

The Logtalk Handbook

Contents

	User Manual
	Declarative object-oriented programming

	Main features
	Integration of logic and object-oriented programming

	Integration of event-driven and object-oriented programming

	Support for component-based programming

	Support for both prototype and class-based systems

	Support for multiple object hierarchies

	Separation between interface and implementation

	Private, protected and public inheritance

	Private, protected and public object predicates

	Parametric objects

	High level multi-threading programming support

	Smooth learning curve

	Compatibility with most Prolog systems and the ISO standard

	Performance

	Logtalk scope

	Nomenclature
	Prolog nomenclature

	Smalltalk nomenclature

	C++ nomenclature

	Java nomenclature

	Python nomenclature

	Messages
	Operators used in message sending

	Sending a message to an object

	Delegating a message to an object

	Sending a message to self

	Broadcasting

	Calling imported and inherited predicates

	Message sending and event generation

	Sending a message from a module

	Message sending performance

	Objects
	Objects, prototypes, classes, and instances

	Defining a new object

	Parametric objects

	Finding defined objects

	Creating a new object in runtime

	Abolishing an existing object

	Object directives

	Object relationships

	Object properties

	Built-in objects

	Protocols
	Defining a new protocol

	Finding defined protocols

	Creating a new protocol in runtime

	Abolishing an existing protocol

	Protocol directives

	Protocol relationships

	Protocol properties

	Implementing protocols

	Built-in protocols

	Categories
	Defining a new category

	Hot patching

	Finding defined categories

	Creating a new category in runtime

	Abolishing an existing category

	Category directives

	Category relationships

	Category properties

	Importing categories

	Calling category predicates

	Parametric categories

	Built-in categories

	Predicates
	Reserved predicate names

	Declaring predicates

	Defining predicates

	Definite clause grammar rules

	Built-in methods

	Predicate properties

	Finding declared predicates

	Calling Prolog predicates

	Defining Prolog multifile predicates

	Asserting and retracting Prolog predicates

	Inheritance
	Protocol inheritance

	Implementation inheritance

	Public, protected, and private inheritance

	Multiple inheritance

	Composition versus multiple inheritance

	Event-driven programming
	Definitions

	Event generation

	Communicating events to monitors

	Performance concerns

	Monitor semantics

	Activation order of monitors

	Event handling

	Multi-threading programming
	Enabling multi-threading support

	Enabling objects to make multi-threading calls

	Multi-threading built-in predicates

	One-way asynchronous calls

	Asynchronous calls and synchronized predicates

	Synchronizing threads through notifications

	Threaded engines

	Multi-threading performance

	Error handling
	Raising Exceptions

	Type-checking

	Expected terms

	Compiler warnings and errors

	Runtime errors

	Reflection
	Structural reflection

	Behavioral reflection

	Writing and running applications
	Starting Logtalk

	Running parallel Logtalk processes

	Source files

	Multi-pass compiler

	Compiling and loading your applications

	Compiler errors, warnings, and comments

	Loader files

	Libraries of source files

	Settings files

	Compiler linter

	Compiler flags

	Reloading source files

	Batch processing

	Optimizing performance

	Portable applications

	Conditional compilation

	Avoiding common errors

	Coding style guidelines

	Printing messages and asking questions
	Printing messages

	Message tokenization

	Meta-messages

	Intercepting messages

	Asking questions

	Intercepting questions

	Term and goal expansion
	Defining expansions

	Expanding grammar rules

	Bypassing expansions

	Hook objects

	Virtual source file terms and loading context

	Default compiler expansion workflow

	User defined expansion workflows

	Using Prolog defined expansions

	Debugging expansions

	Documenting
	Documenting directives

	Processing and viewing documenting files

	Inline formatting in comments text

	Diagrams

	Debugging
	Compiling source files in debug mode

	Procedure box model

	Defining spy points

	Tracing program execution

	Debugging using spy points

	Debugging commands

	Customizing term writing

	Context-switching calls

	Debugging messages

	Using the term-expansion mechanism for debugging

	Ports profiling

	Debug and trace events

	Performance
	Source code compilation modes

	Local predicate calls

	Calls to imported or inherited predicates

	Calls to module predicates

	Messages

	Automatic expansion of built-in meta-predicates

	Inlining

	Generated code simplification and optimizations

	Size of the generated code

	Debug mode overhead

	Other considerations

	Installing Logtalk
	Hardware and software requirements

	Logtalk installers

	Source distribution

	Distribution overview

	Prolog integration and migration
	Source files with both Prolog code and Logtalk code

	Encapsulating plain Prolog code in objects

	Converting Prolog modules into objects

	Compiling Prolog modules as objects

	Dealing with proprietary Prolog directives and predicates

	Calling Prolog module predicates

	Loading converted Prolog applications

	Reference Manual
	Grammar
	Entities

	Object definition

	Category definition

	Protocol definition

	Entity relations

	Entity identifiers

	Source files

	Source file names

	Terms

	Directives

	Clauses and goals

	Lambda expressions

	Entity properties

	Predicate properties

	Compiler flags

	Control constructs
	Message sending

	Message delegation

	Calling imported and inherited predicates

	Calling predicates in this

	Calling external predicates

	Context switching calls

	Directives
	Source file directives

	Conditional compilation directives

	Entity directives

	Predicate directives

	Built-in predicates
	Enumerating objects, categories and protocols

	Enumerating objects, categories and protocols properties

	Creating new objects, categories and protocols

	Abolishing objects, categories and protocols

	Objects, categories, and protocols relations

	Event handling

	Multi-threading

	Multi-threading engines

	Compiling and loading source files

	Flags

	Linter

	Built-in methods
	Logic and control

	Execution context

	Reflection

	Database

	Meta-calls

	Error handling

	All solutions

	Event handling

	Message forwarding

	Definite clause grammar rules

	Term and goal expansion

	Coinduction hooks

	Message printing

	Question asking

	Tutorial
	List predicates
	Defining a list object

	Defining a list protocol

	Summary

	Dynamic object attributes
	Defining a category

	Importing the category

	Summary

	A reflective class-based system
	Defining the base classes

	Summary

	Profiling programs
	Messages as events

	Profilers as monitors

	Summary

	FAQ
	General
	Why are all versions of Logtalk numbered 2.x or 3.x?

	Why do I need a Prolog compiler to use Logtalk?

	Is the Logtalk implementation based on Prolog modules?

	Does the Logtalk implementation use term-expansion?

	Compatibility
	What are the backend Prolog compiler requirements to run Logtalk?

	Can I use constraint-based packages with Logtalk?

	Can I use Logtalk objects and Prolog modules at the same time?

	Installation
	The integration scripts/shortcuts are not working!

	I get errors when starting up Logtalk after upgrading to the latest version!

	Portability
	Are my Logtalk applications portable across Prolog compilers?

	Are my Logtalk applications portable across operating systems?

	Programming
	Should I use prototypes or classes in my application?

	Can I use both classes and prototypes in the same application?

	Can I mix classes and prototypes in the same hierarchy?

	Can I use a protocol or a category with both prototypes and classes?

	What support is provided in Logtalk for defining and using components?

	What support is provided in Logtalk for reflective programming?

	Troubleshooting
	Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

	Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!

	Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

	Usability
	Is there a shortcut for compiling and loading source files?

	Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

	Are there shortcuts for the make functionality?

	Deployment
	Can I create standalone applications with Logtalk?

	Performance
	Is Logtalk implemented as a meta-interpreter?

	What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

	How about message-sending performance? Does Logtalk use static binding or dynamic binding?

	Which Prolog-dependent factors are most crucial for good Logtalk performance?

	How does Logtalk performance compare with plain Prolog and with Prolog modules?

	Licensing
	What’s the Logtalk distribution license?

	Can Logtalk be used in commercial applications?

	What’s the final license for a combination of Logtalk with a Prolog compiler?

	Support
	Are there professional consulting, training and supporting services?

	Developer Tools
	Overview
	Loading the developer tools

	Tools documentation

	Tools common flags

	Tools requirements

	asdf

	assertions
	API documentation

	Loading

	Testing

	Adding assertions to your source code

	Automatically adding file and line context information to assertions

	Suppressing assertion calls from source code

	Redirecting assertion failure messages

	Converting assertion failures into errors

	code_metrics
	API documentation

	Loading

	Testing

	Available metrics

	Coupling metrics

	Halstead metric

	UPN metric

	Cyclomatic complexity metric

	Usage

	Excluding code from analysis

	Defining new metrics

	Third-party tools

	Applying metrics to Prolog modules

	Applying metrics to plain Prolog code

	dead_code_scanner
	API documentation

	Loading

	Testing

	Usage

	Excluding code from analysis

	Integration with the make tool

	Caveats

	Scanning Prolog modules

	Scanning plain Prolog files

	debug_messages
	API documentation

	Loading

	Testing

	Usage

	debugger
	API documentation

	Loading

	Testing

	Usage

	Alternative debugger tools

	Known issues

	diagrams
	Requirements

	API documentation

	Loading

	Testing

	Supported diagrams

	Graph elements

	Supported graph languages

	Customization

	Linking diagrams

	Creating diagrams for Prolog module applications

	Creating diagrams for plain Prolog files

	Other notes

	doclet
	API documentation

	Loading

	Automating running doclets

	Integration with the make tool

	help
	API documentation

	Loading

	Testing

	Supported operating-systems

	Usage

	Experimental features

	Known issues

	issue_creator
	Requirements

	Loading

	Usage

	Known issues

	lgtdoc
	API documentation

	Loading

	Testing

	Documenting source code

	Generating documentation

	Documentation linter checks

	lgtunit
	Main files

	API documentation

	Loading

	Testing

	Writing and running tests

	Automating running tests

	Parametric test objects

	Test dialects

	User-defined test dialects

	QuickCheck

	Skipping tests

	Checking test goal results

	Testing local predicates

	Testing non-deterministic predicates

	Testing generators

	Testing input/output predicates

	Suppressing tested predicates output

	Tests with timeout limits

	Setup and cleanup goals

	Test annotations

	Test execution times and memory usage

	Working with test data files

	Flaky tests

	Mocking

	Debugging messages in tests

	Debugging failed tests

	Code coverage

	Utility predicates

	Exporting test results in xUnit XML format

	Exporting test results in the TAP output format

	Generating Allure reports

	Exporting code coverage results in XML format

	Automatically creating bug reports at issue trackers

	Minimizing test results output

	Known issues

	linter
	Main linter checks

	Help on linter warnings

	Extending the linter

	Linting Prolog modules

	Linting plain Prolog files

	make
	API documentation

	packs
	Requirements

	API documentation

	Loading

	Testing

	Usage

	Registries and packs storage

	Virtual environments

	Registry specification

	Registry handling

	Registry development

	Pack specification

	Pack URLs and Single Sign-On

	Multiple pack versions

	Pack dependencies

	Pack portability

	Pack development

	Pack handling

	Pack documentation

	Pinning registries and packs

	Testing packs

	Security considerations

	Best practices

	Installing Prolog packs

	Known issues

	ports_profiler
	API documentation

	Loading

	Testing

	Compiling source files for port profiling

	Generating profiling data

	Printing profiling data reports

	Interpreting profiling data

	Profiling Prolog modules

	Profiling plain Prolog code

	Known issues

	profiler
	Loading

	Testing

	Supported backend Prolog compilers

	Compiling source code for profiling

	tutor
	API documentation

	Loading

	Usage

	wrapper
	API documentation

	Loading

	Workflows

	Customization

	Current limitations

	Libraries
	Overview
	Library documentation

	Loading libraries

	Testing libraries

	Credits

	Other notes

	arbitrary
	API documentation

	Loading

	Testing

	Pre-defined types

	Usage

	Defining new generators and shrinkers

	Scoped generators and shrinkers

	Reproducing sequences of arbitrary terms

	Default size of generated terms

	Known issues

	assignvars
	API documentation

	Loading

	Testing

	base64
	API documentation

	Loading

	Testing

	Encoding

	Decoding

	basic_types
	API documentation

	Loading

	Testing

	coroutining
	API documentation

	Loading

	Testing

	Usage

	cbor
	Representation

	Encoding

	Decoding

	API documentation

	Loading

	Testing

	core
	API documentation

	Loading

	Testing

	csv
	API documentation

	Loading

	Testing

	Usage

	dates
	API documentation

	Loading

	dependents
	API documentation

	Loading

	dictionaries
	API documentation

	Loading

	Testing

	Usage

	Credits

	dif
	API documentation

	Loading

	Testing

	Usage

	edcg
	API documentation

	Loading

	Testing

	Usage

	Introduction

	Syntax

	Declaration of Predicates

	Declaration of Accumulators

	Declaration of Passed Arguments

	Additional documentation

	events
	API documentation

	Loading

	expand_library_alias_paths
	API documentation

	Loading

	Usage

	expecteds
	API documentation

	Loading

	Testing

	Usage

	See also

	format
	API documentation

	Loading

	Testing

	Usage

	Portability

	gensym
	API documentation

	Loading

	Testing

	Usage

	genint
	API documentation

	Loading

	Testing

	Usage

	git
	API documentation

	Loading

	Testing

	Usage

	grammars
	API documentation

	Loading

	Testing

	Usage

	heaps
	API documentation

	Loading

	Testing

	Credits

	hierarchies
	API documentation

	Loading

	Testing

	hook_flows
	API documentation

	Loading

	Testing

	Usage

	hook_objects
	API documentation

	Loading

	Testing

	Usage

	html
	API documentation

	Loading

	Testing

	Generating a HTML document

	Generating a HTML fragment

	Working with callbacks to generate content

	Working with custom elements

	ids
	API documentation

	Loading

	Testing

	Usage

	intervals
	API documentation

	Loading

	Testing

	java
	API documentation

	Loading

	Testing

	Usage

	Known issues

	json
	API documentation

	Loading

	Testing

	Representation

	Encoding

	Decoding

	Known issues

	listing
	API documentation

	Loading

	Testing

	Usage

	logging
	API documentation

	Loading

	loops
	API documentation

	Loading

	Testing

	Usage

	meta
	API documentation

	Loading

	Testing

	Usage

	meta_compiler
	API documentation

	Loading

	Testing

	Usage

	mutations
	API documentation

	Loading

	Testing

	Usage

	nested_dictionaries
	API documentation

	Loading

	Testing

	Usage

	Curly term representation

	optionals
	API documentation

	Loading

	Testing

	Usage

	See also

	options
	API documentation

	Loading

	Testing

	Usage

	os
	API documentation

	Loading

	Testing

	Known issues

	queues
	API documentation

	Loading

	Testing

	Usage

	random
	API documentation

	Loading

	Testing

	Usage

	reader
	API documentation

	Loading

	Testing

	recorded_database
	API documentation

	Loading

	Testing

	Usage

	Known issues

	redis
	API documentation

	Loading

	Testing

	Credits

	Known issues

	sets
	API documentation

	Loading

	Testing

	Usage

	Credits

	statistics
	API documentation

	Loading

	Testing

	term_io
	API documentation

	Loading

	Testing

	timeout
	API documentation

	Loading

	Testing

	Known issues

	tsv
	API documentation

	Loading

	Testing

	Usage

	types
	API documentation

	Loading

	Testing

	Type-checking

	Defining new types

	Examples

	unicode_data
	Authors

	License

	Website

	Description

	Requirements

	Usage

	Known issues

	Acknowledgements

	Files and API Summary

	ulid
	API documentation

	Loading

	Testing

	Generating ULIDs

	Type-checking ULIDs

	union_find
	API documentation

	Loading

	Testing

	Usage

	uuid
	API documentation

	Loading

	Testing

	Generating version 1 UUIDs

	Generating version 4 UUIDs

	Generating the null UUID

	zippers
	API documentation

	Loading

	Testing

	Ports
	fcube
	API documentation

	Loading

	Testing

	metagol
	API documentation

	Loading

	Testing

	toychr
	API documentation

	Loading

	Testing

	Contributions
	flags
	API documentation

	Loading

	Testing

	iso8601
	API documentation

	Loading

	Testing

	pddl_parser
	API documentation

	Loading

	Testing

	verdi_neruda

	xml_parser
	API documentation

	Loading

	Testing

	Known issues

	Glossary

	Bibliography

	Index

User Manual

	Declarative object-oriented programming

	Main features
	Integration of logic and object-oriented programming

	Integration of event-driven and object-oriented programming

	Support for component-based programming

	Support for both prototype and class-based systems

	Support for multiple object hierarchies

	Separation between interface and implementation

	Private, protected and public inheritance

	Private, protected and public object predicates

	Parametric objects

	High level multi-threading programming support

	Smooth learning curve

	Compatibility with most Prolog systems and the ISO standard

	Performance

	Logtalk scope

	Nomenclature
	Prolog nomenclature

	Smalltalk nomenclature

	C++ nomenclature

	Java nomenclature

	Python nomenclature

	Messages
	Operators used in message sending

	Sending a message to an object

	Delegating a message to an object

	Sending a message to self

	Broadcasting

	Calling imported and inherited predicates

	Message sending and event generation

	Sending a message from a module

	Message sending performance

	Objects
	Objects, prototypes, classes, and instances

	Defining a new object

	Parametric objects

	Finding defined objects

	Creating a new object in runtime

	Abolishing an existing object

	Object directives

	Object relationships

	Object properties

	Built-in objects

	Protocols
	Defining a new protocol

	Finding defined protocols

	Creating a new protocol in runtime

	Abolishing an existing protocol

	Protocol directives

	Protocol relationships

	Protocol properties

	Implementing protocols

	Built-in protocols

	Categories
	Defining a new category

	Hot patching

	Finding defined categories

	Creating a new category in runtime

	Abolishing an existing category

	Category directives

	Category relationships

	Category properties

	Importing categories

	Calling category predicates

	Parametric categories

	Built-in categories

	Predicates
	Reserved predicate names

	Declaring predicates

	Defining predicates

	Definite clause grammar rules

	Built-in methods

	Predicate properties

	Finding declared predicates

	Calling Prolog predicates

	Defining Prolog multifile predicates

	Asserting and retracting Prolog predicates

	Inheritance
	Protocol inheritance

	Implementation inheritance

	Public, protected, and private inheritance

	Multiple inheritance

	Composition versus multiple inheritance

	Event-driven programming
	Definitions

	Event generation

	Communicating events to monitors

	Performance concerns

	Monitor semantics

	Activation order of monitors

	Event handling

	Multi-threading programming
	Enabling multi-threading support

	Enabling objects to make multi-threading calls

	Multi-threading built-in predicates

	One-way asynchronous calls

	Asynchronous calls and synchronized predicates

	Synchronizing threads through notifications

	Threaded engines

	Multi-threading performance

	Error handling
	Raising Exceptions

	Type-checking

	Expected terms

	Compiler warnings and errors

	Runtime errors

	Reflection
	Structural reflection

	Behavioral reflection

	Writing and running applications
	Starting Logtalk

	Running parallel Logtalk processes

	Source files

	Multi-pass compiler

	Compiling and loading your applications

	Compiler errors, warnings, and comments

	Loader files

	Libraries of source files

	Settings files

	Compiler linter

	Compiler flags

	Reloading source files

	Batch processing

	Optimizing performance

	Portable applications

	Conditional compilation

	Avoiding common errors

	Coding style guidelines

	Printing messages and asking questions
	Printing messages

	Message tokenization

	Meta-messages

	Intercepting messages

	Asking questions

	Intercepting questions

	Term and goal expansion
	Defining expansions

	Expanding grammar rules

	Bypassing expansions

	Hook objects

	Virtual source file terms and loading context

	Default compiler expansion workflow

	User defined expansion workflows

	Using Prolog defined expansions

	Debugging expansions

	Documenting
	Documenting directives

	Processing and viewing documenting files

	Inline formatting in comments text

	Diagrams

	Debugging
	Compiling source files in debug mode

	Procedure box model

	Defining spy points

	Tracing program execution

	Debugging using spy points

	Debugging commands

	Customizing term writing

	Context-switching calls

	Debugging messages

	Using the term-expansion mechanism for debugging

	Ports profiling

	Debug and trace events

	Performance
	Source code compilation modes

	Local predicate calls

	Calls to imported or inherited predicates

	Calls to module predicates

	Messages

	Automatic expansion of built-in meta-predicates

	Inlining

	Generated code simplification and optimizations

	Size of the generated code

	Debug mode overhead

	Other considerations

	Installing Logtalk
	Hardware and software requirements

	Logtalk installers

	Source distribution

	Distribution overview

	Prolog integration and migration
	Source files with both Prolog code and Logtalk code

	Encapsulating plain Prolog code in objects

	Converting Prolog modules into objects

	Compiling Prolog modules as objects

	Dealing with proprietary Prolog directives and predicates

	Calling Prolog module predicates

	Loading converted Prolog applications

Declarative object-oriented programming

Logtalk is a declarative object-oriented logic programming language. This means
that Logtalk shares key concepts with other object-oriented programming languages
but abstracts and reinterprets these concepts in the context of declarative logic
programming.

The key concepts in declarative object-oriented programming are encapsulation
and reuse patterns. Notably, the concept of mutable state, which is an imperative
concept, is not a significant concept in declarative object-oriented programming.
Declarative object-oriented programming concepts can be materialized in both
logic and functional languages. In this section, we focus only in declarative
object-oriented logic programming.

The first critical generalization of object-oriented programming concepts is the
concept of object itself. What an object encapsulates depends on the base programming
paradigm where we apply object-oriented programming concepts. When these concepts
are applied to an imperative language, where mutable state and destructive assignment
are central, objects naturally encapsulate and abstract mutable state, providing
disciplined access and modification. When these concepts are applied to a declarative
logic language such as Prolog, objects naturally encapsulate predicates. Therefore, an
object can be seen as a theory, expressed by a set of related predicates. Theories
are usually static and thus Logtalk objects are static by default. This contrasts with
imperative object-oriented languages where usually classes are static and objects are
dynamic. This view of an object as a set of predicates also forgo a distinction
between data and procedures that is central to imperative object-oriented
languages but moot in declarative, homoiconic logic languages.

The second critical generalization concerns the relation between objects and other
entities such as protocols (interfaces) and ancestor objects. The idea is that entity
relations define reuse patterns and the roles played by the participating entities.
A common reuse pattern is inheritance. In this case, an entity inherits, and thus
reuses, resources from an ancestor entity. In a reuse pattern, each participating entity
plays a specific role. The same entity, however, can play multiple roles
depending on its relations with other entities. For example, an object can play
the role of a class for its instances, the role of a subclass for its superclasses,
and the role of an instance for its metaclass. Another common reuse pattern is
protocol implementation. In this case, an object implementing a protocol reuses
its predicate declarations by providing an implementation for those predicates and
exposing those predicates to its clients. An essential consequence of this
generalization is that protocols, objects, and categories are first-class entities
while e.g. prototype, parent, class, instance, metaclass, subclass,
superclass, or ancestor are just roles that an object can play. Moreover, a
language can provide multiple reuse patterns instead of selecting a set of patterns
and supporting this set as a design choice that excludes other reuse patterns. For
example, most imperative object-oriented languages are either class-based or
prototype-based. In contrast, Logtalk naturally supports both classes and prototypes
by providing the corresponding reuse patterns using objects as first-class entities
capable of playing multiple roles.

Main features

Several years ago, I decided that the best way to learn object-oriented
programming was to build my own object-oriented language. Prolog being
always my favorite language, I chose to extend it with object-oriented
capabilities. Strong motivation also come from my frustration with
Prolog shortcomings for writing large applications. Eventually this work
has led to the Logtalk programming language as its know today. The first
system to use the name Logtalk appeared in February 1995. At that
time, Logtalk was mainly an experiment in computational reflection with
a rudimentary runtime and no compiler. Based on feedback by users and on
the author subsequent work, the name was retained and Logtalk as created
as a full programming language focusing on using object-oriented concepts
for code encapsulation and reuse. Development started on January 1998 with
the first public alpha version released in July 1998. The first stable
release (2.0) was published in February 1999. Development of the third
generation of Logtalk started in 2012 with the first public alpha version
in August 2012 and the first stable release (3.0.0) in January 2015.

Logtalk provides the following features:

Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two
programming paradigms. On one hand, the object orientation allows us
to work with the same set of entities in the successive phases of
application development, giving us a way of organizing and
encapsulating the knowledge of each entity within a given domain. On
the other hand, logic programming allows us to represent, in a
declarative way, the knowledge we have of each entity. Together,
these two advantages allow us to minimize the distance between an
application and its problem domain, turning the writing and
maintenance of programming easier and more productive.

From a pragmatic perspective, Logtalk objects provide Prolog with
the possibility of defining several namespaces, instead of the
traditional Prolog single database, addressing some of the needs
of large software projects.

Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems,
where computing which takes place at each moment is a result of the
observation of occurring events. This integration complements
object-oriented programming, in which each computing is initiated by
the explicit sending of a message to an object. The user dynamically
defines what events are to be observed and establishes monitors for
these events. This is specially useful when representing
relationships between objects that imply constraints in the state of
participating objects [Rumbaugh87], [Rumbaugh88], [Fornarino_et_al_89],
[Razek92]. Other common uses are
reflective applications like code debugging or profiling [Maes87].
Predicates can be implicitly
called when a spied event occurs, allowing programming solutions
which minimize object coupling. In addition, events provide support
for behavioral reflection and can be used to implement the concepts
of pointcut and advice found on Aspect-Oriented Programming.

Support for component-based programming

Predicates can be encapsulated inside categories which can be
imported by any object, without any code duplication and irrespective
of object hierarchies. A category is a first-class encapsulation
entity, at the same level as objects and protocols, which can be used
as a component when building new objects. Thus, objects may be
defined through composition of categories, which act as fine-grained
units of code reuse. Categories may also extend existing objects.
Categories can be used to implement mixins and aspects.
Categories allows for code reuse between non-related objects,
independent of hierarchy relations, in the same vein as protocols
allow for interface reuse.

Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are
either class-based or prototype-based [Lieberman86], with a strong predominance
of class-based languages. Logtalk provides support for both hierarchy
types. That is, we can have both prototype and class hierarchies in
the same application. Prototypes solve a problem of class-based
systems where we sometimes have to define a class that will have only
one instance in order to reuse a piece of code. Classes solves a dual
problem in prototype based systems where it is not possible to
encapsulate some code to be reused by other objects but not by the
encapsulating object. Stand-alone objects, that is, objects that do
not belong to any hierarchy, are a convenient solution to encapsulate
code that will be reused by several unrelated objects.

Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg83], Objective-C [Cox86] and Java
[Joy_et_al_00] define a single hierarchy rooted
in a class usually named Object. This makes it easy to ensure
that all objects share a common behavior but also tends to result in
lengthy hierarchies where it is difficult to express objects which
represent exceptions to default behavior. In Logtalk we can have
multiple, independent, object hierarchies. Some of them can be
prototype-based while others can be class-based. Furthermore,
stand-alone objects provide a simple way to encapsulate utility
predicates that do not need or fit in an object hierarchy.

Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any
modern programming language. Logtalk provides support for separating
interface from implementation in a flexible way: predicate directives
can be contained in an object, a category or a protocol (first-order
entities in Logtalk) or can be spread in both objects, categories and
protocols.

Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a
similar way to C++ [Stroustrup86], enabling us to restrict
the scope of inherited, imported or implemented predicates (by
default inheritance is public).

Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and
public object predicates in a way similar to C++ [Stroustrup86]. Private predicates can
only be called from the container object. Protected predicates can be
called by the container object or by the container descendants.
Public predicates can be called from any object.

Parametric objects

Object names can be compound terms (instead of atoms), providing a
way to parameterize object predicates. Parametric objects are
implemented in a similar way to L&O [McCabe92], OL(P)
[Fromherz93] or SICStus Objects [SICStus95] (however, access to
parameter values is done via a built-in method instead of making the
parameters scope global over the whole object). Parametric objects
allows us to treat any predicate clause as defining an
instantiation of a parametric object. Thus, a parametric object
allows us to encapsulate and associate any number of predicates with
a compound term.

High level multi-threading programming support

High level multi-threading programming is available when running
Logtalk with selected backend Prolog compilers, allowing objects to
support both synchronous and asynchronous messages. Logtalk allows
programmers to take advantage of modern multi-processor and
multi-core computers without bothering with the details of creating
and destroying threads, implement thread communication, or
synchronizing threads.

Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog
syntax and by enabling an incremental learning and use of most of its
features.

Compatibility with most Prolog systems and the ISO standard

The Logtalk system has been designed to be compatible with most
Prolog compilers and, in particular, with the ISO Prolog standard
[ISO95]. It runs in almost any computer system with a modern Prolog
compiler.

Performance

The current Logtalk implementation works as a trans-compiler: Logtalk
source files are first compiled to Prolog source files, which are
then compiled by the chosen Prolog compiler. Therefore, Logtalk
performance necessarily depends on the backend Prolog compiler.
The Logtalk compiler preserves the programmers choices when writing
efficient code that takes advantage of tail recursion and
first-argument indexing.

As an object-oriented language, Logtalk can use both static binding
and dynamic binding for matching messages and methods. Furthermore,
Logtalk entities (objects, protocols, and categories) are
independently compiled, allowing for a very flexible programming
development. Entities can be edited, compiled, and loaded at runtime,
without necessarily implying recompilation of all related entities.

When dynamic binding is used, the Logtalk runtime engine implements
caching of message lookups (including messages
to self and super calls), ensuring a performance level close to what
could be achieved when using static binding.

For more detailed information on performance, see its dedicated
section.

Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred
areas of application but also extends them with those areas where
object-oriented features provide an advantage compared to plain Prolog.
Among these areas we have:

	Logic and object-oriented programming teaching and researching
	Logtalk smooth learning curve, combined with support for both
prototype and class-based programming, protocols, components or
aspects via category-based composition, and other advanced
object-oriented features allow a smooth introduction to
object-oriented programming to people with a background in Prolog
programming. The distribution of Logtalk source code using an
open-source license provides a framework for people to learn and then
modify to try out new ideas on object-oriented programming research.
In addition, the Logtalk distribution includes plenty of programming
examples that can be used in the classroom for teaching logic and
object-oriented programming concepts.

	Structured knowledge representations and knowledge-based systems
	Logtalk objects, coupled with event-driven programming features,
enable easy implementation of frame-like systems and similar
structured knowledge representations.

	Blackboard systems, agent-based systems, and systems with complex object relationships
	Logtalk support for event-driven programming can provide a basis for
the dynamic and reactive nature of blackboard type applications.

	Highly portable applications
	Logtalk is compatible with most modern Prolog systems that support
official and de facto standards. Used as a way to provide Prolog with
namespaces, it avoids the porting problems of most Prolog module
systems. Platform, operating system, or compiler specific code can be
isolated from the rest of the code by encapsulating it in objects
with well-defined interfaces.

	Alternative to a Prolog module system
	Logtalk can be used as an alternative to a Prolog compiler module
system. Most Prolog applications that use modules can be converted
into Logtalk applications, improving portability across Prolog
systems and taking advantage of the stronger encapsulation and reuse
framework provided by Logtalk object-oriented features.

	Integration with other programming languages
	Logtalk support for most key object-oriented features helps users
integrating Prolog with object-oriented languages like C++, Java, or
Smalltalk by facilitating a high-level mapping between the two
languages.

Nomenclature

Depending on your logic programming and object-oriented programming background
(or lack of it), you may find Logtalk nomenclature either familiar or at odds
with the terms used in other languages. In addition, being a superset of Prolog,
terms such as predicate and method are often used interchangeably. Logtalk
inherits most of its nomenclature from Prolog and Smalltalk.

Note that the same terms can have different meanings in different languages.
A good example is class. The support for meta-classes in e.g. Smalltalk
translates to a concept of class that is different in key aspects from the
concept of class in e.g. Java or C++. Other terms that can have different
meanings are delegation and forwarding. There are also cases where the
same concept is found under different names in some languages (e.g. self
and this) but that can also mean different concepts in Logtalk and other
languages. Always be aware of these differences and be cautious with assumptions
carried from other programming languages.

In this section, we map nomenclatures from Prolog and popular OOP languages
such as Smalltalk, C++, Java, and Python to the Logtalk nomenclature. The
Logtalk distribution includes several examples of how to implement common
concepts found in other languages, complementing the information in this
section. This Handbook also features a
Prolog interoperability section and
an extensive glossary providing the exact meaning of the
names commonly used in Logtalk programming.

Prolog nomenclature

Being a superset of Prolog, Logtalk inherits its nomenclature. But Logtalk
also aims to fix several Prolog shortcomings, thus introducing new concepts
and refining existing Prolog concepts. Logtalk object-oriented nature also
introduces names and concepts that are not common when discussing logic
programming semantics. We mention here the most relevant ones, notably
those where semantics or common practice differ. Further details can be
found elsewhere in this Handbook.

	arbitrary goals as directives
	Although not ISO Prolog Core standard compliant, several Prolog systems
accept using arbitrary goal as directives. This is not supported in
Logtalk source files. Always use an initialization/1
directive to wrap those goals. This ensure that any initialization goals,
which often have side-effects, are only called if the source file is
successfully compiled and loaded.

	calling a predicate
	Sending a message to an object is similar to calling a goal with
the difference that the actual predicate that is called is determined not
just by the message term but also by the object receiving the message and
possibly its ancestors. This is also different from calling a Prolog module
predicate: a message may result e.g. in calling a predicate
inherited by the object but calling a module predicate
requires the predicate to exist in (or be reexported by) the module.

	closed world assumption semantics
	Logtalk provides clear closed world assumption semantics: messages or calls
for declared but undefined predicates fail. Messages or calls for unknown
(i.e. not declared) predicates throw an error. Crucially, this semantics
apply to both static and dynamic predicates. But in Prolog workarounds
are required to have a static predicate being known by the runtime without
it being also defined (so that calling it would fail instead of throwing a
predicate existence error).

	compiling and loading source files
	Logtalk provides its own built-in predicates for
compiling and loading source files. It also
provides convenient top-level interpreter shorthands
for these and other frequent operations. In general, the traditional
Prolog built-in predicates and top-level interpreter shorthands cannot
be used to load Logtalk source files.

	debugging
	In most (if not all) Prolog systems, debugging support is a built-in
feature made available using a set of built-in predicates like trace/0
and spy/1. But in Logtalk the default debugger
is a regular application, implemented using a public
reflection API. This means that the debugger
must be explicitly loaded (either automatically from a settings file
at startup or from the top-level). It also means that the debugger can be
easily extended or replaced by an alternative application.

	directive operators
	Some Prolog systems declare directive names as operators (e.g. dynamic,
multifile, …). This is not required by the ISO Prolog Core standard.
It’s a practice that should be avoided as it makes code non-portable.

	encapsulation
	Logtalk enforces encapsulation of object predicates, generating a permission
error when a predicate is not within the scope of the caller. In contrast,
most Prolog module systems allow any module predicate to be called by using
explicit qualification, even if not exported. Worse, some Prolog systems
also allow defining clauses for a module predicate outside the module,
without declaring the predicate as multifile, by simply writing clauses
with explicit module-qualified heads.

	entity loading
	When using Prolog modules, use_module/1-2 (or equivalent) directives
both load the module files and declare that the (implicitly or explicitly)
imported predicates can be used with implicit module qualification.
But Logtalk separates entity (object, protocol, category, or module)
predicate usage declarations (via uses/1 and
uses/2 or its own use_module/1 and
use_module/2 directives) from loading goals (using the
logtalk_load/1 and logtalk_load/2
predicates), called using an explicit and disciplined approach from
loader files.

	flags scope
	The set_logtalk_flag/2 directive is always local
to the entity or source file that contains it. Only calls to the
set_logtalk_flag/2 predicate set the global default
value for a flag. This distinction is lacking in Prolog (where directives
usually have a global scope) and Prolog modules (where some flags are
local to modules in some systems and global in other systems).

	meta-predicate call semantics
	Logtalk provides consistent meta-predicate call semantics:
meta-arguments are always called in the meta-predicate
calling context. This contrasts with Prolog module meta-predicates
where the semantics of implicitly qualified calls is different from
explicitly qualified calls.

	operators scope
	Operators declared inside an entity (object, protocol, or category) are
local to the entity. But operators defined in a source file but outside
and entity are global for compatibility with existing Prolog code.

	predicates scope
	In plain Prolog, all predicates are visible. In a Prolog module, a
predicate can be exported or local. In Logtalk, a predicate can be
public, protected,
private, or local.

	predicate declaration
	Logtalk provides a clear distinction between
declaring a predicate
and defining a predicate. This is a
fundamental requirement for the concept of protocol (aka interface)
in Logtalk: we must be able to declare a predicate without necessarily
defining it. This clear distinction is missing in Prolog and Prolog
modules. Notably, it’s a compiler error for a module to try to export a
predicate that it does not define.

	predicate loading conflicts
	Logtalk does not use predicate import/export semantics. Thus, there are
never conflicts when loading entities (objects, protocols, or categories)
that declare the same public predicates. But attempting to load two Prolog
modules that export the same predicate results in a conflict, usually a
compilation error (this is specially problematic when the use_module/1
directive is used; e.g. adding a new exported predicate can break
applications that use the module but not the new predicate).

