 is waiting for a message]

message_queue_destroy(q3) .
existence_error(queue, q3).

3.5.3 message_queue_property/2
3.5.3.1 Description



3 BUILT-IN PREDICATES 42

message_queue_property(QueueOrAlias, Property) enumerates message queue
properties.

Procedurally, message_queue_property(QueueOrAlias, Property) is executed
as follows:

a) Creates a Setgp of all terms (Q, P) such that T is a current message
queue which has property P,

b) If Setgp is empty, the goal fails,
c) Else, chooses a member (QQ, PP) of Setgp and removes it from the set,

e

)
)
d) Unifies QQ with QueueOrAlias, and PP with Property,
) If unification succeeds, the goal succeeds,

)

f) Else proceeds to|3.5.3.1| b.

message_queue_property(QueueOrAlias, Property) isre-executable. On back-

tracking, continue at [3.5.3.1] b.

3.5.3.2 Template and modes

message_queue_property(?queue_or_alias, 7queue_property)

3.5.3.3 Errors

a) QueueOrAlias is neither a variable nor a queue-term or alias
— domain_error(queue_or_alias, QueueOrAlias)

b) QueueOrAlias is not associated with a current message queue
— existence_error(queue, QueueOrAlias)

¢) Property is neither a variable nor a message queue property
— domain_error (queue_property, Property)

3.5.3.4 Examples

message_queue_property(ql, size(Size)).
Succeeds, unifying Size with O.

message_queue_property(q2, size(Size)).
Succeeds, unifying Size with O.

message_queue_property(q2, size(4)).
Fails.

message_queue_property(noqueue, Size).



3 BUILT-IN PREDICATES 43

domain_error(queue_or_alias, noqueue).

message_queue_property(q3, Property).
existence_error(queue, g3).

message_queue_property(q2, size(size)).
type_error(integer, size).

3.6 Thread and message queue communication

These built-in predicates enable thread and message queue communication, and
queue monitoring.

Prolog threads can exchange data using dynamic predicates, database records,
and other globally shared data. These provide no suitable means to wait for
data or a condition as they can only be checked in an expensive polling loop.
Message queues provide a means for threads to wait for data or conditions with-
out using the CPU. Each thread has a message queue attached to it that can
be referenced using the thread identifier or alias (if defined).

The examples provided for these built-in predicate assume the environment
created from the following Prolog text:

:— initialization(main).

thread_goal :-
repeat,
thread_get_message (M),
write(M), nl,
fail.

main :-
message_queue_create(_, [alias(queuel)]),
message_queue_create(_, [alias(queue2), max_size(2)]),
thread_create(thread_goal, _, [alias(threadl)]),
thread_send_message (queue2, father(antonio)),
thread_send_message (queue2, mother(maria)).

3.6.1 thread _send message/2, thread _send _message/1
3.6.1.1 Description

thread_send message (QueueOrAlias, Term) places Term in a message queue.
Any term may be placed in a message queue. The term is copied to the receiving
queue; thus, any variable-bindings are lost. This call returns immediately.



3 BUILT-IN PREDICATES 44

3.6.1.2 Template and modes

thread_send message (+queue_or_alias, Q@term)

3.6.1.3 Errors

a) QueueOrAlias is a variable
— instantiation_error

b) QueueOrAlias is neither a variable nor a queue-term or alias
— domain_error (queue_or_alias, QueueOrAlias)

¢) QueueOrAlias is not associated with a current queue
— existence_error(queue, QueueOrAlias)

3.6.1.4 Bootstrapped built-in predicate

The built-in predicate thread_send message/1 provides similar functionality to
the built-in predicate thread_send message/2.

Goal thread_send message (Term) sends a message to the message queue of the
calling thread.

thread_send_message(Term) :-
thread_self (Thread),
thread_send_message(Thread, Term) .

3.6.1.5 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of

thread_send_message (queuel, father(antonio)).
Succeeds.

thread_send_message(threadl, father(antonio)).
Succeeds.

thread_send_message(queue2, father(paul)).
Succeeds.

thread_send_message (Queue, mother(maria)).
instantiation_error.

thread_send_message (noqueue, mother(maria)) .
domain_error(queue_or_alias, noqueue).



3 BUILT-IN PREDICATES 45

thread_send_message(queue3, mother(maria)).
existence_error(queue, queue3).

3.6.2 thread_get_message/2, thread_get_message/1
3.6.2.1 Description

thread_get_message(QueueOrAlias, Term) gets a Term from a message queue.
The predicate walks the message queue and if necessary blocks execution until
a term that unifies to Term arrives in the queue. After a term from the queue
has been unified to Term, the term is deleted from the queue and this predicate
returns. Note that non-unifying messages remain in the queue.

