
ISO/IEC DTR 13211–3:2006

Definite clause grammar rules

Editor: Paulo Moura
pmoura@di.ubi.pt

May 28, 2010

Introduction

This technical recommendation (TR) is an optional part of the International
Standard for Prolog, ISO/IEC 13211. Prolog systems wishing to implement
Definite Clause Grammar rules should do so in compliance with this technical
recommendation.

Grammar rules provide convenient and simple functionality for parsing and
processing text in a variety of languages. They have been implemented in many
Prolog systems. As such, they are deemed an worthy extension to the ISO/IEC
13211 Prolog standard. Parsing and processing text with grammar rules is
defined in sections 8.1.1 and 11.2. In brief, grammar rules can be expanded
into Prolog clauses, which allows us to map parsing a grammar rule body into
executing a goal given a set of predicate clauses. See section 7.7 of ISO/IEC
13211–1 for details.

This TR is written as an extension to the ISO/IEC 13211–1 Prolog standard,
adopting a similar structure. Specifically, this TR either adds new sections and
clauses to, or modifies the reading of existing clauses on ISO/IEC 13211–1.

This TR provides reference implementations for the specified built-in predi-
cates and for a translator from grammar rules into Prolog clauses. In addition,
it includes a comprehensive set of tests to help users and implementers check
for compliance of Prolog systems. The source code of these reference implemen-
tations may be used without restrictions for any purpose.

This draft may contain in several places informative text, type-set in italics.
Such informative text is used for editorial comments deemed useful during the
development of this draft and may not be included in the final version.

Previous editors and draft documents

• Roger Scowen: N171 — ISO/IEC DTR 13211–3:2004 Grammar rules in
Prolog, ISO, 2004-05

• Tony Dodd: DCGs in ISO Prolog — A Proposal, BSI, 1992

1

1 SCOPE 2

Contributors

This list needs to be completed; so far I’ve only included people present at
the ISO meetings collocated with the ICLP (2005, 2006, and 2007) and the
authors of the two drafts cited above, and Richard as I have included here some
contributions from him that I found on the net.

• Bart Demoen (Belgium)

• Jan Wielemaker, (Netherlands)

• Joachim Schimpf (UK)

• Jonathan Hodgson (USA)

• Jose Morales (Spain)

• Katsuhiko Nakamura (Japan)

• Klaus Daessler (Germany)

• Manuel Carro (Spain)

• Mats Carlsson (Sweden)

• Paulo Moura (Portugal)

• Pierre Deransart (France)

• Péter Szabó (Hungary)

• Péter Szeredi (Hungary)

• Richard O’Keefe (NZ)

• Roger Scowen (UK)

• Tony Dodd (UK)

• Ulrich Neumerkel (Austria)

• Vı́tor Santos Costa (Portugal)

1 Scope

This TR is designed to promote the applicability and portability of Prolog gram-
mar rules in data processing systems that support standard Prolog as defined
in ISO/IEC 13211–1:1995. As such, this TR specifies:

a) The representation, syntax, and constraints of Prolog grammar rules

b) A logical expansion of grammar rules into Prolog clauses

2 NORMATIVE REFERENCES 3

c) A set of built-in predicates for parsing with and expanding grammar rules

d) References implementations and tests for the specified built-in predicates
and for a grammar rule translator

NOTE — This part of ISO/IEC 13211 will supplement ISO/IEC 13211–1:1995.

2 Normative references

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

3 Definitions

For the purposes of this TR, the following definitions are added to the ones
specified in ISO/IEC 13211–1:

3.1 body (of a grammar-rule): The second argument of a grammar-rule
or the first argument of the built-in predicates phrase/3 and phrase/2 (8.1.1).
A grammar-body-sequence, or a grammar-body-alternatives, or a grammar-
body-choice, or a grammar-body-element.

3.2 clause-term: A read-term T. in Prolog text where T does not have
principal functor (:-)/1 nor principal functor (-->)/2.

3.3 definite clause grammar: A sequence of grammar rules.

3.4 grammar-body-alternatives: A compound term with principal func-
tor (;)/2 and each argument being a body (of a grammar-rule).

3.5 grammar-body-choice: A compound term with principal functor (->)/2,
the first argument is a body (of a grammar-rule), and the second argument is a
grammar-body-alternatives.

3.6 grammar-body-cut: The atom !.

3.7 grammar-body-element: A grammar-body-cut, or a grammar-body-
goal, or a grammar-body-nonterminal, or a sequence of grammar-body-terminals.

3.8 grammar-body-goal: A compound term with principal functor ({})/1
whose argument is a goal.

3.9 grammar-body-nonterminal: A non-terminal (of a grammar).

4 SYMBOLS AND ABBREVIATIONS 4

3.10 grammar-body-sequence: A compound term with principal functor
(,)/2 and each argument is a body (of a grammar-rule).

3.11 grammar-body-terminals: A sequence of terminals.

3.12 grammar-rule: A compound term with principal functor (-->)/2.

3.13 grammar-rule-term: A read-term T. in Prolog text where T is a
grammar-rule.

3.14 head (of a grammar-rule): The first argument of a grammar-rule.
Either a non-terminal (of a grammar), or a compound term whose principal
functor is (,)/2 the first argument is a non-terminal (of a grammar), and the
second argument is a sequence of terminals.

3.15 new variable with respect to a term T: A variable that is not an
element of the variable set of T (see also 7.1.6.2 of ISO/IEC 13211-1).

3.16 non-terminal (of a grammar): An atom or compound term that
denotes a non-terminal symbol of the grammar.

3.17 non-terminal-indicator: A compound term A//N where A is an atom
and N is a non-negative integer, denoting one particular grammar-rule non-
terminal.

3.18 sequence of terminals: The Prolog atom [], or a compound term
whose principal functor is (.)/2, the first argument is a terminal (of a grammar),
and the second argument is a sequence of terminals.