Smalltalk nomenclature

The Logtalk name originates from a combination of the Prolog and Smalltalk
names. Smalltalk had a significant influence in the design of Logtalk and
thus inherits some of its ideas and nomenclature. The following list relates
the most commonly used Smalltalk terms with their Logtalk counterparts.

	abstract class
	Similar to Smalltalk, an abstract class is just a class not meant to be
instantiated by not understanding a message to create instances.

	assignment statement
	Logtalk, as a superset of Prolog, uses logic variables and unification
and thus provides no equivalent to the Smalltalk assignment statement.

	block
	Logtalk supports lambda expressions and meta-predicates, which can be used
to provide similar functionality to Smalltalk blocks.

	class
	In Logtalk, class is a just a role that an object can play. This is
similar to Smalltalk where classes are also objects.

	class method
	Class methods in Logtalk are simply instance methods declared and defined
in the class metaclass.

	class variable
	Logtalk objects, which can play the roles of class and instance,
encapsulate predicates, not state. Class variables, which in Smalltalk are
really shared instance variables, can be emulated in a class by defining a
predicate locally instead of defining it in the class instances.

	inheritance
	While Smalltalk only supports single inheritance, Logtalk supports
single inheritance, multiple inheritance, and multiple instantiation.

	instance
	While in Smalltalk every object is an instance of same class, objects
in Logtalk can play different roles, including the role of a prototype
where the concepts of instance and class don’t apply. Moreover, instances
can be either created dynamically or defined statically.

	instance method
	Instance methods in Logtalk are simply predicates declared and defined
in a class and thus inherited by the class instances.

	instance variable
	Logtalk being a declarative language, objects encapsulate a set of
predicates instead of encapsulating state. But different objects may
provide different definitions of the same predicates. Mutable internal
state as in Smalltalk can be emulated by using dynamic predicates.

	message
	Similar to Smalltalk, a message is a request for an operation, which is
interpreted in Logtalk as a logic query, asking for the construction of a
proof that something is true.

	message selector
	Logtalk uses the predicate template (i.e. the predicate callable term with
all its arguments unbound) as message selector. The actual type of the
message arguments is not considered. Like Smalltalk, Logtalk uses single
dispatch on the message receiver.

	metaclass
	Metaclasses are optional in Logtalk (except for a root class) and can be
shared by several classes. When metaclasses are used, infinite regression
is simply avoided by making a class an instance of itself.

	method
	Same as in Smalltalk, a method is the actual code (i.e. predicate
definition) that is run to answer a message. Logtalk uses the words
method and predicate interchangeably.

	method categories
	There is no support in Logtalk for partitioning the methods of an object
in different categories. The Logtalk concept of category (a first-class
entity) was, however, partially inspired by Smalltalk method categories.

	object
	Unlike Smalltalk, where everything is an object, Logtalk language
constructs includes both terms (as in Prolog representing e.g. numbers
and structures) and three first-class entities: objects, protocols, and
categories.

	pool variables*
	Logtalk, as a superset of Prolog, uses predicates with no distinction
between variables and methods. Categories can be used to share a set
of predicate definitions between any number of objects.

	protocol
	In Smalltalk, an object protocol is the set of messages it understands.
The same concept applies in Logtalk. But Logtalk also supports protocols
as first-class entities where a protocol can be implemented by multiple
objects and an object can implement multiple protocols.

	self
	Logtalk uses the same definition of self found in Smalltalk: the object
that received the message being processed. Note, however, that self is
not a keyword in Logtalk but implicit in the (::)/1
message to self control construct.

	subclass
	Same definition in Logtalk.

	super
	As in Smalltalk, the idea of super is to allow calling an inherited
predicate (that is usually being redefined). Note, however, that super is
not a keyword in Logtalk, which provides instead a (^^)/1
super call control construct.

	superclass
	Same definition in Logtalk. But while in Smalltalk a class can only have a
single superclass, Logtalk support for multiple inheritance allows a class
to have multiple superclasses.

C++ nomenclature

There are several C++ glossaries available on the Internet. The list
that follows relates the most commonly used C++ terms with their Logtalk
equivalents.

	abstract class
	Logtalk uses an operational definition of abstract class: any class
that does not inherit a method for creating new instances can be
considered an abstract class. Moreover, Logtalk supports
interfaces/protocols, which are often a better way to provide the
functionality of C++ abstract classes.

	base class
	Logtalk uses the term superclass with the same meaning.

	data member
	Logtalk uses predicates for representing both behavior and data.

	constructor function
	There are no special methods for creating new objects in Logtalk.
Instead, Logtalk provides a built-in predicate, create_object/4,
which can be used as a building block to define more sophisticated
object creation predicates.

	derived class
	Logtalk uses the term subclass with the same meaning.

	destructor function
	There are no special methods for deleting new objects in Logtalk.
Instead, Logtalk provides a built-in predicate, abolish_object/1,
which is often used to define more sophisticated object deletion
predicates.

	friend function
	Not supported in Logtalk. Nevertheless, see the User Manual section on
meta-predicates.

	instance
	In Logtalk, an instance can be either created dynamically at runtime
or defined statically in a source file in the same way as classes.

	member
	Logtalk uses the term predicate.

	member function
	Logtalk uses predicates for representing both behavior
and data.

	namespace
	Logtalk does not support multiple identifier namespaces. All Logtalk
entity identifiers share the same namespace (Logtalk entities are
objects, categories, and protocols).

	nested class
	Logtalk does not support nested classes.

	static member
	Logtalk does not support a static keyword. But the equivalent to
static members can be declared in a class metaclass.

	template
	Logtalk supports parametric objects, which
allows you to get the similar functionality of templates at runtime.

	this
	Logtalk uses the built-in context method self/1 for retrieving
the instance that received the message being processed. Logtalk also provides
a this/1 method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self
was inherited from Smalltalk, which predates C++.

	virtual member function
	There is no virtual keyword in Logtalk. Any inherited or imported
predicate can be redefined (either overridden or specialized).
Logtalk can use static binding or dynamic binding for
locating both method declarations and method definitions. Moreover,
methods that are declared but not defined simply fail when called
(as per closed-world assumption).

Java nomenclature

There are several Java glossaries available on the Internet. The list
that follows relates the most commonly used Java terms with their
Logtalk equivalents.

	abstract class
	Logtalk uses an operational definition of abstract class: any class
that does not inherit a method for creating new instances is an
abstract class. I.e. there is no abstract keyword in Logtalk.

	abstract method
	In Logtalk, you may simply declare a method (predicate) in a
class without defining it, leaving its definition to some descendant
subclass.

	assertion
	There is no assertion keyword in Logtalk. Assertions are
supported using Logtalk compilation hooks and developer tools.

	class
	Logtalk objects can play the role of classes, instances, or protocols
(depending on their relations with other objects).

	extends
	There is no extends keyword in Logtalk. Class inheritance is
indicated using specialization relations. Moreover, the extends
relation is used in Logtalk to indicate protocol, category, or
prototype extension.

	interface
	Logtalk uses the term protocol with similar meaning. But note
that Logtalk objects and categories declared as implementing a protocol
are not required to provide definitions for the declared predicates
(closed-world assumption).

	callback method
	Logtalk supports event-driven programming,
the most common usage context of callback methods. Callback methods
can also be implemented using meta-predicates.

	constructor
	There are no special methods for creating new objects in Logtalk.
Instead, Logtalk provides a built-in predicate, create_object/4,
which is often used to define more sophisticated object creation
predicates.

	final
	There is no final keyword in Logtalk. Predicates can always be
redeclared and redefined in subclasses (and instances!).

	inner class
	Inner classes are not supported in Logtalk.

	instance
	In Logtalk, an instance can be either created dynamically at runtime
or defined statically in a source file in the same way as classes.

	method
	Logtalk uses the term predicate interchangeably with the term
method.

	method call
	Logtalk usually uses the expression message sending for method
calls, true to its Smalltalk heritage.

	method signature
	Logtalk selects the method/predicate to execute in order to answer a
method call based only on the method name and number of arguments.
Logtalk (and Prolog) are not typed languages in the same sense as Java.

	package
	There is no concept of packages in Logtalk. All Logtalk entities
(objects, protocols, categories) share a single namespace. But
Logtalk does support a concept of library that allows
grouping of entities whose source files share a common path prefix.

	reflection
	Logtalk features a white box API supporting structural reflection
about entity contents,
a black box API supporting behavioral reflection about
object protocols, and an
events API for reasoning about messages
exchanged at runtime.

	static
	There is no static keyword in Logtalk. See the entries below on
static method and static variable.

	static method
	Static methods may be implemented in Logtalk by using a metaclass
for the class and defining the static methods in the metaclass. I.e. static
methods are simply instance methods of the class metaclass.

	static variable
	Static variables are shared instance variables and can simply be both
declared and defined in a class. The built-in database methods can be
used to implement destructive updates if necessary by accessing and
updated a single clause of a dynamic predicate stored in the class.

	super
	Instead of a super keyword, Logtalk provides a super operator and
control construct, (^^)/1, for calling overridden
methods.

	synchronized
	Logtalk supports multi-threading programming in
selected Prolog compilers, including a synchronized/1
predicate directive. Logtalk allows you to synchronize a predicate or a
set of predicates using per-predicate or per-predicate-set mutexes.

	this
	Logtalk uses the built-in context method self/1 for retrieving
the instance that received the message being processed. Logtalk also provides
a this/1 method but for returning the class containing the
method being executed. Why the name clashes? Well, the notion of self
was inherited from Smalltalk, which predates C++.

Python nomenclature

The list that follows relates the commonly used Python concepts with
their Logtalk equivalents.

	abstract class
	Logtalk uses a different definition of abstract class: a class that
does not inherit a method for creating new instances. Notably, the
presence of abstract methods (i.e. predicates that are declared
but not defined) does not make a class abstract.

	abstract method
	Logtalk uses the term predicate interchangeably with method. Predicates
can be declared without being also defined in an object (or category).

	class
	Logtalk objects can play the role of classes, instances, or protocols
(depending on their relations with other objects).

	dictionary
	There is no native, built-in associative data type. But the library
provides several implementations of a dictionary protocol.

	function
	The closest equivalent is a predicate defined in user, a pseudo-object
for predicates not defined in regular objects, and thus callable from
anywhere without requiring a scope directive.

	function object
	Predicates calls (goals) can be passed or returned from other predicates
and unified with other terms (e.g. variables).

	import path
	Logtalk uses the term library to refer to a directory of source files
and supports defining aliases (symbolic names) to library paths to abstract
the actual locations.

	lambda
	Logtalk natively supports lambda expressions.

	list
	Lists are compound terms with native syntax support.

	list comprehensions
	There is no native, built-in support for list comprehensions. But the
standard findall/3 predicate can be used to construct a list by
calling a goal that generates the list elements.

	loader
	Logtalk uses the term loader to refer to source files whose main or
sole purpose is to load other source files.

	loop
	There are no native loop control constructs based on a counter. But the
library provides implementations of several loop predicates.

	metaclass
	Logtalk objects play the role of metaclasses when instantiated by
objects that play the role of classes.

	method
	Logtalk uses the terms method and predicate interchangeably.
Predicates can be defined in objects (and categories). The value
of self is implicit unlike in Python where it is the first parameter
of any method.

	method resolution order
	Logtalk uses a depth-first algorithm to lookup method (predicate)
declarations and definitions. It’s possible to use predicate aliases
to access predicate declarations and definitions other than the first
ones found by the lookup algorithm.

	object
	Objects are first-class entities that can play multiple roles, including
prototype, class, instance, and metaclass.

	package
	Logtalk uses the term library to refer to a directory of source files
defining objects, categories, and protocols.

	set
	There is no native, built-in set type. But the library provides set
implementations.

	string
	The interpretation of text between double-quotes depends on the
double_quotes flag. Depending on this flag, double-quoted text
can be interpreted as a list of characters, a list of character codes,
or an atom. Some backend Prolog compilers allow double-quoted text
to be interpreted as a string in the Python sense.

	tuple
	Compound terms can be used to represent tuples of any complexity.

	variable
	Logtalk works with logical variables, which are close to the
mathematical concept of variables and distinct from variables in
imperative or imperative-based OOP languages where they are
symbolic names for memory locations. Logical variables can be
unified with any term, including other variables.

	while loop
	The built-in forall/2 predicate implements a generate-and-test
loop.

Messages

Messages allows us to ask an object to prove a goal and must always match a
declared predicate within the scope of the sender object. Note that sending
a message is fundamentally different from calling a predicate. When calling a
predicate, the caller decides implicitly which predicate definition will be
executed. When sending a message, it is the receiving object, not the sender,
that decides which predicate definition (if any) will be called to answer the
message. The predicate definition that is actually used to answer a message
depends on the relations between the object and its imported categories and
ancestor objects (if any). See the Inheritance section
for details on the predicate declaration and predicate definition lookup
procedures.

When a message corresponds to a meta-predicate, the meta-arguments
are always called in the context of the object (or category) sending the
message.

Logtalk uses nomenclature similar to in other object-oriented programming
languages such as Smalltalk. Therefore, the terms query and message are
used interchangeably when referring to a declared predicate that is part of
an object interface. Likewise, the terms predicate and method are used
interchangeably when referring to the predicate definition (inside an object
or category) that is called to answer a message.

Operators used in message sending

Logtalk declares the following operators for the message sending control
constructs:

:- op(600, xfy, ::).
:- op(600, fy, ::).
:- op(600, fy, ^^).

It is assumed that these operators remain active (once the Logtalk
compiler and runtime files are loaded) until the end of the Prolog
session (this is the usual behavior of most Prolog compilers). Note that
these operator definitions are compatible with the predefined operators
in the Prolog ISO standard.

Sending a message to an object

Sending a message to an object is accomplished by using the
(::)/2 control construct:

..., Object::Message, ...

The message must match a public predicate declared for the receiving
object. The message may also correspond to a protected or private
predicate if the sender matches the predicate scope container. If the
predicate is declared but not defined, the message simply fails (as per
the closed-world assumption).

Delegating a message to an object

It is also possible to send a message to an object while preserving the
original sender by using the []/1 delegation
control construct:

..., [Object::Message],

This control construct can only be used within objects and categories
(in the top-level interpreter, the sender is always the pseudo-object
user so using this control construct would be equivalent to use the
(::)/2 message sending control construct).

Sending a message to self

While defining a predicate, we sometimes need to send a message to
self, i.e., to the same object that has received the original message.
This is done in Logtalk through the
(::)/1 control construct:

..., ::Message,

The message must match either a public or protected predicate declared for
the receiving object or a private predicate within the scope of the sender
otherwise an error will be thrown. If the message is sent from inside a
category or if we are using private inheritance, then the message may also
match a private predicate. Again, if the predicate is declared but not
defined, the message simply fails (as per the closed-world assumption).

Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of
several messages to the same object. This can be achieved by using the
message sending control construct described above. However, for convenience,
Logtalk implements an extended syntax for message sending that may improve
program readability in some cases. This extended syntax uses the (,)/2,
(;)/2, and (->)/2 control constructs (plus the (*->)/2 soft-cut
control construct when provided by the backend Prolog compiler). For example,
if we wish to send several messages to the same object, we can write:

| ?- Object::(Message1, Message2, ...).

This is semantically equivalent to:

| ?- Object::Message1, Object::Message2,

This extended syntax may also be used with the (::)/1 message sending
control construct.

Calling imported and inherited predicates

When redefining a predicate, sometimes we need to call the inherited
definition in the new code. This functionality, introduced by the
Smalltalk language through the super primitive, is available in
Logtalk using the (^^)/1 control construct:

..., ^^Predicate,

Most of the time we will use this control construct by instantiating the
pattern:

Predicate :-
 ..., % do something
 ^^Predicate, % call inherited definition
 % do something more

This control construct is generalized in Logtalk where it may be used to
call any imported or inherited predicate definition. This control
construct may be used within objects and categories. When combined with
static binding, this control construct allows imported and inherited
predicates to be called with the same performance of local predicates.
As with the message sending control constructs, the (^^)/1 call simply
fails when the predicate is declared but not defined (as per the
closed-world assumption).

Message sending and event generation

Assuming the events flag is set to allow for the
object (or category) sending a message using the
(::)/2 control construct, two events are generated,
one before and one after the message execution.
Messages that are sent using the
(::)/1 (message to self)
control construct or the
(^^)/1 super mechanism
described above do not generate any events. The rationale behind this
distinction is that messages to self and super calls are only used
internally in the definition of methods or to execute additional
messages with the same target object (represented by self). In other
words, events are only generated when using an object’s public
interface; they cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then
we just need to write something like:

Predicate :-
 ...,
 % get self reference
 self(Self),
 % send a message to self using (::)/2
 Self::Message,

If we also need the sender of the message to be other than the object
containing the predicate definition, we can write:

Predicate :-
 ...,
 % send a message to self using (::)/2
 % sender will be the pseudo-object user
 self(Self),
 {Self::Message},

When events are not used, is possible to turn off event generation globally
or on a per entity basis by using the events compiler flag to optimize
message sending performance (see the Event-driven programming section for more
details).

Sending a message from a module

Messages can be sent to object from within a Prolog module. Depending on
the backend Prolog system and on the optimize flag
being turned on, the messages will use static binding when possible. This
optimization requires the object to be compiled and loaded before the module.
Note that the module can be user. This is usually the case when sending
the message from the top-level interpreter. Thus, the same conditions apply
in this case.

Warning

If you want to benchmark the performance of a message sending goal
at the top-level interpreter, be careful to check first if the goal
is pre-compiled to use static binding, otherwise you will also be
benchmarking the Logtalk compiler itself.

Message sending performance

For a detailed discussion on message sending performance, see the
Performance section.

Objects

The main goal of Logtalk objects is the encapsulation and reuse of
predicates. Instead of a single database containing all your code,
Logtalk objects provide separated namespaces or databases allowing the
partitioning of code in more manageable parts. Logtalk is a declarative
programming language and does not aim to bring some sort of new dynamic
state change concept to Logic Programming or Prolog.

Logtalk, defines two built-in objects, user and
logtalk, which are described at the end of this
section.

Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk:
objects, protocols, and categories. Logtalk uses the term object
in a broad sense. The terms prototype, parent, class, subclass,
superclass, metaclass, and instance always designate an object.
Different names are used to emphasize the role played by an object in
a particular context. I.e. we use a term other than object when we want
to make the relationship with other objects explicit. For example, an
object with an instantiation relation with other object plays the role
of an instance, while the instantiated object plays the role of a
class; an object with a specialization relation with other object
plays the role of a subclass, while the specialized object plays the
role of a superclass; an object with an extension relation with
other object plays the role of a prototype, the same for the extended
object. A stand-alone object, i.e. an object with no relations with
other objects, is always interpreted as a prototype. In Logtalk, entity
relations essentially define patterns of code reuse. An entity is
compiled accordingly to the roles it plays.

Logtalk allows you to work from standalone objects to any kind of
hierarchy, either class-based or prototype-based. You may use single or
multiple inheritance, use or forgo metaclasses, implement reflective
designs, use parametric objects, and take advantage of protocols and
categories (think components).

Prototypes

Prototypes are either self-defined objects or objects defined as
extensions to other prototypes with whom they share common properties.
Prototypes are ideal for representing one-of-a-kind objects. Prototypes
usually represent concrete objects in the application domain. When
linking prototypes using extension relations, Logtalk uses the term
prototype hierarchies although most authors prefer to use the term
hierarchy only with class generalization/specialization relations. In
the context of logic programming, prototypes are often the ideal
replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets
of objects. Classes often provide an ideal structuring solution when you
want to express hierarchies of abstractions or work with many similar
objects. Classes are used indirectly through instantiation. Contrary
to most object-oriented programming languages, instances can be created
both dynamically at runtime or defined in a source file like other
objects. Using classes in requires defining at least one metaclass,
as explained below.

Defining a new object

We can define a new object in the same way we write Prolog code: by
using a text editor. Logtalk source files may contain one or more
objects, categories, or protocols. If you prefer to define each entity
in its own source file, it is recommended that the file be named after
the object. By default, all Logtalk source files use the extension
.lgt but this is optional and can be set in the adapter files.
Intermediate Prolog source files (generated by the Logtalk compiler)
have, by default, a _lgt suffix and a .pl extension. Again, this
can be set to match the needs of a particular Prolog compiler in the
corresponding adapter file. For instance, we may define an object named
vehicle and save it in a vehicle.lgt source file which will be
compiled to a vehicle_lgt.pl Prolog file (depending on the
backend compiler, the names of the
intermediate Prolog files may include a directory hash and a process
identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Object names can be atoms or compound terms (when defining parametric
objects, see below). Objects, categories, and protocols share the same
name space: we cannot have an object with the same name as a protocol or
a category.

Object code (directives and predicates) is textually encapsulated by
using two Logtalk directives: object/1-5 and
end_object/0. The most simple object will be one
that is self-contained, not depending on any other Logtalk entity:

:- object(Object).
 ...
:- end_object.

If an object implements one or more protocols then the opening directive
will be:

:- object(Object,
 implements([Protocol1, Protocol2, ...])).
 ...
:- end_object.

An object can import one or more categories:

:- object(Object,
 imports([Category1, Category2, ...])).
 ...
:- end_object.

If an object both implements protocols and imports categories then we
will write:

:- object(Object,
 implements([Protocol1, Protocol2, ...]),
 imports([Category1, Category2, ...])).
 ...
:- end_object.

In object-oriented programming objects are usually organized in
hierarchies that enable interface and code sharing by inheritance. In
Logtalk, we can construct prototype-based hierarchies by writing:

:- object(Prototype,
 extends(Parent)).
 ...
:- end_object.

We can also have class-based hierarchies by defining instantiation and
specialization relations between objects. To define an object as a class
instance we will write:

:- object(Object,
 instantiates(Class)).
 ...
:- end_object.

A class may specialize another class, its superclass:

:- object(Class,
 specializes(Superclass)).
 ...
:- end_object.

If we are defining a reflexive system where every class is also an
instance, we will probably be using the following pattern:

:- object(Class,
 instantiates(Metaclass),
 specializes(Superclass)).
 ...
:- end_object.

In short, an object can be a stand-alone object or be part of an
object hierarchy. The hierarchy can be prototype-based (defined by
extending other objects) or class-based (with instantiation and
specialization relations). An object may also implement one or more
protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation,
or specialization relations with other objects) always plays the role of
a prototype, that is, a self-describing object. If we want to use classes
and instances, then we will need to specify at least one instantiation
or specialization relation. The best way to do this is to define a set
of objects that provide the basis of a reflective system [Cointe87],
[Moura94]. For example:

% avoid the inevitable unknown entity warnings as in a
% reflective system there will always be references to
% an entity that will be defined after the reference

:- set_logtalk_flag(unknown_entities, silent).

% default root of the inheritance graph
% providing predicates common to all objects

:- object(object,
 instantiates(class)).
 ...
:- end_object.

% default metaclass for all classes providing
% predicates common to all instantiable classes

:- object(class,
 instantiates(class),
 specializes(abstract_class)).
 ...
:- end_object.

% default metaclass for all abstract classes
% providing predicates common to all classes

:- object(abstract_class,
 instantiates(class),
 specializes(object)).
 ...
:- end_object.

Note that with these instantiation and specialization relations,
object, class, and abstract_class are, at the same time,
classes and instances of some class. In addition, each object inherits
its own predicates and the predicates of the other two objects without
any inheritance loop.

When a full-blown reflective system solution is not needed, the above
scheme can be simplified by making an object an instance of itself, i.e.
by making a class its own metaclass. For example:

:- object(class,
 instantiates(class)).
 ...
:- end_object.

We can use, in the same application, both prototype and class-based
hierarchies (and freely exchange messages between all objects). We
cannot however mix the two types of hierarchies by, e.g., specializing
an object that extends another object in this current Logtalk version.

Logtalk also supports public, protected, and private inheritance. See
the inheritance section for details.

Parametric objects

Parametric objects have a compound term as identifier where all the
arguments of the compound term are variables. These variables can be
bound when sending a message or become bound when a message to the object
succeeds, thus acting as object parameters. The object predicates
can be coded to depend on those parameters, which are logical variables
shared by all object predicates. When an object state is set at object
creation and never changed, parameters provide a better solution than
using the object’s database via asserts. Parametric objects can also be
used to associate a set of predicates to terms that share a common
functor and arity.

Accessing object parameters

Object parameters can be accessed using parameter variables
or built-in execution context methods. Parameter variables is the
recommended solution to access object parameters. Although they
introduce a concept of entity global variables, their unique syntax,
ParameterName, avoids conflicts and makes them easily
recognizable. For example:

:- object(foo(_Bar_, _Baz_, ...)).

 ...
 bar(_Bar_).

 baz :-
 baz(_Baz_),

Note that using parameter variables doesn’t change the fact that entity
parameters are logical variables. Parameter variables simplify code
maintenance by allowing parameters to be added, reordered, or removed
without having to specify or update parameter indexes.

Logtalk provides also a parameter/2 built-in local method
to access individual parameters:

:- object(foo(_Bar, _Baz, ...)).

 ...
 bar(Bar) :-
 parameter(1, Bar).

 baz :-
 parameter(2, Baz),
 baz(Baz),

An alternative solution is to use the built-in local method
this/1, which allows to access all parameters with a single
call. For example:

:- object(foo(_Bar, _Baz, ...)).

 ...
 baz :-
 this(foo(_, Baz, ...)),
 baz(Baz),

Both solutions are equally efficient as calls to the methods this/1
and parameter/2 are usually compiled inline into a clause head
unification. The drawback of this second solution is that we must check
all calls of this/1 if we change the object name. Note that we can’t
use these method with the message sending operators
((::)/2, (::)/1, or
(^^)/1).

When storing a parametric object in its own source file, the convention
is to name the file after the object, with the object arity appended.
For instance, when defining an object named sort(Type), we may save
it in a sort_1.lgt text file. This way it is easy to avoid file name
clashes when saving Logtalk entities that have the same functor but
different arity.

Parametric object proxies

Compound terms with the same functor and with the same number of
arguments as a parametric object identifier may act as proxies to a
parametric object. Proxies may be stored on the database as Prolog facts
and be used to represent different instantiations of a parametric object
identifier. For example:

:- object(circle(_Id_, _Radius_, _Color_)).

 :- public(area/1).
 ...

:- end_object.

% parametric object proxies:
circle('#1', 1.23, blue).
circle('#2', 3.71, yellow).
circle('#3', 0.39, green).
circle('#4', 5.74, black).
circle('#5', 8.32, cyan).

Logtalk provides a convenient notation for accessing proxies
represented as Prolog facts when sending a message:

..., {Proxy}::Message, ...

For example, using the circle/3 parametric object above, we can
compute a list with the areas of all circles using the following goal:

| ?- findall(Area, {circle(_, _, _)}::area(Area), Areas).

Areas = [4.75291, 43.2412, 0.477836, 103.508, 217.468].

In this context, the proxy argument is proved as a plain Prolog goal. If
successful, the message is sent to the corresponding parametric object.
Typically, the proof allows retrieving of parameter instantiations. This
construct can either be used with a proxy argument that is sufficiently
instantiated in order to unify with a single Prolog fact or with a proxy
argument that unifies with several facts on backtracking.

Finding defined objects

We can find, by backtracking, all defined objects by calling the
current_object/1 built-in predicate with a
unbound argument:

| ?- current_object(Object).
Object = logtalk ;
Object = user ;
...

This predicate can also be used to test if an object is defined by
calling it with a valid object identifier (an atom or a compound term).

Creating a new object in runtime

An object can be dynamically created at runtime by using the
create_object/4 built-in predicate:

| ?- create_object(Object, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new
object (a Prolog atom or compound term, which must not match any
existing entity name). The remaining three arguments correspond to the
relations described in the opening object directive and to the object
code contents (directives and clauses).

For example, the call:

| ?- create_object(
 foo,
 [extends(bar)],
 [public(foo/1)],
 [foo(1), foo(2)]
).

is equivalent to compiling and loading the object:

:- object(foo,
 extends(bar)).

 :- dynamic.

 :- public(foo/1).
 foo(1).
 foo(2).

:- end_object.

If we need to create a lot of (dynamic) objects at runtime, then is best
to define a metaclass or a prototype with a predicate that will call
this built-in predicate to make new objects. This predicate may provide
automatic object name generation, name checking, and accept object
initialization options.

Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/1
built-in predicate:

| ?- abolish_object(Object).

The argument must be an identifier of a defined dynamic object,
otherwise an error will be thrown.

Object directives

Object directives are used to set initialization goals, define object
properties, to document an object dependencies on other Logtalk
entities, and to load the contents of files into an object.

Object initialization

We can define a goal to be executed as soon as an object is (compiled
and) loaded to memory with the initialization/1
directive:

:- initialization(Goal).

The argument can be any valid Logtalk goal. For example, a call to a
local predicate:

:- object(foo).

 :- initialization(init).
 :- private(init/0).

 init :-

 ...

:- end_object.

Or a message to another object:

:- object(assembler).

 :- initialization(control::start).
 ...

:- end_object.

Another common initialization goal is a message to self in order to call
an inherited or imported predicate. For example, assuming that we have a
monitor category defining a reset/0 predicate, we could write:

:- object(profiler,
 imports(monitor)).

 :- initialization(::reset).
 ...

:- end_object.

Note, however, that descendant objects do not inherit initialization
directives. In this context, self denotes the object that contains the
directive. Also note that object initialization does not necessarily mean
setting an object dynamic state.

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic.
An object created during the execution of a program is always dynamic.
An object defined in a file can be either dynamic or static. Dynamic
objects are declared by using the dynamic/0 directive in the
object source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please
be aware that using dynamic code results in a performance hit when
compared to static code. We should only use dynamic objects when these
need to be abolished during program execution. In addition, note that we
can declare and define dynamic predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information
by using the info/1 entity directive. See the
Documenting section for details.

Loading files into an object

The include/1 directive
can be used to load the contents of a file into an object. A typical usage
scenario is to load a plain Prolog file into an object thus providing a
simple way to encapsulate its contents. For example, assume a cities.pl
file defining facts for a city/4 predicate. We could define a wrapper
for this database by writing:

:- object(cities).

 :- public(city/4).

 :- include(dbs('cities.pl')).

:- end_object.

The include/1 directive can also be used when creating an object
dynamically. For example:

| ?- create_object(cities, [], [public(city/4), include(dbs('cities.pl'))], []).

Declaring object aliases

The uses/1 directive can be used to declare object aliases.
The typical uses of this directive include shortening long object names,
working consistently with specific parameterizations of parametric objects,
and simplifying experimenting with different object implementations of the
same protocol when using explicit message sending.

Object relationships

Logtalk provides six sets of built-in predicates that enable us to query
the system about the possible relationships that an object may have with
other entities.

The instantiates_class/2-3 built-in predicates can be
used to query all instantiation relations:

| ?- instantiates_class(Instance, Class).

or, if we also want to know the instantiation scope:

| ?- instantiates_class(Instance, Class, Scope).

Specialization relations can be found by using the
specializes_class/2-3 built-in predicates:

| ?- specializes_class(Class, Superclass).

or, if we also want to know the specialization scope:

| ?- specializes_class(Class, Superclass, Scope).

For prototypes, we can query extension relations using with the
extends_object/2-3 built-in predicates:

| ?- extends_object(Object, Parent).

or, if we also want to know the extension scope:

| ?- extends_object(Object, Parent, Scope).

In order to find which objects import which categories we can use the
imports_category/2-3 built-in predicates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

To find which objects implements which protocols we can use the
implements_protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

| ?- implements_protocol(Object, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Object, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the
current_object/1 built-in predicate to ensure that the
entity returned is an object and not a category.

To find which objects are explicitly complemented by categories we can
use the complements_object/2 built-in predicate:

| ?- complements_object(Category, Object).

Note that more than one category may explicitly complement a single
object and a single category can complement several objects.

Object properties

We can find the properties of defined objects by calling the built-in
predicate object_property/2:

| ?- object_property(Object, Property).

The following object properties are supported:

	static
	The object is static

	dynamic
	The object is dynamic (and thus can be abolished in runtime by
calling the abolish_object/1 built-in predicate)

	built_in
	The object is a built-in object (and thus always available)

	threaded
	The object supports/makes multi-threading calls

	file(Path)
	Absolute path of the source file defining the object (if applicable)

	file(Basename, Directory)
	Basename and directory of the source file defining the object (if
applicable); Directory always ends with a /

	lines(BeginLine, EndLine)
	Source file begin and end lines of the object definition (if
applicable)

	context_switching_calls
	The object supports context switching calls (i.e. can be used with
the (<<)/2 debugging control construct)

	dynamic_declarations
	The object supports dynamic declarations of predicates

	events
	Messages sent from the object generate events

	source_data
	Source data available for the object

	complements(Permission)
	The object supports complementing categories with the specified
permission (allow or restrict)

	complements
	The object supports complementing categories

	public(Resources)
	List of public predicates and operators declared by the object

	protected(Resources)
	List of protected predicates and operators declared by the object

	private(Resources)
	List of private predicates and operators declared by the object

	declares(Predicate, Properties)
	List of properties for a predicate declared by the object

	defines(Predicate, Properties)
	List of properties for a predicate defined by the object

	includes(Predicate, Entity, Properties)
	List of properties for an object multifile predicate that are defined
in the specified entity (the properties include
number_of_clauses(Number), number_of_rules(Number), and
line_count(Line) with Line being the begin line of the
first multifile predicate clause)

	provides(Predicate, Entity, Properties)
	List of properties for other entity multifile predicate that are
defined in the object (the properties include
number_of_clauses(Number), number_of_rules(Number), and
line_count(Line) with Line being the begin line of the
first multifile predicate clause)

	alias(Predicate, Properties)
	List of properties for a predicate alias declared by the object
(the properties include for(Original), from(Entity),
non_terminal(NonTerminal), and line_count(Line) with Line
being the begin line of the alias directive)

	calls(Call, Properties)
	List of properties for predicate calls made by the object (Call
is either a predicate indicator or a control construct such as
(::)/1-2 or (^^)/1 with a predicate indicator as argument; note
that Call may not be ground in case of a call to a control
construct where its argument is only know at runtime; the properties
include caller(Caller), alias(Alias), non_terminal(NonTerminal),
and line_count(Line) with Caller, Alias, and NonTerminal
being predicate indicators and Line being the begin line of the
predicate clause or directive making the call)

	updates(Predicate, Properties)
	List of properties for dynamic predicate updates (and also access
using the clause/2 predicate) made by the object (Predicate
is either a predicate indicator or a control construct such as
(::)/1-2 or (:)/2 with a predicate indicator as argument; note
that Predicate may not be ground in case of a control construct
argument only know at runtime; the properties include
updater(Updater), alias(Alias), non_terminal(NonTerminal),
and line_count(Line) with Updater being a (possibly multifile)
predicate indicator, Alias and NonTerminal being predicate
indicators, and Line being the begin line of the predicate clause
or directive updating the predicate)

	number_of_clauses(Number)
	Total number of predicate clauses defined in the object at compilation
time (includes both user-defined clauses and auxiliary clauses generated
by the compiler or by the expansion hooks
but does not include clauses for multifile predicates defined for other
entities or clauses for the object own multifile predicates contributed
by other entities)

	number_of_rules(Number)
	Total number of predicate rules defined in the object at compilation
time (includes both user-defined rules and auxiliary rules generated
by the compiler or by the expansion hooks
but does not include rules for multifile predicates defined for other
entities or rules for the object own multifile predicates contributed
by other entities)

	number_of_user_clauses(Number)
	Total number of user-defined predicate clauses defined in the object
at compilation time (does not include clauses for multifile predicates
defined for other entities or clauses for the object own multifile
predicates contributed by other entities)

	number_of_user_rules(Number)
	Total number of user-defined predicate rules defined in the object at
compilation time (does not include rules for multifile predicates defined
for other entities or rules for the object own multifile predicates
contributed by other entities)

	debugging
	The object is compiled in debug mode

	module
	The object resulted from the compilation of a Prolog module

When a predicate is called from an initialization/1 directive, the
argument of the caller/1 property is :-/1.

