From Plain Prolog to Logtalk Objects:
Effective Code Encapsulation and Reuse

Paulo Moura

Dep. of Computer Science, Univ. of Beira Interior, Portugal

Center for Research in Advanced Computing Systems
INESC Porto, Portugal

http://logtalk.org/ pmoura@logtalk.org ICLP 2009 Inivited Talk

http://logtalk.org
http://logtalk.org
mailto:pmoura@logtalk.org
mailto:pmoura@logtalk.org

9r Sl

Someone said | need one...

Spoilers

Objects in a Prolog world

Logtalk design goals

Logtalk architecture

Logtalk versus Prolog and Prolog modules
Logtalk overview and quick tour

Some demos (i time allows)

Logtalk as a portable Prolog application

Logtalk programming support

3

A warning...

® | have a laser and I'm not afraid to use it ...
Beware of asking embarrassing questions!

® But please feel free to interrupt and ask
nice ones that make the speaker shine!

A bit of history...

Project started in January 1998
First version for registered users in July 1998
First public beta in October 1998

First stable version in February 1999

Logtalk in numbers

Compiler + runtime: ~1 1000 lines of Prolog code
37 major releases, 122 including minor ones

Current version: Logtalk 2.37.2

/ / minor release number
major release number

second generation of Logtalk

~| 500 downloads/month (so many earthlings, so little time)

Logtalk distribution

Full sources (compiler/runtime, Prolog config files, libraries)

MacOS X (pkg), Linux (rpm), Debian (deb), and
Windows (exe) installers

XHTML and PDF User and Reference Manuals

(121 + 144 pages)
+90 programming examples

Support for several text editors and syntax
hlghllghte I’S (text services and code publishing)

7

We're being invaded!

Objects have identifiers and
dynamic state!

® |t seems Prolog modules are there first:

:— module (broadcast, [...]).

: - dynamic (listener/4). Dynamic state!

assert listener (Templ, Listener, Module, TheGoal) :-
asserta(listener (Templ, Listener, Module, TheGoal)).

retract listener (Templ, Listener, Module, TheGoal) :-
retractall (listener (Templ, Listener, Module, TheGoal)).

Objects inherit lots of stuff
| don’t need!

® Objects are not necessarily tied to hierarchies. But how
about typical Prolog module code?

:— module (aggregate, [...]). Just import everything

from each module!

:— use module (library (ordsets)).
:— use module (library(pairs)).
:— use module(library (error)).
:— use module(library(lists)).
:— use module (library (apply)) .

Objects are dynamically
created!

® Only if really necessary. Objects can be (and often are)
static... but, guess what, Prolog modules are there first:

Dynamically creates

module foo if it doesn’t exist!

| ?- foo:assertz (bar).
yes

Design goals

So... which object-oriented
features to adopt!

® Code encapsulation
= Objects,
= protocols/interfaces

® Code reuse
= inheritance

= composition

Design goals

Extend Prolog with code encapsulation and

reuse features (based on an interpretation of object-
oriented concepts in the context of logic programming)

Multi-paradigm language (integrating predicates,
objects, and events)

Support for both prototypes and classes

(object relations interpreted as patterns of code reuse)

Compatibility with most Prolog compilers
and the ISO Prolog Core standard

Logtalk Architecture

Logtalk

\- J

-

-

Abstraction layer (Prolog config files)

J

Back-end Prolog compiler

Supported Prolog compilers

® Used daily in Logtalk development:

B-Prolog, ECLiPSe, GNU Prolog, SWI-Prolog, XSB, YAP

® Also runs without modifications using:

Ciao Prolog, CxProlog, IF/Prolog, |IProlog, K-Prolog,
Qu Prolog, SICStus Prolog

® Runs after patching using:

,Amzi! Prolog, BinProlog, LPA MacProlog, LPA WinProlog,
, Quintus Prolog

Logtalk versus Prolog

Logtalk

Prolog + Modules

Prolog

Compiling Prolog modules
as objects

® Supported directives: module/1-2,
use_module/2, export/1, reexport/2,
meta_predicate/1 (plus use_module/1 with
some back-end Prolog compilers)

® (Caveats: module library meta-predicates
taking closures are (currently) not supported

Why compile Prolog modules
as objects?!?