3.19 terminal (of a grammar): Any Prolog term that denotes a terminal
symbol of the grammar.

3.20 variable, new with respect to a term T: See new variable with
respect to a term T.

4 Symbols and abbreviations

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5 COMPLIANCE 5

5 Compliance

5.1 Prolog processor

A conforming Prolog processor shall:

a) Correctly prepare for execution Prolog text which conforms to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

b) Correctly execute Prolog goals which have been prepared for execution
and which conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

c) Reject any Prolog text or read-term whose syntax fails to conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

d) Specify all permitted variations from this TR in the manner prescribed by
this TR and by the ISO/IEC 13211–1, and

e) Offer a strictly conforming mode which shall reject the use of an imple-
mentation specific feature in Prolog text or while executing a goal.

NOTE — This extends corresponding section of ISO/IEC 13211–1.

5.2 Prolog text

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.3 Prolog goal

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

6 SYNTAX 6

5.4 Documentation

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A conforming Prolog processor shall be accompanied by documentation that
completes the definition of every implementation defined and implementation
specific feature specified in this TR and on the ISO/IEC 13211–1 Prolog stan-
dard.

5.5 Extensions

The corresponding section on the ISO/IEC 13211–1 Prolog standard is modified
as follows:

A processor may support, as an implementation specific feature, any construct
that is implicitly or explicitly undefined in this TR or on the ISO/IEC 13211–1
Prolog standard.

5.5.2 Predefined operators

Please see section 6.3 for the new predefined operators that this TR adds to the
ISO/IEC 13211–1 Prolog standard.

6 Syntax

6.1 Notation

6.1.1 Backus Naur Form

No changes from the ISO/IEC 13211–1 Prolog standard.

6.1.2 Abstract term syntax

The text near the end of this section on the ISO/IEC 13211–1 Prolog standard
is modified as follows:

Prolog text (6.2) is represented abstractly by an abstract list x where x is:

a) d.t where d is the abstract syntax for a directive, and t is Prolog text, or

b) g.t where g is the abstract syntax for a grammar rule, and t is Prolog
text, or

c) c.t where c is the abstract syntax for a clause, and t is Prolog text, or

d) nil, the empty list.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section.

6 SYNTAX 7

6.1.3 Variable names convention for lists of terminals

This TR uses variables named S0, S1, ..., S to represent the list of terminals
used as arguments when processing grammar rules or when expanding grammar
rules into clauses. In this notation, the variables S0, S1, ..., S can be regarded
as a sequence of states, with S0 representing the initial state and the variable S
representing the final state. Thus, if the variable Si represents the initial list of
terminals, the variable Si+1 will represent the remaining list of terminals after
processing Si with a grammar rule.

6.2 Prolog text and data

The first paragraph of this section on ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of read-terms which denote (1) directives, (2) grammar
rules, and (3) clauses of user-defined procedures.

6.2.1 Prolog text

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of directive-terms, grammar-rule terms, and clause-
terms.

prolog text = p text
Abstract: pt pt

p text = directive term , p text
Abstract: d.t d t

p text = grammar rule term , p text
Abstract: g.t g t

p text = clause term , p text
Abstract: c.t c t

p text = ;
Abstract: nil

6.1 Directives

No changes from the ISO/IEC 13211–1 Prolog standard.

6.2 Clauses

The corresponding section on the ISO/IEC 13211–1 is modified as follows:

clause term = term, end
Abstract: c c
Priority: 1201
Condition: The principal functor of c is not (:-)/1
Condition: The principal functor of c is not (-->)/2

7 LANGUAGE CONCEPTS AND SEMANTICS 8

NOTE — Subclauses 7.5 and 7.6 defines how each clause becomes part of the
database.

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

6.3 Grammar rules

grammar rule term = term, end
Abstract: gt gt
Priority: 1201
Condition: The principal functor of gt is (-->)/2

grammar rule = grammar rule term
Abstract: g g

NOTE — Section 10 of this TR defines how a grammar rule in Prolog text is
expanded into an equivalent clause when Prolog text is prepared for execution.

6.3 Terms

NOTE — The operator -->/2, specified in section 6.3.4.4 of the ISO/IEC 13211–
1 Prolog standard, is used as the principal functor of grammar rules.

7 Language concepts and semantics

The following section extends, with the specified number, the corresponding
ISO/IEC 13211–1 section:

7.4.2.1 dynamic/1

Adds the following note: The argument of this directive may also be a grammar
rule non-predicate indicator, a grammar rule non-predicate indicator sequence,
or a grammar rule non-predicate indicator list specifying that each user-defined
grammar rule non-terminal indicated by the directive argument is multifile.

7.4.2.2 multifile/1

Adds the following note: The argument of this directive may also be a grammar
rule non-predicate indicator, a grammar rule non-predicate indicator sequence,
or a grammar rule non-predicate indicator list specifying that each user-defined
grammar rule non-terminal indicated by the directive argument is dynamic.

7.4.2.3 discontiguous/1

Adds the following note: The argument of this directive may also be a grammar
rule non-predicate indicator, a grammar rule non-predicate indicator sequence,

7 LANGUAGE CONCEPTS AND SEMANTICS 9

or a grammar rule non-predicate indicator list specifying that each user-defined
grammar rule non-terminal indicated by the directive argument is discontiguous.

7.13 Predicate properties

The following optional property is added to the list of predicate properties:

• expanded from(non terminal, A//N) — The predicate results from the
expansion of a grammar rule for the non-terminal A//N

NOTE — the expanded from/2 property name was chosen in order to account
for other possible, implementation-specific expansions.

7.14 Grammar rules

7.14.1 Terminals and non-terminals

Terminals are represented by terms enclosed in lists in order to distinguish them
from non-terminals (string notation may be used as an alternative to lists when
terminals are characters; see sections 6.3.7 and 6.4.6 of ISO/IEC 13211–1). Non-
terminals are represented by callable terms.

