
From Plain Prolog to Logtalk Objects:
Effective Code Encapsulation and Reuse

Paulo Moura
Dep. of Computer Science, Univ. of Beira Interior, Portugal

Center for Research in Advanced Computing Systems
INESC Porto, Portugal

http://logtalk.org/ pmoura@logtalk.org 2011 Talk @ U.T.Dallas

http://logtalk.org
http://logtalk.org
mailto:pmoura@logtalk.org
mailto:pmoura@logtalk.org

Someone said all presentations should have an outline...!

2

Presentation spoilers

• Objects in a Prolog world (and why)

• Logtalk design goals

• Logtalk architecture

• Logtalk versus Prolog and Prolog modules

• Logtalk overview and quick tour

• Some demos (if time allows)

• Logtalk as a portable Prolog application

• Logtalk programming support
3

A warning...

• I have a laser and I’m not afraid to use it ...
Beware of asking embarrassing questions!

• But please feel free to interrupt and ask
nice ones that make the speaker shine!

4

A bit of history...

• Project started in January 1998

• First version for registered users in July 1998

• First public beta in October 1998

• First stable version in February 1999

5

Logtalk in numbers

major release number
second generation of Logtalk

minor release number

• Compiler + runtime: ~13000 lines of Prolog code
(excluding comments)

• 42 major releases, 140 including minor ones
(“release early, release often” open source mantra)

• Current version: Logtalk 2.42.4

• ~1500 downloads/month (so many earthlings, so little time)

6

Logtalk distribution

• Full sources (compiler/runtime, Prolog config files, documentation,
libraries, examples, Prolog integration scripts, utilities, ...)

• MacOS X (.pkg), Linux (.rpm), Debian (.deb),
and Windows (.exe) installers

• XHTML and PDF User and Reference Manuals
(125 + 152 pages)

• +90 programming examples

• Support for several text editors and syntax
highlighters (text editing services and code publishing)

7

Logtalk users profile

• Wise people (bias? what bias?)

• Developing large applications...

• ... or applications where using modules
would be awkward (e.g. representing taxonomic knowledge)

• Looking for portability (e.g. using YAP for speed and SWI-
Prolog for the development environment)

8

Some apps using Logtalk
• Cuypers (multimedia transformation engine)

• L-FLAT (educational tool for teaching formal languages and automata theory)

• ESProNa (constraint-based declarative business process modeling)

• lgtstep (Logtalk processing of STEP Part 21 data exchange files for CAD/CAM)

• Gorgias (argumentation-based reasoning framework)

• Verdi Neruda (meta-interpreter collection for playing with top-down and
bottom-up search strategies)

• automatic generation of unit tests for network
applicances (industrial application; details not yet public)

9

https://dev.crazydwarves.org/trac/Gorgias
https://dev.crazydwarves.org/trac/Gorgias

Objects in Prolog?!?

We’re being invaded!
10

Objects have identifiers and
dynamic state!

:- module(broadcast, [...]).

:- dynamic(listener/4).
...

assert_listener(Templ, Listener, Module, TheGoal) :-
 asserta(listener(Templ, Listener, Module, TheGoal)).

retract_listener(Templ, Listener, Module, TheGoal) :-
 retractall(listener(Templ, Listener, Module, TheGoal)).

Identifier!

Dynamic state!

• It seems Prolog modules are there first:

11

Objects inherit lots of stuff
I don’t need!

:- module(aggregate, [...]).

:- use_module(library(ordsets)).
:- use_module(library(pairs)).
:- use_module(library(error)).
:- use_module(library(lists)).
:- use_module(library(apply)).
...

Just import everything
from each module!

• Objects are not necessarily tied to hierarchies. But how
about typical Prolog module code?

12

Objects are dynamically
created!

| ?- foo:assertz(bar).
yes

Dynamically creates
module foo if it doesn’t exist!

• Only if really necessary. Objects can be (and often are)
static, simply loaded from source files... but, guess what,
Prolog modules are there first:

13

Why not stick to modules?!?

Prolog modules fail to:

• enforce encapsulation (in most implementations, you can call any
module predicate using explicit qualification)

• implement predicate namespaces (due to the import
semantics and current practice, module predicate names are often prefixed... with
the module name!)

