
Proposal for Global Variables in Standard Prolog

Katsuhiko Nakamura and Nobukuni Kino
Japanese Prolog WG

September 20, 2007

1 Introduction

This document describes a proposal for incorporating global variables based on
logical assignment into standard Prolog. This proposal is a result of discussions
in Japanese Prolog WG, which took account of the Minutes of WG17 Seattle
meeting in 2006. It follows the previous document [3].

2 Necessity of Logical Assignment and Global
Variable

Data types of Prolog are essentially restricted to terms at the cost of compact-
ness and the unity of a logic programming language. On the other hand, it
has been commonly recognized that Prolog has two practical problems, which
considerably prevent the language and logic programming from being used for
broader area of information processing. One problem is that Standard Prolog
does not have the direct means for efficient random access of data in a large
working memory such as arrays or hash memories. The other problem is that
pure Prolog has no global variables such as those in Lisp and C. The array
functions are closely related to the global variables, as the values of both global
variables and the array elements need to be updated.

It is well known that the global variables in logic programs are converted
to additional arguments. This conversion causes, however, inefficiency in pro-
gram execution as well as difficulties in reading and writing programs, since
the numbers of arguments need to be increased in large programs. Schachte [5]
showed formal semantics for programs with the global variables and a method
of transforming programs with the global variables into efficient logic programs.

In general, logic programming observes the single assignment rule so that
no variable is destructively assigned in usual execution. On the other hand,
we need to update the values in the global variables and array elements. The
logical assignment is a mechanism to compromise these two contradictory condi-
tions, by which we can update the values of global variables and array elements

1

preserving the single assignment rule. The logical assignment is realized by a
mutable term in SICStus Prolog and an assignable term (or object) in K-Prolog.

It has been an important problem how to realize arrays efficiently without
violating the single assignment rule not only in logic programming but in func-
tional programming, since updating an array element generally requires copying
the entire array. An method of realizing arrays in single assignment languages
is described in [1].

A common practical method in Prolog is that one-dimensional arrays are
realized by terms usually with large arities. These terms are created by built-
in predicate functor/3, and their elements are accessed by arg/3. There is,
however, a problem that it needs a means to updating elements of the array.
Several implementations, including SWI-Prolog and GNU-Prolog, have built-
in predicate setarg/3 for updating terms. A goal setarg(I,+Term,+Value)+
destructively assigns the Value to the Ith argument of Term. Tarau [7] describes
the problem of this built-in predicate as “setarg/3 lacks a logical semantics and
is implemented differently in various systems. This may be the reason why the
standardization of setarg/3 can hardly reach a consensus in the predictable
future.” Furthermore, destructive assignment to an argument by setarg/3
sometimes causes a fatal error that eliminates some value. This error occurs,
when the value of a variable in the argument is updated.

Some implementations have backtrackable global variables without the logi-
cal assignment. The problem of destructive assignment by setarg/3 is common
to that of these global variables. It is written in the manual of SWI-Prolog
that“The goal b_getval(+Name,?Value) gets the value associated the global
variable Name and unifies it with Value. Note that this unification may further
instantiate the value of the global variable. If this is not undesirable the nor-
mal precautions (double negation or copy term/2) must be taken.” The global
variables based on logical assignment need no such precaution.

The clause creation and destruction predicates asserta/1 and retract/1
are used in some parts of global variables and array functions in Prolog. These
built-in predicates, however, hardly have usual logical meaning, and are not effi-
cient since these predicates are originally interpreter-based functions for altering
existing programs.

Some early implementations of Prolog had nonbacktrackable built-in predi-
cates for “recorded database” such as recorda/2 and erase/2 for storing terms.
These predicates were excluded from the standard at an early stage of Pro-
log standardization for the reason that these are similar to asserta/1 and
retract/1 and that code and data should not be distinguished in Prolog [4].

3 A Survey on Global Variables in Existing Im-
plementations

This section describes global variables and associative functions in existing im-
plementations based on the responses to the authors’ request for the survey.