NOTE — In the context of a grammar rule, terminals represent words or to-
kens of some language and non-terminals represent sequences of words (see,
respectively, sections 3.18 and 3.16).

7.14.2 Format of grammar rules

A grammar rule has the format:

GRHead --> GRBody.

A grammar rule is interpreted as stating that its head, GRHead, can be rewritten
by its body, GRBody. The head and the body of grammar rules are constructed
from terminals and non-terminals. The head of a grammar rule is a non-terminal
or the conjunction of a non-terminal and a list of terminals (a push-back list,
see 7.14.3):

NonTerminal --> GRBody.

NonTerminal, PushBackList --> GRBody.

The control constructs that may be used on a grammar rule body are described
later, in section 7.14.6. An empty grammar rule body is represented by an
empty list:

GRHead --> [].

The empty list cannot be omitted, i.e. there is no -->/1 form for grammar
rules.

7 LANGUAGE CONCEPTS AND SEMANTICS 10

7.14.3 Push-back lists

A push-back list is a list of terminals on the left-hand side of a grammar rule (see
3.14). A push-back list contains terminals that in the output list are prefixed
to the list obtained from the input list by successful application of the body of
the grammar rule.

7.14.3.1 Examples

For example, assume that we need rules to look-ahead one or two tokens that
would be consumed next. This could be easily accomplished by the following
two grammar rules:

look_ahead(X), [X] --> [X].
look_ahead(X, Y), [X,Y] --> [X,Y].

When used for parsing, procedurally, these grammar rules can be interpreted
as, respectively, consuming, and then restoring, one or two terminals.

7.14.4 Non-terminal indicator

A non-terminal indicator is a compound term with the format //(A, N) where
A is an atom and N is a non-negative integer.

The non-terminal indicator //(A, N) indicates the grammar rule non-terminal
whose functor is A and whose arity is N.

NOTES

1 In Prolog text, including ISO/IEC 13211–1 and this TR, a non-terminal
indicator //(A, N) is normally written as A//N.

2 The concept of non-terminal indicator is similar to the concept of predicate
indicator defined in sections 3.131 and 7.1.6.6 of the ISO/IEC 13211–1 Prolog.
Non-terminal indicators may be used in exception terms thrown when process-
ing or using grammar rules. In addition, non-terminal indicators may appear
wherever a predicate indicator as defined in ISO/IEC 13211–1 can appear. In
particular, using non-terminal indicators in predicate directives allows the de-
tails of the expansion of grammar rules into Prolog clauses to be abstracted.

7.14.4.1 Examples

For example, given the following grammar rule:

sentence --> noun_phrase, verb_phrase.

The corresponding non-terminal indicator for the grammar rule left-hand side
non-terminal is sentence//0. Assuming a public/1 directive for declaring
predicate scope, we could write:

7 LANGUAGE CONCEPTS AND SEMANTICS 11

:- public(sentence//0).

in order to be possible to use grammar rules for the non-terminal sentence//0
outside its encapsulation unit.

7.14.5 Prolog goals in grammar rules

In the body of grammar rules, curly brackets enclose a sequence of Prolog goals
that are executed when the grammar rule is processed.

NOTE — The ISO/IEC 13211–1 Prolog standard defines, in section 6.3.6, a
curly bracketed term as a compound term with principal functor ’{}’/1, whose
argument may also be expressed by enclosing its argument in curly brackets.

7.14.5.1 Examples

Consider, for example, the following grammar rule:

digit(D) --> [C], {0’0 =< C, C =< 0’9, D is C - 0’0}.

This rule recognizes a single terminal as the code of a character representing a
digit when the corresponding numeric value can be unified with the non-terminal
argument.

7.14.6 Control constructs and built-in predicates supported by gram-
mar rules

The following control constructs specified in the ISO/IEC 13211–1 Prolog stan-
dard may be used in the body of grammar rules: ’,’/2, ’;’/2, ->/2, and !/0.

The following built-in predicates specified in the ISO/IEC 13211–1 Prolog stan-
dard may be used in the body of grammar rules: \+/1.

The :/2 control construct specified in the ISO/IEC 13211–2 Prolog standard
may be used in the body of grammar rule (see 11.1.1).

The call/1 Prolog control construct specified in the ISO/IEC 13211–1 Prolog
standard (sections 7.8) shall be interpreted as the call//1 built-in non-terminal
(see 8.1.2) when used in the body of grammar rule.

The following Prolog control constructs and built-in predicates derived from
control constructs specified in the ISO/IEC 13211–1 Prolog standard (sections
7.8 and 8.15) shall not be recognized as control constructs when used in a gram-
mar rule body: true/0, fail/0, repeat/0, once/1, catch/3, and throw/1.
When appearing in the place of a non-terminal, these Prolog control constructs
and built-in predicates must be interpreted as non-terminals.

8 BUILT-IN PREDICATES 12

A Prolog implementation may support additional control constructs. Exam-
ples include soft-cuts and control constructs that enable the use of grammar
rules stored on encapsulation units other than modules such as objects. These
additional control constructs must be treated as non-terminals by a Prolog im-
plementation working on a strictly conforming mode (see 5.1e).

7.14.7 Executing procedures expanded from grammar rules

When the database does not contain a grammar rule for a non-terminal required
for the grammar rule body we are trying to execute, it is recommended, but not
mandatory, that the error term specified in clause 7.7.7b of ISO/IEC 13211–1
when the flag unknown is set to error would be:

existence_error(procedure, GRI)

where GRI is the grammar rule non-terminal indicator for which no grammar
rule is available.

NOTE — Implementers should report errors at the same abstraction level as
grammar rules whenever practical.