• provide a clean separation between loading
and importing (ensure_loaded/1 impersonating use_module/1
while it should be equivalent to use_module(..., []))

14

Why not stick to modules?!?

Prolog modules fail to:

• provide a standard mechanism for predicate
import conflicts (being fixed, however, in recent versions of some Prolog
compilers)

• support separating interface from implementation
(the ISO Prolog standard proposes a solution that only allows a single implementation
for interface!)

• provide the same semantics for both implicit and
explicit qualified calls to meta-predicates

15

Why not simply improve
module systems?!?

• No one wants to break backward compatibility

• An ISO Prolog standard that ignores current
practice, tries to do better, and fails

• Improvements perceived as alien to Prolog
traditions (not to mention the reinvention of the wheel)

• Good enough mentality (also few users working on large apps)

• Instant holy wars when discussing modules

16

Logtalk
design goals

So... which object-oriented
features to adopt?

• Code encapsulation

➡ objects (including parametric objects)

➡ protocols (aka interfaces; separate interface from implementation)

➡ categories (fine-grained units of code reuse)

• Code reuse

➡ message sending (decoupling between messages and methods)

➡ inheritance (taxonomic knowledge is pervasive)

➡ composition (mix-and-match)

18

Design goals

• Extend Prolog with code encapsulation and
reuse features (based on an interpretation of object-oriented
concepts in the context of logic programming)

• Multi-paradigm language (integrating predicates, objects,
events, and threads)

• Support for both prototypes and classes
(object relations interpreted as patterns of code reuse)

• Compatibility with most Prolog compilers
and the ISO Prolog Core standard

19

Back-end Prolog compiler

Abstraction layer (Prolog config files)

Logtalk

Logtalk Architecture

20

Supported Prolog compilers

• Runs out-of-the box using:

B-Prolog, CxProlog, ECLiPSe, GNU Prolog, Qu Prolog, SICStus
Prolog, SWI-Prolog, XSB, YAP

• Older versions also supported:

Ciao, IF/Prolog, JIProlog, K-Prolog, Open Prolog, ALS Prolog, Amzi!
Prolog, BinProlog, LPA MacProlog, LPA WinProlog, Prolog II+,
Quintus Prolog

21

Prolog

Prolog + Modules

Logtalk

Logtalk versus Prolog

22

Compiling Prolog modules
as Logtalk objects

• Supported directives: module/1-2,
use_module/2, export/1, reexport/2,
meta_predicate/1 (plus use_module/1 with
most back-end Prolog compilers)

• Caveats: module library meta-predicates
taking closures are (currently) not supported

23

Why compile Prolog modules
as Logtalk objects?!?

• Locating potential issues when migrating Prolog
code to Logtalk

• Run module code in Prolog compilers without a
module system (ironic, I know)

• Reuse module libraries as-is (lots of good stuff out there)

• The proof is in the pudding

• I have been a bad boy; I must punish myself
(not an easy task to deal with all differences between Prolog module systems)

24

Logtalk
overview

Logtalk for Prolog programmers

• Prolog syntax plus a few operators and directives for a
smooth learning curve (no need to bring your climbing gear)

• can use most Prolog implementations as a back-end
compiler (and allows you to take advantage of Prolog compiler specific goodies)

• easy porting of Prolog applications (wrap-around!)

• unmatched portability (leaves Prolog modules in the dust)

• private, protected, and public object predicates
(encapsulation is enforced, unlike in most Prolog module systems)

• static and dynamic object predicates

• static and dynamic objects

26

Logtalk for object-oriented
programmers

• prototypes and classes (no need to take sides and envy your neighbors)

• parametric objects (think runtime, not compile time, templates)

• multiple object hierarchies (as one size doesn’t fit all)

• multiple inheritance and multiple instantiation

• private, protected, and public inheritance (generalized to protocols
and categories)

• protocols (aka interfaces; can be implemented by both prototypes and classes)

• categories (fine-grained units of code reuse; can be imported by both prototypes
and classes)

• static binding and dynamic binding (with predicate lookup caching)

27

Other interesting features
• extended suport for DCGs (e.g. call//N, meta_non_terminal/1)

• high-level multi-threading programming
(independent and-parallelism, competitive or-parallelism, logic engines, ...)

• event-driven programming (why break encapsulation?)