2

3.1 Logical Assignment

The logical assignment is implemented by assignable terms (or mutable terms)
in K-Prolog and by mutable terms in SICStus Prolog and YAP prolog. The mu-
table term is almost equivalent to the assignable terms. The global variables and
the arrays in IF/Prolog are essentially based on logical assignment. IF/Prolog,
however, has no predicate for directly creating and manipulating special objects
like the assignable term or the mutable terms.

SICStus Prolog and YAP prolog have the following built-in predicate for the
mutable terms:

• create_mutable(+Datum,-Mutable) creates a mutable term with an ini-
tial value Datum and returns to Mutable;

• get_mutable(?Datum,+Mutable) unifies Datum with the current value of
Mutable; and

• update_mutable(+Datum,+Mutable) updates a value of Mutable to
Datum.

A mutable term is represented as a compound term of the form

$mutable(V alue, T imestamp),

where V alue is the current value and Timestamp is a term reserved for book-
keeping purpose.

In K-Prolog, an assignable term with an initial value t is represented by a
special term “}t{.” Hence, it needs not to have a predicate for creating the
assignable terms. The assignable term can be “empty” state, which has no
value and represented by “}{.” It has built-in predicates defined as operators
+Mutable <= +Datum and +Mutable =>?Datum for updating and accessing the
assignable term, respectively.

3.2 Arrays

K-Prolog provides built-in predicates for manipulating several forms of arrays
and associative functions based on the assignable terms.

SICStus Prolog removed setarg/3 because of the problem of destructive
assignment. Hence the users should use the mutable terms for updating values in
arguments of terms instead of setarg/3. It has, however, no built-in predicate
for binding the mutable terms to arrays, or terms used for one -dimensional
arrays. SICStus Prolog also adopts the other approach such as extendible arrays
with logarithmic access time based on logical assignment.

BinProlog provides change_arg/3 for safe update of an argument of a term.
It works like setarg/3 except that the side-effects are permanent.

IF/Prolog has one-dimensional arrays based on logical assignment. It pro-
vides the following built-in predicates:

3

• create_array(?Array,@Dimension) creates an array with the size
Dimension;

• set_array(@Array,@Index,@Term) assigns Term to the element with
Index of Array, where Index can be an executable arithematic expres-
sion; and

• get_array(@Array,@Index,?Term) unifies Term with a current of the el-
ement.

If the element is assigned more times successively, then the old values are pushed
down. The values are popped up by successive get_array/3.

3.3 Backtrackable Global Variables

K-Prolog has backtrackable global variables based on the logical assignment.
In K-Prolog, the goal global(+Variable) makes Variable a global variable
having an assignable term with the empty state. The scope of the global variable
is inside the module.

IF/Prolog provides the following built-in predicates for global variables in
addition to set_global(+Name,@Value) and get_global(+Name,?Value).

• push_global(+Name,@Value) creates and/or the set global variable Name
to Value. If Name already existed, then its current value is pushed down
and Value becomes the new value.

• pop_global(+Name,+Value) unifies Value with the topmost element of
value stack of Name and pop it up one step. If it was the last element,
then the Name is deleted.

Some implementations have backtrackable global variables not based on
the logical assignment. Recent version of SWI-Prolog has built-in predi-
cates b_setval(+Name,+Value) and b_getval(+Name,?Value) for backtrack-
able global variables, where Name is an atom.

B-Prolog has built-in predicates, global_heap_set(+Name,+Value) and
global_heap_get(+Name,?Value). If Name is an atom, these are similar to
b_setval/2 and b_getval/2 of SWI-Prolog. The Name can be any ground
term other than any atom, these predicates might be classified to associative
functions.

3.4 Non-Backtrackable Global Variables

SWI-Prolog provides the built-in predicates for the recorded database such as
recorda/2 and erase/2. It also provides nonbacktrackable built-in predicates
nb_setval(+Name,+Value) and nb_getval(+Name,?Value).

The global variable in BIN-Prolog is called global logical variable. These are
logical in the sense that “Although a global variable cannot be changed, it can
be further instanciated as it happens to ordinary Prolog terms.”