8 Built-in predicates

8.1 Grammar rule built-in predicates and non-terminals

8.1.1 phrase/3, phrase/2

8.1.1.1 Description

phrase(GRBody, S0, S) is true iff the grammar rule body GRBody parses, ac-
cording to the currently defined grammar rules, the list of terminals S0 unifying
S with the list of the remaining terminals.

When GRBody contains a ! as a subgoal, the effect of ! shall not extend outside
GRBody.

Procedurally, phrase(GRBody, S0, S) is executed by calling the Prolog goal
corresponding to the expansion of the grammar rule body GRBody with the ter-
minal lists S0 and S, according to the logical expansion of grammar rules defined
in section 10.

Calling the phrase/2-3 built-in predicates shall be considered the only safe
way to use grammar rules from predicate clauses. Programmers are advised
against directly calling the implementation-dependent predicates generated by
the compilation of the grammar rules.

8 BUILT-IN PREDICATES 13

8.1.1.2 Template and modes

phrase(+callable term, ?list, ?list)

8.1.1.3 Errors

a) GRBody is a variable
— instantiation error

b) GRBody is neither a variable nor a callable term
— type error(callable, GRBody)

Type-checking of the second and third argument is implementation-dependent.
When performed, the implementation shall conform with the following specifi-
cation:

c) S0 is neither a partial list nor a list
— type error(list, S0)

d) S is neither a partial list nor a list
— type error(list, S)

8.1.1.4 Bootstrapped built-in predicates

The built-in predicate phrase/2 provides similar functionality to phrase/3.
The goal phrase(GRBody, Input) is true when all tokens in the input list are
consumed and recognized:

phrase(GRBody, S0) :-
phrase(GRBody, S0, []).

8.1.1.5 Examples

These examples assume that the following grammar rules has been correctly
prepared for execution and are part of the complete database:

determiner --> [the].
determiner --> [a].

noun --> [boy].
noun --> [girl].

verb --> [likes].
verb --> [scares].

sentence --> noun_phrase, verb_phrase.

noun_phrase --> determiner, noun.

9 EVALUABLE FUNCTORS 14

noun_phrase --> noun.

verb_phrase --> verb.
verb_phrase --> verb, noun_phrase.

Some example calls of phrase/2 and phrase/3:

| ?- phrase([the], [the]).

yes

| ?- phrase(sentence, [the, girl, likes, the, boy]).

yes

| ?- phrase(noun_phrase, [the, girl, scares, the, boy], Rest).

Rest = [scares, the, boy]
yes

8.1.2 call//1

8.1.2.1 Description

call(Closure) is true iff the call(Goal) is true where Goal is a term con-
structed by extending the arguments of Closure with the input list of terminals
and the list of the remaining terminals.

The call//1 built-in non-terminal provides controlled access to the input list of
terminals and to the list of the remaining terminals processed by the grammar
rule containing the call.

8.1.2.2 Template and modes

call(+callable term)

8.1.2.3 Errors

a) Closure is a variable
— instantiation error

b) Closure is neither a variable nor a callable term
— type error(callable, Closure)

9 Evaluable functors

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

10 LOGICAL EXPANSION OF GRAMMAR RULES 15

10 Logical expansion of grammar rules

This section extends, with the specified number, the ISO/IEC 13211–1 Prolog
standard:

This section presents a logical view for the expansion of grammar rules into
Prolog clauses, starting with a description of the used notation.

10.1 Notation

The terms S0 and S represent, respectively, the input list of terminals and the
remaining list of terminals after parsing using a grammar rule. Variables named
Si represent intermediate parsing states, as explained in section 6.1.3.

The term EType(T, Si, Si+1) denotes an expansion of type Type of a term T,
given, respectively, the input and output lists of terminals Si and Si+1

Four types of expansion rules are used, denoted by the terms: Erule (expansion
of grammar rules), Ebody (expansion of grammar rule bodies), Eterminals (ex-
pansion of grammar rule terminals), and Enon terminal (expansion of grammar
rule non-terminals).

The symbol ≡ is used to link an expansion rule with its resulting Prolog term
or with another expansion rule.

10.2 Expanding a grammar rule

Grammar rules with a push-back list:

Erule((NonTerminal, Terminals --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head
Ebody(GRBody, S0, S1), Eterminals(Terminals, S, S1) ≡ Body

Grammar rule with no push-back list:

Erule((NonTerminal --> GRBody), S0, S) ≡ Head :- Body

where:

Enon terminal(NonTerminal, S0, S) ≡ Head
Ebody(GRBody, S0, S) ≡ Body

10 LOGICAL EXPANSION OF GRAMMAR RULES 16

10.3 Expanding a grammar rule non-terminal

Enon terminal(NonTerminal, S0, S) ≡ Head

where:

NonTerminal =.. NonTerminalUniv,
append(NonTerminalUniv, [S0, S], HeadUniv),
Head =.. HeadUniv

(see section 11.3 for the definition of the auxiliary predicate append/3)

10.4 Expanding a terminal list

List of terminals, either a push-back list or a grammar rule body goal:

Eterminals([], S0, S) ≡ S0 = S
Eterminals([T| Ts], S0, S) ≡ S0 = [T| Tail]

where:

Eterminals(Ts, S1, S) ≡ Tail

where S1 is a new variable with respect to the term [T| Ts].