• dynamic programming language (how trendy!)

• reflection (both structural and behavioral)

• automatic generation of XML documentation files
(tag soup for all; automated conversion to text, (X)HTML and PDF)

• seamless (re)use of existing module libraries
(the use_module/2 directive is supported within objects and categories)

• sane implementation of term-expansion mechanisms

• lambda expressions (to appease your functional programming genes)

• coinduction (still experimental due to the lack of support for tabling of
rational terms)

28

A quick tour
on Logtalk programming

Defining objects

:- object(list).

 :- public(append/3).

 append([], L, L).
 append([H| T], L, [H| T2]) :-
 append(T, L, T2).

 :- public(member/2).

 member(H, [H| _]).
 member(H, [_| T]) :-
 member(H, T).

:- end_object.

30

Sending messages

?- list::append(L1, L2, [1, 2, 3]).

L1 = [], L2 = [1, 2, 3];
L1 = [1], L2 = [2, 3];
L2 = [1, 2], L2 = [3];
L3 = [1, 2, 3], L2 = []
yes

?- list::member(X, [a, b, c]).

X = a;
X = b;
X = c
yes

31

Defining and implementing
protocols

:- protocol(listp).

 :- public(append/3).
 :- public(member/2).
 ...

:- end_protocol.

:- object(list,
 implements(listp)).

 append([], L, L).
 ...

:- end_object.

32

Object hierarchies: prototypes

:- object(state_space).

 :- public(initial_state/1).
 :- public(next_state/2).
 :- public(goal_state/1).
 ...

:- end_object.

:- object(heuristic_state_space,
 extends(state_space)).

 :- public(heuristic/2).
 ...

:- end_object.

33

Object hierarchies: classes
:- object(person,
 instantiates(class),
 specializes(object)).

 :- public(name/1).
 :- public(age/1).
 ...

:- end_object.

:- object(paulo,
 instantiates(person)).

 name('Paulo Moura').
 age(41).
 ...

:- end_object.

34

Parametric objects
:- object(rectangle(_Width, _Height)).

 :- public([width /1, height/1, area/1, perimeter/1]).
 ...

 width(Width) :-
 parameter(1, Width).

 height(Height) :-
 parameter(2, Height).

 area(Area) :-
 ::width(Width),
 ::height(Height),
 Area is Width*Height.

 ...

:- end_object.

35

Parameters are
logical variables,
shared by all object

predicates.

Using parametric objects

| ?- rectangle(3, 4)::area(Area).

Area = 12
yes

% Prolog facts as parametric object proxies (i.e. possible
% instantiations of a parametric object identifier)
rectangle(1, 2).
rectangle(2, 3).
rectangle(3, 4).

| ?- findall(Area, {rectangle(_, _)}::area(Area), Areas).

Areas = [2, 6, 12]
yes

36

Categories
• Dual concept of protocols (functional cohesion)

• Fine-grained units of code reuse (that don’t make sense as stand-alone
entities)

• Can contain both interface and implementation

• Can be (virtually) imported by any object (classes, instances, or
prototypes)

• Can extend existing objects (as in Objective-C)

• Provide runtime transparency (for descendant objects)

• Can declare and use dynamic predicates (each importing object will
have its own set of clauses; enables a category to define and manage object state)

37

Categories

• Can be extended (as with protocols, try to not break functional cohesion!)

• Compilation units, independently compiled from importing
objects or implemented protocols (enabling incremental compilation)

• Allows an object to be updated by simply updating the
imported categories, without any need to recompile it or to
access its source code

• Can be dynamically created and abolished at runtime (just like
objects or protocols)

38

Defining and importing categories

:- category(engine).

 :- public(capacity/1).
 :- public(cylinders/1).
 :- public(horsepower_rpm/2).
 ...

:- end_category.

:- object(car,
 imports(engine)).

 ...

:- end_object.

39

Complementing existing objects

:- object(employee).

 ...

:- end_object.

:- category(logging
 complements(employee)).

 ...

:- end_category.