Locating potential issues when migrating Prolog
code to Logtalk

Run Prolog module code in Prolog compilers
without a module system

Reuse Prolog module libraries as-is
The proof is in the pudding

| have been a bad boy; | must punish myself

Overview

Logtalk for Prolog programmers

® Prolog syntax plus a few operators and directives for a
smooth learning curve (no need to bring your climbing gear)

® can use most Prolog implementations as a back-end
compiler (and allows you to take advantage of Prolog compiler specific goodies)

® easy porting of Prolog applications (wrap-around!)

® unmatched portability (leaves Prolog modules in the dust ;-)
® private, protected, and public object predicates
® static and dynamic object predicates

® static and dynamic objects

pA

Logtalk for object-oriented
programmers

® prototypes and classes (no need to take sides and envy your neighbors)
® parametric objects (think runtime, not compile time templates)

® multiple object hierarchies (as one size doesn’t fit all)

® multiple inheritance and multiple instantiation

® private, protected, and public inheritance

® PI’OtOCOlS (aka interfaces; can be implemented by both prototypes and classes)

® categories (fine-grained units of code reuse;can be imported by both prototypes
and classes)

® static and dynamic blndlng (with predicate lookup caching)

22

Other interesting features

® high-level multi-threading programming (with selected
back-end Prolog compilers)

® event-driven programming (why break encapsulation?)
® dynamic programming language (how trendy!)
® reflection (both structural and behavioral)

® automatic generation of XML documentation files

23

A quick tour

Defining objects

:— object(list).

: - public (append/3).

append([], L, L).

append ([H| T], L, [H| T2]) :-
append (T, L, T2).

: - public (member/2) .

member (H, [H| 1).

member (H, [| T] -
member (H, T).

:- end object.

25

Sending messages

?- list::append(Ll, L2, [1, 2, 3]).

Ll =[], L2 = [1, 2, 3];
Ll = [1], L2 = [2, 3];

L2 = [1, 2], L2 = [3];

L3 =1[1, 2, 3], L2 = []
yes

?- list::member (X, [a, b, c]).

PSS
innnu
v

yes

26

Defining and implementing
protocols

:— protocol (listp).

: - public (append/3).

: - public (member/2) .
:- end protocol.

:— object(list,
implements (listp)) .

append([], L, L).

:- end object.

27

Object hierarchies: prototypes

:- object(state space).

:— public(initial state/1).
:— public(next state/2).
:— public(goal state/1).

:- end object.

:- object (heuristic state space,
extends (state space)).

: - public (heuristic/2).

:- end object.

28

Object hierarchies: classes

:— object (person,
instantiates (class),
specializes (object)).

: - public (name/1) .

: - public(age/1l).

:- end object.

:— object (paulo,
instantiates (person)).

name ('Paulo Moura').

age (41) .

:- end object.

29

Parametric objects

:- object(rectangle(Width, Height)).

:- public([width /1, height/l, area/l, perimeter/1l]).
width (Width) :-

parameter (1, Width).

height (Height) :-
parameter (2, Height).

area (Area) :-
: :width (Width) ,

: :height (Height) ,
Area is Width*Height.

:- end object.

30

Using parametric objects

| ?- rectangle (3, 4)::width (Width).

Width = 3

yes

| ?- rectangle (3, 4)::perimeter (Perimeter).
Perimeter = 14

yes

| ?- rectangle (3, 4)::area(Area).

Area = 12
yes

31

Categories

Dual concept of protocols
Fine-grained units of code reuse
Can contain both interface and implementation

Can be (virtually) imported by any object (classes, instances, or
prototypes)

Can extend existing objects (as in Objective-C)

Provide runtime transparency

Can declare and use dynamic predicates (each importing object
will have its own set of clauses; enables a category to define
and manage object state)

32

Categories

Can be derived (as with protocols, try to not break functional
cohesion!)

Compilation units, independently compiled from importing
objects or implemented protocols (enabling incremental
compilation)

Allows an object to be updated by simply updating the
imported categories, without any need to recompile it or to
access its source code

Can be dynamically created and abolished at runtime (just like
objects or protocols)

33

Defining and importing categories

:— category (engine).

: - public(capacity/1).
: - public(cylinders/1).
:— public (horsepower rpm/2) .

:- end category.

:— object(car,
imports (engine)) .