An alternative definition, given a list of terminals Terminals is:

Eterminals(Terminals, S0, S) ≡ S0 = List

where:

append(Terminals, S, List)

(see section 11.3 for the definition of the auxiliary predicate append/3)

10.5 Expanding a grammar rule body

Non-instantiated variable on a grammar rule body:

Ebody(Var, S0, S) ≡ phrase(Var, S0, S)

If-then-else construct on the body of a grammar rule:

Ebody((GRIf -> GRThen; GRElse), S0, S) ≡ If -> Then; Else

where:

Ebody(GRIf, S0, S1) ≡ If
Ebody(GRThen, S1, S) ≡ Then
Ebody(GRElse, S0, S) ≡ Else

10 LOGICAL EXPANSION OF GRAMMAR RULES 17

If-then construct on the body of a grammar rule:

Ebody((GRIf -> GRThen), S0, S) ≡ If -> Then

where:

Ebody(GRIf, S0, S1) ≡ If
Ebody(GRThen, S1, S) ≡ Then

Disjunction on the body of a grammar rule:

Ebody((GREither; GROr), S0, S) ≡ Either; Or

where:

Ebody(GREither, S0, S) ≡ Either
Ebody(GROr, S0, S) ≡ Or

Conjunction on the body of a grammar rule:

Ebody((GRFirst, GRSecond), S0, S) ≡ First, Second

where:

Ebody(GRFirst, S0, S1) ≡ First
Ebody(GRSecond, S1, S) ≡ Second

Cut on the body of a grammar rule:

Ebody(!, S0, S) ≡ !, S0 = S

Curly-bracketed term on the body of a grammar rule:

Ebody({}, S0, S) ≡ S0 = S
Ebody({Goal}, S0, S) ≡ Goal, S0 = S

when Goal is a non-variable term and:

Ebody({Goal}, S0, S) ≡ call(Goal), S0 = S

when Goal is a Prolog variable.

Negation on the body of a grammar rule:

Ebody(\+ Body, S0, S) ≡ \+ Goal, S0 = S

where:

11 REFERENCE IMPLEMENTATIONS 18

Ebody(Body, S0, S) ≡ Goal

List of terminals on the body of a grammar rule:

Ebody(Terminals, S0, S) ≡ Eterminals(Terminals, S0, S)

Non-terminal on the body of a grammar rule:

Ebody(NonTerminal, S0, S) ≡ Enon terminal(NonTerminal, S0, S)

11 Reference implementations

The reference implementations provided is this section do not preclude alterna-
tive or optimized implementations.

11.1 Grammar-rule translator

This section provides a reference implementation for a translator of grammar
rules into Prolog clauses as specified in the ISO/IEC 13211–1 Prolog standard.
The main idea is to translate grammar rules into clauses by adding two extra
arguments to each grammar rule non-terminal, following the logical expansion
of grammar rules, described in the previous section. The first extra argument
is used for the input list of terminals. The second extra argument is used for
the list of terminals in the input list not consumed by the grammar rule. This
is a straight-forward solution. Nevertheless, compliance with this TR does not
imply this specific translation, only compliance with the logical expansion, as
specified in clause 10.

This translator includes error-checking code that ensures that both the input
grammar rule and the resulting clause are valid. In addition, this translator at-
tempts to simplify the resulting clauses by removing redundant calls to true/0
and by folding unifications. In some cases, the resulting clauses could be further
optimized. Other optimizations can be easily plugged in, by modifying or ex-
tending the dcg simplify/4 predicate. However, implementers must be careful
to delay output unifications in the presence of goals with side-effects such as
cuts or input/output operations, ensuring the steadfastness of the generated
clauses.
Translating a grammar-rule non-terminal may result in a conflict with a built-in
predicate. The behavior of the Prolog processor in this case is implementation
dependent. However, if the Prolog processor raises an error for this case, it
shall the same error generated when an attempt is made to redefine a built-in
predicate.

% converts a grammar rule into a normal clause:

11 REFERENCE IMPLEMENTATIONS 19

dcg_rule(Rule, Clause) :-
dcg_rule(Rule, S0, S, Expansion),
dcg_simplify(Expansion, S0, S, Clause).

dcg_rule((RHead --> _), _, _, _) :-
var(RHead),
throw(instantiation_error).

dcg_rule((RHead, _ --> _), _, _, _) :-
var(RHead),
throw(instantiation_error).

dcg_rule((_, Terminals --> _), _, _, _) :-
var(Terminals),
throw(instantiation_error).

dcg_rule((NonTerminal, Terminals --> GRBody), S0, S, (Head :- Body)) :-
!,
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S1, Goal1),
dcg_terminals(Terminals, S, S1, Goal2),
Body = (Goal1, Goal2).

dcg_rule((NonTerminal --> GRBody), S0, S, (Head :- Body)) :-
!,
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S, Body).

dcg_rule(Term, _, _, _) :-
throw(type_error(grammar_rule, Term)).

% translates a grammar goal non-terminal:

dcg_non_terminal(NonTerminal, _, _, _) :-
\+ callable(NonTerminal),
throw(type_error(callable, NonTerminal)).

dcg_non_terminal(NonTerminal, S0, S, Goal) :-
NonTerminal =.. NonTerminalUniv,
append(NonTerminalUniv, [S0, S], GoalUniv),
Goal =.. GoalUniv.

% translates a list of terminals:

11 REFERENCE IMPLEMENTATIONS 20

dcg_terminals(Terminals, _, _, _) :-
\+ is_proper_list(Terminals),
throw(type_error(list, Terminals)).

dcg_terminals(Terminals, S0, S, S0 = List) :-
append(Terminals, S, List).

% translates a grammar rule body:

dcg_body(Var, S0, S, phrase(Var, S0, S)) :-
var(Var),
!.

dcg_body((GRIf -> GRThen), S0, S, (If -> Then)) :-
!,
dcg_body(GRIf, S0, S1, If),
dcg_body(GRThen, S1, S, Then).

dcg_body((GREither; GROr), S0, S, (Either; Or)) :-
!,
dcg_body(GREither, S0, S, Either),
dcg_body(GROr, S0, S, Or).

dcg_body((GRFirst, GRSecond), S0, S, (First, Second)) :-
!,
dcg_body(GRFirst, S0, S1, First),
dcg_body(GRSecond, S1, S, Second).

dcg_body(!, S0, S, (!, S0 = S)) :-
!.

dcg_body({}, S0, S, (S0 = S)) :-
!.

dcg_body({Goal}, S0, S, (call(Goal), S0 = S)) :-
var(Goal),
!.

dcg_body({Goal}, _, _, _) :-
\+ callable(Goal),
throw(type_error(callable, Goal)).

dcg_body({Goal}, S0, S, (Goal, S0 = S)) :-
!.