4

IF/Prolog and SICStus-Prolog have non-backtrackable built-in predicates for
hash memories called “blackboard.” For example, bb_get(+Boad,?Key,?Term)
in IF/Prolog retrieves (Key,Term) tuple in the blackboard Board, where Key
can be any ground term.

BinProlog provides global variables called global logical variables, each
of which can be used to access a hash table by two keys and in-
stantiated by a special built-in predicate. B-Prolog has built-in predi-
cates global_set(+Name,+Value) and global_get(+Name,?Value) for non-
backtrackabel global variables. MINERVA IF/Prolog has similar built-in pred-
icates set_global(+Name,+Value) and get_global(+Name,?Value) in addi-
tion to the predicates for the blackboard.

4 Logical Assignment

An assignable term is a special term for realizing logical assignment. A value is
assigned to, and accessed from, the assignable term by built-in predicates. In
backtracking, an assigned value is withdrawn and the assignable term has the
previous value.

The assignable terms are created either by a built-in predicate or by unifying
a variable with an associative term with an initial value. The created assignable
term has either an initial value or a special empty state, which represents that
the assignable term has no value.

Input and output of the assignable terms are implementation-defined, but
should satisfy the following requirements:

1. Any assignable term in an input term can contain either an initial value,
or no value in the case of the empty state; and

2. Every output of the assignable terms contains either the current value of
the assignable term, or no value in the case of the empty state.

Notes:

1. The ordering of the assignable terms is implementation-defined.

2. The effect of unifying two assignable objects is undefined.

3. Any copy of an assignable object created by copy_term/2, assert, re-
tract, or an all solution predicate is an independent copy of the original
assignable term. Any assignment to either the original or the copy will not
affect the other (This is based on SICStus Prolog Manual, Section 4.8.9).

4.1 Predicates for Assignable Terms

The followings are built-in predicates for creating, updating and accessing the
values of the assignable terms.

5

• assignable(-Variable)
The goal assignable(X) generates an assignable term with the value
empty and returns the term representing the assignable term to X.

• assignable(-Variable, +Term)
The goal assignable(X, I) generates an assignable term with the initial
value I and returns the term representing the assignable term to X.

• assign(+Assignable_Term,+Term)
The goal assign(X, T) assigns a term T to an assignable term X: The
value of the assignable term is replaced by the term T . On backtracking,
the value of X returns to the previous value.

• access(+Assignable_Term,+Term)
The goal access (X, T) unifies the value of an assignable term X with
a term T . If X is empty, it raises an instantiation error.

• assign_unique(+Assignable_Term,+Term)
The goal assign_unique (X, T) sets an assignable term X to have only
the value of a term T . On backtracking, the assignable term returns to
empty.

• empty(+Assignable_Term)
The goal empty(+Assignable_Term) succeeds, if Assignable_Term is
empty, fails otherwise.

The predicate assign_unique/2 sets a single value to the assignable term.
The role of this predicate is similar to that of the cut (!) in the sense that the
value of a variable can be restricted to a single value. We introduce this predicate
for the economy of memory usage, since the repetitive use of assignment by the
predicateassign/2 may increase useless memory consumption.

4.2 Notes

1. An access to an assignable term with the value empty by access/2 causes
an error. An option is that the access to the empty assignable term fails.

2. In many cases, the predicate assign_unique/2 can be replaced by
assign/2 without changing the result of the program.

3. The names of the built-in predicates are subject to change. For example,
assignable/1 access-/2 can be renamed to mutable/1 as in SICSTUS
Prolog. Similarly, access/2 can be renamed to draw/2 or retrieve/2.

4. The predicates assign/2, assign_unique/2, and access/2 are applied
not only to the assignable terms but to also the global variables (Section
5).

6

4.3 Example 1: A Counter

counter(C) :- assignable(C,0).
count_up(C) :- access(C,I), I1 is I+1, assign_uniqe(C,I1).
counter_value(C,I) :- access(C,I).

The goal counter(C,0) generates an assignable term with the initial value 0,
and returns it to the variable C. The goal count_up(C) increments the value of
the assignable term by one, which is the only value of the assignable term.

Another example of game boards using assign_unique/3 is shown in Section
6.2.