:- end object.

34

Complementing existing objects

:— object (employee) .
:- end object.
: - category(logging

complements (employee)) .

:- end category.

35

Event-driven programming

Allows minimization of object coupling

Provides a mechanism for building reflexive
applications

Provides a mechanism for easily defining
method (predicate) pre- and post-conditions

Implemented by the language runtime at the
message sending mechanism level

36

Events

An event corresponds to sending a message
Described by (Event, Object, Message, Sender)
before events and after events

Independence between the two types of events

All events are automatically generated by the
message sending mechanism

The events watched at any moment can be
dynamically changed at runtime

37

Monitors

Monitors are objects automatically notified
whenever registered events occur

Any object can act as a monitor

Define event handlers (before/3 and after/3)

Unlimited number of monitors for each event

The monitor status of an object can be dynamically
changed in runtime

The events handlers never affect the term that
represents the monitored message

38

Monitor semantics

® All before event handlers must succeed, so that the
message processing can start

® All after event handlers must succeed so that the
message itself succeeds; failure of any handler forces
backtracking over the message execution (handler
failure never leads to backtracking over the
preceding handlers)

39

Defining events and monitors

% setup employee as a monitor for any message sent to itself:

:- initialization(define events(before,employee, , ,employee)).
:— object (employee) .
:- end object.
: - category(logging,
implements (monitoring), % event handler protocol

complements (employee)) .

% define a "before" event handler for the complemented object:
before (This, Message, Sender) :-
this (This),
write ('Received message '), writeq(Message),
write(' from '), writeqg(Sender), nl.

:- end category.

40

Logtalk users profile

Wise peop|e (bias? what bias?)
Developing large applications...

... or applications where using modules
would be awkward (e.g. representing taxonomic knowledge)

LOOI(ing for po rtablllty (e.g. using YAP for speed and SWI-

Prolog for the development environment)

Demo time!

Logtalk as a portable
Prolog application

The good...

Plain Prolog application (o foreign code)
Runs in most Prolog compilers
Free, open source (artistic License 2.0)
Portable libraries

COmPEtitive features (compared with both Prolog modules
and OOP languages)

Competitive peE rformance (close to plain Prolog when
using static binding)

... the bad...

® Some features are only available in some
Prolog compilers (unicode, Threads)

® | imited feature set due to the lack of
PrOIOg standardization (are we there yet? NO!)

® Need to write a book about Logtalk
programming (and plant a tree and have some...)

...and the ugly!

® TJesting new releases across supported
Prolog compilers and supported
Oopc rating-S)’StemS (consumes valuable development time)

® Poor support for reflection in too many
PrOIOg COmPilerS (predicate properties, compiler version,

environment information, ...)

Programming Support

Programming Support

Text services: syntax highlight (sh), auto-indentation
(ai), code completion (cc), code folding (cf), code
shippets (cs), entity index (ei)

® TextMate (sh,ai, cc, cf,cs,ei) ® Gedit (sh)

® SubEthaEdit (sh, cc, ei) ® Emacs (sh)

e jEdit (sh, ai, cc, cf, cs) ® Vim (sh, ai, cc, cf, ei)

e Kate (sh, cf) e NEdit (sh)

48

Source Code Publishing

Pygments (e.g. Trac)
Source-highlight (HTML, LaTeX, DocBook, ...)

Highlight (HTML, RTF, LaTeX, ...)
GeSHi (Wikis)

49

Ive got you under my skin
Ive got you deep in the heart of me
So deep in my heart, that youre really a part of me

Ive got you under my skin

Ive tried so not to give in

Ive said to myself this affair never will go so well

But why should I try to resist, when baby will I know than well
That Ive got you under my skin

hat’s all folks!

Id sacrifice anything come what might
For the sake of having you near
In spite of a warning voice that comes in the night

And repeats, repeats in my ear

Dont you know you fool, you never can win
Use your mentality, wake up to reality

But each time I do, just the thought of you
Makes me stop before I begin

Cause Ive got you under my skin

Please don’t forget to buy the nice t-shirt!

http://www.lyricsfreak.com/f/frank+sinatra/ive+got+you+under+my+skin_20055638.html#
http://www.lyricsfreak.com/f/frank+sinatra/ive+got+you+under+my+skin_20055638.html#