3.6.2.2 Template and modes

thread_get_message (+queue_or_alias, 7term)

3.6.2.3 Errors

a) QueueOrAlias is a variable
— instantiation_error

b) QueueOrAlias is neither a variable nor a queue-term or alias
— domain_error (queue_or_alias, QueueOrAlias)

c) QueueOrAlias is not associated with a current queue
— existence_error(queue, QueueOrAlias)

3.6.2.4 Bootstrapped built-in predicate

The built-in predicate thread_get message/1 provides similar functionality to
the built-in predicate thread get_message/2.

Goal thread_get_message (Term) gets a message from the message queue of the
calling thread.

thread_get_message(Term) :-
thread_self (Thread),
thread_get_message(Thread, Term).

3.6.2.5 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of

thread_get_message (queue2, father(antonio)).
Succeeds.



3 BUILT-IN PREDICATES 46

thread_get_message(queue2, father(Father)).
Succeeds, unifying Father with antonio.

thread_get_message (queue2, Message).
Succeeds, unifying Message with father(antonio).

thread_get_message(Queue, mother(maria)).
instantiation_error.

thread_get_message (noqueue, mother(maria)).
domain_error(queue_or_alias, noqueue).

thread_get_message(queue3, mother(maria)).
existence_error(queue, queue3).

After the following has been executed, thread_1 has the term b(gnu) in its queue
and continues execution using A is gnat.

<thread_1>
thread_get_message(a(d)),

<thread_2>
thread_send_message(Thread_1, b(gnu)),
thread_send_message(Thread_1, a(gnat)),
3.6.3 thread_peek_message/2, thread_peek_message/1

3.6.3.1 Description

thread_peek message (QueueOrAlias, Term) walks a message queue and com-
pares the queued terms with Term until one unifies or the end of the queue has
been reached. In the first case the call succeeds (possibly instantiating Term).
If no term from the queue unifies this call fails.

3.6.3.2 Template and modes

thread peek message(+queue_or_alias, 7term)

3.6.3.3 Errors

a) QueueOrAlias is a variable
— instantiation_error

b) QueueOrAlias is neither a variable nor a queue-term or alias
— domain_error(queue_or_alias, QueueOrAlias)



3 BUILT-IN PREDICATES 47

¢) QueueOrAlias is not associated with a current queue
— existence_error(queue, QueueOrAlias)

3.6.3.4 Bootstrapped built-in predicate

The built-in predicate thread_peek message/1 provides similar functionality to
the built-in predicate thread_peek message/2.

Goal thread_peek message (Term) searches the calling thread queue for a mes-
sage match.

thread_peek_message (Term) :-
thread_self (Thread),
thread_peek_message(Thread, Term) .

3.6.3.5 Examples

These examples assume the environment has been created from the Prolog text
defined at the beginning of

thread_peek_message (queue2, father(antonio)).
Succeeds.

thread_peek_message (queue2, mother(maria)).
Succeeds.

thread_peek_message (queue2, father(Father)).
Succeeds, unifying Father with antonio.

thread_peek_message(queue2, Message).
Succeeds, unifying Message with father(antonio).

thread_peek_message(queue2, father(anne)).
Fails.

thread_peek_message (Queue, mother(maria)).
instantiation_error.

thread_peek_message (noqueue, mother(maria)) .
domain_error(queue_or_alias, noqueue).

thread_peek_message (queue3, mother(maria)).
existence_error(queue, queue3).



	Introduction
	Previous editors and draft documents
	Draft document comments
	Contributors

	Scope
	Language concepts and semantics
	Types
	Kibibyte
	Thread and message queue aliases
	Thread status

	Thread-creation options
	Mandatory options
	Optional data area options
	Optional scheduling options

	Thread-creation options list
	Thread properties
	Mutex-creation options
	Mutex-creation options list
	Mutex properties
	Queue-creation options
	Queue-creation options list
	Queue properties
	Database
	Dynamic predicates

	Executing a threaded Prolog goal
	Flags
	Flag: max_threads
	Flag: hardware_threads

	Errors
	Error classification

	Main Prolog thread
	Signaling threads
	Thread message queues

	Built-in predicates
	The format of built-in predicate definitions
	Description
	Templates and modes

	Thread management
	thread_create/3, thread_create/2, thread_create/1
	thread_default/1
	thread_set_default/1
	thread_self/1
	thread_join/2
	thread_detach/1
	thread_exit/1
	thread_signal/2
	thread_cancel/1
	thread_yield/0
	thread_sleep/1

	Monitoring threads
	thread_property/2, thread_property/1
	thread_statistics/3, thread_statistics/2

	Thread synchronization
	mutex_create/2, mutex_create/1
	mutex_destroy/1
	with_mutex/2
	mutex_lock/1
	mutex_trylock/1
	mutex_unlock/1
	mutex_unlock_all/0
	mutex_property/2
	mutex_statistics/3

	Message queues
	message_queue_create/2, message_queue_create/1
	message_queue_destroy/1
	message_queue_property/2

	Thread and message queue communication
	thread_send_message/2, thread_send_message/1
	thread_get_message/2, thread_get_message/1
	thread_peek_message/2, thread_peek_message/1