4.4 Semantics of Assignable Terms

Semantics, or a model, of the assignable terms is given by linear lists termi-
nated with variables. Any initial value V0 is represented by the list of the
form [V0|L], and the empty value by a variable. The predicates assignable/1,
assignable/2, assign/2 and access/2 are in effect equivalent to those defined
by the following Prolog predicates.

assignable(_).
assignable([I|_],I).

assign(L,V) :- addtail(L,V).

addtail(L,V) :- var(L), !, L=[V|_].
addtail([_|L],V) :- addtail(L,V).

access(L,V) :- var(L),!,
instatiation_error(assignable_term).

access(L,V) :- findtail(L, V).

findtail([V|L],V) :- var(L),!.
findtail([_|L],V) :- findtail(L,V).

empty(X) :- var(X).

Note that this method using lists as the assignable terms is not efficient, when
the list changes to have many values. Note also that it is impossible to define
assign_unique/2 in standard Prolog, since it needs to destructively assign a
list [V |L] with the single value V to the assignable term. On the other hand,
we can efficiently implement not only these predicates but also access/2 and
assign/2 by “safe” use of setarg/3 (see Note in Section 3).

The standard does not specify how the assignable terms can be implemented.
A possible method is the use of either special pointers to the end cells of the
linear list or a cache memory for efficiently accessing the values in the ends of
the lists. There would be other different approaches that do not use the linear
lists.

7

5 Arrays as Complex Terms

This section describes a method of realizing one-dimensional arrays based on
the logical assignment. The array is a complex term, in which each element, or
each argument, has an assignable term.

5.1 A Reference Implementation for Arrays

The following program implements predicates for the array, which is represented
by a term in which each argument has an assignable term.

array(T,N,I) :- functor(T, array,N), initialize(1,T,N,I).

initialize(K,_,N,_) :- K > N,!.
initialize(K,T,N,I) :- arg(K,T,E),

(var(I) -> assignable(E);
functor(I,array,_) -> E=I; assignable(E,I)),

K1 is K+1, copy_term(I,I1), initialize(K1,T,N,I1).

assign_array(A,K,T) :- arg(A, array,E), assign(E,T).
assign_unique_array(A,K,T) :- arg(A, array,E), assign_unique(E,T).
access_array(A,K,T) :- arg(A, array,E), access(E, T).

For defining an array of arrays, or a two-dimensional array, initialize/4 sim-
ply copies each argument of a term with functor name array.

5.2 Note:

1. It is desirable that the standard includes the above predicates as built-ins.

2. A problem of using terms as one-dimensional arrays is that the size of the
arrays is restricted by the maximum arity of terms, which is not sufficiently
large in some implementation.

5.3 Example: Chess Boards

% board(N,B): returns a term representing an N*N array to B.
board(N,B) :- array(Row,N,_), array(B,N,Row).

% place(B,I,J,P): place P to (I,J) of board B.
place(B,I,J,P) :- arg(I,B,R), arg(J,R,A), assign(A,P).

% move(B,I,J,P): a player’s move P to (I,J) of board B.
move(B,I,J,P) :- arg(I,B,R), arg(J,R,A), assign_unique(A,P).

8

In game programming, the board is updated by the moves not only of the
players but also of the search program. Although the moves in the search by
place/4 need to be backtracked, the moves by the players generally not to be
backtracked. By using assign_unique/3 for the moves by the players, we can
save the memory for storing the boards.

6 Global Variables Including Associative Func-
tionality

The (backtrackable) global variables are considered as a mapping from the set
of keys to the set of assignable terms. The key of a global variable is represented
by either an atom or a ground complex term. The global variable with keys of
the complex term are considered as associative functionality, especially those
with keys of the form, for example, a(15) or a(10,20) as array elements. The
scope of a global variable is the module.

The value of global variable is accessed by the built-in predicates.

6.1 Built-in Predicates for Global Variables

A global variable is defined by built-in predicates global/1 and global/2, which
can be also directives.

• global(+Key)
The goal global(Key) generates an empty assignable term and relates
the global variable Key with the assignable term. Key is a ground term
except a number.