Some properties such as line numbers are only available when the object is
defined in a source file compiled with the source_data
flag turned on. Moreover, line numbers are only supported in
backend Prolog compilers
that provide access to the start line of a read term. When such support is
not available, the value -1 is returned for the start and end lines.

The properties that return the number of clauses (rules) report the
clauses (rules) textually defined in the object for both multifile and
non-multifile predicates. Thus, these numbers exclude clauses (rules)
for multifile predicates contributed by other entities.

Built-in objects

Logtalk defines some built-in objects that are always available for any
application.

The built-in pseudo-object user

The built-in user pseudo-object virtually contains all
user predicate definitions not encapsulated in a Logtalk entity (or a Prolog
module for backends supporting a module system). These predicates are
assumed to be implicitly declared public. Messages sent from this
pseudo-object, which includes messages sent from the top-level interpreter,
generate events when the default value of the events
flag is set to allow. Defining complementing categories for this
pseudo-object is not supported.

With some of the backend Prolog compilers
that support a module system, it is possible to load (the) Logtalk
(compiler/runtime) into a module other than the pseudo-module user. In
this case, the Logtalk pseudo-object user virtually contains all user
predicate definitions defined in the module where Logtalk was loaded.

The built-in object logtalk

The built-in logtalk object provides
message printing predicates,
question asking predicates,
debug and trace event predicates, predicates for
accessing the internal database of loaded files and their properties, and
also a set of low-level utility predicates normally used when defining hook
objects. Consult its API documentation for details.

Protocols

Protocols enable the separation between interface and implementation:
several objects can implement the same protocol and an object can
implement several protocols. Protocols may contain only predicate
declarations. In some languages the term interface is used with
similar meaning. Logtalk allows predicate declarations of any scope
within protocols, contrary to some languages that only allow public
declarations.

Logtalk defines three built-in protocols,
monitoring,
expanding, and
forwarding, which are described at the
end of this section.

Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by
using a text editor. Logtalk source files may contain one or more
objects, categories, or protocols. If you prefer to define each entity
in its own source file, it is recommended that the file be named after
the protocol. By default, all Logtalk source files use the extension
.lgt but this is optional and can be set in the adapter files.
Intermediate Prolog source files (generated by the Logtalk compiler)
have, by default, a _lgt suffix and a .pl extension. Again, this
can be set to match the needs of a particular Prolog compiler in the
corresponding adapter file. For example, we may define a protocol named
listp and save it in a listp.lgt source file that will be
compiled to a listp_lgt.pl Prolog file (depending on the backend
compiler, the names of the intermediate Prolog files may include a
directory hash and a process identifier to prevent file name clashes
when embedding Logtalk applications or running parallel Logtalk processes).

Protocol names must be atoms. Objects, categories and protocols share
the same namespace: we cannot have a protocol with the same name as an
object or a category.

Protocol directives are textually encapsulated by using two Logtalk
directives: protocol/1-2 and
end_protocol/0. The
most simple protocol will be one that is self-contained, not depending
on any other Logtalk entity:

:- protocol(Protocol).
 ...
:- end_protocol.

If a protocol extends one or more protocols, then the opening directive
will be:

:- protocol(Protocol,
 extends([Protocol1, Protocol2, ...])).
 ...
:- end_protocol.

In order to maximize protocol reuse, all predicates specified in a
protocol should relate to the same functionality. Therefore, the only
recommended use of protocol extension is when you need both a minimal
protocol and an extended version of the same protocol with additional,
convenient predicates.

Finding defined protocols

We can find, by backtracking, all defined protocols by using the
current_protocol/1 built-in predicate with a
unbound argument:

| ?- current_protocol(Protocol).

This predicate can also be used to test if a protocol is defined by
calling it with a valid protocol identifier (an atom).

Creating a new protocol in runtime

We can create a new (dynamic) protocol at runtime by calling the Logtalk
built-in predicate create_protocol/3:

| ?- create_protocol(Protocol, Relations, Directives).

The first argument should be either a variable or the name of the new
protocol (a Prolog atom, which must not match an existing entity name).
The remaining two arguments correspond to the relations described in the
opening protocol directive and to the protocol directives.

For instance, the call:

| ?- create_protocol(ppp, [extends(qqq)], [public([foo/1, bar/1])]).

is equivalent to compiling and loading the protocol:

:- protocol(ppp,
 extends(qqq)).

 :- dynamic.

 :- public([foo/1, bar/1]).

:- end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then is
best to define a metaclass or a prototype with a predicate that will
call this built-in predicate in order to provide more sophisticated
behavior.

Abolishing an existing protocol

Dynamic protocols can be abolished using the
abolish_protocol/1 built-in predicate:

| ?- abolish_protocol(Protocol).

The argument must be an identifier of a defined dynamic protocol,
otherwise an error will be thrown.

Protocol directives

Protocol directives are used to define protocol properties and
documentation.

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or
dynamic. A protocol created during the execution of a program is always
dynamic. A protocol defined in a file can be either dynamic or static.
Dynamic protocols are declared by using the
dynamic/0 directive in the protocol source code:

:- dynamic.

The directive must precede any predicate directives. Please be aware
that using dynamic code results in a performance hit when compared to
static code. We should only use dynamic protocols when these need to be
abolished during program execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information
by using the info/1 entity directive. See the
Documenting section for details.

Loading files into a protocol

The include/1 directive
can be used to load the contents of a file into a protocol. See the
Objects section for an example of using this
directive.

Protocol relationships

Logtalk provides two sets of built-in predicates that enable us to query
the system about the possible relationships that a protocol have with
other entities.

The extends_protocol/2-3 built-in predicates return all
pairs of protocols so that the first one extends the second:

| ?- extends_protocol(Protocol1, Protocol2).

or, if we also want to know the extension scope:

| ?- extends_protocol(Protocol1, Protocol2, Scope).

To find which objects or categories implement which protocols we can
call the implements_protocol/2-3 built-in predicates:

| ?- implements_protocol(ObjectOrCategory, Protocol).

or, if we also want to know the implementation scope:

| ?- implements_protocol(ObjectOrCategory, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument,
we will need to use the current_object/1 or
current_category/1
built-in predicates to identify the kind of entity returned.

Protocol properties

We can find the properties of defined protocols by calling the
protocol_property/2 built-in predicate:

| ?- protocol_property(Protocol, Property).

A protocol may have the property static, dynamic, or
built_in. Dynamic protocols can be abolished in runtime by calling
the abolish_protocol/1
built-in predicate. Depending on the backend Prolog compiler, a
protocol may have additional properties related to the source file where
it is defined.

The following protocol properties are supported:

	static
	The protocol is static

	dynamic
	The protocol is dynamic (and thus can be abolished in runtime by
calling the abolish_category/1 built-in predicate)

	built_in
	The protocol is a built-in protocol (and thus always available)

	source_data
	Source data available for the protocol

	file(Path)
	Absolute path of the source file defining the protocol (if
applicable)

	file(Basename, Directory)
	Basename and directory of the source file defining the protocol (if
applicable); Directory always ends with a /

	lines(BeginLine, EndLine)
	Source file begin and end lines of the protocol definition (if
applicable)

	public(Resources)
	List of public predicates and operators declared by the protocol

	protected(Resources)
	List of protected predicates and operators declared by the protocol

	private(Resources)
	List of private predicates and operators declared by the protocol

	declares(Predicate, Properties)
	List of properties for a predicate declared by the protocol

	alias(Predicate, Properties)
	List of properties for a predicate alias declared by the protocol
(the properties include for(Original), from(Entity),
non_terminal(NonTerminal), and line_count(Line) with Line
being the begin line of the alias directive)

Some of the properties such as line numbers are only available when the
protocol is defined in a source file compiled with the
source_data flag turned on.

Implementing protocols

Any number of objects or categories can implement a protocol. The syntax
is very simple:

:- object(Object,
 implements(Protocol)).
 ...
:- end_object.

or, in the case of a category:

:- category(Object,
 implements(Protocol)).
 ...
:- end_category.

To make all public predicates declared via an implemented protocol
protected or to make all public and protected predicates private we
prefix the protocol’s name with the corresponding keyword. For instance:

:- object(Object,
 implements(private::Protocol)).
 ...
:- end_object.

or:

:- object(Object,
 implements(protected::Protocol)).
 ...
:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
 implements(public::Protocol)).
 ...
:- end_object.

The same rules applies to protocols implemented by categories.

Built-in protocols

Logtalk defines a set of built-in protocols that are always available
for any application.

The built-in protocol expanding

The built-in expanding protocol declares
the term_expansion/2 and goal_expansion/2
predicates. See the description of the hook
compiler flag for more details.

The built-in protocol monitoring

The built-in monitoring protocol declares the
before/3 and after/3 public event handler
predicates. See the Event-driven programming section for more details.

The built-in protocol forwarding

The built-in forwarding protocol declares the
forward/1 user-defined message forwarding handler, which
is automatically called (if defined) by the runtime for any message that
the receiving object does not understand. See also the
[]/1 control construct.

Categories

Categories are fine-grained units of code reuse and can be regarded as a
dual concept of protocols. Categories provide a way to encapsulate a set
of related predicate declarations and definitions that do not represent
a complete object and that only make sense when composed with other
predicates. Categories may also be used to break a complex object in
functional units. A category can be imported by several objects (without
code duplication), including objects participating in prototype or
class-based hierarchies. This concept of categories shares some ideas
with Smalltalk-80 functional categories [Goldberg83], Flavors mix-ins
[Moon86] (without necessarily implying multi-inheritance), and
Objective-C categories [Cox86]. Categories may also complement
existing objects, thus providing a hot patching mechanism
inspired by the Objective-C categories functionality.

Logtalk defines a built-in category, core_messages,
which is described at the end of this section.

Defining a new category

We can define a new category in the same way we write Prolog code: by
using a text editor. Logtalk source files may contain one or more
objects, categories, or protocols. If you prefer to define each entity
in its own source file, it is recommended that the file be named after
the category. By default, all Logtalk source files use the extension
.lgt but this is optional and can be set in the adapter files.
Intermediate Prolog source files (generated by the Logtalk compiler)
have, by default, a _lgt suffix and a .pl extension. Again, this
can be set to match the needs of a particular Prolog compiler in the
corresponding adapter file. For example, we may define a category named
documenting and save it in a documenting.lgt source file that
will be compiled to a documenting_lgt.pl Prolog file (depending on
the backend compiler, the names of the
intermediate Prolog files may include a directory hash and a process
identifier to prevent file name clashes when embedding Logtalk
applications or running parallel Logtalk processes).

Category names can be atoms or compound terms (when defining parametric
categories). Objects, categories, and protocols share the same name
space: we cannot have a category with the same name as an object or a
protocol.

Category code (directives and predicates) is textually encapsulated by
using two Logtalk directives: category/1-4 and
end_category/0. The
most simple category will be one that is self-contained, not depending
on any other Logtalk entity:

:- category(Category).
 ...
:- end_category.

If a category implements one or more protocols then the opening
directive will be:

:- category(Category,
 implements([Protocol1, Protocol2, ...])).
 ...
:- end_category.

A category may be defined as a composition of other categories by
writing:

:- category(Category,
 extends([Category1, Category2, ...])).
 ...
:- end_category.

This feature should only be used when extending a category without
breaking its functional cohesion (for example, when a modified version
of a category is needed for importing on several unrelated objects). The
preferred way of composing several categories is by importing them into
an object. When a category overrides a predicate defined in an extended
category, the overridden definition can still be called by using the
(^^)/1 control construct.

Categories cannot inherit from objects. In addition, categories cannot
define clauses for dynamic predicates. This restriction applies because
a category can be imported by several objects and because we cannot use
the database handling built-in methods with categories (messages can
only be sent to objects). A consequence of this restriction is that a
category cannot declare a predicate (or non-terminal) as both multifile
and dynamic. However, categories may contain declarations for dynamic
predicates and they can contain predicates which handle dynamic predicates.
For example:

:- category(attributes).

 :- public(attribute/2).
 :- public(set_attribute/2).
 :- public(del_attribute/2).

 :- private(attribute_/2).
 :- dynamic(attribute_/2).

 attribute(Attribute, Value) :-
 % called in the context of "self"
 ::attribute_(Attribute, Value).

 set_attribute(Attribute, Value) :-
 % retract old clauses in "self"
 ::retractall(attribute_(Attribute, _)),
 % assert new clause in "self"
 ::assertz(attribute_(Attribute, Value)).

 del_attribute(Attribute, Value) :-
 % retract clause in "self"
 ::retract(attribute_(Attribute, Value)).

:- end_category.

Each object importing this category will have its own attribute_/2
private, dynamic predicate. The predicates attribute/2,
set_attribute/2, and del_attribute/2 always access and modify
the dynamic predicate contained in the object receiving the
corresponding messages (i.e. self). But it’s also possible to define
predicates that handle dynamic predicates in the context of this
instead of self. For example:

:- category(attributes).

 :- public(attribute/2).
 :- public(set_attribute/2).
 :- public(del_attribute/2).

 :- private(attribute_/2).
 :- dynamic(attribute_/2).

 attribute(Attribute, Value) :-
 % call in the context of "this"
 attribute_(Attribute, Value).

 set_attribute(Attribute, Value) :-
 % retract old clauses in "this"
 retractall(attribute_(Attribute, _)),
 % asserts clause in "this"
 assertz(attribute_(Attribute, Value)).

 del_attribute(Attribute, Value) :-
 % retract clause in "this"
 retract(attribute_(Attribute, Value)).

:- end_category.

When defining a category that declares and handles dynamic predicates,
working in the context of this ties those dynamic predicates to the
object importing the category while working in the context of self
allows each object inheriting from the object that imports the category
to have its own set of clauses for those dynamic predicates.

Hot patching

A category may also explicitly complement one or more existing objects,
thus providing hot patching functionality inspired by Objective-C
categories:

:- category(Category,
 complements([Object1, Object2,])).
 ...
:- end_category.

This allows us to add missing directives (e.g. to define
aliases for complemented object predicates),
replace broken predicate definitions, add new predicates, and add protocols
and categories to existing objects without requiring access or modifications
to their source code. Common scenarios are adding logging or debugging
predicates to a set of objects. Complemented objects need to be compiled
with the complements compiler flag set allow
(to allow both patching and adding functionality) or restrict (to allow
only adding new functionality). A complementing category takes preference
over a previously loaded complementing category for the same object thus
allowing patching a previous patch if necessary.

When replacing a predicate definition, it is possible to call the overriden
definition in the object from the new definition in the category by using the
(@)/1 control construct. This construct is only meaningful
when used within categories and requires a compile time bound goal argument,
which is called in this (i.e. in the context of the complemented
object or the object importing a category). As an example, consider the
following object:

:- object(bird).

 :- set_logtalk_flag(complements, allow).

 :- public(make_sound/0).
 make_sound :-
 write('Chirp, chirp!'), nl.

:- end_object.

We can use the (@)/1 control construct e.g. wrap the original make_sound/0
predicate definition by writing:

:- category(logging,
 complements(bird)).

 make_sound :-
 write('Started making sound...'), nl,
 @make_sound,
 write('... finished making sound.'), nl.

:- end_category.

After loading the object and the category, calling the make_sound/0
predicate will result in the following output:

| ?- bird::make_sound.

Started making sound...
Chirp, chirp!
... finished making sound.
yes

Note that super calls from predicates defined in
complementing categories lookup inherited definitions as if the calls
were made from the complemented object instead of the category ancestors.
This allows more comprehensive object patching. But it also means that,
if you want to patch an object so that it imports a category that extends
another category and uses super calls to access the extended category
predicates, you will need to define a (possibly empty) complementing
category that extends the category that you want to add.

An unfortunate consequence of allowing an object to be patched at
runtime using a complementing category is that it disables the use of
static binding optimizations for messages sent to the complemented
object as it can always be later patched, thus rendering the static
binding optimizations invalid.

Another important caveat is that, while a complementing category can
replace a predicate definition, local callers of the replaced predicate
will still call the non-patched version of the predicate. This is a
consequence of the lack of a portable solution at the
backend Prolog compiler level for replacing static predicate
definitions.

Finding defined categories

We can find, by backtracking, all defined categories by using the
current_category/1 built-in predicate with a
unbound argument:

| ?- current_category(Category).

This predicate can also be used to test if a category is defined by
calling it with a valid category identifier (an atom or a compound
term).

Creating a new category in runtime

A category can be dynamically created at runtime by using the
create_category/4 built-in predicate:

| ?- create_category(Category, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new
category (a Prolog atom, which must not match with an existing entity
name). The remaining three arguments correspond to the relations
described in the opening category directive and to the category code
contents (directives and clauses).

For example, the call:

| ?- create_category(
 ccc,
 [implements(ppp)],
 [private(bar/1)],
 [(foo(X):-bar(X)), bar(1), bar(2)]
).

is equivalent to compiling and loading the category:

:- category(ccc,
 implements(ppp)).

 :- dynamic.

 :- private(bar/1).

 foo(X) :-
 bar(X).

 bar(1).
 bar(2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then is
best to define a metaclass or a prototype with a predicate that will
call this built-in predicate in order to provide more sophisticated
behavior.

Abolishing an existing category

Dynamic categories can be abolished using the
abolish_category/1 built-in predicate:

| ?- abolish_category(Category).

The argument must be an identifier of a defined dynamic category,
otherwise an error will be thrown.

Category directives

Category directives are used to define category properties, to document
a category dependencies on other Logtalk entities, and to load the
contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or
dynamic. A category created during the execution of a program is always
dynamic. A category defined in a file can be either dynamic or static.
Dynamic categories are declared by using the dynamic/0
directive in the category source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please
be aware that using dynamic code results in a performance hit when
compared to static code. We should only use dynamic categories when
these need to be abolished during program execution.

Category documentation

A category can be documented with arbitrary user-defined information
by using the info/1 entity directive. See the
Documenting section for details.

Loading files into a category

The include/1 directive
can be used to load the contents of a file into a category. See the
Objects section for an example of using this
directive.

Declaring object aliases

The uses/1 directive can be used to declare object aliases.
The typical uses of this directive is to shorten long object names and to
simplify experimenting with different object implementations of the same
protocol when using explicit message sending.

Category relationships

Logtalk provides two sets of built-in predicates that enable us to query
the system about the possible relationships that a category can have
with other entities.

The built-in predicates implements_protocol/2-3
and conforms_to_protocol/2-3
allows us to find which categories implements which protocols:

| ?- implements_protocol(Category, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Category, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the
current_category/1 built-in predicate to ensure that
the returned entity is a category and not an object.

To find which objects import which categories we can use the
imports_category/2-3 built-in predicates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

Note that a category may be imported by several objects.

To find which categories extend other categories we can use the
extends_category/2-3 built-in predicates:

| ?- extends_category(Category1, Category2).

or, if we also want to know the extension scope:

| ?- extends_category(Category1, Category2, Scope).

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can
use the complements_object/2 built-in predicate:

| ?- complements_object(Category, Object).

Note that a category may explicitly complement several objects.

Category properties

We can find the properties of defined categories by calling the built-in
predicate category_property/2:

| ?- category_property(Category, Property).

The following category properties are supported:

	static
	The category is static

	dynamic
	The category is dynamic (and thus can be abolished in runtime by
calling the abolish_category/1 built-in predicate)

	built_in
	The category is a built-in category (and thus always available)

	file(Path)
	Absolute path of the source file defining the category (if
applicable)

	file(Basename, Directory)
	Basename and directory of the source file defining the category (if
applicable); Directory always ends with a /

	lines(BeginLine, EndLine)
	Source file begin and end lines of the category definition (if
applicable)

	events
	Messages sent from the category generate events

	source_data
	Source data available for the category

	public(Resources)
	List of public predicates and operators declared by the category

	protected(Resources)
	List of protected predicates and operators declared by the category

	private(Resources)
	List of private predicates and operators declared by the category

	declares(Predicate, Properties)
	List of properties for a predicate declared by the category

	defines(Predicate, Properties)
	List of properties for a predicate defined by the category

	includes(Predicate, Entity, Properties)
	List of properties for an object multifile predicate that are defined
in the specified entity (the properties include
number_of_clauses(Number), number_of_rules(Number), and
line_count(Line) with Line being the begin line of the
first multifile predicate clause)

	provides(Predicate, Entity, Properties)
	List of properties for other entity multifile predicate that are
defined in the category (the properties include
number_of_clauses(Number), number_of_rules(Number), and
line_count(Line) with Line being the begin line of the
first multifile predicate clause)

	alias(Predicate, Properties)
	List of properties for a predicate alias declared by the category
(the properties include for(Original), from(Entity),
non_terminal(NonTerminal), and line_count(Line) with Line
being the begin line of the alias directive)

	calls(Call, Properties)
	List of properties for predicate calls made by the category (Call
is either a predicate indicator or a control construct such as
(::)/1-2 or (^^)/1 with a predicate indicator as argument; note
that Call may not be ground in case of a call to a control
construct where its argument is only know at runtime; the properties
include caller(Caller), alias(Alias), non_terminal(NonTerminal),
and line_count(Line) with Caller, Alias, and NonTerminal
being predicate indicators and Line being the begin line of the
predicate clause or directive making the call)

	updates(Predicate, Properties)
	List of properties for dynamic predicate updates (and also access
using the clause/2 predicate) made by the object (Predicate
is either a predicate indicator or a control construct such as
(::)/1-2 or (:)/2 with a predicate indicator as argument; note
that Predicate may not be ground in case of a control construct
argument only know at runtime; the properties include
updater(Updater), alias(Alias), non_terminal(NonTerminal),
and line_count(Line) with Updater being a (possibly multifile)
predicate indicator, Alias and NonTerminal being predicate
indicators, and Line being the begin line of the predicate clause
or directive updating the predicate)

	number_of_clauses(Number)
	Total number of predicate clauses defined in the category (includes
both user-defined clauses and auxiliary clauses generated by the
compiler or by the expansion hooks but
does not include clauses for multifile predicates defined for other
entities or clauses for the category own multifile predicates
contributed by other entities)

	number_of_rules(Number)
	Total number of predicate rules defined in the category (includes
both user-defined rules and auxiliary rules generated by the compiler
or by the expansion hooks but does not
include rules for multifile predicates defined for other entities or
rules for the category own multifile predicates contributed by other
entities)

	number_of_user_clauses(Number)
	Total number of user-defined predicate clauses defined in the
category (does not include clauses for multifile predicates defined
for other entities or clauses for the category own multifile predicates
contributed by other entities)

	number_of_user_rules(Number)
	Total number of user-defined predicate rules defined in the category
(does not include rules for multifile predicates defined for other
entities or rules for the category own multifile predicates contributed
by other entities)

Some properties such as line numbers are only available when the category is
defined in a source file compiled with the source_data
flag turned on. Moreover, line numbers are only supported in
backend Prolog compilers
that provide access to the start line of a read term. When such support is
not available, the value -1 is returned for the start and end lines.

The properties that return the number of clauses (rules) report the
clauses (rules) textually defined in the object for both multifile and
non-multifile predicates. Thus, these numbers exclude clauses (rules)
for multifile predicates contributed by other entities.

Importing categories

Any number of objects can import a category. In addition, an object may
import any number of categories. The syntax is very simple:

:- object(Object,
 imports([Category1, Category2, ...])).
 ...
:- end_object.

To make all public predicates imported via a category protected or to
make all public and protected predicates private we prefix the
category’s name with the corresponding keyword:

:- object(Object,
 imports(private::Category)).
 ...
:- end_object.

or:

:- object(Object,
 imports(protected::Category)).
 ...
:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
 imports(public::Category)).
 ...
:- end_object.

Calling category predicates

Category predicates can be called from within an object by sending a
message to self or using a super call. Consider the following
category:

:- category(output).

 :- public(out/1).

 out(X) :-
 write(X), nl.

:- end_category.

The predicate out/1 can be called from within an object importing
the category by simply sending a message to self. For example:

:- object(worker,
 imports(output)).

 ...
 do(Task) :-
 execute(Task, Result),
 ::out(Result).
 ...

:- end_object.

This is the recommended way of calling a category predicate that can be
specialized/overridden in a descendant object as the predicate definition
lookup will start from self.

A direct call to a predicate definition found in an imported category can
be made using the (^^)/1
control construct. For example:

:- object(worker,
 imports(output)).

 ...
 do(Task) :-
 execute(Task, Result),
 ^^out(Result).
 ...

:- end_object.

This alternative should only be used when the user knows a priori that
the category predicates will not be specialized or redefined by
descendant objects of the object importing the category. Its advantage
is that, when the optimize flag is turned
on, the Logtalk compiler will try to optimize the calls by using
static binding. When dynamic binding is used due to e.g.
the lack of sufficient information at compilation time, the performance is
similar to calling the category predicate using a message to self
(in both cases a predicate lookup caching mechanism is used).

Parametric categories

Category predicates can be parameterized in the same way as object predicates
by using a compound term as the category identifier where all the arguments
of the compound term are variables. These variables, the category parameters,
can be accessed by calling the parameter/2 or
this/1 built-in local methods in the category predicate
clauses or by using parameter variables.
Category parameter values can be defined by the importing objects.
For example:

:- object(speech(Season, Event),
 imports([dress(Season), speech(Event)])).
 ...
:- end_object.

Note that access to category parameters is only possible from within the
category. In particular, calls to the this/1 built-in local method
from category predicates always access the importing object identifier
(and thus object parameters, not category parameters).

Built-in categories

Logtalk defines a built-in category that is always available for any
application.

The built-in category core_messages

The built-in core_messages category provides
default translations for all compiler and runtime printed messages such as
warnings and errors. It does not define any public predicates.

Predicates

Predicate directives and clauses can be encapsulated inside objects and
categories. Protocols can only contain predicate directives. From the
point-of-view of a traditional imperative object-oriented language,
predicates allows both object state and object behavior to be represented.
Mutable object state can be represented using dynamic object predicates
but should only be used when strictly necessary as it breaks declarative
semantics.

Reserved predicate names

For practical and performance reasons, some predicate names have a fixed
interpretation. These predicates are declared in the built-protocols.
They are: goal_expansion/2 and term_expansion/2,
declared in the expanding protocol;
before/3 and after/3, declared in the
monitoring protocol; and
forward/1, declared in the
forwarding protocol.
By default, the compiler prints a warning when
a definition for one of these predicates is found but the reference to
the corresponding built-in protocol is missing.

Declaring predicates

Logtalk provides a clear distinction between declaring a predicate and
defining a predicate and thus clear closed-world assumption semantics.
Messages or calls for declared but undefined predicates fail. Messages or
calls for unknown (i.e. non declared) predicates throw an error. Note that
this is a fundamental requirement for supporting protocols:
we must be able to declare a predicate without necessarily defining it.

All object (or category) predicates that we want to access from other
objects (or categories) must be explicitly declared. A predicate
declaration must contain, at least, a scope directive. Other
directives may be used to document the predicate or to ensure proper
compilation of the predicate clauses.

Scope directives

A predicate scope directive specifies from where the predicate can be
called, i.e. its visibility. Predicates can be public, protected,
private, or local. Public predicates can be called from any object.
Protected predicates can only be called from the container object or
from a container descendant. Private predicates can only be called from
the container object. Predicates are local when they are not declared in
a scope directive. Local predicates, like private predicates, can only be
called from the container object (or category) but they are invisible
to the reflection built-in methods (current_predicate/1
and predicate_property/2) and to the message error handling
mechanisms (i.e. sending a message corresponding to a local predicate
results in a predicate_declaration existence error instead of a scope
error).

The scope declarations are made using the directives
public/1, protected/1, and
private/1. For example:

:- public(init/1).

:- protected(valid_init_option/1).

:- private(process_init_options/1).

If a predicate does not have a (local or inherited) scope declaration,
it is assumed that the predicate is local. Note that we do not need to
write scope declarations for all defined predicates. One exception is
local dynamic predicates: declaring them as private predicates may allow
the Logtalk compiler to generate optimized code for asserting and
retracting clauses.

Note that a predicate scope directive doesn’t specify where a
predicate is, or can be, defined. For example, a private predicate can
only be called from an object holding its scope directive. But it can be
defined in descendant objects. A typical example is an object playing
the role of a class defining a private (possibly dynamic) predicate for
its descendant instances. Only the class can call (and possibly
assert/retract clauses for) the predicate but its clauses can be
found/defined in the instances themselves.

Scope directives may also be used to declare grammar rule non-terminals
and operators. For example:

:- public(url//1).

:- public(op(800, fx, tag)).

Note that, in the case of operators, the operator definitions don’t become
global when the entity containing the directives is compiled and loaded.
This prevents an application breaking when e.g. an updated third-party
library adds new operators. It also allows loading entities that provide
conflicting operator definitions. Here the usual programming idiom is to
copy the operator definitions to a uses/2 directive. For example, the
lgtunit tool makes available a (=~=)/2 predicate (for approximate
float equality) that is intended to be used as an infix operator:

:- uses(lgtunit, [
 op(700, xfx, =~=), (=~=)/2
]).

Thus, in practice, the solution to use library entity operators in client
entities is the same for using library entity predicates with implicit
message sending.

Mode directive

Often predicates can only be called using specific argument patterns.
The valid arguments and instantiation modes of those arguments can be
documented by using the mode/2 directive. For
example:

:- mode(member(?term, ?list), zero_or_more).

The first directive argument describes a valid calling mode. The minimum
information will be the instantiation mode of each argument. The first
four possible values are described in [ISO95]). The remaining two can
also be found in use in some Prolog systems.

	+
	Argument must be instantiated (but not necessarily ground).

	-
	Argument should be a free (non-instantiated) variable (when bound,
the call will unify the returned term with the given term).

	?
	Argument can either be instantiated or free.

	@
	Argument will not be further instantiated (modified).

	++
	Argument must be ground.

	--
	Argument must be unbound. Used mainly when returning an opaque term.

These six mode atoms are also declared as prefix operators by the
Logtalk compiler. This makes it possible to include type information
for each argument like in the example above. Some possible type
values are: event, object, category, protocol,
callable, term, nonvar, var, atomic, atom,
number, integer, float, compound, and list. The
first four are Logtalk specific. The remaining are common Prolog types.
We can also use our own types that can be either atoms or ground
compound terms. See the types library documentation for details.

The second directive argument documents the number of proofs, but not
necessarily distinct solutions, for the specified mode. As an example,
the member(X, [1,1,1,1]) goal have only one distinct solution but four
proofs for that solution. Note that different modes for the same predicate
often have different determinism. The possible values are:

	zero
	Predicate always fails.

	one
	Predicate always succeeds once.

	zero_or_one
	Predicate either fails or succeeds.

	zero_or_more
	Predicate has zero or more proofs.

	one_or_more
	Predicate has one or more proofs.

	zero_or_error
	Predicate either fails or throws an error.

	one_or_error
	Predicate either succeeds once or throws an error.

	zero_or_one_or_error
	Predicate succeeds once or fails or throws an error.

	zero_or_more_or_error
	Predicate may fail or succeed multiple times or throw an error.

	one_or_more_or_error
	Predicate may succeed one or more times or throw an error.

	error
	Predicate will throw an error.

The last six values support documenting that some call modes may throw an
error or will throw an error despite the calls complying with the argument
types and instantiation modes. As an example, consider the open/3 ISO
Prolog built-in predicate. We may write:

:- mode(open(@source_sink, @io_mode, --stream), one_or_error).

In this case, the mode directive tells the user that a valid call can still
throw an error (there may be e.g. a permission error opening the specified
source or sink).

Note that some predicates have more than one valid mode implying several
mode directives. For example, to document the possible use modes of the
ISO Prolog atom_concat/3 built-in predicate we would write:

:- mode(atom_concat(?atom, ?atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, -atom), zero_or_one).

Some old Prolog compilers supported some sort of mode directives to improve
performance. To the best of my knowledge, there is no modern Prolog compiler
supporting this kind of directive for that purpose. The current Logtalk version
simply parses this directive for collecting its information for use in the
reflection API (assuming the
source_data flag is turned on). In any case, the use
of mode directives is a good starting point for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals or interpreted
as closures that will be used for constructing goals. To
ensure that these goals will be executed in the correct context (i.e. in the
calling context, not in the meta-predicate
definition context) we need to
use the meta_predicate/1 directive (in the case of meta
non-terminals, there’s also a meta_non_terminal/1 directive).
For example:

:- meta_predicate(findall(*, 0, *)).
:- meta_predicate(map(2, *, *)).

The meta-predicate mode arguments in this directive have the following
meaning:

	0
	Meta-argument that will be called as a goal.

	N
	Meta-argument that will be a closure used to construct a call by
extending it with N arguments. The value of N must be a
positive integer.

	::
	Argument that is context-aware but that will not be called as a goal
or a closure. It can contain, however, sub-terms that will be called
as goals or closures.

	^
	Goal that may be existentially quantified (Vars^Goal).

	*
	Normal argument.

The following meta-predicate mode arguments are for use only when writing
backend Prolog adapter files to deal with proprietary
built-in meta-predicates and meta-directives:

	/
	Predicate indicator (Name/Arity), list of predicate indicators,
or conjunction of predicate indicators.

	//
	Non-terminal indicator (Name//Arity), list of predicate
indicators, or conjunction of predicate indicators.

	[0]
	List of goals.

	[N]
	List of closures.

	[/]
	List of predicate indicators.

	[//]
	List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify
closures has first introduced on Quintus Prolog for providing
information for predicate cross-reference tools.

Warning

As each Logtalk entity is independently compiled, this directive must
be included in every object or category that contains a definition for
the described meta-predicate, even if the meta-predicate declaration
is inherited from another entity, to ensure proper compilation of
meta-arguments.

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous.
In that case, we must declare the predicate discontiguous by using the
discontiguous/1 directive:

:- discontiguous(foo/1).

This is a directive that we should avoid using: it makes your code
harder to read and it is not supported by some Prolog backends.

Warning

As each Logtalk entity is compiled independently of other entities,
this directive must be included in every object or category that
contains a definition for the described predicate (even if the
predicate declaration is inherited from other entity).

Dynamic directive

An object predicate can be static or dynamic. By default, all predicates (and
non-terminals) of static objects defined in source files are static. To declare
a dynamic predicate (or non-terminal) we use the dynamic/1
directive. For example:

:- dynamic(foo/1).

Predicates of objects dynamically created at runtime (using the
create_object/4 built-in predicate) and predicates of
dynamic objects defined in source files (using the dynamic/0
directive) are implicitly dynamic.

Dynamic predicates can be used to represent persistent mutable object state.
Note that static objects may declare and define dynamic predicates. Categories
can only declare dynamic predicates (with the importing objects holding the
predicate definitions).

Warning

As each Logtalk entity is compiled independently from other entities, this
directive must be included in every object that contains a definition for
the described predicate (even if the predicate declaration is inherited
from other object or imported from a category). If we omit the dynamic
declaration then the predicate definition will be compiled static.