11 REFERENCE IMPLEMENTATIONS 21

dcg_body(\+ GRBody, S0, S, (\+ Goal, S0 = S)) :-
!,
dcg_body(GRBody, S0, S, Goal).

dcg_body([], S0, S, (S0=S)) :-
!.

dcg_body([T| Ts], S0, S, Goal) :-
!,
dcg_terminals([T| Ts], S0, S, Goal).

dcg_body(NonTerminal, S0, S, Goal) :-
dcg_non_terminal(NonTerminal, S0, S, Goal).

% simplifies the resulting clause:

dcg_simplify((Head :- Body), _, _, Clause) :-
dcg_conjunctions(Body, Flatted),
dcg_fold_left(Flatted, FoldedLeft),
dcg_fold_pairs(FoldedLeft, FoldedPairs),
(FoldedPairs == true ->

Clause = Head
; Clause = (Head :- FoldedPairs)
).

% removes redundant calls to true/0 and flattens conjunction of goals:

dcg_conjunctions((Goal1 -> Goal2), (SGoal1 -> SGoal2)) :-
!,
dcg_conjunctions(Goal1, SGoal1),
dcg_conjunctions(Goal2, SGoal2).

dcg_conjunctions((Goal1; Goal2), (SGoal1; SGoal2)) :-
!,
dcg_conjunctions(Goal1, SGoal1),
dcg_conjunctions(Goal2, SGoal2).

dcg_conjunctions(((Goal1, Goal2), Goal3), Body) :-
!,
dcg_conjunctions((Goal1, (Goal2, Goal3)), Body).

dcg_conjunctions((true, Goal), Body) :-
!,

11 REFERENCE IMPLEMENTATIONS 22

dcg_conjunctions(Goal, Body).

dcg_conjunctions((Goal, true), Body) :-
!,
dcg_conjunctions(Goal, Body).

dcg_conjunctions((Goal1, Goal2), (Goal1, Goal3)) :-
!,
dcg_conjunctions(Goal2, Goal3).

dcg_conjunctions(\+ Goal, \+ SGoal) :-
!,
dcg_conjunctions(Goal, SGoal).

dcg_conjunctions(Goal, Goal).

% folds left unifications:

dcg_fold_left((Term1 = Term2), true) :-
!,
Term1 = Term2.

dcg_fold_left(((Term1 = Term2), Goal), Folded) :-
!,
Term1 = Term2,
dcg_fold_left(Goal, Folded).

dcg_fold_left(Goal, Goal).

% folds pairs of consecutive unifications (T1 = T2, T2 = T3):

dcg_fold_pairs((Goal1 -> Goal2), (SGoal1 -> SGoal2)) :-
!,
dcg_fold_pairs(Goal1, SGoal1),
dcg_fold_pairs(Goal2, SGoal2).

dcg_fold_pairs((Goal1; Goal2), (SGoal1; SGoal2)) :-
!,
dcg_fold_pairs(Goal1, SGoal1),
dcg_fold_pairs(Goal2, SGoal2).

dcg_fold_pairs(((T1 = T2a), (T2b = T3)), (T1 = T3)) :-
T2a == T2b,
!.

11 REFERENCE IMPLEMENTATIONS 23

dcg_fold_pairs(((T1 = T2a), (T2b = T3), Goal), ((T1 = T3), Goal2)) :-
T2a == T2b,
!,
dcg_fold_pairs(Goal, Goal2).

dcg_fold_pairs((Goal1, Goal2), (Goal1, Goal3)) :-
!,
dcg_fold_pairs(Goal2, Goal3).

dcg_fold_pairs(\+ Goal, \+ SGoal) :-
!,
dcg_fold_pairs(Goal, SGoal).

dcg_fold_pairs(Goal, Goal).

11.1.1 Extended version for Prolog compilers with encapsulation
mechanisms

Assuming that the infix operator :/2 is used for calling predicates inside an
encapsulation unit, the following clause would allow translation of grammar
rule bodies that explicitly use non-terminals from another encapsulation unit:

dcg_body(Unit:GRBody, S0, S, Unit:Goal) :-
!,
dcg_body(GRBody, S0, S, Goal).

One possible problem with this clause is that any existence errors when execut-
ing the goal Unit:Goal will most likely be expressed in terms of the expanded
predicates and not in terms of the original grammar rule non-terminals. In order
to more easily report errors at the same abstraction level as grammar rules, the
following alternative clause may be used:

dcg_body(Unit:GRBody, S0, S, Unit:phrase(GRBody, S0, S)) :-
!,
dcg_body(GRBody, S0, S, _). % ensure that GRBody is valid

11.2 phrase/3

This section provides a reference implementation in Prolog of the built-in predi-
cate phrase/3. It includes the necessary clauses for error handling, as specified
in section 8.1.1.3. For the reference implementation of phrase/2 see section
8.1.1.4.

phrase(GRBody, S0, S) :-
var(GRBody),
throw(error(instantiation_error, phrase(GRBody, S0, S))).

11 REFERENCE IMPLEMENTATIONS 24

phrase(GRBody, S0, S) :-
\+ callable(GRBody),
throw(error(type_error(callable, GRBody), phrase(GRBody, S0, S))).

phrase(GRBody, S0, S) :-
nonvar(S0),
\+ is_list(S0),
throw(error(type_error(list, S0), phrase(GRBody, S0, S))).

phrase(GRBody, S0, S) :-
nonvar(S),
\+ is_list(S),
throw(error(type_error(list, S), phrase(GRBody, S0, S))).

phrase(GRBody, S0, S) :-
dcg_body(GRBody, TS0, TS, Goal),
TS0 = S0, TS = S,
call(Goal).