• global(+Key, +Term)
The goal global (Key, T) generates an assignable term having an initial
value T , and relates the global variable Key with the assignable term.

After a global variable X is defined, the values of X are retrieved by access
(X, V) and are updated by assign(X, V) and assign_unique(X, V). These
built-in predicates can distinguish the global variables from assignable terms,
since the global variables are atoms.

Note

The values of global variables with keys of complex terms are generally stored
in hash memories.

6.2 Examples

Example 1.

reverse(X,Y) :- global(result), rev(X,[]),
access(result, Y).

9

rev([],Y) :- assign(result, Y).
rev([A|X],Y) :- rev(X,[A|Y]).

?- reverse([a,b,c],Y).
Y = [c,b,a]

?- reverse(X,[a,b,c]).
X = [c,b,a]

Example 2.

initialize :- global(symbol_list),
assign(symbol_list, [p,q,r,s,t,u,v]).

newsymbol(Q) :- access(symbol_list, [Q|L]),
assign(symbol_list, L).

newsymbol1(Q) :- access(symbol_list, [Q|L]),
assign_unique(symbol_list, L).

?- initialize, repeat, newsymbol(Q), newsymbol(R).
Q = p
R = q ;

Q = p
R = q

?- initialize, repeat, newsymbol1(Q), newsymbol1(R).
Q = p
R = q ;
Instantiation error

On backtracking, the goal newsymbol(Q) fails and gives Q the previous value.
The goal newsymbol1(Q) also fails on backtracking, but the assignable term
returns to the empty state.

6.3 Questions

The followings are questions on the backtrackable global variables.

1. Does the standard need to include backtrackable global arrays?

2. Does backtrackable global variable need to be extended to access hash
memories? (Does the atom in global(+Atom, +Term) need to be ex-
tended to ground term?)

10

7 Non-Backtrackable Global Variables

Nonbacktrackablle global variables can be used for controlling the program ex-
ecution and for storing and collecting all the solutions. The non-backtrackable
global variables have been realized in Standard Prolog by asserta/1 and
retract/1, and the predicates recorda/2 and erase/2 for the recorded
database used in old Edinburgh Prolog and some recent implementation.

We can extend the notation and the syntax of backtrackable global variables
and arrays to those of non-backtrackable ones. The semantics of these global
variables, however, is intrinsically different from that of backtrackable global
variables, and rather similar to the pair of asserta/1 and retract/1 and that
of recorda/1 and erase/1.

7.1 Questions

The followings are questions on the nonbacktrackable global variables.

1. Does the standard need to include the nonbacktrackable global variables
into the standard?

2. Which form of the nonbacktrackable global variables is better, the recorded
database or the extension of backtrackable global variables?

3. Does nonbacktrackable global variable need to include arrays?

4. Does nonbacktrackable global variable need to be extended to access hash
memories?

Acknowledgement

The authors thank Jan Wielemaker, Osker Bartenstein, Neng-Fa Zhou, Mats
Carlsson, and Klaus Däßler for sending us information on global variables and
arrays in existing implementations, which is reflected in Section 3.

References

[1] A. K̊agedal and S. Debray, A practical approach to structure reuse of arrays
in single assignment languages, Proc. ICLP, 1997 pp. 18-32.

[2] Toshinori Munakata, Notes on implementing sets in Prolog, Comm. ACM
35, 1992, pp.112-120.

[3] K. Namaura and N. Kino, Japanese Proposal for Global Variables and
Associative Functions in Standard Prolog (Revised), September 2006.

[4] N.D. North, and Roger S. Scowen (eds.), Paris 1989 Meeting–Minutes,
SO/IEC JTC1 SC22 WG17, N36, 1989.

11

[5] Peter Schachte, Global variables in logic programming, Proc. of ICLP,
1997, pp.3-17.

[6] Roger S. Scowen (ed.), Prolog Part I: General Core, ISO/IEC DIS 13211-1,
1994.

[7] Paul Tarau, Binprolog 5.25 Users Guide. Departement d’Informatique
Universit, de Moncton Moncton, Canada, available from http://
139.103.16.8/BinProlog/public html/public html/bp575pc/doc/
html/art.html, 1997.

12