Operator directive

An object (or category) predicate can be declared as an operator using
the familiar op/3 directive:

:- op(Priority, Specifier, Operator).

Operators are local to the object (or category) where they are declared.
This means that, if you declare a public predicate as an operator, you
cannot use operator notation when sending to an object (where the
predicate is visible) the respective message (as this would imply
visibility of the operator declaration in the context of the sender of
the message). If you want to declare global operators and, at the same
time, use them inside an entity, just write the corresponding directives
at the top of your source file, before the entity opening directive.

Note that operators can also be declared using a scope directive. Only
these operators are visible to the current_op/3 reflection
method.

When the same operators are used on several entities within the same source
file, the corresponding directives must either be repeated in each entity or
appear before any entity that uses them. But in the later case, this results
in a global scope for the operators. If you prefer the operators to be local
to the source file, just undefine them at the end of the file. For example:

% before any entity that uses the operator
:- op(400, xfx, results).

...

% after all entities that used the operator
:- op(0, xfx, results).

Global operators can be declared in the application loader file.

Uses directive

When a predicate makes heavy use of predicates defined on other objects,
its predicate clauses can be verbose due to all the necessary message
sending goals. Consider the following example:

foo :-
 ...,
 findall(X, list::member(X, L), A),
 list::append(A, B, C),
 list::select(Y, C, R),
 ...

Logtalk provides a directive, uses/2, which allows us to
simplify the code above. One of the usage templates for this directive is:

:- uses(Object, [
 Name1/Arity1, Name2/Arity2, ...
]).

Rewriting the code above using this directive results in a simplified
and more readable predicate definition:

:- uses(list, [
 append/3, member/2, select/3
]).

foo :-
 ...,
 findall(X, member(X, L), A),
 append(A, B, C),
 select(Y, C, R),
 ...

Logtalk also supports an extended version of this directive that allows
the declaration of predicate aliases using the
notation Predicate as Alias (or the alternative notation
Predicate::Alias). For example:

:- uses(btrees, [new/1 as new_btree/1]).
:- uses(queues, [new/1 as new_queue/1]).

You may use this extended version for solving conflicts between
predicates declared on several uses/2 directives or just for giving
new names to the predicates that will be more meaningful on their using
context. It’s also possible to define predicate aliases that are also
predicate shorthands. For example:

:- uses(pretty_printer, [
 indent(4, Term) as indent(Term)
]).

See the directive documentation for details and other examples.

The uses/2 directive allows simpler predicate definitions as long as
there are no conflicts between the predicates declared in the directive
and the predicates defined in the object (or category) containing the
directive. A predicate (or its alias if defined) cannot be listed in
more than one uses/2 directive. In addition, a uses/2 directive
cannot list a predicate (or its alias if defined) which is defined in
the object (or category) containing the directive. Any conflicts are
reported by Logtalk as compilation errors.

The object identifier argument can also be a parameter variable
when using the directive in a parametric object or a parametric category.
In this case, dynamic binding will necessarily be used for all listed
predicates (and non-terminals). The parameter variable must be instantiated
at runtime when the messages are sent. This feature simplifies experimenting
with multiple implementations of the same protocol (for example, to evaluate
the performance of each implementation for a particular case). It also
simplifies writing tests that check multiple implementations of the same
protocol.

An object (or category) can make a predicate listed in a uses/2 (or
use_module/2) directive part of its protocol by simply adding a scope
directive for the predicate. For example, in the statistics library
we have:

:- public(modes/2).
:- uses(numberlist, [modes/2]).

Therefore, a goal such as sample::modes(Sample, Modes) implicitly calls
numberlist::modes(Sample, Modes) without requiring an explicit local
definition for the modes/2 predicate (which would trigger a compilation
error).

Alias directive

Logtalk allows the definition of an alternative name for an inherited or
imported predicate (or for an inherited or imported grammar rule
non-terminal) through the use of the alias/2 directive:

:- alias(Entity, [
 Predicate1 as Alias1,
 Predicate2 as Alias2,
 ...
]).

This directive can be used in objects, protocols, or categories. The
first argument, Entity, must be an entity referenced in the opening
directive of the entity containing the alias/2 directive. It can be
an extended or implemented protocol, an imported category, an extended
prototype, an instantiated class, or a specialized class. The second
argument is a list of pairs of predicate indicators (or grammar rule
non-terminal indicators) using the as infix operator as connector.

A common use for the alias/2 directive is to give an alternative
name to an inherited predicate in order to improve readability. For
example:

:- object(square,
 extends(rectangle)).

 :- alias(rectangle, [width/1 as side/1]).

 ...

:- end_object.

The directive allows both width/1 and side/1 to be used as
messages to the object square. Thus, using this directive, there is
no need to explicitly declare and define a “new” side/1 predicate.
Note that the alias/2 directive does not rename a predicate, only
provides an alternative, additional name; the original name continues to
be available (although it may be masked due to the default inheritance
conflict mechanism).

Another common use for this directive is to solve conflicts when two
inherited predicates have the same name and arity. We may want to
call the predicate which is masked out by the Logtalk lookup algorithm
(see the Inheritance section) or we may need to
call both predicates. This is simply accomplished by using the
alias/2 directive to give alternative names to masked out or
conflicting predicates. Consider the following example:

:- object(my_data_structure,
 extends(list, set)).

 :- alias(list, [member/2 as list_member/2]).
 :- alias(set, [member/2 as set_member/2]).

 ...

:- end_object.

Assuming that both list and set objects define a member/2
predicate, without the alias/2 directives, only the definition of
member/2 predicate in the object list would be visible on the
object my_data_structure, as a result of the application of the
Logtalk predicate lookup algorithm. By using the alias/2 directives,
all the following messages would be valid (assuming a public scope for
the predicates):

% uses list member/2
| ?- my_data_structure::list_member(X, L).

 % uses set member/2
| ?- my_data_structure::set_member(X, L).

% uses list member/2
| ?- my_data_structure::member(X, L).

When used this way, the alias/2 directive provides functionality
similar to programming constructs of other object-oriented languages
that support multi-inheritance (the most notable example probably being
the renaming of inherited features in Eiffel).

Note that the alias/2 directive never hides a predicate which is
visible on the entity containing the directive as a result of the
Logtalk lookup algorithm. However, it may be used to make visible a
predicate which otherwise would be masked by another predicate, as
illustrated in the above example.

The alias/2 directive may also be used to give access to an
inherited predicate, which otherwise would be masked by another
inherited predicate, while keeping the original name as follows:

:- object(my_data_structure,
 extends(list, set)).

 :- alias(list, [member/2 as list_member/2]).
 :- alias(set, [member/2 as set_member/2]).

 member(X, L) :-
 ^^set_member(X, L).

 ...

:- end_object.

Thus, when sending the message member/2 to my_data_structure,
the predicate definition in set will be used instead of the one
contained in list.

Documenting directive

A predicate can be documented with arbitrary user-defined information by
using the info/2 directive:

:- info(Name/Arity, List).

The second argument is a list of Key is Value terms. See the
Documenting section for details.

Multifile directive

A predicate can be declared multifile by using the
multifile/1 directive:

:- multifile(Name/Arity).

This allows clauses for a predicate to be defined in several objects
and/or categories. This is a directive that should be used with care.
It’s commonly used in the definition of hook predicates.
Multifile predicates (and non-terminals) may also be declared dynamic
using the same predicate (or non-terminal) notation (multifile predicates
are static by default).

Logtalk precludes using a multifile predicate for breaking object
encapsulation by checking that the object (or category) declaring the
predicate (using a scope directive) defines it also as multifile.
This entity is said to contain the primary declaration for the multifile
predicate. Entities containing primary multifile predicate declarations
must always be compiled before entities defining clauses for those multifile
predicates. The Logtalk compiler will print a warning if the scope
directive is missing. Note also that the multifile/1 directive
is mandatory when defining multifile predicates.

Consider the following simple example:

:- object(main).

 :- public(a/1).
 :- multifile(a/1).
 a(1).

:- end_object.

After compiling and loading the main object, we can define other
objects (or categories) that contribute with clauses for the multifile
predicate. For example:

:- object(other).

 :- multifile(main::a/1).
 main::a(2).
 main::a(X) :-
 b(X).

 b(3).
 b(4).

:- end_object.

After compiling and loading the above objects, you can use queries such
as:

| ?- main::a(X).

X = 1 ;
X = 2 ;
X = 3 ;
X = 4
yes

Note that the order of multifile predicate clauses depend on several factors,
including loading order and compiler implementation details. Therefore, your
code should never assume or rely on a specific order of the multifile predicate
clauses.

When a clause of a multifile predicate is a rule, its body is compiled
within the context of the object or category defining the clause. This
allows clauses for multifile predicates to call local object or category
predicates. But the values of the sender, this, and self in the
implicit execution context are passed from the clause head to the clause
body. This is necessary to ensure that these values are always valid and
to allow multifile predicate clauses to be defined in categories. A call
to the parameter/2 execution context methods, however, retrieves
parameters of the entity defining the clause, not from the entity for
which the clause is defined. The parameters of the entity for which the
clause is defined can be accessed by simple unification at the clause
head.

Multifile predicate rules should not contain cuts as these may prevent
other clauses for the predicate for being used by callers. The compiler
prints by default a warning when a cut is found in a multifile predicate
definition.

Local calls to the database methods from multifile predicate clauses
defined in an object take place in the object own database instead of
the database of the entity holding the multifile predicate primary
declaration. Similarly, local calls to the expand_term/2 and
expand_goal/2 methods from a multifile predicate clause look for
clauses of the term_expansion/2 and goal_expansion/2 hook
predicates starting from the entity defining the clause instead of the
entity holding the multifile predicate primary declaration. Local calls
to the current_predicate/1, predicate_property/2, and
current_op/3 methods from multifile predicate clauses defined in an
object also lookup predicates and their properties in the object own
database instead of the database of the entity holding the multifile
predicate primary declaration.

Coinductive directive

A predicate can be declared coinductive by using the
coinductive/1 directive. For example:

:- coinductive(comember/2).

Logtalk support for coinductive predicates is experimental and requires a
backend Prolog compiler with minimal support for cyclic terms. The
value of the read-only coinduction flag is set to
supported for the backend Prolog compilers providing that support.

Synchronized directive

A predicate can be declared synchronized by using the
synchronized/1 directive. For example:

:- synchronized(write_log_entry/2).
:- synchronized([produce/1, consume/1]).

See the section on
synchronized predicates
for details.

Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates,
the only difference be that we have four more control structures (the
three message sending operators plus the external call operator) to play
with. For example, if we wish to define an object containing common
utility list predicates like append/2 or member/2 we could write
something like:

:- object(list).

 :- public(append/3).
 :- public(member/2).

 append([], L, L).
 append([H| T], L, [H| T2]) :-
 append(T, L, T2).

 member(H, [H| _]).
 member(H, [_| T]) :-
 member(H, T).

:- end_object.

Note that, abstracting from the opening and closing object directives
and the scope directives, what we have written is also valid Prolog code.
Calls in a predicate definition body default to the local predicates,
unless we use the message sending operators or the external call operator.
This enables easy conversion from Prolog code to Logtalk objects: we just
need to add the necessary encapsulation and scope directives to the old
code.

Category predicates

A category can only contain clauses for static predicates. But there are
no restrictions in declaring and calling dynamic predicates from inside
a category. Because a category can be imported by multiple objects, dynamic
predicates must be called either in the context of self, using the
message to self control structure, (::)/1, or
in the context of this (i.e. in the context of the object importing
the category). For example, if we want to define a category implementing
attributes using the dynamic database of self we could write:

:- category(attributes).

 :- public(get/2).
 :- public(set/2).

 :- private(attribute_/2).
 :- dynamic(attribute_/2).

 get(Var, Value) :-
 ::attribute_(Var, Value).

 set(Var, Value) :-
 ::retractall(attribute_(Var, _)),
 ::asserta(attribute_(Var, Value).

:- end_category.

In this case, the get/2 and set/2 predicates will always
access/update the correct definition, contained in the object receiving
the messages.

In alternative, if we want a category implementing attributes using the
dynamic database of this, we would write instead:

:- category(attributes).

 :- public(get/2).
 :- public(set/2).

 :- private(attribute_/2).
 :- dynamic(attribute_/2).

 get(Var, Value) :-
 attribute_(Var, Value).

 set(Var, Value) :-
 retractall(attribute_(Var, _)),
 asserta(attribute_(Var, Value).

:- end_category.

In this case, each object importing the category will have its own clauses
for the attribute_/2 private dynamic predicate.

Meta-predicates

Meta-predicates may be defined inside objects and categories as any other
predicate. A meta-predicate is declared using the
meta_predicate/1 directive as described earlier on
this section. When defining a meta-predicate, the arguments in the
clause heads corresponding to the meta-arguments must be variables.
All meta-arguments are called in the context of the object or category
calling the meta-predicate. In particular, when sending a message that
corresponds to a meta-predicate, the meta-arguments are called in the
context of the object or category sending the message.

The most simple example is a meta-predicate with a meta-argument that is
called as a goal. E.g. the ignore/1 built-in predicate could
be defined as:

:- public(ignore/1).
:- meta_predicate(ignore(0)).

ignore(Goal) :-
 (Goal -> true; true).

The 0 in the meta-predicate template tells us that the meta-argument is a
goal that will be called by the meta-predicate.

Some meta-predicates have meta-arguments which are not goals but
closures. Logtalk supports the definition of meta-predicates
that are called with closures instead of goals as long as the definition uses
the call/1-N built-in predicate to call the closure with the
additional arguments. A classical example is a list mapping predicate:

:- public(map/2).
:- meta_predicate(map(1, *)).

map(_, []).
map(Closure, [Arg| Args]) :-
 call(Closure, Arg),
 map(Closure, Args).

Note that in this case the meta-predicate directive specifies that the
closure will be extended with exactly one additional argument. When
calling a meta-predicate, a closure can correspond to a user-defined
predicate, a built-in predicate, a lambda expression, or a
control construct.

In some cases, is not a meta-argument but one of its sub-terms that is
called as a goal or used as a closure. For example:

:- public(call_all/1).
:- meta_predicate(call_all(::)).

call_all([]).
call_all([Goal| Goals]) :-
 call(Goal),
 call_all(Goals).

The :: mode indicator in the meta-predicate template allows the
corresponding argument in the meta-predicate definiton to be a
non-variable term and instructs the compiler to look into the argument
sub-terms for goal and closure meta-variables.

When a meta-predicate calls another meta-predicate, both predicates require
meta_predicate/1 directives. For example, the map/2 meta-predicate
defined above is usually implemented by exchanging the argument order to
take advantage of first-argument indexing:

:- meta_predicate(map(1, *)).
map(Closure, List) :-
 map_(List, Closure).

:- meta_predicate(map_(*, 1)).
map_([], _).
map_([Head| Tail], Closure) :-
 call(Closure, Head),
 map_(Tail, Closure).

Note that Logtalk, unlike most Prolog module systems, is not based on a
predicate prefixing mechanism. Thus, the meta-argument calling context
is not part of the meta-argument itself.

Lambda expressions

The use of lambda
expressions [https://en.wikipedia.org/wiki/Lambda_calculus] as
meta-predicate goal and closure arguments often saves writing
auxiliary predicates for the sole purpose of calling the meta-predicates.
A simple example of a lambda expression is:

| ?- meta::map([X,Y]>>(Y is 2*X), [1,2,3], Ys).
Ys = [2,4,6]
yes

In this example, a lambda expression, [X,Y]>>(Y is 2*X), is used as
an argument to the map/3 list mapping predicate, defined in the
library object meta, in order to double the elements of a list of
integers. Using a lambda expression avoids writing an auxiliary
predicate for the sole purpose of doubling the list elements. The lambda
parameters are represented by the list [X,Y], which is connected to
the lambda goal, (Y is 2*X), by the (>>)/2 operator.

Currying is supported. I.e. it is possible to write a lambda expression
whose goal is another lambda expression. The above example can be
rewritten as:

| ?- meta::map([X]>>([Y]>>(Y is 2*X)), [1,2,3], Ys).
Ys = [2,4,6]
yes

Lambda expressions may also contain lambda free variables. I.e.
variables that are global to the lambda expression. For example, using
GNU Prolog as the backend compiler, we can write:

| ?- meta::map({Z}/[X,Y]>>(Z#=X+Y), [1,2,3], Zs).
Z = _#22(3..268435455)
Zs = [_#3(2..268435454),_#66(1..268435453),_#110(0..268435452)]
yes

The ISO Prolog construct {}/1 for representing the lambda free
variables as this representation is often associated with set
representation. Note that the order of the free variables is of no
consequence (on the other hand, a list is used for the lambda parameters
as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term.
Consider the following example by Markus Triska:

| ?- meta::map([A-B,B-A]>>true, [1-a,2-b,3-c], Zs).
Zs = [a-1,b-2,c-3]
yes

Lambda expressions can be used, as expected, in non-deterministic
queries as in the following example using SWI-Prolog as the backend
compiler and Markus Triska’s CLP(FD) library:

| ?- meta::map({Z}/[X,Y]>>(clpfd:(Z#=X+Y)), Xs, Ys).
Xs = [],
Ys = [] ;
Xs = [_G1369],
Ys = [_G1378],
_G1369+_G1378#=Z ;
Xs = [_G1579, _G1582],
Ys = [_G1591, _G1594],
_G1582+_G1594#=Z,
_G1579+_G1591#=Z ;
Xs = [_G1789, _G1792, _G1795],
Ys = [_G1804, _G1807, _G1810],
_G1795+_G1810#=Z,
_G1792+_G1807#=Z,
_G1789+_G1804#=Z ;
...

As illustrated by the above examples, lambda expression syntax reuses
the ISO Prolog construct {}/1 and the standard operators (/)/2
and (>>)/2, thus avoiding defining new operators, which is always
tricky for a portable system such as Logtalk. The operator (>>)/2
was chosen as it suggests an arrow, similar to the syntax used in other
languages such as OCaml and Haskell to connect lambda parameters with
lambda functions. This syntax was also chosen in order to simplify
parsing, error checking, and compilation of lambda expressions. The
full specification of the lambda expression syntax can be found in
the the language grammar.

The compiler checks whenever possible that all variables in a lambda
expression are either classified as free variables or as lambda
parameters. Non-classified variables in a lambda expression should be
regarded as a programming error. The compiler also checks if a variable
is classified as both a free variable and a lambda parameter. There
are a few cases where a variable playing a dual role is intended but,
in general, this also results from a programming error. A third check
verifies that no lambda parameter variable is used elsewhere in a
clause. Such cases are either programming errors, when the variable
appears before the lambda expression, or bad programming style, when
the variable is used after the lambda expression. These linter warnings
are controlled by the lambda_variables
flag. Note, however, that the dynamic features of the language and lack
of sufficient information at compile time may prevent the compiler of
checking all uses of lambda expressions.

Warning

Variables listed in lambda parameters must not be shared with
other goals in a clause.

An optimizing meta-predicate and lambda expression compiler, based on
the term-expansion mechanism, is provided
as a standard library for practical performance.

Redefining built-in predicates

Logtalk built-in predicates and Prolog built-in predicates can be redefined
inside objects and categories. Although the redefinition of Logtalk built-in
predicates should be avoided, the support for redefining Prolog built-in
predicates is a practical requirement given the different sets of proprietary
built-in predicates provided by backend Prolog systems.

The compiler supports a redefined_built_ins
flag, whose default value is silent, that can be set to warning
to alert the user of any redefined Logtalk or Prolog built-in predicate.

The redefinition of Prolog built-in predicates can be combined with the
conditional compilation directives
when writing portable applications where some of the supported backends
don’t provide a built-in predicate found in the other backends. As an example,
consider the de facto standard list length predicate, length/2. This
predicate is provided as a built-in predicate in most but not all backends.
The list library object includes the code:

:- if(predicate_property(length(_, _), built_in)).

 length(List, Length) :-
 {length(List, Length)}.

:- else.

 length(List, Length) :-
 ...

:- endif.

I.e. the object will use the built-in predicate when available. Otherwise,
it will use the object provided predicate definition.

The redefinition of built-in predicates can also be accomplished using
predicate shorthands. This can be useful
when porting code while minimizing the changes. For example, assume
that existing code uses the format/2 de facto standard predicate
for writing messages. To convert the code to use the
message printing mechanism we could write:

:- uses(logtalk, [
 print_message(comment, core, Format+Arguments) as format(Format, Arguments)
]).

process(Crate, Contents) :-
 format('Processing crate ~w...', [Crate]),
 ...,
 format('Filing with ~w...', [Contents]),

The predicate shorthand instructs the compiler to rewrite all format/2
goals as logtalk::print_message/3 goals, thus allowing us to reuse
the code without changes.

Definite clause grammar rules

Definite clause grammar rules (DCGs) provide a convenient notation to
represent the parsing and rewrite rules common of most grammars in
Prolog. In Logtalk, definite clause grammar rules can be encapsulated
in objects and categories. Currently, the ISO/IEC WG17 group is working
on a draft specification for a definite clause grammars Prolog standard.
Therefore, in the mean time, Logtalk follows the common practice of Prolog
compilers supporting definite clause grammars, extending it to support
calling grammar rules contained in categories and objects. A common
example of a definite clause grammar is the definition of a set of rules
for parsing simple arithmetic expressions:

:- object(calculator).

 :- public(parse/2).

 parse(Expression, Value) :-
 phrase(expr(Value), Expression).

 expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
 expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
 expr(X) --> term(X).

 term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
 term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
 term(Z) --> number(Z).

 number(C) --> "+", number(C).
 number(C) --> "-", number(X), {C is -X}.
 number(X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:- end_object.

After compiling and loading this object, we can test the grammar rules
using the parse/2 message:

| ?- calculator::parse("1+2-3*4", Result).

Result = -9
yes

The non-terminals can be called from predicates using the private built-in
methods phrase/2 and phrase/3 as shown in the
example above. When we want to use the built-in methods phrase/2 and
phrase/3, the non-terminal used as first argument must be within the
scope of the sender. For the above example, assuming that we want the
predicate corresponding to the expr//1 non-terminal to be public,
the corresponding scope directive would be:

:- public(expr//1).

The // infix operator used above tells the Logtalk compiler that the
scope directive refers to a grammar rule non-terminal, not to a predicate.
The idea is that the predicate corresponding to the translation of the
expr//1 non-terminal will have a number of arguments equal to one plus
the number of additional arguments necessary for processing the implicit
difference list of tokens.

In the body of a grammar rule, we can call rules that are inherited from
ancestor objects, imported from categories, or contained in other
objects. This is accomplished by using non-terminals as messages. Using
a non-terminal as a message to self allows us to call grammar rules in
categories and ancestor objects. To call grammar rules encapsulated in
other objects, we use a non-terminal as a message to those objects.
Consider the following example, containing grammar rules for parsing
natural language sentences:

:- object(sentence,
 imports(determiners, nouns, verbs)).

 :- public(parse/2).

 parse(List, true) :-
 phrase(sentence, List).
 parse(_, false).

 sentence --> noun_phrase, verb_phrase.

 noun_phrase --> ::determiner, ::noun.
 noun_phrase --> ::noun.

 verb_phrase --> ::verb.
 verb_phrase --> ::verb, noun_phrase.

:- end_object.

The categories imported by the object would contain the necessary
grammar rules for parsing determiners, nouns, and verbs. For example:

:- category(determiners).

 :- private(determiner//0).

 determiner --> [the].
 determiner --> [a].

:- end_category.

Along with the message sending operators ((::)/1, (::)/2, and (^^)/1),
we may also use other control constructs such as (\+)/1, !/0, (;)/2,
(->)/2, and {}/1 in the body of a grammar. When using a backend Prolog
compiler that supports modules, we may also use the (:)/2 control construct.

Warning

The semantics of (\+)/1 and (->)/2 control constructs in grammar rules
with a terminal or a non-terminal in the first argument are problematic due
to unrestricted look ahead that may or may not be valid depending on the grammar
rule implicit arguments. By default, the linter will print warnings for such
calls (controlled by the grammar_rules flag).
Preferably restrit the use of the (\+)/1 control construct to {}/1
arguments and the use of the (->)/2 control construct to {}/1 test
arguments.

In addition, grammar rules may contain meta-calls (a variable taking the place
of a non-terminal), which are translated to calls of the built-in method
phrase/3. The meta_non_terminal/1 directive allows the
declaration of non-terminals that have arguments that are meta-called from
grammar rules. For example:

:- meta_non_terminal(zero_or_more(1, *)).

zero_or_more(Closure, [Terminal| Terminals]) -->
 call(Closure, Terminal), !, zero_or_more(Closure, Terminals).
zero_or_more(_, []) -->
 [].

You may have noticed that Logtalk defines {}/1
as a control construct for bypassing the compiler when compiling a clause body
goal. As exemplified above, this is the same control construct that is used in
grammar rules for bypassing the expansion of rule body goals when a rule is
converted into a clause. Both control constructs can be combined in order to
call a goal from a grammar rule body, while bypassing at the same time the
Logtalk compiler. Consider the following example:

bar :-
 write('bar predicate called'), nl.

:- object(bypass).

 :- public(foo//0).

 foo --> {{bar}}.

:- end_object.

After compiling and loading this code, we may try the following query:

| ?- logtalk << phrase(bypass::foo, _, _).

bar predicate called
yes

This is the expected result as the expansion of the grammar rule into a
clause leaves the {bar} goal untouched, which, in turn, is converted
into the goal bar when the clause is compiled. Note that we tested
the bypass::foo//0 non-terminal by calling the phrase/3 built-in
method in the context of the logtalk built-in object. This workaround
is necessary due to the Prolog backend implementation of the phrase/3
predicate no being aware of the Logtalk ::/2 message-sending control
construct semantics.

A grammar rule non-terminal may be declared as dynamic or discontiguous,
as any object predicate, using the same Name//Arity notation
illustrated above for the scope directives. In addition, grammar rule
non-terminals can be documented using the info/2
directive, as in the following example:

:- public(sentence//0).

:- info(sentence//0, [
 comment is 'Rewrites sentence into noun and verb phrases.'
]).

Note

Future Logtalk versions may compile grammar rules differently from Prolog
traditional compilation to prevent name clases between non-terminals and
predicates. Therefore, you should always call non-terminals from predicates
using the phrase/2-3 built-in methods and always call predicates from
grammar rules using the call//1 built-in method. This recommended
practice, besides making your code forward compatible with future Logtalk
versions, also make the code more clear. The linter prints warnings when
these guidelines are not followed (notably, when a predicate is called as
a non-terminal or a non-terminal is called as a predicate).

Built-in methods

Built-in methods are built-in object and category predicates. These include
methods to access message execution context, to find sets of solutions, to
inspect objects, for database handling, for term and goal expansion, and
for printing messages. Some of them are counterparts to standard Prolog
built-in predicates that take into account Logtalk semantics. Similar to
Prolog built-in predicates, built-in methods cannot not be redefined.

Logic and control methods

The !/0, true/0, fail/0,
false/0, and repeat/0 standard control
constructs and logic predicates are interpreted as built-in public methods
and thus can be used as messages to any object. In practice, they are only
used as messages when sending multiple messages to the same object
(see the section on message broadcasting).

Execution context methods

Logtalk defines five built-in private methods to access an object
execution context. These methods are in the common usage scenarios
translated to a single unification performed at compile time with a
clause head context argument. Therefore, they can be freely used without
worrying about performance penalties. When called from inside a
category, these methods refer to the execution context of the object
importing the category. These methods are private and cannot be used as
messages to objects.

To find the object that received the message under execution we may use
the self/1 method. We may also
retrieve the object that has sent the message under execution using the
sender/1 method.

The method this/1 enables us to
retrieve the name of the object for which the predicate clause whose
body is being executed is defined instead of using the name directly.
This helps to avoid breaking the code if we decide to change the object
name and forget to change the name references. This method may also be
used from within a category. In this case, the method returns the object
importing the category on whose behalf the predicate clause is being
executed.

Here is a short example including calls to these three object execution
context methods:

:- object(test).

 :- public(test/0).

 test :-
 this(This),
 write('Calling predicate definition in '),
 writeq(This), nl,
 self(Self),
 write('to answer a message received by '),
 writeq(Self), nl,
 sender(Sender),
 write('that was sent by '),
 writeq(Sender), nl, nl.

:- end_object.

:- object(descendant,
 extends(test)).

:- end_object.

After compiling and loading these two objects, we can try the following
goal:

| ?- descendant::test.

Calling predicate definition in test
to answer a message received by descendant
that was sent by user
yes

Note that the goals self(Self), sender(Sender), and
this(This), being translated to unifications with the clause head
context arguments at compile time, are effectively removed from the
clause body. Therefore, a clause such as:

predicate(Arg) :-
 self(Self),
 atom(Arg),

is compiled with the goal atom(Arg) as the first condition on the
clause body. As such, the use of these context execution methods do not
interfere with the optimizations that some Prolog compilers perform when
the first clause body condition is a call to a built-in type-test
predicate or a comparison operator.

For parametric objects and categories, the method parameter/2
enables us to retrieve current parameter values (see the section on
parametric objects for a detailed description).
For example:

:- object(block(_Color)).

 :- public(test/0).

 test :-
 parameter(1, Color),
 write('Color parameter value is '),
 writeq(Color), nl.

:- end_object.

An alternative to the parameter/2 predicate is to use
parameter variables:

:- object(block(_Color_)).

 :- public(test/0).

 test :-
 write('Color parameter value is '),
 writeq(_Color_), nl.

:- end_object.

After compiling and loading either version of the object, we can try the
following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Calls to the parameter/2 method are translated to a compile time
unification when the second argument is a variable. When the second
argument is bound, the calls are translated to a call to the built-in
predicate arg/3.

When type-checking predicate arguments, it is often useful to include
the predicate execution context when reporting an argument error. The
context/1 method provides
access to that context. For example, assume a predicate foo/2 that
takes an atom and an integer as arguments. We could type-check the
arguments by writing (using the library type object):

foo(A, N) :-
 % type-check arguments
 context(Context),
 type::check(atom, A, Context),
 type::check(integer, N, Context),
 % arguments are fine; go ahead

Error handling and throwing methods

Besides the catch/3 and throw/1 methods inherited from
Prolog, Logtalk also provides a set of convenience methods to throw
standard error/2 exception terms:
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1,
evaluation_error/1,
resource_error/1,
syntax_error/1, and
system_error/0.

Database methods

Logtalk provides a set of built-in methods for object database handling
similar to the usual database Prolog predicates:
abolish/1,
asserta/1,
assertz/1,
clause/2,
retract/1, and
retractall/1. These
methods always operate on the database of the object receiving the corresponding
message. When called locally, these predicates take into account any
uses/2 or use_module/2 directives that refer
to the dynamic predicate being handled. For example, in the following object, the
clauses for the data/1 predicate are retracted and asserted in user due to
the uses/2 directive:

:- object(an_object).

 :- uses(user, [data/1]).

 :- public(some_predicate/1).
 some_predicate(Arg) :-
 retractall(data(_)),
 assertz(data(Arg)).

:- end_object.

When working with dynamic grammar rule non-terminals, you may use the
built-in method expand_term/2 convert a
grammar rule into a clause that can then be used with the database
methods.

Meta-call methods

Logtalk supports the generalized call/1-N meta-predicate. This
built-in private meta-predicate must be used in the implementation of
meta-predicates which work with closures instead of goals.
In addition, Logtalk supports the built-in private meta-predicates
ignore/1, once/1, and
(\+)/1. These methods cannot be used as messages to objects.

All solutions methods

The usual all solutions meta-predicates are built-in private methods in
Logtalk: bagof/3, findall/3,
findall/4, and setof/3. There is also a
forall/2 method that implements generate-and-test loops.
These methods cannot be used as messages to objects.

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in
methods for querying about entities and predicates. Some of the information,
however, requires that the source files are compiled with the
source_data flag turned on.

The reflection API supports two different views
on entities and their contents, which we may call the transparent box view
and the black box view. In the transparent box view, we look into an entity
disregarding how it will be used and returning all information available
on it, including predicate declarations and predicate definitions. This
view is supported by the entity property built-in predicates. In the
black box view, we look into an entity from a usage point-of-view using
built-in methods for inspecting object operators and predicates that are
within scope from where we are making the call:
current_op/3, which returns operator specifications,
predicate_property/2, which returns predicate properties,
and current_predicate/1, which enables us to query about
user-defined predicate definitions. See below for a more detailed description
of these methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private
methods, phrase/2 and phrase/3, with definitions
similar to the predicates with the same name found on most Prolog
compilers that support definite clause grammars. These methods cannot be
used as messages to objects.

Logtalk also supports phrase//1, call//1-N, and
eos//0 built-in non-terminals.
The call//1-N non-terminals takes a closure (which can be a lambda
expression) plus zero or more additional arguments and are processed by
appending the input list of tokens and the list of remaining tokens to
the arguments.

Predicate properties

We can find the properties of visible predicates by calling the
predicate_property/2 built-in method. For example:

| ?- bar::predicate_property(foo(_), Property).

Note that this method takes into account the predicate’s scope declarations.
In the above example, the call will only return properties for public
predicates.

An object’s set of visible predicates is the union of all the predicates
declared for the object with all the built-in methods and all the
Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

	scope(Scope)
	The predicate scope (useful for finding the predicate scope with a
single call to predicate_property/2)

	public, protected, private
	The predicate scope (useful for testing if a predicate have a
specific scope)

	static, dynamic
	All predicates are either static or dynamic (note, however, that a
dynamic predicate can only be abolished if it was dynamically
declared)

	logtalk, prolog, foreign
	A predicate can be defined in Logtalk source code, Prolog code, or in
foreign code (e.g. in C)

	built_in
	The predicate is a built-in predicate

	multifile
	The predicate is declared multifile (i.e. it can have clauses defined
in multiple files or entities)

	meta_predicate(Template)
	The predicate is declared as a meta-predicate with the specified
template

	coinductive(Template)
	The predicate is declared as a coinductive predicate with the
specified template

	declared_in(Entity)
	The predicate is declared (using a scope directive) in the specified
entity

	defined_in(Entity)
	The predicate definition is looked up in the specified entity (note
that this property does not necessarily imply that clauses for the
predicate exist in Entity; the predicate can simply be false as
per the closed-world assumption)

	redefined_from(Entity)
	The predicate is a redefinition of a predicate definition inherited
from the specified entity

	non_terminal(NonTerminal//Arity)
	The predicate resulted from the compilation of the specified grammar
rule non-terminal

	alias_of(Predicate)
	The predicate (name) is an alias for the specified predicate

	alias_declared_in(Entity)
	The predicate alias is declared in the specified entity

	synchronized
	The predicate is declared as synchronized (i.e. it’s a deterministic
predicate synchronized using a mutex when using a backend Prolog
compiler supporting a compatible multi-threading implementation)

Some properties are only available when the entities are defined in
source files and when those source files are compiled with the
source_data flag turned on:

	recursive
	The predicate definition includes at least one recursive rule

	inline
	The predicate definition is inlined

	auxiliary
	The predicate is not user-defined but rather automatically generated
by the compiler or the term-expansion mechanism

	mode(Mode, Solutions)
	Instantiation, type, and determinism mode for the predicate (which
can have multiple modes)

	info(ListOfPairs)
	Documentation key-value pairs as specified in the user-defined
info/2 directive

	number_of_clauses(N)
	The number of clauses for the predicate existing at compilation time
(note that this property is not updated at runtime when asserting and
retracting clauses for dynamic predicates)

	number_of_rules(N)
	The number of rules for the predicate existing at compilation time
(note that this property is not updated at runtime when asserting and
retracting clauses for dynamic predicates)

	declared_in(Entity, Line)
	The predicate is declared (using a scope directive) in the specified
entity in a source file at the specified line (if applicable)

	defined_in(Entity, Line)
	The predicate is defined in the specified entity in a source file at
the specified line (if applicable)

	redefined_from(Entity, Line)
	The predicate is a redefinition of a predicate definition inherited
from the specified entity, which is defined in a source file at the
specified line (if applicable)

	alias_declared_in(Entity, Line)
	The predicate alias is declared in the specified entity in a
source file at the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and
redefined_from/1-2 do not apply to built-in methods and Logtalk or
Prolog built-in predicates. Note that if a predicate is declared in a
category imported by the object, it will be the category name — not the
object name — that will be returned by the property declared_in/1.
The same is true for protocol declared predicates.