The predicate dcg body/4 is part of the grammar rule translator reference im-
plementation, defined in section 11.1. An alternative, informal implementation
of phrase/3 using a meta-interpreter is presented in the Annex A.

11.3 Auxiliary predicates used on the reference imple-
mentations

The following auxiliary predicates are used on the reference implementations:

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).

callable(Term) :-
nonvar(Term),
functor(Term, Functor, _),
atom(Functor).

is_list([]) :-
!.

is_list([_| Tail]) :-
is_list(Tail).

is_proper_list(List) :-
List == [], !.

is_proper_list([_| Tail]) :-
nonvar(Tail),
is_proper_list(Tail).

12 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 25

12 Test-cases for the reference implementations

12.1 Built-in predicates and user-defined hook predicates

% built-in predicates:
gr_pred_test(phrase(_, _,_), [built_in, static]).
gr_pred_test(phrase(_, _), [built_in, static]).

% simple test predicate:
test_gr_preds :-

write(’Testing existence of built-in predicates’), nl,
write(’and user-defined hook predicates...’), nl, nl,
gr_pred_test(Pred, ExpectedProps),
functor(Pred, Functor, Arity),
write(’Testing predicate ’), write(Functor/Arity), nl,
write(’ Expected properties: ’), write(ExpectedProps), nl,
findall(Prop, predicate_property(Pred, Prop), ActualProps),
write(’ Actual properties: ’), write(ActualProps), nl,
fail.

test_gr_preds.

12.2 phrase/2-3 built-in predicate tests

Tests needed!

12.3 Grammar-rule translator tests

Know any hard to translate grammar rules? Contribute them!

When checking compliance of a particular grammar rule translator, results of the
tests in this section must be compliant with the logical expansion of grammar
rules, as specified in section 10.

% terminal tests with list notation:
gr_tr_test(101, (p --> []), success).
gr_tr_test(102, (p --> [b]), success).
gr_tr_test(103, (p --> [abc, xyz]), success).
gr_tr_test(104, (p --> [abc | xyz]), error).
gr_tr_test(105, (p --> [[], {}, 3, 3.2, a(b)]), success).
gr_tr_test(106, (p --> [_]), success).

% terminal tests with string notation:
gr_tr_test(151, (p --> "b"), success).
gr_tr_test(152, (p --> "abc", "q"), success).
gr_tr_test(153, (p --> "abc" ; "q"), success).

12 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 26

% simple non-terminal tests:
gr_tr_test(201, (p --> b), success).
gr_tr_test(202, (p --> 3), error).
gr_tr_test(203, (p(X) --> b(X)), success).

% conjunction tests:
gr_tr_test(301, (p --> b, c), success).
gr_tr_test(311, (p --> true, c), success).
gr_tr_test(312, (p --> fail, c), success).
gr_tr_test(313, (p(X) --> call(X), c), success).

% disjunction tests:
gr_tr_test(351, (p --> b ; c), success).
gr_tr_test(352, (p --> q ; []), success).
gr_tr_test(353, (p --> [a] ; [b]), success).

% if-then-else tests:
gr_tr_test(401, (p --> b -> c), success).
gr_tr_test(411, (p --> b -> c; d), success).
gr_tr_test(421, (p --> b -> c1, c2 ; d), success).
gr_tr_test(422, (p --> b -> c ; d1, d2), success).
gr_tr_test(431, (p --> b1, b2 -> c ; d), success).
gr_tr_test(441, (p --> [x] -> [] ; q), success).

% negation tests:
gr_tr_test(451, (p --> \+ b, c), success).
gr_tr_test(452, (p --> b, \+ c, d), success).

% cut tests:
gr_tr_test(501, (p --> !, [a]), success).
gr_tr_test(502, (p --> b, !, c, d), success).
gr_tr_test(503, (p --> b, !, c ; d), success).
gr_tr_test(504, (p --> [a], !, {fail}), success).
gr_tr_test(505, (p(a), [X] --> !, [X, a], q), success).
gr_tr_test(506, (p --> a, ! ; b), success).

% {}/1 tests:
gr_tr_test(601, (p --> {b}), success).
gr_tr_test(602, (p --> {3}), error).
gr_tr_test(603, (p --> {c,d}), success).
gr_tr_test(604, (p --> ’{}’((c,d))), success).
gr_tr_test(605, (p --> {a}, {b}, {c}), success).
gr_tr_test(606, (p --> {q} -> [a] ; [b]), success).
gr_tr_test(607, (p --> {q} -> [] ; b), success).
gr_tr_test(608, (p --> [foo], {write(x)}, [bar]), success).
gr_tr_test(609, (p --> [foo], {write(hello)},{nl}), success).

12 TEST-CASES FOR THE REFERENCE IMPLEMENTATIONS 27

gr_tr_test(610, (p --> [foo], {write(hello), nl}), success).

% "metacall" tests:
gr_tr_test(701, (p --> X), success).
gr_tr_test(702, (p --> _), success).

% non-terminals corresponding to "graphic" characters
% or built-in operators/predicates:
gr_tr_test(801, (’[’ --> b, c), success).
gr_tr_test(802, (’=’ --> b, c), success).

% pushback tests:
gr_tr_test(901, (p, [t] --> b, c), success).
gr_tr_test(902, (p, [t] --> b, [t]), success).
gr_tr_test(903, (p, [t] --> b, [s, t]), success).
gr_tr_test(904, (p, [t] --> b, [s], [t]), success).
gr_tr_test(905, (p(X), [X] --> [X]), success).
gr_tr_test(906, (p(X, Y), [X, Y] --> [X, Y]), success).
gr_tr_test(907, (p(a), [X] --> !, [X, a], q), success).
gr_tr_test(908, (p, [a,b] --> [foo], {write(hello), nl}), success).
gr_tr_test(909, (p, [t1], [t2] --> b, c), error).
gr_tr_test(910, (p, b --> b), error).
gr_tr_test(911, ([t], p --> b), error).
gr_tr_test(911, ([t1], p, [t2] --> b), error).