40

Event-driven programming

41

• Allows minimization of object coupling

• Provides a mechanism for building reflexive
applications

• Provides a mechanism for easily defining
method (predicate) pre- and post-conditions

• Implemented by the language runtime at the
message sending mechanism level

Events

42

• An event corresponds to sending a message

• Described by (Event, Object, Message, Sender)

• before events and after events

• Independence between the two types of events

• All events are automatically generated by the
message sending mechanism

• The events watched at any moment can be
dynamically changed at runtime

Monitors

43

• Monitors are objects automatically notified
whenever registered events occur

• Any object can act as a monitor

• Define event handlers (before/3 and after/3)

• Unlimited number of monitors for each event

• The monitor status of an object can be dynamically
changed in runtime

• The events handlers never affect the term that
represents the monitored message

Monitor semantics

44

• All before event handlers must succeed, so that the
message processing can start

• All after event handlers must succeed so that the
message itself succeeds; failure of any handler forces
backtracking over the message execution (handler failure
never leads to backtracking over the preceding handlers)

Defining events and monitors
% setup employee as a monitor for any message sent to itself:
:- initialization(define_events(before,employee,_,_,employee)).

:- object(employee).
 ...
:- end_object.

:- category(logging,
 implements(monitoring), % event handler protocol
 complements(employee)).

 % define a "before" event handler for the complemented object:
 before(This, Message, Sender) :-
 this(This),
 write('Received message '), writeq(Message),

write(' from '), writeq(Sender), nl.
 ...

:- end_category.

45

Demo time!

Logtalk as a portable
Prolog application

The good...

• Plain Prolog implementation (no foreign code)

• Supports most Prolog compilers

• Free, open source (Artistic License 2.0)

• Portable libraries (yes, they do exist!)

• Competitive features (compared with both Prolog
modules and OOP languages)

• Competitive performance (close to plain Prolog
when using static binding)

48

... the bad...

• Some features are only available in some
Prolog compilers (e.g Unicode, threads)

• Limited feature set due to the lack of
Prolog standardization (are we there yet? NO!)

• Need to write a book about Logtalk
programming (and plant a tree and have some...)

49

... and the ugly!

• Testing new releases across all supported
Prolog compilers and all supported
operating-systems (consumes valuable development time;
hindered by the lack of standard access to the operating-system)

• Poor support for reflection in too many
Prolog compilers (predicate properties, compiler version,
environment information, ...)

50

Programming Support
(my girfriend told me I needed more color on my slides)

51

Writing Logtalk code

• TextMate (sh, ai, cc, cf, cs, ei)

• SubEthaEdit (sh, cc, ei)

• jEdit (sh, ai, cc, cf, cs)

• Kate (sh, cf)

• Gedit (sh, cs)

• Emacs (sh)

• Vim (sh, ai, cc, cf, ei)

• NEdit (sh)

Text services: syntax highlight (sh), auto-indentation
(ai), code completion (cc), code folding (cf), code
snippets (cs), entity index (ei)

52

Publishing Logtalk Source Code

• Pygments (e.g. Trac)

• Source-highlight (HTML, LaTeX, DocBook, ...)

• SHJS (e.g.web pages)

• Highlight (HTML, RTF, LaTeX, ...)

• GeSHi (e.g. wikis, blogs)

• SyntaxHighlighter (e.g. web pages)

53

Programming Tools

• Built-in debugger (extended version of the traditional
procedure box model with unification and exception ports)

• Unit test framework

• Entity diagram generator library

• Documenting tools

• Supports the built-in profilers and graphical
tracers of selected Prolog compilers

54

That’s all folks!

Please don’t forget to buy the nice t-shirt!

Ive got you under my skin
Ive got you deep in the heart of me
So deep in my heart, that youre really a part of me
Ive got you under my skin

Ive tried so not to give in
Ive said to myself this affair never will go so well
But why should I try to resist, when baby will I know than well
That Ive got you under my skin

Id sacrifice anything come what might
For the sake of having you near
In spite of a warning voice that comes in the night
And repeats, repeats in my ear

Dont you know you fool, you never can win
Use your mentality, wake up to reality
But each time I do, just the thought of you
Makes me stop before I begin
Cause Ive got you under my skin

That’s all folks!

Please don’t forget to buy the nice t-shirt!

http://www.lyricsfreak.com/f/frank+sinatra/ive+got+you+under+my+skin_20055638.html#
http://www.lyricsfreak.com/f/frank+sinatra/ive+got+you+under+my+skin_20055638.html#