Some properties such as line numbers are only available when the entity
holding the predicates is defined in a source file compiled with the
source_data flag turned on. Moreover, line
numbers are only supported in backend Prolog compilers
that provide access to the start line of a read term. When such support is
not available, the value -1 is returned for the start and end lines.

Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the
current_predicate/1 built-in method. This method takes into
account predicate scope declarations. For example, the following call will
only return user predicates that are declared public:

| ?- some_object::current_predicate(Name/Arity).

The predicate property non_terminal/1 may be used to retrieve all
grammar rule non-terminals declared for an object. For example:

current_non_terminal(Object, Name//Args) :-
 Object::current_predicate(Name/Arity),
 functor(Predicate, Functor, Arity),
 Object::predicate_property(Predicate, non_terminal(Name//Args)).

Usually, the non-terminal and the corresponding predicate share the same
functor but users should not rely on this always being true.

Calling Prolog predicates

Logtalk is designed for both robustness and portability. In the context
of calling Prolog predicates, robustness requires that the compilation of
Logtalk source code must not have accidental dependencies on Prolog code that
happens to be loaded at the time of the compilation. One immediate consequence
is that only Prolog built-in predicates are visible from within objects and
categories. But Prolog systems provide a widely diverse set of built-in
predicates, easily rising portability issues. Relying on non-standard
predicates is often unavoidable, however, due to the narrow scope of Prolog
standards. Logtalk applications may also require calling user-defined Prolog
predicates, either in user or in Prolog modules.

Calling Prolog built-in predicates

In predicate clauses and object initialization/1 directives, predicate
calls that are not prefixed with a message sending, super call, or module
qualification operator (::, ^^, or :), are compiled to either
calls to local predicates or as calls to Logtalk/Prolog built-in predicates.
A predicate call is compiled as a call to a local predicate if the object
(or category) contains a scope directive, a multifile directive, a dynamic
directive, or a definition for the called predicate. When that is not the
case, the compiler checks if the call corresponds to a Logtalk or Prolog
built-in predicate. Consider the following example:

foo :-
 ...,
 write(bar),
 ...

The call to the write/1 predicate will be compiled as a call to the
corresponding Prolog standard built-in predicate unless the object (or
category) containing the above definition also contains a predicate
named write/1 or a directive for the predicate.

When calling non-standard Prolog built-in predicates or using non-standard
Prolog arithmetic functions, we may run into portability problems while
trying your applications with different backend Prolog compilers. We can
use the compiler portability flag to generate
warnings for calls to non-standard predicates and arithmetic functions.
We can also help document those calls using the uses/2
directive. For example, a few Prolog systems provide an atom_string/2
non-standard predicate. We can write (in the object or category calling the
predicate):

:- uses(user, [atom_string/2])

This directive is based on the fact that built-in predicates are visible in
plain Prolog (i.e. in user). Besides helping to document the dependency
on a non-standard built-in predicate, this directive will also silence the
compiler portability warning.

Calling Prolog non-standard built-in meta-predicates

Prolog built-in meta-predicates may only be called locally within
objects or categories, i.e. they cannot be used as messages. Compiling
calls to non-standard, Prolog built-in meta-predicates can be tricky,
however, as there is no standard way of checking if a built-in predicate
is also a meta-predicate and finding out which are its meta-arguments.
But Logtalk supports overriding the original meta-predicate template
when not programmatically available or usable. For example, assume a
det_call/1 Prolog built-in meta-predicate that takes a goal as
argument. We can add to the object (or category) calling it the
directive:

:- meta_predicate(user::det_call(0)).

Another solution is to explicitly declare all non-standard built-in Prolog
meta-predicates in the corresponding adapter file using the internal
predicate '$lgt_prolog_meta_predicate'/3. For example:

'$lgt_prolog_meta_predicate'(det_call(_), det_call(0), predicate).

The third argument can be either the atom predicate or the atom
control_construct, a distinction that is useful when compiling in
debug mode.

Calling Prolog foreign predicates

Prolog systems often support defining foreign predicates, i.e. predicates
defined using languages other than Prolog using a foreign language interface.
There isn’t, however, any standard for defining, making available, and
recognizing foreign predicates. From a Logtalk perspective, the two most
common scenarios are calling a foreign predicate (from within an object or a
category) and making a set of foreign predicates available as part of an
object (or category) protocol. Assuming, as this is the most common case,
that foreign predicates are globally visible once made available (using a
Prolog system specific loading or linking procedure), we can simply call
them as user-defined plain predicates, as explained in the next section.
When defining an object (or category) that makes available foreign
predicates, the advisable solution is to name the predicates after the
object (or category) and then define object (or category) predicates that
call the foreign predicates. Most backend adapter files include support for
recognizing foreign predicates that allows the Logtalk compiler to inline
calls to the predicates (thus avoiding call indirection overheads).

Calling Prolog user-defined plain predicates

User-defined Prolog plain predicates (i.e. predicates that are not defined
in a Prolog module) can be called from within objects or categories by
sending the corresponding message to user. For example:

foo :-
 ...,
 user::bar,
 ...

In alternative, we can use the uses/2 directive and write:

:- uses(user, [bar/0]).

foo :-
 ...,
 bar,
 ...

Note that user is a pseudo-object in Logtalk containing all predicate
definitions that are not encapsulated (either in a Logtalk entity or a
Prolog module).

When the Prolog predicate is not a meta-predicate, we can also use the
{}/1 compiler bypass control construct. For
example:

foo :-
 ...,
 {bar},
 ...

But note that in this case the reflection API
will not record the dependency of the foo/0 predicate on the Prolog
bar/0 predicate as we are effectively bypassing the compiler.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by
using explicit qualification. For example:

foo :-
 ...,
 module:bar,
 ...

You can also use in alternative the use_module/2 directive
to call the module predicates using implicit qualification:

:- use_module(module, [bar/0]).

foo :-
 ...,
 bar,
 ...

Note that the first argument of the use_module/2 directive, when used
within an object or a category, is a module name, not a file specification
(also be aware that Prolog modules are sometimes defined in files with names
that differ from the module names).

As loading a Prolog module varies between Prolog systems, the actual loading
directive or goal is preferably done from the application loader file.
An advantage of this approach is that it contributes to a clean separation
between loading and using a resource with the loader file being the
central point that loads all application resources (complex applications
often use a hierarchy of loader files but the main idea remains the same).

As an example, assume that we need to call predicates defined in a CLP(FD)
Prolog library, which can be loaded using library(clpfd) as the file
specification. In the loader file, we would add:

:- use_module(library(clpfd), []).

Specifying an empty import list is often used to avoid adding the module
exported predicates to plain Prolog. In the objects and categories we can
then call the library predicates, using implicit or explicit qualification,
as explained. For example:

:- object(puzzle).

 :- public(puzzle/1).

 :- use_module(clpfd, [
 all_different/1, ins/2, label/1,
 (#=)/2, (#\=)/2,
 op(700, xfx, #=), op(700, xfx, #\=)
]).

 puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
 Vars = [S,E,N,D,M,O,R,Y],
 Vars ins 0..9,
 all_different(Vars),
 S*1000 + E*100 + N*10 + D +
 M*1000 + O*100 + R*10 + E #=
 M*10000 + O*1000 + N*100 + E*10 + Y,
 M #\= 0, S #\= 0,
 label([M,O,N,E,Y]).

:- end_object.

Warning

The actual module code must be loaded prior to compilation of Logtalk
source code that uses it. In particular, programmers should not expect
that the module be auto-loaded (including when using a backend Prolog
compiler that supports an auto-loading mechanism).

The module identifier argument can also be a parameter variable
when using the directive in a parametric object or a parametric category.
In this case, dynamic binding will necessarily be used for all listed
predicates (and non-terminals). The parameter variable must be instantiated
at runtime when the calls are made.

Calling Prolog module meta-predicates

The Logtalk library provides implementations of common meta-predicates,
which can be used in place of module meta-predicates (e.g. list mapping
meta-predicates). If that is not the case, the Logtalk compiler may need
help to understand the module meta-predicate templates. Despite some recent
progress in standardization of the syntax of meta_predicate/1 directives
and of the meta_predicate/1 property returned by the predicate_property/2
reflection predicate, portability is still a major problem. Thus, Logtalk
allows the original meta_predicate/1 directive to be overridden
with a local directive that Logtalk can make sense of. Note that Logtalk
is not based on a predicate prefixing mechanism as found in module systems.
This fundamental difference precludes an automated solution at the Logtalk
compiler level.

As an example, assume that you want to call from an object (or a category)
a module meta-predicate with the following meta-predicate directive:

:- module(foo, [bar/2]).

:- meta_predicate(bar(*, :)).

The : meta-argument specifier is ambiguous. It tell us that the second
argument of the meta-predicate is module sensitive but it does not tell us
how. Some legacy module libraries and some Prolog systems use : to
mean 0 (i.e. a meta-argument that will be meta-called). Some others
use : for meta-arguments that are not meta-called but that still need
to be augmented with module information. Whichever the case, the Logtalk
compiler doesn’t have enough information to unambiguously parse the
directive and correctly compile the meta-arguments in the meta-predicate
call. Therefore, the Logtalk compiler will generate an error stating that
: is not a valid meta-argument specifier when trying to compile a
foo:bar/2 goal. There are two alternative solutions for this problem.
The advised solution is to override the meta-predicate directive by writing,
inside the object (or category) where the meta-predicate is called:

:- meta_predicate(foo:bar(*, *)).

or:

:- meta_predicate(foo:bar(*, 0)).

depending on the true meaning of the second meta-argument. The second
alternative, only usable when the meta-argument can be handled as a
normal argument, is to simply use the {}/1
compiler bypass control construct to call the meta-predicate as-is:

... :- {foo:bar(..., ...)}, ...

The downside of this alternative is that it hides the dependency on the
module library from the reflection API and thus from the developer tools.

Defining Prolog multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses
for some library predicates to be defined in other modules. This is
accomplished by declaring the library predicate multifile and by
explicitly prefixing predicate clause heads with the library module
identifier. For example:

:- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-
 ...

Logtalk supports the definition of Prolog module multifile predicates in
objects and categories. While the clause head is compiled as-is, the clause
body is compiled in the same way as a regular object or category predicate,
thus allowing calls to local object or category predicates. For example:

:- object(...).

 :- multifile(clpfd:run_propagator/2).
 clpfd:run_propagator(..., ...) :-
 % calls to local object predicates
 ...

:- end_object.

The Logtalk compiler will print a warning if the multifile/1
directive is missing. These multifile predicates may also be declared
dynamic using the same Module:Name/Arity notation.

Asserting and retracting Prolog predicates

To assert and retract clauses for Prolog dynamic predicates, we can use an
explicitly qualified module argument. For example:

:- object(...).

 :- dynamic(m:bar/1).

 foo(X) :-
 retractall(m:bar(_)),
 assertz(m:bar(X)),
 ...

:- end_object.

In alternative, we can use use_module/2
directives to declare the module predicates. For example:

:- object(...).

 :- use_module(m, [bar/1]).
 :- dynamic(m:bar/1).

 foo(X) :-
 % retract and assert bar/1 clauses in module m
 retractall(bar(_)),
 assertz(bar(X)),
 ...

:- end_object.

When the Prolog dynamic predicates are defined in user, the recommended
and most portable practice (as not all backends support a module system) is
to use a uses/2 directive:

:- object(...).

 :- uses(user, [bar/1]).
 :- dynamic(user::bar/1).

 foo(X) :-
 % retract and assert bar/1 clauses in user
 retractall(bar(_)),
 assertz(bar(X)),
 ...

:- end_object.

Note that in the alternatives using uses/2 or use_module/2 directives,
the argument of the database handling predicates must be know at compile time.
If that is not the case, you must use instead either an explicitly-qualified
argument or the {}/1 control construct. For example:

:- object(...).

 add(X) :-
 % assert clause X in module m
 assertz(m:X),
 ...

 remove(Y) :-
 % retract all clauses in user whose head unifies with Y
 {retractall(Y)},
 ...

:- end_object.

Inheritance

The inheritance mechanisms found on object-oriented programming languages
allow the specialization of previously defined objects, avoiding the
unnecessary repetition of code and allowing the definition of common
functionality for sets of objects. In the context of logic programming,
we can interpret inheritance as a form of theory extension: an object
will virtually contain, besides its own predicates, all the predicates
inherited from other objects that are not redefined locally. Inheritance
is not, however, the only mechanism for theory extension. Logtalk also
supports composition using categories.

Logtalk uses a depth-first lookup procedure for finding predicate declarations
and predicate definitions, as explained below, when a message
is sent to an object. The lookup procedures locate the entity holding the
predicate declaration and the entity holding the predicate definition
using the predicate name and arity. The alias/2 predicate directive
may be used for defining alternative names for inherited predicates, for
solving inheritance conflicts, and for giving access to all inherited
definitions (thus overriding the default lookup procedure).

The lookup procedures are used when sending a message (using the
(::)/2, (::)/1, and
[]/1 control constructs) and when making super
calls (using the (^^)/1 control construct). The exact
details of the lookup procedures depend on the role
played by the object receiving the message or making the super call, as
explained next. The lookup procedures are also used by the
current_predicate/1 and predicate_property/2
reflection predicates.

Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations
(scope directives). These can be contained
in objects, protocols, or categories. Logtalk supports single and
multi-inheritance of protocols: an object or a category may implement several
protocols and a protocol may extend several protocols.

Lookup order for prototype hierarchies

The lookup order for predicate declarations is first the object, second
the implemented protocols (and the protocols that these may extend),
third the imported categories (and the protocols that they may implement),
and finally the objects that the object extends (following their declaration
order). This lookup is performed in depth-first order. When an object
inherits two different declarations for the same predicate, by default,
only the first one will be considered.

Lookup order for class hierarchies

The lookup order for predicate declarations is first the object classes
(following their declaration order), second the classes implemented protocols
(and the protocols that these may extend), third the classes imported
categories (and the protocols that they may implement), and finally the
superclasses of the object classes. This lookup is performed in depth-first
order. If the object inherits two different declarations for the same
predicate, by default, only the first one will be considered.

Implementation inheritance

Implementation inheritance refers to the inheritance of predicate
definitions. These can be contained in objects or in categories. Logtalk
supports multi-inheritance of implementation: an object may import
several categories or extend, specialize, or instantiate several
objects.

Lookup order for prototype hierarchies

The lookup order for predicate definitions is similar to the lookup for
predicate declarations except that implemented protocols are ignored (as
they can only contain predicate directives).

Lookup order for class hierarchies

The lookup order for predicate definitions is similar to the lookup for
predicate declarations except that implemented protocols are ignored (as
they can only contain predicate directives) and that the lookup starts
at the instance itself (that received the message) before proceeding, if
no predicate definition is found there, to the instance classes imported
categories and then to the class superclasses.

Redefining inherited predicate definitions

When we define a predicate that is already inherited from an ancestor object
or an imported category, the inherited definition is hidden by the new
definition. This is called inheritance overriding: a local definition
overrides any inherited definitions. For example, assume that we have the
following two objects:

:- object(root).

 :- public(bar/1).
 bar(root).

 :- public(foo/1).
 foo(root).

:- end_object.

:- object(descendant,
 extends(root)).

 foo(descendant).

:- end_object.

After compiling and loading these objects, we can check the overriding
behavior by trying the following queries:

| ?- root::(bar(Bar), foo(Foo)).

Bar = root
Foo = root
yes

| ?- descendant::(bar(Bar), foo(Foo)).

Bar = root
Foo = descendant
yes

However, we can explicitly code other behaviors. Some examples follow.

Specializing inherited predicate definitions

Specialization of inherited definitions: the new definition calls the
inherited definition and makes additional calls. This is accomplished
by calling the (^^)/1 super call operator
in the new definition. For example, assume a init/0 predicate
that must account for object specific initializations along the
inheritance chain:

:- object(root).

 :- public(init/0).

 init :-
 write('root init'), nl.

:- end_object.

:- object(descendant,
 extends(root)).

 init :-
 write('descendant init'), nl,
 ^^init.

:- end_object.

| ?- descendant::init.

descendant init
root init
yes

Union of inherited and local predicate definitions

Union of the new with the inherited definitions: all the definitions are
taken into account, the calling order being defined by the inheritance
mechanisms. This can be accomplished by writing a clause that just calls,
using the (^^)/1 super call operator, the inherited
definitions. The relative position of this clause among the other definition
clauses sets the calling order for the local and inherited definitions. For
example:

:- object(root).

 :- public(foo/1).

 foo(1).
 foo(2).

:- end_object.

:- object(descendant,
 extends(root)).

 foo(3).
 foo(Foo) :-
 ^^foo(Foo).

:- end_object.

| ?- descendant::foo(Foo).

Foo = 3 ;
Foo = 1 ;
Foo = 2 ;
no

Selective inheritance of predicate definitions

The selective inheritance of predicate definitions (also known as
differential inheritance) is normally used in the representation
of exceptions to inherited default definitions. We can use the
(^^)/1 super call operator to test and possibly
reject some of the inherited definitions. A common example is representing
flightless birds:

:- object(bird).

 :- public(mode/1).

 mode(walks).
 mode(flies).

:- end_object.

:- object(penguin,
 extends(bird)).

 mode(swims).
 mode(Mode) :-
 ^^mode(Mode),
 Mode \== flies.

:- end_object.

| ?- penguin::mode(Mode).

Mode = swims ;
Mode = walks ;
no

Public, protected, and private inheritance

To make all public predicates
declared via implemented protocols, imported categories, or ancestor
objects protected predicates or to make
all public and protected predicates
private predicates we prefix the entity’s
name with the corresponding keyword. For example:

:- object(Object,
 implements(private::Protocol)).

 % all the Protocol public and protected
 % predicates become private predicates
 % for the Object clients

 ...

:- end_object.

or:

:- object(Class,
 specializes(protected::Superclass)).

 % all the Superclass public predicates become
 % protected predicates for the Class clients

 ...

:- end_object.

Omitting the scope keyword is equivalent to using the public scope
keyword. For example:

:- object(Object,
 imports(public::Category)).

 ...

:- end_object.

This is the same as:

:- object(Object,
 imports(Category)).

 ...

:- end_object.

This way we ensure backward compatibility with older Logtalk versions
and a simplified syntax when protected or private inheritance are not
used.

Multiple inheritance

Logtalk supports multi-inheritance by enabling an object to extend,
instantiate, or specialize more than one object. Likewise, a protocol
may extends multiple protocols and a category may extend multiple
categories. In this case, the depth-first lookup algorithms described
above traverse the list of entities per relation from left to right.
Consider as an example the following object opening directive:

:- object(foo,
 extends((bar, baz))).

The lookup procedure will look first into the parent object bar and
its related entities before looking into the parent object baz. The
alias/2 predicate directive can always be used to
solve multi-inheritance conflicts. It should also be noted that the
multi-inheritance support does not affect performance when we use
single-inheritance.

Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring
to the long and probably endless debate on single versus multiple
inheritance. The single inheritance mechanism can be implemented
efficiently but it imposes several limitations on reusing, even
if the multiple characteristics we intend to inherit are orthogonal. On
the other hand, the multiple inheritance mechanisms are attractive in
their apparent capability of modeling complex situations. However, they
include a potential for conflict between inherited definitions whose
variety does not allow a single and satisfactory solution for all the
cases.

No solution that we might consider satisfactory for all the
problems presented by the multiple inheritance mechanisms has been
found. From the simplicity of some extensions that use the Prolog search
strategy like [McCabe92] or [Moss94] and to the sophisticated algorithms
of CLOS [Bobrow_et_al_88], there is no
adequate solution for all the situations. Besides, the use of multiple
inheritance carries some complex problems in the domain of software
engineering, particularly in the reuse and maintenance of the applications.
All these problems are substantially reduced if we preferably use in our
software development composition mechanisms instead of specialization
mechanisms [Taenzer89]. Multiple inheritance is best used as an analysis
and project abstraction, rather than as an implementation technique
[Shan_et_al_93]. Note that Logtalk provides first-class support for
composition using categories.

Event-driven programming

The addition of event-driven programming capacities to the Logtalk
language [Moura94] is based on a simple but powerful idea:

The computations must result, not only from message sending, but also
from the observation of message sending.

The need to associate computations to the occurrence of events was very
early recognized in knowledge representation languages, programming languages
[Stefik_et_al_86], [Moon86], operative systems [Tanenbaum87], and
graphical user interfaces.

With the integration between object-oriented and event-driven
programming, we intend to achieve the following goals:

	Minimize the coupling between objects. An object should only contain
what is intrinsic to it. If an object observes another object, that
means that it should depend only on the public protocol of the
object observed and not on the implementation of that protocol.

	Provide a mechanism for building reflexive systems in Logtalk based
on the dynamic behavior of objects in complement to the reflective
information on object predicates and relations.

	Provide a mechanism for easily defining method pre- and
post-conditions that can be toggled using the events
compiler flag. The pre- and post-conditions may be defined in the same
object containing the methods or distributed between several objects
acting as method monitors.

	Provide a publish-subscribe mechanism where public messages play the
role of events.

Definitions

The words event and monitor have multiple meanings in computer
science. To avoid misunderstandings, we start by defining them in
the Logtalk context.

Event

In an object-oriented system, all computations start through message
sending. It thus becomes quite natural to declare that the only event
that can occur in this kind of system is precisely the sending of a
message. An event can thus be represented by the ordered tuple
(Object, Message, Sender).

If we consider message processing an indivisible activity, we can
interpret the sending of a message and the return of the control to the
object that has sent the message as two distinct events. This
distinction allows us to have a more precise control over a system
dynamic behavior. In Logtalk, these two types of events have been named
before and after, respectively for sending a message and for
returning of control to the sender. Therefore, we refine our event
representation using the ordered tuple (Event, Object, Message, Sender).

The implementation of events in Logtalk enjoys the following properties:

	Independence between the two types of events
	We can choose to watch only one event type or to process each one of
the events associated to a message sending in an independent way.

	All events are automatically generated by the message sending mechanism
	The task of generating events is transparently accomplished
by the message sending mechanism. The user only needs to define the
events that will be monitored.

	The events watched at any moment can be dynamically changed during program execution
	The notion of event allows the user not only to have the possibility
of observing, but also of controlling and modifying an application
behavior, namely by dynamically changing the observed events during
program execution. It is our goal to provide the user with the
possibility of modeling the largest number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor
is an object that is automatically notified by the message sending
mechanism whenever a registered event occurs. Any object that defines
the event-handling predicates can play the role of a monitor.

The implementation of monitors in Logtalk enjoys the following
properties:

	Any object can act as a monitor
	The monitor status is a role that any object can perform during its
existence. The minimum protocol necessary is declared in the built-in
monitoring protocol. Strictly speaking, the
reference to this protocol is only needed when specializing event handlers.
Nevertheless, it is considered good programming practice to always
refer the protocol when defining event handlers.

	Unlimited number of monitors for each event
	Several monitors can observe the same event because of distinct
reasons. Therefore, the number of monitors per event is bounded only
by the available computing resources.

	The monitor status of an object can be dynamically changed in runtime
	This property does not imply that an object must be dynamic to act as
a monitor (the monitor status of an object is not stored in the
object).

	Event handlers cannot modify the event arguments
	Notably, if the message contains unbound variables, these cannot be
bound by the calls to the monitor event handlers.

Event generation

Assuming that the events flag is set to allow for
the object (or category) sending the messages we want to observe, for each
message that is sent using the (::)/2 control
construct, the runtime system automatically generates two events.
The first — before event — is generated when the message is sent. The
second — after event — is generated after the message has successfully
been executed.

Note that self messages (using the (::)/1 control
construct) or super calls (using the (^^)/1 control
construct) don’t generate events.

Communicating events to monitors

Whenever a spied event occurs, the message sending mechanism calls the
corresponding event handlers directly for all registered monitors. These
calls are internally made bypassing the message sending primitives in order
to avoid potential endless loops. The event handlers consist in user
definitions for the public predicates declared in the built-in
monitoring protocol (see below for more details).

Performance concerns

Ideally, the existence of monitored messages should not affect the
processing of the remaining messages. On the other hand, for each
message that has been sent, the system must verify if its respective
event is monitored. Whenever possible, this verification should be
performed in constant time and independently of the number of
monitored events. The events representation takes advantage of the first
argument indexing performed by most Prolog compilers, which ensure — in
the general case — access in constant time.

Event-support can be turned off on a per-object (or per-category) basis
using the events compiler flag. With event-support
turned off, Logtalk uses optimized code for processing message sending
calls that skips the checking of monitored events, resulting in a small
but measurable performance improvement.

Monitor semantics

The established semantics for monitors actions consists on considering
its success as a necessary condition so that a message can succeed:

	All actions associated to events of type before must succeed, so
that the message processing can start.

	All actions associated to events of type after also have to
succeed so that the message itself succeeds. The failure of any
action associated to an event of type after forces backtracking
over the message execution (the failure of a monitor never causes
backtracking over the preceding monitor actions).

Note that this is the most general choice. If we wish a transparent
presence of monitors in a message processing, we just have to define the
monitor actions in such a way that they never fail (which is very simple
to accomplish).

Activation order of monitors

Ideally, whenever there are several monitors defined for the same event,
the calling order should not interfere with the result. However, this is
not always possible. In the case of an event of type before, the
failure of a monitor prevents a message from being sent and prevents the
execution of the remaining monitors. In case of an event of type
after, a monitor failure will force backtracking over message
execution. Different orders of monitor activation can therefore lead to
different results if the monitor actions imply object modifications
unrecoverable in case of backtracking. Therefore, the order for monitor
activation should be assumed as arbitrary. In effect, to assume or to
try to impose a specific sequence requires a global knowledge of an
application dynamics, which is not always possible. Furthermore, that
knowledge can reveal itself as incorrect if there is any changing in the
execution conditions. Note that, given the independence between
monitors, it does not make sense that a failure forces backtracking over
the actions previously executed.

Event handling

Logtalk provides three built-in predicates for event handling. These
predicates support defining, enumerating, and abolishing events.
Applications that use events extensively usually define a set of objects
that use these built-in predicates to implement more sophisticated and
higher-level behavior.

Defining new events

New events can be defined using the define_events/5
built-in predicate:

| ?- define_events(Event, Object, Message, Sender, Monitor).

Note that if any of the Event, Object, Message, and
Sender arguments is a free variable or contains free variables, this
call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the
abolish_events/5 built-in predicate:

| ?- abolish_events(Event, Object, Message, Sender, Monitor).

If called with free variables, this goal will remove all matching
events.

Finding defined events

The events that are currently defined can be retrieved using the
current_event/5 built-in predicate:

| ?- current_event(Event, Object, Message, Sender, Monitor).

Note that this predicate will return sets of matching events if some
of the returned arguments are free variables or contain free variables.

Defining event handlers

The monitoring built-in protocol declares two
public predicates, before/3 and after/3, that
are automatically called to handle before and after events. Any
object that plays the role of monitor must define one or both of these
event handler methods:

before(Object, Message, Sender) :-

after(Object, Message, Sender) :-

The arguments in both methods are instantiated by the message sending
mechanism when a monitored event occurs. For example, assume that we
want to define a monitor called tracer that will track any message
sent to an object by printing a describing text to the standard output.
Its definition could be something like:

:- object(tracer,
 % built-in protocol for event handler methods
 implements(monitoring)).

 before(Object, Message, Sender) :-
 write('call: '), writeq(Object),
 write(' <-- '), writeq(Message),
 write(' from '), writeq(Sender), nl.

 after(Object, Message, Sender) :-
 write('exit: '), writeq(Object),
 write(' <-- '), writeq(Message),
 write(' from '), writeq(Sender), nl.

:- end_object.

Assume that we also have the following object:

:- object(any).

 :- public(bar/1).
 bar(bar).

 :- public(foo/1).
 foo(foo).

:- end_object.

After compiling and loading both objects and setting the
events flag to allow, we can start tracing
every message sent to any object by calling the
define_events/5 built-in predicate:

| ?- set_logtalk_flag(events, allow).

yes

| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent from user to any object will be
traced to the standard output stream:

| ?- any::bar(X).

call: any <-- bar(X) from user
exit: any <-- bar(bar) from user
X = bar

yes

To stop tracing, we can use the abolish_events/5
built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

The monitoring protocol declares the event
handlers as public predicates. If necessary, protected or private
implementation of the protocol may be used in
order to change the scope of the event handler predicates. Note that the
message sending processing mechanism is able to call the event handlers
irrespective of their scope. Nevertheless, the scope of the event handlers
may be restricted in order to prevent other objects from calling them.

The pseudo-object user can also act as a monitor.
This object expects the before/3 and after/3 predicates to be
defined in the plain Prolog database. To avoid predicate existence errors
when setting user as a monitor, this object declares the predicates
multifile. Thus, any plain Prolog code defining the predicates should
include the directives:

:- multifile(before/3).
:- multifile(after/3).

Multi-threading programming

Logtalk provides experimental support for multi-threading programming
on selected Prolog compilers. Logtalk makes use of the low-level Prolog
built-in predicates that implement message queues and interface with POSIX
threads and mutexes (or a suitable emulation), providing a small set of
high-level predicates and directives that allows programmers to easily
take advantage of modern multi-processor and multi-core computers without
worrying about the tricky details of creating, synchronizing, or communicating
with threads, mutexes, and message queues. Logtalk multi-threading
programming integrates with object-oriented programming providing a
threaded engines API, enabling objects and categories to prove goals
concurrently, and supporting synchronous and asynchronous messages.

Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on
the Prolog adapter files of supported compilers by setting the read-only
threads compiler flag to supported.

Enabling objects to make multi-threading calls

The threaded/0 object
directive is used to enable an object to make multi-threading calls:

:- threaded.

Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading
programming. For simple tasks where you simply want to prove a set of
goals, each one in its own thread, Logtalk provides a
threaded/1 built-in
predicate. The remaining predicates allow for fine-grained control,
including postponing retrieving of thread goal results at a later time,
supporting non-deterministic thread goals, and making one-way
asynchronous calls. Together, these predicates provide high-level
support for multi-threading programming, covering most common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk
built-in predicate threaded/1. Each goal in
the set runs in its own thread.

When the threaded/1 predicate argument is a conjunction of goals,
the predicate call is akin to and-parallelism. For example, assume
that we want to find all the prime numbers in a given interval,
[N, M]. We can split the interval in two parts and then span two
threads to compute the prime numbers in each sub-interval:

prime_numbers(N, M, Primes) :-
 M > N,
 N1 is N + (M - N) // 2,
 N2 is N1 + 1,
 threaded((
 prime_numbers(N2, M, [], Acc),
 prime_numbers(N, N1, Acc, Primes)
)).

prime_numbers(N, M, Acc, Primes) :-
 ...

The threaded/1 call terminates when the two implicit threads
terminate. In a computer with two or more processors (or with a
processor with two or more cores) the code above can be expected to
provide better computation times when compared with single-threaded code
for sufficiently large intervals.

When the threaded/1 predicate argument is a disjunction of goals,
the predicate call is akin to or-parallelism, here reinterpreted as a
set of goals competing to find a solution. For example, consider the
different methods that we can use to find the roots of real functions.
Depending on the function, some methods will faster than others. Some
methods will converge into the solution while others may diverge and
never find it. We can try all the methods simultaneously by writing:

find_root(Function, A, B, Error, Zero) :-
 threaded((
 bisection::find_root(Function, A, B, Error, Zero)
 ; newton::find_root(Function, A, B, Error, Zero)
 ; muller::find_root(Function, A, B, Error, Zero)
)).

The above threaded/1 goal succeeds when one of the implicit threads
succeeds in finding the function root, leading to the termination of all
the remaining competing threads.

The threaded/1 built-in predicate is most useful for lengthy,
independent deterministic computations where the computational costs of
each goal outweigh the overhead of the implicit thread creation and
management.

Proving goals asynchronously using threads

A goal may be proved asynchronously using a new thread by calling the
threaded_call/1-2 built-in predicate .
Calls to this predicate are always true and return immediately (assuming
a callable argument). The term representing the goal is copied, not
shared with the thread. The thread computes the first solution to the
goal, posts it to the implicit message queue of the object from where the
threaded_call/1 predicate was called, and suspends waiting for
either a request for an alternative solution or for the program to
commit to the current solution.

The results of proving a goal asynchronously in a new thread may be
later retrieved by calling the threaded_exit/1-2
built-in predicate within the same object where the call to the
threaded_call/1 predicate was made. The threaded_exit/1
calls suspend execution until the results of the threaded_call/1
calls are sent back to the object message queue.

The threaded_exit/1 predicate allow us to retrieve alternative
solutions through backtracking (if you want to commit to the first
solution, you may use the threaded_once/1-2
predicate instead of the threaded_call/1 predicate). For example,
assuming a lists object implementing the usual member/2
predicate, we could write:

| ?- threaded_call(lists::member(X, [1,2,3])).

X = _G189
yes

| ?- threaded_exit(lists::member(X, [1,2,3])).

X = 1 ;
X = 2 ;
X = 3 ;
no

In this case, the threaded_call/1 and the threaded_exit/1 calls
are made within the pseudo-object user. The implicit thread running
the lists::member/2 goal suspends itself after providing a solution,
waiting for a request to an alternative solution; the thread is
automatically terminated when the runtime engine detects that
backtracking to the threaded_exit/1 call is no longer possible.

Calls to the threaded_exit/1 predicate block the caller until the
object message queue receives the reply to the asynchronous call. The
predicate threaded_peek/1-2
may be used to check if a reply is already available without removing it
from the thread queue. The threaded_peek/1 predicate call succeeds
or fails immediately without blocking the caller. However, keep in mind
that repeated use of this predicate is equivalent to polling a message
queue, which may hurt performance.

Be careful when using the threaded_exit/1 predicate inside
failure-driven loops. When all the solutions have been found (and the
thread generating them is therefore terminated), re-calling the
predicate will generate an exception. Note that failing instead of
throwing an exception is not an acceptable solution as it could be
misinterpreted as a failure of the threaded_call/1 argument.

The example on the previous section with prime numbers could be
rewritten using the threaded_call/1 and threaded_exit/1
predicates:

prime_numbers(N, M, Primes) :-
 M > N,
 N1 is N + (M - N) // 2,
 N2 is N1 + 1,
 threaded_call(prime_numbers(N2, M, [], Acc)),
 threaded_call(prime_numbers(N, N1, Acc, Primes)),
 threaded_exit(prime_numbers(N2, M, [], Acc)),
 threaded_exit(prime_numbers(N, N1, Acc, Primes)).

prime_numbers(N, M, Acc, Primes) :-
 ...

When using asynchronous calls, the link between a threaded_exit/1
call and the corresponding threaded_call/1 call is established using
unification. If there are multiple threaded_call/1 calls for a matching
threaded_exit/1 call, the connection can potentially be established with
any of them (this is akin to what happens with tabling). Nevertheless, you
can easily use a call tag by using in
alternative threaded_call/2,
threaded_once/2, and
threaded_exit/2 built-in predicates.
For example:

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 1
yes

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 2
yes

?- threaded_exit(member(X, [1,2,3]), 2).

X = 1 ;
X = 2 ;
X = 3
yes

When using these predicates, the tags shall be considered as an opaque
term; users shall not rely on its type. Tagged asynchronous calls can be
canceled by using the threaded_cancel/1 predicate.

One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about
the results. This may be accomplished by using the built-in predicate
threaded_ignore/1.
For example, assume that we are developing a multi-agent application
where an agent may send an “happy birthday” message to another agent. We
could write:

..., threaded_ignore(agent::happy_birthday), ...