% simple expand_term/2 test predicate:

test_gr_tr :-
write(’Testing expand_term/2 predicate...’), nl, nl,
gr_tr_test(N, GR, Result),
write(N), write(’: ’), writeq(GR), write(’ --- ’),
write(Result), write(’ expected’), nl,
(catch(

expand_term(GR, Clause),
Error,
(write(’ error: ’), write(Error), nl, fail)) ->

write(’ ’), writeq(Clause)
; write(’ expansion failed!’)
),
nl, nl,
fail.

test_gr_tr.

A PHRASE/3 META-INTERPRETER 28

% simple predicate for dumping test grammar rules into a file:
% (restricted to rules whose expansion is expected to succeed)

create_gr_file :-
write(’Creating grammar rules file "gr.pl" ...’),
open(’gr.pl’, write, Stream),
(gr_tr_test(N, GR, success),

write(Stream, ’% ’), write(Stream, N),
write(Stream, ’:’), nl(Stream),
write_canonical(Stream, GR), write(Stream, ’.’),
nl(Stream), fail

; close(Stream)
),
write(’ created.’), nl.

A phrase/3 meta-interpreter

Note that this alternative reference implementation makes it simple to report
existence errors at the same abstraction level as grammar rules.

phrase(GRBody, S0, S) :-
phrase(GRBody, Cont, S0, S1),
(Cont == {} ->

S = S1
; Cont = !(SBody),

!,
phrase(SBody, S1, S)

).

phrase(GRBody, _, S0, S) :-
var(GRBody),
throw(error(instantiation_error, phrase(GRBody, S0, S))).

phrase(GRBody, _, S0, S) :-
\+ callable(GRBody),
throw(error(type_error(callable, GRBody), phrase(GRBody, S0, S))).

phrase(GRBody, _, S0, S) :-
nonvar(S0),
\+ is_list(S0),
throw(error(type_error(list, S0), phrase(GRBody, S0, S))).

phrase(GRBody, _, S0, S) :-
nonvar(S),
\+ is_list(S),

A PHRASE/3 META-INTERPRETER 29

throw(error(type_error(list, S), phrase(GRBody, S0, S))).

phrase(!, Cont, S0, S) :-
!,
Cont = !({}),
S = S0.

phrase((GRBody1, GRBody2), Cont, S0, S) :-
!,
phrase(GRBody1, ContGRBody1, S0, S1),
(ContGRBody1 == {} ->

phrase(GRBody2, Cont, S1, S)
; ContGRBody1 = !(SGRBody1),

Cont = !((SGRBody1, GRBody2)),
S = S1

).

phrase(\+ GRBody, Cont, S0, S) :-
!,
\+ phrase(GRBody, S0, S),
Cont = {},
S0 = S.

phrase((GRBody1; GRBody2), Cont, S0, S) :-
!,
(phrase(GRBody1, Cont, S0, S)
; phrase(GRBody2, Cont, S0, S)
).

phrase((GRBody1 -> GRBody2), Cont, S0, S) :-
!,
phrase(GRBody1, S0, S1),
phrase(GRBody2, Cont, S1, S).

phrase({}, Cont, S0, S) :-
!,
Cont = {},
S = S0.

phrase({Goal}, Cont, S0, S) :-
!,
call(Goal),
Cont = {},
S = S0.

A PHRASE/3 META-INTERPRETER 30

phrase([], Cont, S0, S) :-
!,
Cont = {},
S = S0.

phrase([Head| Tail], Cont, S0, S) :-
!,
append([Head| Tail], S, S0),
Cont = {}.

phrase(GRHead, _, S0, S) :-
\+ dcg_clause(GRHead, _),
current_prolog_flag(unknown, Value),
(Value == fail ->

fail
; Value == warning ->

% implementation-defined warning
; functor(GRHead, NonTerminal, Arity),

throw(error(
existence_error(procedure, NonTerminal//Arity),
phrase(GRHead, S0, S)))

).

phrase(GRHead, {}, S0, S) :-
dcg_clause(GRHead, GRBody),
phrase(GRBody, ContY, S0, S1),
(ContY == {} ->

S = S1
; ContY = !(SBody),

!,
phrase(SBody, S1, S)

).

	Introduction
	Previous editors and draft documents
	Contributors

	Scope
	Normative references
	Definitions
	Symbols and abbreviations
	Compliance
	Prolog processor
	Prolog text
	Prolog goal
	Documentation
	Extensions
	Predefined operators

	Syntax
	Notation
	Backus Naur Form
	Abstract term syntax
	Variable names convention for lists of terminals

	Prolog text and data
	Prolog text

	Terms

	Language concepts and semantics
	Predicate properties
	Grammar rules
	Terminals and non-terminals
	Format of grammar rules
	Push-back lists
	Non-terminal indicator
	Prolog goals in grammar rules
	Control constructs and built-in predicates supported by grammar rules
	Executing procedures expanded from grammar rules

	Built-in predicates
	Grammar rule built-in predicates and non-terminals
	phrase/3, phrase/2
	call//1

	Evaluable functors
	Logical expansion of grammar rules
	Notation
	Expanding a grammar rule
	Expanding a grammar rule non-terminal
	Expanding a terminal list
	Expanding a grammar rule body

	Reference implementations
	Grammar-rule translator
	Extended version for Prolog compilers with encapsulation mechanisms

	phrase/3
	Auxiliary predicates used on the reference implementations

	Test-cases for the reference implementations
	Built-in predicates and user-defined hook predicates
	phrase/2-3 built-in predicate tests
	Grammar-rule translator tests

	phrase/3 meta-interpreter