The call succeeds with no reply of the goal success, failure, or even
exception ever being sent back to the object making the call. Note that
this predicate implicitly performs a deterministic call of its argument.

Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems
when the goal results in side effects such as input/output operations or
modifications to an object database. For example, if a new thread is
started with the same goal before the first one finished its job, we may
end up with mixed output, a corrupted database, or unexpected goal
failures. In order to solve this problem, predicates (and grammar rule
non-terminals) with side effects can be declared as synchronized by
using the synchronized/1
predicate directive. Proving a query to a synchronized predicate (or
synchronized non-terminal) is internally protected by a mutex, thus
allowing for easy thread synchronization. For example:

% ensure thread synchronization
:- synchronized(db_update/1).

db_update(Update) :-
 % predicate with side-effects
 ...

A second example: assume an object defining two predicates for writing,
respectively, even and odd numbers in a given interval to the standard
output. Given a large interval, a goal such as:

| ?- threaded_call(obj::odd_numbers(1,100)),
 threaded_call(obj::even_numbers(1,100)).

1 3 2 4 6 8 5 7 10 ...
...

will most likely result in a mixed up output. By declaring the
odd_numbers/2 and even_numbers/2 predicates synchronized:

:- synchronized([
 odd_numbers/2,
 even_numbers/2]).

one goal will only start after the other one finished:

| ?- threaded_ignore(obj::odd_numbers(1,99)),
 threaded_ignore(obj::even_numbers(1,99)).

1 3 5 7 9 11 ...
...
2 4 6 8 10 12 ...
...

Note that, in a more realistic scenario, the two threaded_ignore/1
calls would be made concurrently from different objects. Using the same
synchronized directive for a set of predicates imply that they all use
the same mutex, as required for this example.

As each Logtalk entity is independently compiled, this directive must be
included in every object or category that contains a definition for the
described predicate, even if the predicate declaration is inherited from
another entity, in order to ensure proper compilation. Note that a
synchronized predicate cannot be declared dynamic. To ensure atomic
updates of a dynamic predicate, declare as synchronized the predicate
performing the update.

Synchronized predicates may be used as wrappers to messages sent to
objects that are not multi-threading aware. For example, assume a
log object defining a write_log_entry/2 predicate that writes
log entries to a file, thus using side effects on its implementation.
We can specify and define e.g. a sync_write_log_entry/2 predicate
as follows:

:- synchronized(sync_write_log_entry/2).

sync_write_log_entry(File, Entry) :-
 log::write_log_entry(File, Entry).

and then call the sync_write_log_entry/2 predicate instead of the
write_log_entry/2 predicate from multi-threaded code.

The synchronization directive may be used when defining objects that may be
reused in both single-threaded and multi-threaded Logtalk applications. The
directive simply make calls to the synchronized predicates deterministic
when the objects are used in a single-threaded application.

Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they
are not executed at the same time by different threads. Sometimes we
need to suspend a thread not on a synchronization lock but on some
condition that must hold true for a thread goal to proceed. I.e. we want
a thread goal to be suspended until a condition becomes true instead of
simply failing. The built-in predicate threaded_wait/1
allows us to suspend a predicate execution (running in its own thread)
until a notification is received. Notifications are posted using the
built-in predicate threaded_notify/1.
A notification is a Prolog term that a programmer chooses to represent
some condition becoming true. Any Prolog term can be used as a
notification argument for these predicates. Related calls to the
threaded_wait/1 and threaded_notify/1 must be made within the
same object, this, as the object message queue is used internally for
posting and retrieving notifications.

Each notification posted by a call to the threaded_notify/1
predicate is consumed by a single threaded_wait/1 predicate call
(i.e. these predicates implement a peer-to-peer mechanism). Care should
be taken to avoid deadlocks when two (or more) threads both wait and
post notifications to each other.

Threaded engines

Threaded engines provide an alternative to the multi-threading
predicates described in the previous sections. An engine is a computing
thread whose solutions can be lazily computed and retrieved. In
addition, an engine also supports a term queue that allows passing
arbitrary terms to the engine.

An engine is created by calling the threaded_engine_create/3
built-in predicate. For example:

| ?- threaded_engine_create(X, member(X, [1,2,3]), worker).
yes

The first argument is an answer template to be used for retrieving
solution bindings. The user can name the engine, as in this example
where the atom worker is used, or have the runtime generate a name,
which should be treated as an opaque term.

Engines are scoped by the object within which the
threaded_engine_create/3 call takes place. Thus, different objects
can create engines with the same names with no conflicts. Moreover,
engines share the visible predicates of the object creating them.

The engine computes the first solution of its goal argument and suspends
waiting for it to be retrieved. Solutions can be retrieved one at a time
using the threaded_engine_next/2 built-in predicate:

| ?- threaded_engine_next(worker, X).
X = 1
yes

The call blocks until a solution is available and fails if there are no
solutions left. After returning a solution, this predicate signals the
engine to start computing the next one. Note that this predicate is
deterministic. In contrast with the threaded_exit/1-2 built-in
predicates, retrieving the next solution requires calling the predicate
again instead of by backtracking into its call. For example:

collect_all(Engine, [Answer| Answers]) :-
 threaded_engine_next(Engine, Answer),
 !,
 collect_all(Engine, Answers).
collect_all(_, []).

There is also a reified alternative version of the predicate,
threaded_engine_next_reified/2,
which returns the(Answer), no, and exception(Error) terms as
answers. Using this predicate, collecting all solutions to an engine
uses a different programming pattern:

... :-
 ...,
 threaded_engine_next_reified(Engine, Reified),
 collect_all_reified(Reified, Engine, Answers),
 ...

collect_all_reified(no, _, []).
collect_all_reified(the(Answer), Engine, [Answer| Answers]) :-
 threaded_engine_next_reified(Engine, Reified),
 collect_all_reified(Reified, Engine, Answers).

Engines must be explicitly terminated using the
threaded_engine_destroy/1 built-in predicate:

| ?- threaded_engine_destroy(worker).
yes

A common usage pattern for engines is to define a recursive predicate
that uses the engine term queue to retrieve a task to be performed. For
example, assume we define the following predicate:

loop :-
 threaded_engine_fetch(Task),
 handle(Task),
 loop.

The threaded_engine_fetch/1
built-in predicate fetches a task for the engine term queue. The engine
clients would use the threaded_engine_post/2
built-in predicate to post tasks into the engine term queue. The engine
would be created using the call:

| ?- threaded_engine_create(none, loop, worker).

yes

The handle/1 predicate, after performing a task, can use the
threaded_engine_yield/1 built-in predicate to make the
task results available for consumption using the threaded_engine_next/2
and threaded_engine_next_reified/2 built-in predicates. Blocking
semantics are used by these two predicates: the threaded_engine_yield/1
predicate blocks until the returned solution is consumed while the
threaded_engine_next/2 predicate blocks until a solution becomes
available.

Multi-threading performance

The performance of multi-threading applications is highly dependent on
the backend Prolog compiler, on the operating-system, and on the use
of dynamic binding and dynamic predicates. All compatible backend
Prolog compilers that support multi-threading features make use of POSIX
threads or pthreads. The performance of the underlying pthreads
implementation can exhibit significant differences between operating
systems. An important point is synchronized access to dynamic
predicates. As different threads may try to simultaneously access and
update dynamic predicates, these operations may used a lock-free algorithm
or be protected by a lock, usually implemented using a mutex. In the latter
case, poor mutex lock operating-system performance, combined with a large
number of collisions by several threads trying to acquire the same lock,
can result in severe performance penalties. Thus, whenever possible,
avoid using dynamic predicates and dynamic binding.

Error handling

Error handling is accomplished in Logtalk by using the standard catch/3
and throw/1 predicates [ISO95] together with a set of built-in methods
that simplify generating errors decorated with expected context.

Errors thrown by Logtalk have, whenever possible, the following format:

error(Error, logtalk(Goal, ExecutionContext))

In this exception term, Goal is the goal that triggered the error
Error and ExecutionContext is the context in which Goal is
called. For example:

error(
 permission_error(modify,private_predicate,p),
 logtalk(foo::abolish(p/0), _)
)

Note, however, that Goal and ExecutionContext can be unbound or only
partially instantiated when the corresponding information is not available
(e.g. due to compiler optimizations that throw away the necessary error context
information). The ExecutionContext argument is an opaque term that
can be decoded using the
logtalk::execution_context/7 predicate.

Raising Exceptions

The error handling section in the reference
manual lists a set of convenient built-in methods that generate error/2
exception terms with the expected context argument. For example, instead of
manually constructing a type error as in:

...,
context(Context),
throw(error(type_error(atom, 42), Context)).

we can simply write:

...,
type_error(atom, 42).

The provided error built-in methods cover all standard error types found in
the ISO Prolog Core standard.

Type-checking

One of the most common case where errors may be generated is when
type-checking predicate arguments and input data before processing it.
The standard library includes a type object that
defines an extensive set of types, together with predicates for validating
and checking terms. The set of types is user extensible and new types can
be defined by adding clauses for the type/1 and check/2 multifile
predicates. For example, assume that we want to be able to check
temperatures expressed in Celsius, Fahrenheit, or Kelvin scales. We
start by declaring (in an object or category) the new type:

:- multifile(type::type/1).
type::type(temperature(_Unit)).

Next, we need to define the actual code that would verify that a temperature
is valid. As the different scales use a different value for absolute zero,
we can write:

:- multifile(type::check/2).
type::check(temperature(Unit), Term) :-
 check_temperature(Unit, Term).

% given that temperature has only a lower bound, we make use of the library
% property/2 type to define the necessary test expression for each unit
check_temperature(celsius, Term) :-
 type::check(property(float, [Temperature]>>(Temperature >= -273.15)), Term).
check_temperature(fahrenheit, Term) :-
 type::check(property(float, [Temperature]>>(Temperature >= -459.67)), Term).
check_temperature(kelvin, Term) :-
 type::check(property(float, [Temperature]>>(Temperature >= 0.0)), Term).

With this definition, a term is first checked that it is a float value before
checking that it is in the expected open interval. But how do we use this new
type? If we want just to test if a temperature is valid, we can write:

..., type::valid(temperature(celsius), 42.0), ...

The type::valid/2 predicate succeeds or fails
depending on the second argument being of the type specified in the first
argument. If instead of success or failure we want to generate an error for
invalid values, we can use the type::check/2
predicate instead:

..., type::check(temperature(celsius), 42.0), ...

If we require an error/2 exception term with the error context, we can
use instead the type::check/3 predicate:

...,
context(Context),
type::check(temperature(celsius), 42.0, Context),
...

Note that context/1 calls are inlined and messages to the library
type object use static binding when compiling with the
optimize flag turned on, thus enabling efficient
type-checking.

Expected terms

Support for representing and handling expected terms is provided by the
expecteds library. Expected terms allows defering errors
to later stages of an application in alternative to raising an exception as
soon as an error is detected.

Compiler warnings and errors

The current Logtalk compiler uses the standard read_term/3 built-in
predicate to read and compile a Logtalk source file. This improves the
compatibility with backend Prolog compilers
and their proprietary syntax extensions and standard compliance quirks. But one
consequence of this design choice is that invalid Prolog terms or syntax errors
may abort the compilation process with limited information given to the user
(due to the inherent limitations of the read_term/3 predicate).

Assuming that all the terms in a source file are valid, there is a set of
errors and potential errors, described below, that the compiler will try
to detect and report, depending on the used compiler flags (see the
Compiler flags section of this manual on lint flags for details).

Unknown entities

The Logtalk compiler warns about any referenced entity that is not
currently loaded. The warning may reveal a misspell entity name or just
an entity that it will be loaded later. Out-of-oder loading should be
avoided when possible as it prevents some code optimizations such as
static binding of messages to methods.

Singleton variables

Singleton variables in a clause are often misspell variables and, as
such, one of the most common errors when programming in Prolog.
Assuming that the backend Prolog compiler implementation of the
read_term/3 predicate supports the standard singletons/1
option, the compiler warns about any singleton variable found while
compiling a source file.

Redefinition of Prolog built-in predicates

The Logtalk compiler will warn us of any redefinition of a Prolog
built-in predicate inside an object or category. Sometimes the redefinition
is intended. In other cases, the user may not be aware that a particular
backend Prolog compiler may already provide the predicate
as a built-in predicate or may want to ensure code portability among
several Prolog compilers with different sets of built-in predicates.

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk
compiler will warn us if we try to redefine a Logtalk built-in. But the
redefinition will probably be an error in most (if not all) cases.

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in
method inside an entity. The default behavior is to report the error and
abort the compilation of the offending entity.

Misspell calls of local predicates

A warning will be reported if Logtalk finds (in the body of a predicate
definition) a call to a local predicate that is not defined, built-in
(either in Prolog or in Logtalk) or declared dynamic. In most cases
these calls are simple misspell errors.

Portability warnings

A warning will be reported if a predicate clause contains a call to a
non-standard built-in predicate or arithmetic function, Portability
warnings are also reported for non-standard flags or flag values. These
warnings often cannot be avoided due to the limited scope of the ISO
Prolog standard.

Deprecated elements

A warning will be reported if a deprecated directive, control construct,
or predicate is used. These warnings should be fixed as soon as possible
as support for any deprecated features will likely be discontinued in
future versions.

Missing directives

A warning will be reported for any missing dynamic, discontiguous,
meta-predicate, and public predicate directive.

Duplicated directives

A warning will be reported for any duplicated scope, multifile, dynamic,
discontiguous, meta-predicate, and meta-non-terminal directives. Note
that conflicting directives for the same predicate are handled as
errors, not as duplicated directive warnings.

Duplicated clauses

A warning will be reported for any duplicated entity clauses. This check
is computationally heavy, however, and usually turned off by default.

Goals that are always true or false

A warning will be reported for any goal that is always true or false.
This is usually caused by typos in the code. For example, writing
X == y instead of X == Y.

Trivial fails

A warning will be reported for any call to a local static predicate with
no matching clause.

Suspicious calls

A warning will be reported for calls that are syntactically correct but most
likely a semantic error. An example is (::)/1 calls in
clauses that apparently are meant to implement recursive predicate definitions
where the user intention is to call the local predicate definition.

Lambda variables

A warning will be reported for lambda expressions
with unclassified variables (not listed as either lambda free
or lambda parameter variables), for variables playing a dual role
(as both lambda free and lambda parameter variables), and for lambda parameters
used elsewhere in a clause.

Redefinition of predicates declared in uses/2 or use_module/2 directives

A error will be reported for any attempt to define locally a predicate
that is already declared in an uses/2 or
use_module/2 directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause
or a directive that cannot be parsed. The default behavior is to report
the error and abort the compilation.

Runtime errors

This section briefly describes runtime errors that result from misuse of
Logtalk built-in predicates, built-in methods or from message sending.
For a complete and detailed description of runtime errors please consult
the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates checks the type and mode of the calling
arguments, throwing an exception in case of misuse.

Logtalk built-in methods

Most Logtalk built-in method checks the type and mode of the calling
arguments, throwing an exception in case of misuse.

Message sending

The message sending mechanisms always check if the receiver of a message
is a defined object and if the message corresponds to a declared
predicate within the scope of the sender. The built-in protocol
forwarding declares a predicate,
forward/1, which is automatically called (if defined) by
the runtime for any message that the receiving object does not understand.
The usual definition for this error handler is to delegate or forward the
message to another object that might be able to answer it:

forward(Message) :-
 % forward the message while preserving the sender
 [Object::Message].

If preserving the original sender is not required, this definition can
be simplified to:

forward(Message) :-
 Object::Message.

More sophisticated definitions are, of course, possible.

Reflection

Logtalk provides support for both structural and behavioral reflection.
Structural reflection supports computations over an application structure
while behavioral reflection computations over what an application does while
running. The structural and behavioral reflection APIs are used by all the
developer tools, which are regular applications.

Structural reflection

Structural reflection allows querying the properties of objects, categories,
protocols, and predicates. This API provides two views on the structure of
an application: a transparent-box view and a black-box view, described
next.

Transparent-box view

The transparent-box view provides a structural view of the contents and
properties of entities, predicates, and source files akin to accessing
the corresponding source code. I.e. this is the view we use when asking
questions such as: What predicates are declared in this protocol?
Which predicates are called by this predicate? Where are clauses for
this multifile predicate defined?

For entities, built-in predicates are provided for
enumerating entities,
enumerating entity properties
(including entity declared, defined, called, and updated predicates; i.e.
full predicate cross-referencing data), and
enumerating entity relations (for full
entity cross-referencing data).
For a detailed description of the supported entity properties, see the sections
on object properties,
protocol properties, and
category properties.
For examples of querying entity relations, see the sections
on object relations,
protocol relations, and
category relations.

Note

Some entity and predicate properties are only available when the source
files are compiled with the source_data flag
turned on.

The logtalk built-in object provides predicates for
querying loaded source files and their properties.

Black-box view

The black-box view provides a view that takes into account entity encapsulation
and thus only allow querying about predicates and operators that are within
scope of the entity calling the reflection methods. This is the view we use
and asking questions such as: What messages can be sent to this object?

Built-in methods are provided for querying the predicates that are
declared and can be called or used as messages
and for querying the predicate properties.
It is also possible to enumerate entity operators.
See the sections on finding declared predicates and
on predicate properties for more details.

Behavioral reflection

Behavioral reflection provides insight on what an application does when running.
Specifically, by observing and acting on the messages being exchanged between
objects. See the section on event-driven programming
for details. There is also a dependents library that
provides an implementation of Smalltalk dependents mechanism.

For use in debugging tools, there is also a small reflection API providing
trace and debug event predicates provided by the
logtalk built-in object.

Writing and running applications

For a successful programming in Logtalk, you need a good working
knowledge of Prolog and an understanding of the principles of
object-oriented programming. Most guidelines for writing good Prolog
code apply as well to Logtalk programming. To those guidelines, you
should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk is that it enable us to
use the currently available object-oriented methodologies, tools, and
metrics [Champaux92] in logic programming. That said, writing applications
in Logtalk is similar to writing applications in Prolog: we define new
predicates describing what is true about our domain objects, about our
problem solution. We encapsulate our predicate directives and definitions
inside new objects, categories, and protocols that we create by hand with
a text editor or by using the Logtalk built-in predicates. Some of the
information collected during the analysis and design phases can be
integrated in the objects, categories and protocols that we define by
using the available entity and predicate documenting directives.

Starting Logtalk

We run Logtalk inside a normal Prolog session, after loading the
necessary files. Logtalk extends but does not modify your Prolog
compiler. We can freely mix Prolog queries with the sending of messages
and our applications can be made of both normal Prolog clauses and
object definitions.

Depending on your Logtalk installation, you may use a script or a shortcut
to start Logtalk with your chosen Prolog compiler. On POSIX operating-systems,
Bash shell integration scripts should be available from the command-line.
On Windows, PowerShell integration scripts should be available from the
command-line and integration shortcuts should be available from the Start Menu.
Scripts are named upon the used backend Prolog compilers.

For example, assuming a POSIX operating-system and GNU Prolog as the backend:

$ gplgt
...

Depending on your Logtalk installation, you may need to type instead
gplgt.sh. On Windows, using PowerShell 7.2 or later version and
ECLiPSe as the backend:

PS> eclipselgt.ps1
...

Running parallel Logtalk processes

Running parallel Logtalk processes is enabled by setting the
clean flag to on. This is the default flag value
in the backend adapter files. With this setting, the intermediate Prolog
files generated by the Logtalk compiler include the processes identifier
in the names, thus preventing file names clashes when running parallel
processes. When the flag is turned off, the generated intermediate Prolog
file names don’t include the process identifier and are kept between runs.
This is usually done to avoid repeated recompilation of stable code when
developing large applications or when running multiple test sets for
performance (by avoiding repeated recompilation of the lgtunit tool).

To run parallel Logtalk processes with the clean flag turned off, each
process must use its own scratch directory. This is accomplished
by defining the scratch_directory library alias to a per process
location. For example, assuming we’re using GNU Prolog as the backend, a
possible definition could be:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(scratch_directory, Directory) :-
 temporary_name(lgtXXXXXX, Name),
 decompose_file_name(Name, _, Prefix, _),
 atom_concat('/tmp/', Prefix, Directory),
 (file_exists(Directory) ->
 true
 ; make_directory(Directory)
).

Assuming the code above is saved in a parallel_logtalk_processes_setup.pl
file, we would then start Logtalk using:

$ gplgt --init-goal "consult('parallel_logtalk_processes_setup.pl')"

The details on how to define and load the definition of the scratch_directory
library alias are, however, backend specific (due to the lack of Prolog
standardization) and possibly also operating-system specific (different
locations for the temporary directory). The Logtalk library contains support
for selected backends.

Source files

Logtalk source files may define any number of entities (objects,
categories, or protocols). Source files may also contain Prolog code
interleaved with Logtalk entity definitions. Plain Prolog code is usually
copied as-is to the corresponding Prolog output file (except, of course,
if subject to the term-expansion mechanism).
Prolog modules are compiled as objects. The following Prolog directives are
processed when read (thus affecting the compilation of the source code that
follows): ensure_loaded/1, use_module/1-2, op/3, and
set_prolog_flag/2. The initialization/1 directive may
be used for defining an initialization goal to be executed when loading a
source file.

Logtalk source files can include the text of other files by using the
include/1 directive. Although there is also a standard
Prolog include/1 directive, any occurrences of this directive in a
Logtalk source file is handled by the Logtalk compiler,
not by the backend Prolog compiler, to improve portability.

When writing a Logtalk source file the following advice applies:

	When practical and when performance is critical, define each entity on
its own source file.

	Source file loading order can impact performance (e.g. if an object
imports a category defined in a source file loaded after the object
source file, no static binding optimizations will be possible).

	Initialization directives that result in the compilation and loading of
other source files (e.g. libraries) should preferably be written in the
application loader file to ensure the availability of the entities
they define when compiling the application source files (thus enabling
static binding optimizations).

Naming conventions

When defining each entity in its own source file, it is recommended that
the source file be named after the entity identifier. For parametric objects,
the identifier arity can be appended to the identifier functor. By default,
all Logtalk source files use the extension .lgt but this is optional
and can be set in the adapter files. For example, we may define an object
named vehicle and save it in a vehicle.lgt source file. A sort(_)
parametric object would be saved it on a sort_1.lgt source file.

Source file text encoding

The text encoding used in a source file may be declared using the
encoding/1 directive when running Logtalk with
backend Prolog compilers that support multiple encodings (check the
encoding_directive flag in the
adapter file of your Prolog compiler).

Multi-pass compiler

Logtalk is implemented using a multi-pass compiler. In comparison,
some Prolog systems use a multi-pass compiler while others use a single-pass
compiler. While there are pros and cons with each solution, the most relevant
consequence in this context is for the content of source files. In Logtalk,
entities and predicates only become available (for the runtime system) after
the source file is successfully compiled and loaded. This may prevent some
compiler optimizations, notably static binding, if some of the referred
entities are defined in the same source file. On the other hand, the order of
predicate directives and predicate definitions is irrelevant. In contrast,
in a system implemented using a single-pass compiler, the order of the source
file terms can and often is significant for proper and successful compilation.
In these systems, predicates may become available for calling as soon as they
are compiled even if the remaining of the source file is yet to be compiled.

The Logtalk compiler reads source files using the Prolog standard read_term/3
predicate. This ensures compatibility with any syntax extensions that the
used backend may implement. In the first compiler stage, all source file
terms are read and data about all defined entities, directives, predicates,
and grammar rules is collected. Any defined term-expansion rules
are applied to the read terms. Grammar rules are expanded into predicate
clauses unless expanded by user-defined term-expansion rules. The second
stage compiles all initialization goals and clause bodies, taking advantage
of the data collected in the first stage, and applying any defined
goal-expansion rules. Depending on the compilation mode, the generated
code can be instrumented for debugging tools or optimized for performance.
Linter checks are performed during these two first stages. The final step
in the second stage is to write the generated intermediate Prolog code
into a temporary file. In the third and final stage, this intermediate
Prolog file is compiled and loaded by the used backend. These intermediate
files are deleted by default after loading (see the clean
flag description for details).

Compiling and loading your applications

Your applications will be made of source files containing your objects,
protocols, and categories. The source files can be compiled to disk by
calling the logtalk_compile/1 built-in predicate:

| ?- logtalk_compile([source_file1, source_file2, ...]).

This predicate runs the compiler on each file and, if no fatal errors
are found, outputs Prolog source files that can then be consulted or
compiled in the usual way by your Prolog compiler.

To compile to disk and also load into memory the source files we can use
the logtalk_load/1 built-in predicate:

| ?- logtalk_load([source_file1, source_file2, ...]).

This predicate works in the same way of the predicate
logtalk_compile/1 but also loads the compiled files into memory.

Both predicates expect a source file name or a list of source file names
as an argument. The Logtalk source file name extension, as defined in
the adapter file (by default, .lgt), can be omitted.

If you have more than a few source files then you may want to use a
loader file helper file containing the calls to the logtalk_load/1-2
predicates. Consulting or compiling the loader file will then compile
and load all your Logtalk entities into memory (see below for details).

With most backend Prolog compilers, you
can use the shorthands {File} for logtalk_load(File) and
{File1, File2, ...} for logtalk_load([File1, File2, ...]). The use
these shorthands should be restricted to the Logtalk/Prolog top-level
interpreter as they are not part of the language specification and may be
commented out in case of conflicts with backend Prolog compiler features.

The built-in predicate logtalk_make/0 can be used to
reload all modified source files. With most backend Prolog compilers,
you can also use the {*} top-level shortcut. Files are also reloaded
when the compilation mode changes. An extended version of this predicate,
logtalk_make/1, accepts multiple targets including
all, clean, check, circular, documentation, caches,
debug, normal, and optimal. For example, assume that you have
loaded your application files and found a bug. You can easily recompile the
files in debug mode by using the logtalk_make(debug) goal. After
debugging and fixing the bug, you can reload the files in normal mode
using the logtalk_make(normal) or in optimized mode using the
logtalk_make(optimal) goal. See the predicates documentation for a
complete list of targets and top-level shortcuts. In particular, the
logtalk_make(clean) goal can be specially useful before switching
backend Prolog compilers as the generated intermediate files may not be
compatible. The logtalk_make(caches) goal is usually used when
benchmarking compiler performance improvements.

Compiler errors, warnings, and comments

Following a Prolog tradition inherited from Quintus Prolog, the compiler
prefixes (by default) errors with a ! and warnings with a *. For
example:

! Existence error: directive object/1 does not exist
! in directive end_object/0
! in file /home/jdoe/logtalk/examples/errors/unmatched_directive.lgt at or above line 27

* No matching clause for goal: baz(a)
* while compiling object main_include_compiler_warning
* in file /home/jdoe/logtalk/examples/errors/include_compiler_warning.lgt between lines 38-39

Compiler comments are prefixed by %. For example:

?- {ack(loader)}.
% [/home/jdoe/logtalk/examples/ack/ack.lgt loaded]
% [/home/jdoe/logtalk/examples/ack/loader.lgt loaded]
% (0 warnings)
true.

Loader files

If you look into the Logtalk distribution, you will notice that most source
code directories (e.g. of tools, libraries, and examples) contain a driver
file that can be used to load all included source files and any required
libraries. These loader files are usually named loader.lgt or contain
the word loader in their name. Loader files are ordinary source files and
thus compiled and loaded like any source file. By also defining a loader file
for your project, you can then load it by simply typing:

| ?- {loader}.

Another driver file, usually named tester.lgt (or containing the word
tester in its name) is commonly used to load and run tests. By also
defining a tester file for your project, you can then run its tests by
simply typing:

| ?- {tester}.

Usually these driver files contain calls to the built-in predicates
set_logtalk_flag/2 (e.g. for setting global,
project-specific, flag values) and logtalk_load/1 or
logtalk_load/2 (for loading project files), wrapped
inside a Prolog initialization/1 directive for portability. For
instance, if your code is split in three source files named
source1.lgt, source2.lgt, and source3.lgt, then the contents
of your loader file could be:

:- initialization((
 % set project-specific global flags
 set_logtalk_flag(events, allow),
 % load the project source files
 logtalk_load([source1, source2, source3])
)).

Another example of directives that are often used in a loader file would
be op/3 directives declaring global operators needed by your
project. Loader files are also often used for setting source
file-specific compiler flags (this is useful even when you only have a
single source file if you always load it with using the same set of
compiler flags). For example:

:- initialization((
 % set project-specific global flags
 set_logtalk_flag(underscore_variables, dont_care),
 set_logtalk_flag(source_data, off),
 % load the project source files
 logtalk_load(
 [source1, source2, source3],
 % source file-specific flags
 [portability(warning)]),
 logtalk_load(
 [source4, source5],
 % source file-specific flags
 [portability(silent)])
)).

To take the best advantage of loader and tester files, define a clause for
the multifile and dynamic logtalk_library_path/2 predicate for the
directory containing your source files as explained in the next section.

When your project also uses Prolog module resources, the loader file is
also the advised place to load them, preferably without any exports.
For example:

:- use_module(library(clpfd), []).
...

:- initialization((
 ...
)).

Complex projects often use a main loader file that loads the loader files
of each of the project components. Thus, loader files provide a central
point to understand a project organization and dependencies.

Worth mentioning here a common mistake when first starting working with loader
files. New users sometimes try to set compiler flags using logtalk_load/2
when loading a loader file. For example, by writing:

| ?- logtalk_load(loader, [optimize(on)]).

This will not work as you might expect as the compiler flags will only
be used in the compilation of the loader.lgt file itself and will
not affect the compilation of files loaded through the
initialization/1 directive contained on the loader file.

Libraries of source files

Logtalk defines a library simply as a directory containing source
files. Library locations can be specified by defining or asserting
clauses for the dynamic and multifile predicate
logtalk_library_path/2. For example:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(shapes, '$LOGTALKUSER/examples/shapes/').

The first argument of the predicate is used as an alias for the path on
the second argument. Library aliases may also be used on the second
argument. For example:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(lgtuser, '$LOGTALKUSER/').
logtalk_library_path(examples, lgtuser('examples/')).
logtalk_library_path(viewpoints, examples('viewpoints/')).

This allows us to load a library source file without the need to first
change the current working directory to the library directory and then
back to the original directory. For example, in order to load a
loader.lgt file, contained in a library named viewpoints, we
just need to type:

| ?- logtalk_load(viewpoints(loader)).

The best way to take advantage of this feature is to load at startup a source
file containing clauses for the logtalk_library_path/2 predicate needed
for all available libraries (typically, using a settings file, as
discussed below). This allows us to load library source files or entire
libraries without worrying about libraries paths, improving code portability.
The directory paths on the second argument should always end with the path
directory separator character. Most backend Prolog compilers allows the use
of environment variables in the second argument of the logtalk_library_path/2
predicate. Use of POSIX relative paths (e.g. '../' or './') for
top-level library directories (e.g. lgtuser in the example above) is
not advised as different backend Prolog compilers may start with
different initial working directories, which may result in portability
problems of your loader files.

This library notation provides functionality inspired by the
file_search_path/2 mechanism introduced by Quintus Prolog and later
adopted by some other Prolog compilers but with a key difference: there
is no fragile search mechanism and the Logtalk make can be used to
check for duplicated library aliases. Multiple definitions for the
same alias are problematic when using external dependencies as any
third-party update to those dependencies can introduce file name clashes.
Note that the potential for these clashes cannot be reliably minimized by
a careful ordering of the logtalk_library_path/2 predicate clauses
due to this predicate being multifile and dynamic.

Settings files

Although is always possible to edit the backend Prolog compiler adapter
files, the recommended solution to customize compiler flags is to create a
settings.lgt file in the Logtalk user folder or in the user home folder.
Depending on the backend Prolog compiler and on the operating-system,
is also possible to define per-project settings files by creating a
settings.lgt file in the project directory and by starting Logtalk from
this directory. At startup, Logtalk tries to load a settings.lgt file
from the following directories, searched in sequence:

	Startup directory ($LOGTALK_STARTUP_DIRECTORY)

	Logtalk user directory ($LOGTALKUSER)

	User home directory ($HOME; %USERPROFILE% on Windows if %HOME% is not defined)

	Application data directory (%APPDATA%\Logtalk; only on Windows)

	Config directory ($XDG_CONFIG_HOME/logtalk)

	Default config directory ($HOME/.config/logtalk/)

The startup directory is only searched when the read-only
settings_file flag is set to allow.
When no settings files are found, Logtalk will use the default compiler flag
values set on the backend Prolog compiler adapter files. When limitations of
the backend Prolog compiler or on the operating-system prevent Logtalk from
finding the settings files, these can always be loaded manually after Logtalk
startup.

Settings files are normal Logtalk source files (although when automatically
loaded by Logtalk they are compiled and loaded silently with any errors being
reported but otherwise ignored). The usual contents is an
initialization/1 Prolog directive containing calls to the
set_logtalk_flag/2
Logtalk built-in predicate and asserting clauses for the
logtalk_library_path/2
multifile dynamic predicate. Note that the
set_logtalk_flag/2
directive cannot be used as its scope is local to the source file being
compiled.

One of the troubles of writing portable applications is the different
feature sets of Prolog compilers. Using the Logtalk support for
conditional compilation and the prolog_dialect
flag we can write a single settings file that can be used with several
backend Prolog compilers:

:- if(current_logtalk_flag(prolog_dialect, yap)).

 % YAP specific settings
 ...

:- elif(current_logtalk_flag(prolog_dialect, gnu)).

 % GNU Prolog specific settings
 ...

:- else.

 % generic Prolog settings

:- endif.

The Logtalk distribution includes a settings-sample.lgt sample file with
commented out code snippets for common settings.

Compiler linter

The compiler includes a linter that checks for a wide range
of possible problems in source files. Notably, the compiler checks for unknown
entities, unknown predicates, undefined predicates (i.e. predicates that
are declared but not defined), missing directives (including missing
dynamic/1 and meta_predicate/1 directives), redefined built-in
predicates, calls to non-portable predicates, singleton variables, goals that
are always true or always false (i.e. goals that are can be replaced by
true or fail), and trivial fails (i.e. calls to predicates with no
match clauses). Most of the linter warnings are controlled by
compiler flags. See the next section
for details.

Compiler flags

The logtalk_load/1 and logtalk_compile/1
always use the current set of default compiler flags as specified in
your settings file and the Logtalk adapter files or changed for the
current session using the built-in predicate
set_logtalk_flag/2.
Although the default flag values cover the usual cases, you may want to
use a different set of flag values while compiling or loading some of
your Logtalk source files. This can be accomplished by using the
logtalk_load/2 or the logtalk_compile/2
built-in predicates. These two predicates accept a list of options
affecting how a Logtalk source file is compiled and loaded:

| ?- logtalk_compile(Files, Options).

or:

| ?- logtalk_load(Files, Options).

In fact, the logtalk_load/1 and logtalk_compile/1 predicates are
just shortcuts to the extended versions called with the default compiler
flag values. The options are represented by a compound term where the
functor is the flag name and the sole argument is the flag value.

We may also change the default flag values from the ones loaded from the
adapter file by using the set_logtalk_flag/2
built-in predicate. For example:

| ?- set_logtalk_flag(unknown_entities, silent).

The current default flags values can be enumerated using the
current_logtalk_flag/2 built-in predicate:

| ?- current_logtalk_flag(unknown_entities, Value).

Value = silent
yes

Logtalk also implements a set_logtalk_flag/2
directive, which can be used to set flags within a source file or within
an entity. For example:

% compile objects in this source file with event support
:- set_logtalk_flag(events, allow).

:- object(foo).

 % compile this object with support
 % for dynamic predicate declarations
 :- set_logtalk_flag(dynamic_declarations, allow).
 ...

:- end_object.

...

Note that the scope of the set_logtalk_flag/2 directive is local to
the entity or to the source file containing it.

Note

Applications should never rely on default flag values for working
properly. Whenever the compilation of a source file or an entity
requires a specific flag value, the flag should be set explicitly
in the entity, in the source file, or in the loader file.

Read-only flags

Some flags have read-only values and thus cannot be changed at runtime. Their
values are defined in the Prolog backend adapter files
These are:

	settings_file
	Allows or disables loading of a settings file at startup.
Possible values are allow, restrict, and deny. The usual
default value is allow but it can be changed by editing the adapter
file when e.g. embedding Logtalk in a compiled application. With a value
of allow, settings files are searched in the startup directory,
in the Logtalk user directory, in the user home directory, in the
APPDATA if running on Windows, and in the XDG configuration directory.
With a value of restrict, the search for the settings files skips the
startup directory.

	prolog_dialect
	Identifier of the backend Prolog compiler (an atom). This flag can be used
for conditional compilation
of Prolog compiler specific code.

	prolog_version
	Version of the backend Prolog compiler (a compound term,
v(Major, Minor, Patch), whose arguments are integers). This flag
availability depends on the Prolog compiler. Checking the value of
this flag fails for any Prolog compiler that does not provide access
to version data.

	prolog_compatible_version
	Compatible version of the backend Prolog compiler (a compound term,
usually with the format @>=(v(Major, Minor, Patch)), whose
arguments are integers). This flag availability depends on the Prolog
compiler. Checking the value of this flag fails for any Prolog
compiler that does not provide access to version data.

	unicode
	Informs Logtalk if the backend Prolog compiler supports the Unicode
standard. Possible flag values are unsupported, full (all
Unicode planes supported), and bmp (supports only the Basic
Multilingual Plane).

	encoding_directive
	Informs Logtalk if the backend Prolog compiler supports the
encoding/1 directive.
This directive is used for declaring the text encoding of source
files. Possible flag values are unsupported, full (can be
used in both Logtalk source files and compiler generated Prolog
files), and source (can be used only in Logtalk source files).

	tabling
	Informs Logtalk if the backend Prolog compiler provides tabling
programming support. Possible flag values are unsupported and
supported.

	engines
	Informs if the backend Prolog compiler provides the required low
level multi-threading programming support for Logtalk
threaded engines. Possible flag values
are unsupported and supported.

	threads
	Informs if the backend Prolog compiler provides the required low
level multi-threading programming support for all high-level Logtalk
multi-threading features. Possible flag
values are unsupported and supported.

	modules
	Informs Logtalk if the backend Prolog compiler provides suitable
module support. Possible flag values are unsupported and
supported (independently of this flag, Logtalk provides limited support
for compiling Prolog modules as objects).

	coinduction
	Informs Logtalk if the backend Prolog compiler provides the
required minimal support for cyclic terms necessary for working with
coinductive predicates. Possible flag
values are unsupported and supported.

Version flags

	version_data(Value)
	Read-only flag whose value is the compound term
logtalk(Major,Minor,Patch,Status). The first three arguments are
integers and the last argument is an atom, possibly empty,
representing version status: aN for alpha versions, bN for
beta versions, rcN for release candidates (with N being a
natural number), and stable for stable versions. The
version_data flag is also a de facto standard for Prolog
compilers.

Lint flags

	unknown_entities(Option)
	Controls the unknown entity warnings, resulting from loading an
entity that references some other entity that is not currently
loaded. Possible option values are warning (the usual default)
and silent. Note that these warnings are not always avoidable,
specially when using reflective designs of class-based hierarchies.

	unknown_predicates(Option)
	Defines the compiler behavior when unknown messages or calls to unknown
predicates (or non-terminals) are found. An unknown message is a message
sent to an object that is not part of the object protocol. An unknown
predicate is a called predicate that is neither locally declared or
defined. Possible option values are error, warning (the usual
default), and silent (not recommended).

	undefined_predicates(Option)
	Defines the compiler behavior when calls to declared but undefined
predicates (or non-terminals) are found. Note that these calls will
fail at runtime as per closed-world assumption. Possible option values
are error, warning (the usual default), and silent (not
recommended).

	steadfastness(Option)
	Controls warnings about possible non steadfast
predicate definitions due to variable aliasing at a clause head and a cut
in the clause body. Possible option values are warning and silent
(the usual default due to the possibility of false positives).

	portability(Option)
	Controls the non-ISO specified Prolog built-in predicate and non-ISO
specified Prolog built-in arithmetic function calls warnings plus use
of non-standard Prolog flags and/or flag values. Possible option
values are warning and silent (the usual default).

	deprecated(Option)
	Controls the deprecated predicate warnings. Possible option
values are warning (the usual default) and silent.

	missing_directives(Option)
	Controls the missing predicate directive warnings. Possible option
values are warning (the usual default) and silent (not
recommended).

	duplicated_directives(Option)
	Controls the duplicated predicate directive warnings. Possible option
values are warning (the usual default) and silent (not
recommended). Note that conflicting directives for the same predicate
are handled as errors, not as duplicated directive warnings.

	trivial_goal_fails(Option)
	Controls the printing of warnings for calls to local static predicates
with no matching clauses. Possible option values are warning (the
usual default) and silent (not recommended).

	always_true_or_false_goals(Option)
	Controls the printing of warnings for goals that are always true or
false. Possible option values are warning (the usual default) and
silent (not recommended).

	grammar_rules(Option)
	Controls the printing of grammar rules related warnings. Possible
option values are warning (the usual default) and silent (not
recommended).

	arithmetic_expressions(Option)
	Controls the printing of arithmetic expressions related warnings. Possible
option values are warning (the usual default) and silent (not
recommended).

	lambda_variables(Option)
	Controls the printing of lambda variable related warnings. Possible
option values are warning (the usual default) and silent (not
recommended).

	suspicious_calls(Option)
	Controls the printing of suspicious call warnings. Possible option
values are warning (the usual default) and silent (not
recommended).

	redefined_built_ins(Option)
	Controls the Logtalk and Prolog built-in predicate redefinition warnings.
Possible option values are warning and silent (the usual default).
Warnings about redefined Prolog built-in predicates are often the result
of running a Logtalk application on several Prolog compilers as each
Prolog compiler defines its set of built-in predicates.

	redefined_operators(Option)
	Controls the Logtalk and Prolog built-in operator redefinition warnings.
Possible option values are warning (the usual default) and silent.
Redefining Logtalk operators or standard Prolog operators can break term
parsing causing syntax errors or change how terms are parsed introducing
bugs.

	singleton_variables(Option)
	Controls the singleton variable warnings. Possible option values are
warning (the usual default) and silent (not recommended).

	underscore_variables(Option)
	Controls the interpretation of variables that start with an
underscore (excluding the anonymous variable) that occur once in a
term as either don’t care variables or singleton variables. Possible
option values are dont_care and singletons (the usual
default). Note that, depending on your Prolog compiler, the
read_term/3 built-in predicate may report variables that start
with an underscore as singleton variables. There is no standard
behavior, hence this option.

	naming(Option)
	Controls warnings about entity, predicate, and variable names per
official coding guidelines (which advise using underscores for entity
and predicate names and camel case for variable names). Additionally,
variable names should not differ only on case. Possible option values
are warning and silent (the usual default due to the current
limitation to ASCII names and the computational cost of the checks).

	duplicated_clauses(Option)
	Controls warnings of duplicated entity clauses (and duplicated entity
grammar rules). Possible option values are warning and silent
(the usual default due to the required heavy computations). When the
term-expansion mechanism is used and results in duplicated clauses,
the reported line numbers are for lines of the original clauses that
were expanded.

	disjunctions(Option)
	Controls warnings on clauses where the body is a disjunction. Possible
option values are warning (the usual default) and silent. As
per coding guidelines, in most cases, these clauses can be rewritten
using a clause per disjunction branch for improved code readability.

	conditionals(Option)
	Controls warnings on if-then-else and soft-cut control constructs. Possible
option values are warning (the usual default) and silent. Warnings
include misuse of cuts, potential bugs in the test part, and missing else
part (lack of compliance with coding guidelines).

	catchall_catch(Option)
	Controls warnings on catch/3 goals that catch all exceptions. Possible
option values are warning and silent (the usual default). Lack of
standardization often makes it tricky or cumbersome to avoid too generic
catch/3 goals when writing portable code.

	tail_recursive(Option)
	Controls warnings of non-tail recursive predicate (and non-terminal)
definitions. The lint check does not detect all cases of non-tail
recursive predicate definitions, however. Also, definitions that
make two or more recursive calls are not reported as usually they
cannot be changed to be tail recursive. Possible option values are
warning and silent (the usual default).

Optional features compilation flags

	complements(Option)
	Allows objects to be compiled with support for complementing
categories turned off in order to improve performance and security.
Possible option values are allow (allow complementing categories
to override local object predicate declarations and definitions),
restrict (allow complementing categories to add predicate
declarations and definitions to an object but not to override them),
and deny (ignore complementing categories; the usual default).
This option can be used on a per-object basis. Note that changing
this option is of no consequence for objects already compiled and
loaded.

	dynamic_declarations(Option)
	Allows objects to be compiled with support for dynamic declaration of
new predicates turned off in order to improve performance and
security. Possible option values are allow and deny (the
usual default). This option can be used on a per-object basis. Note
that changing this option is of no consequence for objects already
compiled and loaded. This option is only checked when sending an
asserta/1 or assertz/1 message to an
object. Local asserting of new predicates is always allowed.

	events(Option)
	Allows message sending calls to be compiled with or without
event-driven programming support. Possible
option values are allow and deny (the usual default). Objects
(and categories) compiled with this option set to deny use
optimized code for message-sending calls that does not trigger
events. As such, this option can be used on a per-object (or
per-category) basis. Note that changing this option is of no
consequence for objects already compiled and loaded.

	context_switching_calls(Option)
	Allows context switching calls ((<<)/2) to be either allowed or
denied. Possible option values are allow and deny. The
default flag vale is allow. Note that changing this option is of
no consequence for objects already compiled and loaded.

Backend Prolog compiler and loader flags

	prolog_compiler(Flags)
	List of compiler flags for the generated Prolog files. The valid
flags are specific to the used Prolog backend compiler. The usual
default is the empty list. These flags are passed to the backend
Prolog compiler built-in predicate that is responsible for compiling
to disk a Prolog file. For Prolog compilers that don’t provide
separate predicates for compiling and loading a file, use instead
the prolog_loader flag.

	prolog_loader(Flags)
	List of loader flags for the generated Prolog files. The valid flags
are specific to the used Prolog backend compiler. The usual default
is the empty list. These flags are passed to the backend Prolog
compiler built-in predicate that is responsible for loading a
(compiled) Prolog file.

Other flags

	scratch_directory(Directory)
	Sets the directory to be used to store the temporary files generated
when compiling Logtalk source files. This directory can be specified
using an atom or using library notation. The directory must
always end with a slash. The default value is a sub-directory of the
source files directory, either './lgt_tmp/' or './.lgt_tmp/'
(depending on the backend Prolog compiler and operating-system).
Relative directories must always start with './' due to the lack
of a portable solution to check if a path is relative or absolute.
The default value set on the backend Prolog compiler adapter
file can be overriden by defining the scratch_directory library
alias (see the logtalk_library_path/2
predicate documentation for details).

	report(Option)
	Controls the default printing of messages. Possible option values are
on (by usual default, print all messages that are not intercepted
by the user), warnings (only print warning and error messages
that are not intercepted by the user), and off (do not print any
messages that are not intercepted by the user).

	code_prefix(Character)
	Enables the definition of prefix for all functors of Prolog code
generated by the Logtalk compiler. The option value must be a single
character atom. Its default value is '$'. Specifying a code
prefix provides a way to solve possible conflicts between Logtalk
compiled code and other Prolog code. In addition, some Prolog
compilers automatically hide predicates whose functor start with a
specific prefix such as the character $. Although this is not a
read-only flag, it should only be changed at startup time and before
loading any source files. When changing this flag (e.g. from a
settings file), restart with the clean
flag turned on to ensure that any compiled files using the old
code_prefix value will be recompiled.

	optimize(Option)
	Controls the compiler optimizations. Possible option values are
on (used by default for deployment) and off (used by default
for development). Compiler optimizations include the use of static
binding whenever possible, the removal of redundant calls to
true/0 from predicate clauses, the removal of redundant
unifications when compiling grammar rules, and inlining of predicate
definitions with a single clause that links to a local predicate, to
a plain Prolog built-in (or foreign) predicate, or to a Prolog module
predicate with the same arguments. Care should be taken when
developing applications with this flag turned on as changing and
reloading a file may render static binding optimizations
invalid for code defining in other loaded files. Turning on this
flag automatically turns off the debug flag.

	source_data(Option)
	Defines how much information is retained when compiling a source
file. Possible option values are on (the usual default for
development) and off. With this flag set to on, Logtalk will
keep the information represented using documenting directives plus
source location data (including source file names and line numbers).
This information can be retrieved using the
reflection API and is useful for
documenting, debugging, and integration with third-party development
tools. This flag can be turned off in order to generate more compact
code.

	debug(Option)
	Controls the compilation of source files in debug mode (the Logtalk
default debugger can only be used with files compiled in this mode).
Also controls, by default, printing of debug> and
debug(Topic) messages. Possible option values are on and
off (the usual default). Turning on this flag automatically turns
off the optimize flag.

	reload(Option)
	Defines the reloading behavior for source files. Possible option
values are skip (skip reloading of already loaded files; this value
can be used to get similar functionality to the Prolog directive
ensure_loaded/1 but should be used only with fully debugged
code), changed (the usual default; reload files only when they
are changed since last loaded provided that any explicit flags
and the compilation mode are the same as before), and always
(always reload files).

	relative_to(Directory)
	Defines a base directory for resolving relative source file paths.
The default value is the directory of the source file being compiled.

	hook(Object)
	Allows the definition of an object (which can be the pseudo-object
user) implementing the
expanding built-in
protocol. The hook object must be compiled and loaded when this option
is used. It’s also possible to specify a Prolog module instead of a
Logtalk object but the module must be pre-loaded and its identifier
must be different from any object identifier.

	clean(Option)
	Controls cleaning of the intermediate Prolog files generated when
compiling Logtalk source files. Possible option values are off
and on (the usual default). When turned on, intermediate files
are deleted after loading and all source files are recompiled
disregarding any existing intermediate files. When turned off, the
intermediate files are kept. This is useful when embedding applications,
which requires collecting the intermediate code, and when working on
large applications to avoid repeated recompilation of stable code.
The flag must be turned on when changing compilation modes, changing
flags such as code_prefix, or when turning
on linter flags that are off by default without at the same time making
changes to the application source files themselves as any existing
intermediate files would not be recompiled as necessary due to file
timestamps not changing.

User-defined flags

Logtalk provides a create_logtalk_flag/3
predicate that can be used for defining new flags.

Reloading source files

As a general rule, reloading source files should never occur in
production code and should be handled with care in development code.
Reloading a Logtalk source file usually requires reloading the
intermediate Prolog file that is generated by the Logtalk compiler. The
problem is that there is no standard behavior for reloading Prolog
files. For static predicates, almost all Prolog compilers replace the
old definitions with the new ones. However, for dynamic predicates, the
behavior depends on the Prolog compiler. Most compilers replace the old
definitions but some of them simply append the new ones, which usually
leads to trouble. See the compatibility notes for the backend Prolog
compiler you intend to use for more information. There is an additional
potential problem when using multi-threading programming. Reloading a
threaded object does not recreate from scratch its old message queue,
which may still be in use (e.g. threads may be waiting on it).

When using library entities and stable code, you can avoid reloading the
corresponding source files (and, therefore, recompiling them) by setting
the reload compiler flag to skip. For code under
development, you can turn off the clean flag to avoid
recompiling files that have not been modified since last compilation
(assuming that backend Prolog compiler that you are using supports
retrieving of file modification dates). You can disable deleting the
intermediate files generated when compiling source files by changing the
default flag value in your settings file, by using the corresponding
compiler flag with the compiling and loading built-in predicates, or,
for the remaining of a working session, by using the call:

| ?- set_logtalk_flag(clean, off).

Some caveats that you should be aware. First, some warnings that might
be produced when compiling a source file will not show up if the
corresponding object file is up-to-date because the source file is not
being (re)compiled. Second, if you are using several Prolog compilers
with Logtalk, be sure to perform the first compilation of your source
files with the clean flag turned off: the intermediate Prolog files
generated by the Logtalk compiler may be not compatible across Prolog
compilers or even for the same Prolog compiler across operating systems
(e.g. due to the use of different character encodings or end-of-line
characters).

Batch processing

When doing batch processing, you probably want to turn off the
report flag to suppress all messages of type
banner, comment, comment(_), warning, and warning(_)
that are normally printed. Note that error messages and messages providing
information requested by the user will still be printed.

Optimizing performance

The default compiler flag settings are appropriated for the
development but not necessarily for the deployment of
applications. To minimize the generated code size, turn the
source_data flag off. To optimize runtime
performance, turn on the optimize flag.
Your chosen backend Prolog compiler may also provide performance
related flags; check its documentation.

Pay special attention to file compilation/loading order. Whenever
possible, compile and load your files taking into account file dependencies.
By default, the compiler will print a warning whenever a file references
an entity that is not yet loaded. Solving these warnings is key for optimal
performance by enabling static binding optimizations. For a clear
picture of file dependencies, use the diagrams tool to
generate a file dependency diagram for your application.

Minimize the use of dynamic predicates. Parametric objects can often be
used in alternative. When dynamic predicates cannot be avoided, try to
make them private. Declaring a dynamic predicate also as a private
predicate allows the compiler to optimize local calls to the database
methods (e.g. assertz/1 and retract/1) that
modify the predicate.

Sending a message to self implies dynamic binding but
there are often cases where (::)/1 is misused
to call an imported or inherited predicate that is never going to be
redefined in a descendant. In these cases, a super call,
(^^)/1, can be used instead with
the benefit of often enabling static binding. Most of the guidelines for
writing efficient Prolog code also apply to Logtalk code. In particular,
define your predicates to take advantage of first-argument indexing. In
the case of recursive predicates, define them as tail-recursive predicates
whenever possible.

See the section on performance
for a detailed discussion on Logtalk performance.

Portable applications

Logtalk is compatible with most modern standards compliant Prolog compilers.
However, this does not necessarily imply that your Logtalk applications will
have the same level of portability. If possible, you should only use in your
applications Logtalk built-in predicates and ISO Prolog specified
built-in predicates and arithmetic functions. If you need to use
built-in predicates (or built-in arithmetic functions) that may not be
available in other Prolog compilers, you should try to encapsulate the
non-portable code in a small number of objects and provide a portable
interface for that code through the use of Logtalk protocols. An
example will be code that access operating-system specific features. The
Logtalk compiler can warn you of the use of non-ISO specified built-in
predicates and arithmetic functions by using the
portability compiler flag.

Conditional compilation

Logtalk supports conditional compilation within source files using the
if/1, elif/1,
else/0, and endif/0 directives. This
support is similar to the support found in several Prolog systems such
as ECLiPSe, GNU Prolog, SICStus Prolog, SWI-Prolog, XSB, and YAP.

Avoiding common errors

Try to write objects and protocol documentation before writing any
other code; if you are having trouble documenting a predicate perhaps we
need to go back to the design stage.

Try to avoid lengthy hierarchies. Composition is often a better choice
over inheritance for defining new objects (Logtalk supports
component-based programming through the use of
categories). In addition, prototype-based
hierarchies are semantically simpler than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we
should always try to minimize the use of non-logical features such as
asserts and retracts.

Since each Logtalk entity is independently compiled, if an object
inherits a dynamic or a meta-predicate predicate, then the respective
directives must be repeated to ensure a correct compilation.

In general, Logtalk does not verify if a user predicate call/return
arguments comply with the declared modes. On the other hand, Logtalk
built-in predicates, built-in methods, and message sending control
structures are fully checked for calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the
chosen Prolog compiler. For instance, the error terms that are generated
by some Logtalk built-in predicates assume that the Prolog built-in
predicates behave as defined in the ISO standard regarding error
conditions. In particular, if your Prolog compiler does not support a
read_term/3 built-in predicate compliant with the ISO Prolog
Standard definition, then the current version of the Logtalk compiler
may not be able to detect misspell variables in your source code.

Coding style guidelines

It is suggested that all code between an entity opening and closing
directives be indented by one tab stop. When defining entity code, both
directives and predicates, Prolog coding style guidelines may be
applied. All Logtalk source files, examples, and standard library
entities use tabs (the recommended setting is a tab width equivalent to
4 spaces) for laying out code. Closed related entities can be defined in
the same source file. However, for best performance, is often necessary
to have an entity per source file. Entities that might be useful in
different contexts (such as library entities) are best defined in their
own source files.

A detailed coding style guide is available at the Logtalk official website.

Printing messages and asking questions

Applications, components, and libraries often print all sorts of messages.
These include banners, logging, debugging, and computation results messages
but also, in some cases, user interaction messages. However, the authors of
applications, components, and libraries often cannot anticipate the context
where their software will be used and thus decide which and when messages
should be displayed, suppressed, or diverted. Consider the different
components in a Logtalk application development and deployment. At the base
level, you have the Logtalk compiler and runtime. The compiler writes
messages related to e.g. compiling and loading files, compiling
entities, compilation warnings and errors. The runtime may write
banner messages or throw execution errors that may result in printing
human-level messages. The development environment can be console-based
or you may be using a GUI tool such as PDT. In the latter case, PDT
needs to intercept the Logtalk compiler and runtime messages to present
the relevant information using its GUI. Then you have all the other
components in a typical application. For example, your own libraries and
third-party libraries. The libraries may want to print messages on its
own, e.g. banners, debugging information, or logging information. As you
assemble all your application components, you want to have the final
word on which messages are printed, where, and when. Uncontrolled message
printing by libraries could potentially disturb application flow, expose
implementation details, spam the user with irrelevant details, or break
user interfaces.

The solution is to decouple the calls to print a message from the actual
printing of the output text. The same is true for calls to read user input.
By decoupling the call to input some data from the actual read of the data,
we can easily switched e.g. from a command-line interface to a GUI input
dialog or even automate providing the data (e.g. when automating testing
of user interaction).

Logtalk provides a solution based on the structured message printing
mechanism that was introduced by Quintus Prolog, where it was apparently
implemented by Dave Bowen (thanks to Richard O’Keefe for the historical
bits). This mechanism gives the programmer full control of message printing,
allowing it to filter, rewrite, or redirect any message. Variations of this
mechanism can also be found in some Prolog systems including SICStus Prolog,
SWI-Prolog, and YAP. Based on this mechanism, Logtalk introduces an extension
that also allows abstracting asking a user for input. Both mechanisms are
implemented by the logtalk built-in object and
described in this section. The message printing mechanism is extensively
used by the Logtalk compiler itself and by the developer tools. The question
asking mechanism is used e.g. in the debugger tool.

Printing messages

The main predicate for printing a message is
logtalk::print_message/3.
A simple example, using the Logtalk runtime is:

| ?- logtalk::print_message(banner, core, banner).

Logtalk 3.23.0
Copyright (c) 1998-2018 Paulo Moura
yes

The first argument of the predicate is the kind of message that we
want to print. In this case, we use banner to indicate that
we are printing a product name and copyright banner. An extensive
list of message kinds is supported by default:

	banner
	banner messages (used e.g. when loading tools or main application
components; can be suppressed by setting the report
flag to warnings or off)

	help
	messages printed in reply for the user asking for help (mostly for
helping port existing Prolog code)

	information and information(Group)
	messages usually printed in reply to a user request for information

	silent and silent(Group)
	not printed by default (but can be intercepted using the
message_hook/4 predicate)

	comment and comment(Group)
	useful but usually not essential messages (can be suppressed by
setting the report flag to warnings or off)

	warning and warning(Group)
	warning messages (generated e.g. by the compiler; can be suppressed
by turning off the report flag)

	error and error(Group)
	error messages (generated e.g. by the compiler)

	debug, debug(Group)
	debugging messages (by default, only printed when the debug
flag is turned on; the print_message/3 goals for these messages are
suppressed by the compiler when the optimize flag is
turned on)

	question, question(Group)
	questions to a user

Using a compound term allows easy partitioning of messages of the same kind
in different groups. Note that you can define your own alternative message
kind identifiers, for your own components, together with suitable definitions
for their associated prefixes and output streams.

The second argument of print_message/3 represents the component
defining the message being printed. Here component is a generic term that
can designate e.g a tool, a library, or some sub-system in a large application.
In our example, the component name is core, identifying the Logtalk
compiler/runtime. This argument was introduced to provide multiple namespaces
for message terms and thus simplify programming-in-the-large by allowing easy
filtering of all messages from a specific component and also avoiding conflicts
when two components happen to define the same message term (e.g. banner).
Users should choose and use a unique name for a component, which usually is
the name of the component itself. For example, all messages from the
lgtunit tool use lgtunit for the component argument.
The compiler and runtime are interpreted as a single component designated as
core.

The third argument of print_message/3 is the message itself, represented
by a term. In the above example, the message term is banner. Using a
term to represent a message instead of a string with the message text itself
have significant advantages. Notably, it allows using a compound term for
easy parameterization of the message text and simplifies machine-processing,
localization of applications, and message interception. For example:

| ?- logtalk::print_message(comment, core, redefining_entity(object, foo)).

% Redefining object foo
yes

Message tokenization

The advantages of using message terms require a solution for generating
the actual messages text. This is supported by defining grammar rules for
the logtalk::message_tokens//2
multifile non-terminal, which translates a message term, for a given
component, to a list of tokens. For example:

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

logtalk::message_tokens(redefining_entity(Type, Entity), core) -->
 ['Redefining ~w ~q'-[Type, Entity], nl].

The following tokens can be used when translating a message:

	at_same_line
	Signals a following part to a multi-part message with no line break
in between; this token is ignored when it’s not the first in the list
of tokens

	tab(Expression)
	Evaluate the argument as an arithmetic expression and write the resulting
number of spaces; this token is ignored when the number of spaces is not
positive

	nl
	Change line in the output stream

	flush
	Flush the output stream (by calling the flush_output/1 standard
predicate)

	Format-Arguments
	Format must be an atom and Arguments must be a list of format
arguments (the token arguments are passed to a call to the
format/3 de facto standard predicate)

	term(Term, Options)
	Term can be any term and Options must be a list of valid
write_term/3 output options (the token arguments are passed to a
call to the write_term/3 standard predicate)

	ansi(Attributes, Format, Arguments)
	Taken from SWI-Prolog; by default, do nothing; can be used for styled
output

	begin(Kind, Var)
	Taken from SWI-Prolog; by default, do nothing; can be used together
with end(Var) to wrap a sequence of message tokens

	end(Var)
	Taken from SWI-Prolog; by default, do nothing

The logtalk object also defines public predicates for printing a list
of tokens, for hooking into printing an individual token, and for setting
default output stream and message prefixes. For example, the SWI-Prolog
adapter file uses the print message token hook predicate to enable coloring
of messages printed on a console.

Meta-messages

Defining tokenization rules for every message is not always necessary, however.
Logtalk defines several meta-messages that are handy for simple cases and
temporary messages only used to help developing, notably debugging messages.
See the Debugging messages section and the
logtalk built-in object remarks section for details.

Intercepting messages

Calls to the logtalk::print_message/3
predicate can be intercepted by defining clauses for the
logtalk::message_hook/4 multifile
hook predicate. This predicate can suppress, rewrite, and divert messages.

As a first example, assume that you want to make Logtalk startup less verbose
by suppressing printing of the default compiler flag values. This can be
easily accomplished by defining the following category in a settings file:

:- category(my_terse_logtalk_startup_settings).

 :- multifile(logtalk::message_hook/4).
 :- dynamic(logtalk::message_hook/4).

 logtalk::message_hook(default_flags, comment(settings), core, _).

:- end_category.

The printing message mechanism automatically calls the message_hook/4
hook predicate. When this call succeeds, the mechanism assumes that the
message have been successfully handled.

As another example, assume that you want to print all otherwise silent
compiler messages:

:- category(my_verbose_logtalk_message_settings).

 :- multifile(logtalk::message_hook/4).
 :- dynamic(logtalk::message_hook/4).

 logtalk::message_hook(_Message, silent, core, Tokens) :-
 logtalk::message_prefix_stream(comment, core, Prefix, Stream),
 logtalk::print_message_tokens(Stream, Prefix, Tokens).

 logtalk::message_hook(_Message, silent(Key), core, Tokens) :-
 logtalk::message_prefix_stream(comment(Key), core, Prefix, Stream),
 logtalk::print_message_tokens(Stream, Prefix, Tokens).

:- end_category.

This example calls the logtalk::message_prefix_stream/4
hook predicate, which can be used to define a message line prefix and an
output stream for printing messages for a given component.

Asking questions

Logtalk structured question asking mechanism complements the message
printing mechanism. It provides an abstraction for the common task of
asking a user a question and reading back its reply. By default, this
mechanism writes the question, writes a prompt, and reads the answer
using the current user input and output streams but allows all steps to
be intercepted, filtered, rewritten, and redirected. Two typical examples
are using a GUI dialog for asking questions and automatically providing
answers to specific questions.

The question asking mechanism works in tandem with the message printing
mechanism, using it to print the question text and a prompt. It provides
an asking predicate and a hook predicate, both declared and defined in
the logtalk built-in object. The asking predicate,
logtalk::ask_question/5,
is used for ask a question and read the answer. Assume that we defined
the following message tokenization and question prompt and stream:

:- category(hitchhikers_guide_to_the_galaxy).

 :- multifile(logtalk::message_tokens//2).
 :- dynamic(logtalk::message_tokens//2).

 % abstract the question text using the atom ultimate_question;
 % the second argument, hitchhikers, is the application component
 logtalk::message_tokens(ultimate_question, hitchhikers) -->
 ['The answer to the ultimate question of life, the universe and everything is?'-[], nl].

 :- multifile(logtalk::question_prompt_stream/4).
 :- dynamic(logtalk::question_prompt_stream/4).

 % the prompt is specified here instead of being part of the question text
 % as it will be repeated if the answer doesn't satisfy the question closure
 logtalk::question_prompt_stream(question, hitchhikers, '> ', user_input).

:- end_category.

After compiling and loading this category, we can now ask the ultimate
question:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

The answer to the ultimate question of life, the universe and everything is?
> 42.

N = 42
yes

Note that the fourth argument, '=='(42) in our example, is a closure
that is used to check the answers provided by the user. The question is repeated
until the goal constructed by extending the closure with the user answer
succeeds. For example:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).
The answer to the ultimate question of life, the universe and everything is?
> icecream.
> tea.
> 42.

N = 42
yes

Practical usage examples of this mechanism can be found e.g. in the
debugger tool where it’s used to abstract the user interaction when
tracing a goal execution in debug mode.

Intercepting questions

Calls to the logtalk::ask_question/5
predicate can be intercepted by defining clauses for the
logtalk::question_hook/6 multifile
hook predicate. This predicate can suppress, rewrite, and divert questions.
For example, assume that we want to automate testing and thus cannot rely
on someone manually providing answers:

:- category(hitchhikers_fixed_answers).

 :- multifile(logtalk::question_hook/6).
 :- dynamic(logtalk::question_hook/6).

 logtalk::question_hook(ultimate_question, question, hitchhikers, _, _, 42).

:- end_category.

After compiling and loading this category, trying the question again will
now skip asking the user:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

N = 42
yes

In a practical case, the fixed answer would be used for followup goals
being tested. The question answer read loop (which calls the question
check closure) is not used when a fixed answer is provided using the
logtalk::question_hook/6 predicate thus preventing the creation
of endless loops. For example, the following query succeeds:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(41), N).

N = 42
yes

Note that the logtalk::question_hook/6 predicate takes as argument
the closure specified in the logtalk::ask_question/5 call, allowing
a fixed answer to be checked before being returned.

Term and goal expansion

Logtalk supports a term and goal expansion mechanism that can be used to
define source-to-source transformations. Two common uses are the definition
of language extensions and domain-specific languages.

Logtalk improves upon the term-expansion mechanism found on some Prolog
systems by providing the user with fine-grained control on if, when,
and how expansions are applied. It allows declaring in a source file itself
which expansions, if any, will be used when compiling it. It allows declaring
which expansions will be used when compiling a file using compile and loading
predicate options. It defines a concept of hook objects that can be used
as building blocks to create custom and reusable expansion workflows with
explicit and well defined semantics. It prevents the simply act of loading
expansion rules affecting subsequent compilation of files. It prevents
conflicts between groups of expansion rules of different origins. It avoids
a set of buggy expansion rules from breaking other sets of expansions rules.

Defining expansions

Term and goal expansions are defined using, respectively, the predicates
term_expansion/2 and goal_expansion/2, which
are declared in the expanding built-in protocol.
Note that, unlike Prolog systems also providing these two predicates, they
are not declared as multifile predicates
in the protocol. This design decision is key to give the programmer full
control of the expansion process and prevent the problems that inflict most
Prolog system providing a term-expansion mechanism.

An example of an object defining expansion rules:

:- object(an_object,
 implements(expanding)).

 term_expansion(ping, pong).
 term_expansion(
 colors,
 [white, yellow, blue, green, read, black]
).

 goal_expansion(a, b).
 goal_expansion(b, c).
 goal_expansion(X is Expression, true) :-
 catch(X is Expression, _, fail).

:- end_object.

These predicates can be explicitly called using the expand_term/2
and expand_goal/2 built-in methods or called automatically
by the compiler when compiling a source file (see the section below on hook
objects).

Clauses for the term_expansion/2 predicate are called until of them
succeeds. The returned expansion can be a single term or a list of terms
(including the empty list). For example:

| ?- an_object::expand_term(ping, Term).

Term = pong
yes

| ?- an_object::expand_term(colors, Colors).

Colors = [white, yellow, blue, green, read, black]
yes

When no term_expansion/2 clause applies, the same term that we are
trying to expand is returned:

| ?- an_object::expand_term(sounds, Sounds).

Sounds = sounds
yes

Clauses for the goal_expansion/2 predicate are recursively called on the
expanded goal until a fixed point is reached. For example:

| ?- an_object::expand_goal(a, Goal).

Goal = c
yes

| ?- an_object::expand_goal(X is 3+2*5, Goal).

X = 13,
Goal = true
yes

When no goal_expansion/2 clause applies, the same goal that we are
trying to expand is returned:

| ?- an_object::expand_goal(3 =:= 5, Goal).

Goal = (3=:=5)
yes

The goal-expansion mechanism prevents an infinite loop when expanding a goal
by checking that a goal to be expanded does not resulted from a previous
expansion of the same goal. For example, consider the following object:

:- object(fixed_point,
 implements(expanding)).

 goal_expansion(a, b).
 goal_expansion(b, c).
 goal_expansion(c, (a -> b; c)).

:- end_object.

The expansion of the goal a results in the goal (a -> b; c) with no
attempt to further expand the a, b, and c goals as they have
already been expanded.

Goal-expansion applies to goal arguments of control constructs, meta-arguments
in built-in or user defined meta-predicates, meta-arguments in local
user-defined meta-predicates, meta-arguments in meta-predicate messages when
static binding is possible, and initialization/1, if/1, and elif/1
directives.

Expanding grammar rules

A common term expansion is the translation of grammar rules into predicate
clauses. This transformation is performed automatically by the compiler
when a source file entity defines grammar rules. It can also be done
explicitly by calling the expand_term/2 built-in method. For example:

| ?- logtalk::expand_term((a --> b, c), Clause).

Clause = (a(A,B) :- b(A,C), c(C,B))
yes

Note that the default translation of grammar rules can be overridden by
defining clauses for the term_expansion/2 predicate.

Bypassing expansions

Terms and goals wrapped by the {}/1 control
construct are not expanded. For example:

| ?- an_object::expand_term({ping}, Term).

Term = {ping}
yes

| ?- an_object::expand_goal({a}, Goal).

Goal = {a}
yes

This also applies to source file terms and source file goals when using hook
objects (discussed next).

Hook objects

Term and goal expansion of a source file during its compilation is performed
by using hook objects. A hook object is simply an object implementing the
expanding built-in protocol and defining clauses
for the term and goal expansion hook predicates. Hook objects must be compiled
and loaded prior to be used to expand a source file.

To compile a source file using a hook object, we can use the
hook compiler flag in the second argument of the
logtalk_compile/2 and logtalk_load/2
built-in predicates. For example:

| ?- logtalk_load(source_file, [hook(hook_object)]).
...

In alternative, we can use a set_logtalk_flag/2
directive in the source file itself. For example:

:- set_logtalk_flag(hook, hook_object).

To use multiple hook objects in the same source file, simple write each
directive before the block of code that it should handle. For example:

:- object(h1,
 implements(expanding)).

 term_expansion((:- public(a/0)), (:- public(b/0))).
 term_expansion(a, b).

:- end_object.

:- object(h2,
 implements(expanding)).

 term_expansion((:- public(a/0)), (:- public(c/0))).
 term_expansion(a, c).

:- end_object.

:- set_logtalk_flag(hook, h1).

:- object(s1).

 :- public(a/0).
 a.

:- end_object.

:- set_logtalk_flag(hook, h2).

:- object(s2).

 :- public(a/0).
 a.

:- end_object.

| ?- {h1, h2, s}.
...

| ?- s1::b.
yes

| ?- s2::c.
yes

It is also possible to define a default hook object by defining a global
value for the hook flag by calling the set_logtalk_flag/2
predicate. For example:

| ?- set_logtalk_flag(hook, hook_object).

yes

Note that, due to the set_logtalk_flag/2 directive being local to a source,
file, using it to specify a hook object will override any defined default hook
object or any hook object specified as a logtalk_compile/2 or logtalk_load/2
predicate compiler option for compiling or loading the source file.

Note

Clauses for the term_expansion/2 and goal_expansion/2 predicates
defined within an object or a category are never used in the compilation
of the object or the category itself.

Virtual source file terms and loading context

When using a hook object to expand the terms of a source file, two
virtual file terms are generated: begin_of_file and end_of_file.
These terms allow the user to define term-expansions before and after
the actual source file terms.

Logtalk also provides a logtalk_load_context/2
built-in predicate that can be used to access the compilation/loading
context when performing expansions. The logtalk
built-in object also provides a set of predicates that can be useful,
notably when adding Logtalk support for languages extensions originally
developed for Prolog.

As an example of using the virtual terms and the logtalk_load_context/2
predicate, assume that you want to convert plain Prolog files to Logtalk by
wrapping the Prolog code in each file using an object (named after the file)
that implements a given protocol. This could be accomplished by defining
the following hook object:

:- object(wrapper(_Protocol_),
 implements(expanding)).

 term_expansion(begin_of_file, (:- object(Name,implements(_Protocol_)))) :-
 logtalk_load_context(file, File),
 os::decompose_file_name(File,_ , Name, _).

 term_expansion(end_of_file, (:- end_object)).

:- end_object.

Assuming e.g. my_car.pl and lease_car.pl files to be wrapped and a
car_protocol protocol, we could then load them using:

| ?- logtalk_load(
 ['my_car.pl', 'lease_car.pl'],
 [hook(wrapper(car_protocol))]
).

yes

Note

When a source file also contains plain Prolog directives and predicates,
these are term-expanded but not goal-expanded (with the exception of the
initialization/1, if/1, and elif/1 directives, where the goal
argument is expanded to improve code portability across backends).

Default compiler expansion workflow

When compiling a source file,
the compiler will first try, by default,
the source file specific hook object specified using a local
set_logtalk_flag/2 directive, if defined. If that expansion fails,
it tries the hook object specified using the hook/1 compiler option
in the logtalk_compile/2 or logtalk_load/2 goal that compiles
or loads the file, if defined. If that expansion fails, it tries the
default hook object, if defined. If that expansion also fails, the
compiler tries the Prolog dialect specific expansion rules found
in the adapter file (which are used to support non-standard
Prolog features).

User defined expansion workflows

Sometimes we have multiple hook objects that we need to combine and use in
the compilation of a source file. Logtalk includes a hook_flows
library that supports two basic expansion workflows: a pipeline
of hook objects, where the expansion results from a hook object are feed to
the next hook object in the pipeline, and a set of
hook objects, where expansions are tried until one of them succeeds. These
workflows are implemented as parametric objects allowing combining them to
implement more sophisticated expansion workflows. There is also a
hook_objects library that provides convenient hook
objects for defining custom expansion workflows. This library includes an
hook object that can be used to restore the default expansion workflow used
by the compiler.

For example, assuming that you want to apply the Prolog backend specific
expansion rules defined in its adapter file, using the
backend_adapter_hook library object,
passing the resulting terms to your own expansion when compiling a source
file, we could use the goal:

| ?- logtalk_load(
 source,
 [hook(hook_pipeline([backend_adapter_hook, my_expansion]))]
).

As a second example, we can prevent expansion of a source file using the library
object identity_hook by adding as the first term in a
source file the directive:

:- set_logtalk_flag(hook, identity_hook).

The file will be compiled as-is as any hook object (specified as a compiler
option or as a default hook object) and any backend adapter expansion rules
are overriden by the directive.

Using Prolog defined expansions

In order to use clauses for the term_expansion/2 and goal_expansion/2
predicates defined in plain Prolog, simply specify the pseudo-object user
as the hook object when compiling source files. When using
backend Prolog compilers that support a
module system, it can also be specified a module containing clauses for the
expanding predicates as long as the module name doesn’t coincide with an
object name. When defining a custom workflow, the library object
prolog_module_hook/1 can be used as a
workflow step. For example, assuming a module functions defining expansion
rules that we want to use:

| ?- logtalk_load(
 source,
 [hook(hook_set([prolog_module_hook(functions), my_expansion]))]
).

But note that Prolog module
libraries may provide definitions of the expansion predicates that are
not compatible with the Logtalk compiler. Specially when setting the
hook object to user, be aware of any Prolog library that is loaded,
possibly by default or implicitly by the Prolog system, that may be
contributing definitions of the expansion predicates. It is usually
safer to define a specific hook object for combining multiple expansions
in a fully controlled way.

Note

The user object declares term_expansion/2 and goal_expansion/2
as multifile and dynamic predicates. This helps in avoiding predicate
existence errors when compiling source files with the hook flag set
to user as these predicates are only natively declared in some of the
supported backend Prolog compilers.

Debugging expansions

The term_expansion/2 and goal_expansion/2 predicates can be
debugged as any other object predicates. Note
that expansions can often be manually tested by sending
expand_term/2 and expand_goal/2
messages to a hook object with the term or goal whose expansion you want to
check as argument. An alternative to the debugging tools is to use a
monitor for the runtime messages that call the predicates. For example,
assume a expansions_debug.lgt file with the contents:

:- initialization(
 define_events(after, edcg, _, _, expansions_debug)
).

:- object(expansions_debug,
 implements(monitoring)).

 after(edcg, term_expansion(T,E), _) :-
 writeq(term_expansion(T,E)), nl.

:- end_object.

We can use this monitor to help debug the expansion rules of the
edcg library when applied to the edcgs example using
the queries:

| ?- {expansions_debug}.
...

| ?- set_logtalk_flag(events, allow).
yes

| ?- {edcgs(loader)}.
...
term_expansion(begin_of_file,begin_of_file)
term_expansion((:-object(gemini)),[(:-object(gemini)),(:-op(1200,xfx,-->>))])
term_expansion(acc_info(castor,A,B,C,true),[])
term_expansion(pass_info(pollux),[])
term_expansion(pred_info(p,1,[castor,pollux]),[])
term_expansion(pred_info(q,1,[castor,pollux]),[])
term_expansion(pred_info(r,1,[castor,pollux]),[])
term_expansion((p(A)-->>B is A+1,q(B),r(B)),(p(A,C,D,E):-B is A+1,q(B,C,F,E),r(B,F,D,E)))
term_expansion((q(A)-->>[]),(q(A,B,B,C):-true))
term_expansion((r(A)-->>[]),(r(A,B,B,C):-true))
term_expansion(end_of_file,end_of_file)
...

This solution does not require compiling the edcg hook object in debug
mode or access to its source code (e.g. to modify its expansion rules to
emit debug messages. We could also simply use the user pseudo-object
as the monitor object:

| ?- assertz((
 after(_, term_expansion(T,E), _) :-
 writeq(term_expansion(T,E)), nl
)).
yes

| ?- define_events(after, edcg, _, Sender, user).
yes

Another alternative is to use a pipeline of hook objects with the library
hook_pipeline/1 and write_to_stream_hook objects to write the
expansion results to a file. For example, using the unique.lgt test
file from the edcgs library directory:

| ?- {hook_flows(loader), hook_objects(loader)}.
...

| ?- open('unique_expanded.lgt', write, Stream),
 logtalk_compile(
 unique,
 [hook(hook_pipeline([edcg,write_to_stream_hook(Stream,[quoted(true)])]))]
),
 close(Stream).
...

The generated unique_expanded.lgt file will contain the clauses resulting
from the expansion of the EDCG rules found in the unique.lgt file by the
edcg hook object expansion.

Documenting

Assuming that the source_data flag is turned on, the
compiler saves all relevant documenting information collected when compiling
a source file. The provided lgtdoc tool can access this
information by using the reflection support
and generate a documentation file for each compiled entity (object, protocol,
or category) in XML format. Contents of the XML file include the entity name,
type, and compilation mode (static or dynamic), the entity relations with
other entities, and a description of any declared predicates (name,
compilation mode, scope, …). The XML documentation files can be enriched
with arbitrary user-defined information, either about an entity or about its
predicates, by using the two directives described in the next section. The
lgtdoc tool includes POSIX and Windows scripts for converting the XML
documentation files to several final formats (such as HTML and PDF).

Documenting directives

Logtalk supports two documentation directives for providing arbitrary
user-defined information about an entity or a predicate. These two
directives complement other directives that also provide important
documentation information such as the mode/2 and
meta_predicate/1 directives.

Entity directives

Arbitrary user-defined entity information can be represented using the
info/1 directive:

:- info([
 Key1 is Value1,
 Key2 is Value2,
 ...
]).

In this pattern, keys should be atoms and values should be bound terms.
The following keys are predefined and may be processed specially by
Logtalk tools:

	comment
	Comment describing the entity purpose (an atom). End the comment with a
period (full stop). As a style guideline, don’t use overly long comments.
If you need to provide additional details, use the remarks key.

	author
	Entity author(s) (an atom or a compound term {entity} where
entity is the name of an XML entity in a user defined
custom.ent file).

	version
	Version number (a Major:Minor:Patch compound term) Following the
Semantic Versioning guidelines [https://semver.org] is strongly advised.

	date
	Date of last modification in ISO 8601 standard format (Year-Month-Day
where Year, Month, and Day are integers).

	parameters
	Parameter names and descriptions for parametric entities (a list of
Name-Description pairs where both names and descriptions are atoms).
End the Description with a period (full stop).

	parnames
	Parameter names for parametric entities (a list of atoms; a simpler
version of the previous key, used when parameter descriptions are
deemed unnecessary).

	copyright
	Copyright notice for the entity source code (an atom or a compound
term {entity} where entity is the name of an XML entity
defined in a user defined custom.ent file).

	license
	License terms for the entity source code; usually, just the license
name (an atom or a compound term {entity} where entity is the
name of an XML entity in a user defined custom.ent file). License
names should whenever possible be a license identifier as specified
in the SPDX standard [https://spdx.org/licenses/].

	remarks
	List of general remarks about the entity using Topic-Text pairs
where both the topic and the text must be atoms. End the Text
with a period (full stop).

	see_also
	List of related entities (using the entity identifiers, which can
be atoms or compound terms).

For example:

:- info([
 version is 2:1:0,
 author is 'Paulo Moura',
 date is 2000-11-20,
 comment is 'Building representation.',
 diagram is 'UML Class Diagram #312'
]).

Use only the keywords that make sense for your application and remember that
you are free to invent your own keywords. All key-value pairs can be retrieved
programmatically using the reflection API and
are visible to the lgtdoc tool (which includes them in the
generated documentation).

Predicate directives

Arbitrary user-defined predicate information can be represented using
the info/2 directive:

:- info(Name/Arity, [
 Key1 is Value1,
 Key2 is Value2,
 ...
]).

The first argument can also a grammar rule non-terminal indicator,
Name//Arity. Keys should be atoms and values should be bound terms.
The following keys are predefined and may be processed specially by
Logtalk tools:

	comment
	Comment describing the predicate (or non-terminal) purpose (an atom).
End the comment with a period (full stop). As a style guideline, don’t
use overly long comments. If you need to provide additional details,
use the remarks key.

	arguments
	Names and descriptions of predicate arguments for pretty print output
(a list of Name-Description pairs where both names and descriptions
are atoms). End the Description with a period (full stop).

	argnames
	Names of predicate arguments for pretty print output (a list of
atoms; a simpler version of the previous key, used when argument
descriptions are deemed unnecessary).

	allocation
	Objects where we should define the predicate. Some possible values
are container, descendants, instances, classes,
subclasses, and any.

	redefinition
	Describes if predicate is expected to be redefined and, if so, in
what way. Some possible values are never, free,
specialize, call_super_first, call_super_last.

	exceptions
	List of possible exceptions throw by the predicate using
Description-Exception pairs. The description must be an
atom. The exception term must be a ground term.

	examples
	List of typical predicate call examples using the format
Description-Goal-Bindings. The description must be an atom
with the goal sharing variables with the bindings. The
variable bindings term uses the format {Variable = Term, ...}.
When there are no variable bindings, the success or failure of
the predicate call should be represented by the terms {true}
or {false}, respectively (you can also use in alternative
the terms {yes} or {no}).

	remarks
	List of general remarks about the predicate using Topic-Text
pairs where both the topic and the text must be atoms. End the
Text with a period (full stop).

	since
	Version that added the predicate (Major:Minor:Patch).

	see_also
	List of related predicates and non-terminals (using the predicate
and non-terminal indicators).

For example:

:- info(color/1, [
 comment is 'Table of defined colors.',
 argnames is ['Color'],
 constraint is 'Up to four visible colors allowed.',
 examples is [
 'Check that the color blue is defined' - color(blue) - {true}
]
]).

As with the info/1 directive, use only the keywords that make sense
for your application and remember that you are free to invent your own
keywords. All key-value pairs can also be retrieved programmatically
using the reflection API and are visible
to the lgtdoc tool (which includes them in the generated
documentation).

Documenting predicate exceptions

As described above, the info/2 predicate directive supports an
exceptions key that allows us to list all exceptions that may occur
when calling a predicate. For example:

:- info(check_option/1, [
 comment is 'Succeeds if the option is valid. Throws an error otherwise.',
 argnames is ['Option'],
 exceptions is [
 '``Option`` is a variable' - instantiation_error,
 '``Option`` is neither a variable nor a compound term' - type_error(compound, 'Option'),
 '``Option`` is a compound term but not a valid option' - domain_error(option, 'Option')
]
]).

When possible, only standard exceptions should be used. See e.g the
error handling methods section for
a full list. The argument names should be the same as those provided
in the arguments or argnames keys. Exceptions are usually
listed starting with instantiation and uninstantiation errors,
followed by type errors, and then domain errors. These may then be
followed by permission, existence, evaluation, representation, or
resource errors.

For each exception, use of controlled language as found e.g. in the ISO
Prolog Core standard and this Handbook is advised. Some examples:

	Instantiation error when one of more arguments cannot be a variable
	Argument is a variable

Argument1 and Argument2 are variables

	Instantiation error when a closed list with bound elements is required
	Argument is a partial list or a list with an element Element which is a variable

	Uninstantiation error when an argument is not a variable
	Argument is not a variable

	Type error when an argument is not a variable but also not of the expected type
	Argument is neither a variable nor a TYPE

Argument is neither a partial list nor a list

	Type error when an element of a list is not a variable but is not of the expected type
	An element Element of the Argument list is neither a variable nor a TYPE

	Domain error when an argument is of the correct type but not in the expected domain
	Argument is a TYPE but not a valid DOMAIN

Argument is an integer that is less than zero

	Domain error when an element of a list is of the correct type but not in the expected domain
	An element Element of the Argument list is a TYPE but not a valid DOMAIN

	Existence error when an entity of a given kind does not exist
	The KIND Argument does not exist

Other classes of errors have a less rigid style. In case of doubt,
look for examples in this Handbook, in the APIs documentation, and
in standard documents.

Processing and viewing documenting files

The lgtdoc tool generates an XML documenting file per
entity. It can also generate library, directory, entity, and predicate
indexes when documenting libraries and directories. For example, assuming
the default filename extensions, a trace object and a sort(_)
parametric object will result in trace_0.xml and sort_1.xml XML
files.

Each entity XML file contains references to two other files, an XML
specification file and a XSLT style-sheet file. The XML specification
file can be either a DTD file (logtalk_entity.dtd) or an XML Scheme
file (logtalk_entity.xsd). The XSLT style-sheet file is responsible
for converting the XML files to some desired format such as HTML or PDF.
The default names for the XML specification file and the XSL style-sheet
file are defined by the lgtdoc tool but can be
overridden by passing a list of options to the tool predicates. The
lgtdoc/xml sub-directory in the Logtalk installation directory contains
the XML specification files described above, along with several sample XSL
style-sheet files and sample scripts for converting XML documenting files
to several formats (e.g. reStructuredText, Markdown, HTML, and PDF). For
example, assume that you want to generate the API documentation for the
types library:

| ?- {types(loader)}.
....

| ?- {lgtdoc(loader)}.
....

| ?- lgtdoc::library(types).
...

The above queries will result in the creation of a xml_docs in your
current directory by default. Assuming that we want to generate
Sphinx-based documentation and that we are using a POSIX operating-system,
the next steps would be:

$ cd xml_docs
$ lgt2rst -s -m

The lgt2rst script will ask a few questions (project name, author,
version, …). After its completion, the generated HTML files will be
found in the _build/html directory by default:

$ open _build/html/index.html

For Windows operating-systems, PowerShell (recommended) and JScript (legacy)
scripts are available. For example, assuming that we want to generate HTML
documentation, we could run in a PowerShell window:

cd xml_docs
lgt2html.ps1 -p saxon

When using the legacy JScript scripts, you can also use the .bat script
alternatives:

cd xml_docs
lgt2html /p:saxon

After completion, the generated HTML files will be found in the xml_docs
directory by default.

See the NOTES file in the tool directory for details, specially on the
XSLT processor dependencies. You may use the supplied sample files as a
starting point for generating the documentation of your Logtalk applications.

The Logtalk DTD file, logtalk_entity.dtd, contains a reference to a
user-customizable file, custom.ent, which declares XML entities for
source code author names, license terms, and copyright string. After
editing the custom.ent file to reflect your personal data, you may
use the XML entities on info/1 documenting directives. For example,
assuming that the XML entities are named author, license, and
copyright we may write:

:- info([
 version is 1:1:0,
 author is {author},
 license is {license},
 copyright is {copyright}
]).

The entity references are replaced by the value of the corresponding XML
entity when the XML documenting files are processed (not when they
are generated; this notation is just a shortcut to take advantage of XML
entities).

The lgtdoc tool supports a set of options that can be
used to control the generation of the XML documentation files. See the
tool documentation for details. There is also a doclet
tool that allows automating the steps required to generate the documentation
for an application.

Inline formatting in comments text

Inline formatting in comments text can be accomplished by using Markdown
or reStructuredText syntax and converting XML documenting files to Markdown
or reStructuredText files (and these, if required, to e.g. HTML, ePub, or
PDF formats). Note that Markdown and reStructuredText common syntax elements
are enough for most API documentation:

Mark *italic text* with one asterisk.
Mark **bold text** with two asterisks.
Mark ``monospaced text`` with two backquotes.

Rendering this block as markup gives:

Mark italic text with one asterisk. Mark bold text with
two asterisks. Mark monospaced text with two backquotes.

As single backquotes have different purposes in Markdown (monospaced text)
and reStructuredText (domain- or application-dependent meaning), never use
them. This also avoids doubts if there’s an inline formatting typo in text
meant to be rendered as monospaced text (usually inline code fragments).

Diagrams

The diagrams tool supports a wide range of diagrams that
can also help in documenting an application. The generated diagrams can
include URL links to both source code and API documentation. They can also
be linked, connecting for example high level diagrams to detail diagrams.
These features allow diagrams to be an effective solution for navigating and
understanding the structure and implementation of an application. This tool
uses the same reflection API as the lgtdoc
tool and thus have access to the same source data. See the tool documentation
for details.

Debugging

The Logtalk distribution includes a command-line debugger
tool implemented as a Logtalk application. It can be loaded by typing:

| ?- logtalk_load(debugger(loader)).

It can also be loaded automatically at startup time by using a
settings file. This tool implements debugging features similar to
those found on most Prolog systems. There are some differences, however,
between the usual implementation of Prolog debuggers and the current
implementation of the Logtalk debugger that you should be aware. First,
unlike most Prolog debuggers, the Logtalk debugger is not a built-in feature
but a regular Logtalk application using documented debugging hook predicates.
This translates to a different, although similar, set of debugging features
when compared with some of the more sophisticated Prolog debuggers. Second,
debugging is only possible for entities compiled in debug mode. When
compiling an entity in debug mode, Logtalk decorates clauses with source
information to allow tracing of the goal execution. Third, the implementation
of spy points allows the user to specify the
execution context for entering
the debugger. This feature is a consequence of the encapsulation of
predicates inside objects.

Compiling source files in debug mode

Compilation of source files in debug mode is controlled by the
debug compiler flag. The default value for this flag,
usually off, is defined in the adapter files. Its default value may
be changed globally at runtime by calling:

| ?- set_logtalk_flag(debug, on).

Implicitly, this goal also turns off the optimize flag. In alternative,
if we want to compile only some source files in debug mode, we may instead
write:

| ?- logtalk_load([file1, file2, ...], [debug(on)]).

The logtalk_make/1 built-in predicate can also be used to
recompile all loaded files (that were compiled without using explicit values
for the debug and optimize compiler
flags in a logtalk_load/2 call or in a loader file file, if used)
in debug mode:

| ?- logtalk_make(debug).

With most backend Prolog compilers, the
{+d} top-level shortcut can also be used. After debugging, the files can
be recompiled in normal or optimized mode using, respectively, the {+n}
or {+o} top-level shortcuts.

Warning

The clean compiler flag should be turned on whenever
the debug flag is turned on at runtime. This is necessary
because debug code would not be generated for files previously compiled in
normal or optimized mode if there are no changes to the source files.

After loading the debugger, we may check (or enumerate by backtracking),
all loaded entities compiled in debug mode as follows:

| ?- debugger::debugging(Entity).

To compile only a specific entity in debug mode, use the
set_logtalk_flag/2 directive inside the entity.
To compile all entities in a source file in debug mode, use the
set_logtalk_flag/2 directive at the beginning
of the file.

Procedure box model

Logtalk uses a procedure box model similar to those found on most
Prolog systems. The traditional Prolog procedure box model defines
four ports (call, exit, redo, and fail) for describing control
flow when calling a predicate:

call

predicate call

exit

success of a predicate call

redo

backtracking into a predicate

fail

failure of a predicate call

Logtalk, as found on some recent Prolog systems, adds a port for
dealing with exceptions thrown when calling a predicate:

exception

predicate call throws an exception

In addition to the ports described above, Logtalk adds two more ports,
fact and rule, which show the result of the unification of a
goal with, respectively, a fact and a rule head:

fact

unification success between a goal and a fact

rule

unification success between a goal and a rule head

Following Prolog tradition, the user may define for which ports the
debugger should pause for user interaction by specifying a list of
leashed ports. Unleashed ports are just printed with no pause for
user interaction. For example:

| ?- debugger::leash([call, exit, fail]).

Alternatively, the user may use an atom abbreviation for a pre-defined
set of ports. For example:

| ?- debugger::leash(loose).

The abbreviations defined in Logtalk are similar to those defined on
some Prolog compilers:

none

[]

loose

[fact, rule, call]

half

[fact, rule, call, redo]

tight

[fact, rule, call, redo, fail, exception]

full

[fact, rule, call, exit, redo, fail, exception]

By default, the debugger pauses at every port for user interaction.

Defining spy points

Logtalk spy points can be defined by simply stating which predicates should
be spied (as in most Prolog debuggers), by stating which predicate clauses
to spy given their source file line numbers, or by specifying the execution
context for activating a spy point. In the case of line number spy points
(also known as breakpoints), the line number must correspond to the first
line of an entity clause. To simplify the definition of line number spy
points, these are specified using the entity identifier instead of the
file name (as all entities share a single namespace, an entity can only
be defined in a single file).

Defining line number and predicate spy points

Line number and predicate spy points are specified using the debugger
spy/1 predicate. The argument can be a breakpoint (expressed as a
Entity-Line pair), a predicate indicator (Name/Arity), or a
list of spy points. For example:

| ?- debugger::spy(person-42).

Spy points set.
yes

| ?- debugger::spy(foo/2).

Spy points set.
yes

| ?- debugger::spy([foo/4, bar/1]).

Spy points set.
yes

Line numbers and predicate spy points can be removed by using the
debugger nospy/1 predicate. The argument can be a spy point, a
list of spy points, or a non-instantiated variable in which case all
spy points will be removed. For example:

| ?- debugger::nospy(_).

All matching predicate spy points removed.
yes

In breakpoints, the line number must for the first line of a clause that we
want to spy. But note that only some Prolog backends provide accurate source
file term line numbers. Check the debugger tool documentation
for details.

Defining context spy points

A context spy point is a tuple describing a message execution context and
a goal:

(Sender, This, Self, Goal)

The debugger is evoked whenever the spy point goal and the specified
execution context subsumes the goal currently being executed and its
execution context. The user may establish any number of context spy points
as necessary. For example, in order to call the debugger whenever a
predicate defined on an object named foo is called we may define
the following spy point:

| ?- debugger::spy(_, foo, _, _).

Spy point set.
yes

For example, we can spy all calls to a foo/2 predicate with a bar
atom in the second argument by setting the condition:

| ?- debugger::spy(_, _, _, foo(_, bar)).

Spy point set.
yes

The debugger nospy/4 predicate may be used to remove all matching
spy points. For example, the call:

| ?- debugger::nospy(_, _, foo, _).

All matching context spy points removed.
yes

will remove all context spy points where the value of self matches the
atom foo.

Removing all spy points

We may remove all line number, predicate, and context spy points by
using the debugger nospyall/0 predicate:

| ?- debugger::nospyall.

All line number spy points removed.
All predicate spy points removed.
All context spy points removed.
yes

There’s also a reset/0 predicate that can be used to reset the debugger
to its default settings.

Tracing program execution

Logtalk allows tracing of execution for all objects compiled in debug
mode. To start the debugger in trace mode, write:

| ?- debugger::trace.

yes

Next, type the query to be debugged. For examples, using the family
example in the Logtalk distribution compiled for debugging:

| ?- addams::sister(Sister, Sibling).
 Call: (1) sister(_1082,_1104) ?
 Rule: (1) sister(_1082,_1104) ?
 Call: (2) ::female(_1082) ?
 Call: (3) female(_1082) ?
 Fact: (3) female(morticia) ?
 *Exit: (3) female(morticia) ?
 *Exit: (2) ::female(morticia) ?
 ...

While tracing, the debugger will pause for user input at each leashed port,
printing an informative message. Each trace line starts with the port,
followed by the goal invocation number, followed by the goal. The invocation
numbers are unique and allows us to correlate the ports used for a goal.
In the output above, you can see for example that the goal ::female(_1082)
succeeds with the answer ::female(morticia). The debugger also provides
determinism information by prefixing the exit port with a * character
when a call succeeds with choice-points pending, thus indicating that there
might be alternative solutions for the goal.

Note that, when tracing, spy points will be ignored. Before the
port number, when a spy point is set for the current clause or goal, the
debugger will print a # character for line number spy points, a
+ character for predicate spy points, and a * character for
context spy points. For example:

| ?- debugger::spy(female/2).

yes

| ?- addams::sister(Sister, Sibling).
 Call: (1) sister(_1078,_1100) ?
 Rule: (1) sister(_1078,_1100) ?
 Call: (2) ::female(_1078) ?
 + Call: (3) female(_1078) ?

To stop tracing (but still allowing the debugger to stop at defined spy points),
write:

| ?- debugger::notrace.

yes

Debugging using spy points

Tracing a program execution may generate large amounts of debugging
data. Debugging using spy points allows the user to concentrate in
specific points of the code. To start a debugging session using spy
points, write:

| ?- debugger::debug.

yes

For example, assuming the spy point we set in the previous section on
the female/1 predicate:

| ?- addams::sister(Sister, Sibling).
 + Call: (3) female(_1078) ?

To stop the debugger, write:

| ?- debugger::nodebug.

yes

Note that stopping the debugger does not remove any defined spy points.

Debugging commands

The debugger pauses at leashed ports when tracing or when finding a spy
point for user interaction. The commands available are as follows:

	c — creep
	go on; you may use the spacebar, return, or enter keys in alternative

	l — leap
	continues execution until the next spy point is found

	s — skip
	skips debugging for the current goal; valid at call, redo, and
unification ports

	S - Skip
	similar to skip but displaying all intermediate ports unleashed

	q — quasi-skip
	skips debugging until returning to the current goal or reaching a spy
point; valid at call and redo ports

	r — retry
	retries the current goal but side-effects are not undone; valid at
the fail port

	j — jump
	reads invocation number and continues execution until a port is
reached for that number

	z — zap
	reads either a port name and continues execution until that port is
reached or a negated port name and continues execution until a port
other than the negated port is reached

	i — ignore
	ignores goal, assumes that it succeeded; valid at call and redo ports

	f — fail
	forces backtracking; may also be used to convert an exception into a
failure

	n — nodebug
	turns off debugging

	N — notrace
	turns off tracing

	@ — command; ! can be used in alternative
	reads and executes a query

	b — break
	suspends execution and starts new interpreter; type end_of_file
to terminate

	a — abort
	returns to top level interpreter

	Q — quit
	quits Logtalk

	p — print
	writes current goal using the print/1 predicate if available

	d — display
	writes current goal without using operator notation

	w — write
	writes current goal quoting atoms if necessary

	$ — dollar
	outputs the compiled form of the current goal (for low-level debugging)

	x — context
	prints execution context

	. — file
	prints file, entity, predicate, and line number information at an
unification port

	e — exception
	prints exception term thrown by the current goal

	E — raise exception
	reads and throws an exception term

	= — debugging
	prints debugging information

	< — write depth
	sets the write term depth (set to 0 to reset)

	* — add
	adds a context spy point for the current goal

	/ — remove
	removes a context spy point for the current goal

	+ — add
	adds a predicate spy point for the current goal

	- — remove
	removes a predicate spy point for the current goal

	# — add
	adds a line number spy point for the current clause

	| — remove
	removes a line number spy point for the current clause

	h — condensed help
	prints list of command options

	? — extended help
	prints list of command options

Customizing term writing

Debugging complex applications often requires customizing term writing.
The available options are limiting the writing depth of large compound
terms and defining the traditional portray/1 to define how a term
should be printed when using the p command at a leashed port.

Term write depth

The terms written by the debugger can be quite large depending on the
application being debugged. As described in the previous section, the
debugger accepts the < command to set the maximum write term depth
for compound terms. This commmand requires that the used
backend Prolog compiler supports the non-standard but common
max_depth/1 option for the write_term/3 predicate. When the
compound term being written is deeply nested, the sub-terms are only
written up to the specified depth with the omitted sub-terms replaced
usually by For example:

| ?- write_term([0,1,2,3,4,5,6,7,8,9], [max_depth(5)]).

[0,1,2,3,4|...]
yes

The default maximum depth depends on the backend. To print compound
terms without a depth limit, set it explicitly to zero if necessary.

Custom term writing

The implicit use of the traditional print/1 predicate (using the
p command) and the portray/1 user-defined hook predicate
requires backend Prolog compiler support for these predicates. See
the documentation of the backend you intend to use for details. As
an example, assuming the following portray/1 definition:

portray(e(V1,V2)) :-
 format('~q ---> ~q~n', [V1,V2]).

Calling the print/1 predicate with e.g. a e(x1,x7) compound term
argument will output:

| ?- print(e(x1,x7)).

x1 ---> x7
yes

Context-switching calls

Logtalk provides a control construct, (<<)/2,
which allows the execution of a query within the context of an object.
Common debugging uses include checking an object local predicates (e.g.
predicates representing internal dynamic state) and sending a message
from within an object. This control construct may also be used to write
unit tests.

Consider the following toy example:

:- object(broken).

 :- public(a/1).

 a(A) :- b(A, B), c(B).
 b(1, 2). b(2, 4). b(3, 6).
 c(3).

:- end_object.

Something is wrong when we try the object public predicate, a/1:

| ?- broken::a(A).

no

For helping diagnosing the problem, instead of compiling the object in
debug mode and doing a trace of the query to check the clauses for the
non-public predicates, we can instead simply type:

| ?- broken << c(C).

C = 3
yes

The (<<)/2 control construct works by switching the execution context
to the object in the first argument and then compiling and executing the
second argument within that context:

| ?- broken << (self(Self), sender(Sender), this(This)).

Self = broken
Sender = broken
This = broken

yes

As exemplified above, the (<<)/2 control construct allows you to call
an object local and private predicates. However, it is important to
stress that we are not bypassing or defeating an object predicate scope
directives. The calls take place within the context of the specified
object, not within the context of the object making the (<<)/2 call.
Thus, the (<<)/2 control construct implements a form of
execution-context switching.

The availability of the (<<)/2 control construct is controlled by the
context_switching_calls compiler
flag (its default value is defined in the adapter files of the backend
Prolog compilers).

Debugging messages

Calls to the logtalk::print_message/3
predicate where the message kind is either debug or debug(Group) are
only printed, by default, when the debug flag is turned
on. Moreover, these calls are suppressed by the compiler when the
optimize flag is turned on. Note that actual printing
of debug messages does not require compiling the code in debug mode, only
turning on the debug flag.

Meta-messages

To avoid having to define message_tokens//2 grammar rules
for translating each and every debug message, Logtalk provides default
tokenization for seven meta-messages that cover the most common cases:

	@Message
	By default, the message is printed as passed to the write/1
predicate followed by a newline.

	Key-Value
	By default, the message is printed as Key: Value followed by a
newline. The key is printed as passed to the write/1 predicate
while the value is printed as passed to the writeq/1 predicate.

	Format+Arguments
	By default, the message is printed as passed to the format/2
predicate.

	List
	By default, the list items are printed indented one per line. The
items are preceded by a dash and can be @Message, Key-Value,
or Format+Arguments messages. If that is not the case, the item
is printed as passed to the writeq/1 predicate.

	Title::List
	By default, the title is printed followed by a newline and the
indented list items, one per line. The items are printed as in
the List meta message.

	[Stream,Prefix]>>Goal
	By default, call user-defined printing Goal in the context of
user. The use of a lambda expression allows passing the message
stream and prefix. Printing the prefix is delegated to the goal.

	[Stream]>>Goal
	By default, call user-defined printing Goal in the context of
user. The use of a lambda expression allows passing the message
stream.

Some simple examples of using these meta-messages:

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
yes

| ?- logtalk::print_message(debug, core, [Stream]>>write(Stream,foo)).
yes

| ?- set_logtalk_flag(debug, on).
yes

| ?- logtalk::print_message(debug, core, [Stream]>>write(Stream,foo)).
foo
yes

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
>>> Phase 1 completed
yes

| ?- logtalk::print_message(debug, core, answer-42).
>>> answer: 42
yes

| ?- logtalk::print_message(debug, core, 'Position: <~d,~d>'+[42,23]).
>>> Position: <42,23>
yes

| ?- logtalk::print_message(debug, core, [arthur,ford,marvin]).
>>> - arthur
>>> - ford
>>> - marvin
yes

| ?- logtalk::print_message(debug, core, names::[arthur,ford,marvin]).
>>> names:
>>> - arthur
>>> - ford
>>> - marvin
yes

The >>> prefix is the default message prefix for debug messages.
It can be redefined using the
logtalk::message_prefix_stream/4
hook predicate. For example:

:- multifile(logtalk::message_prefix_stream/4).
:- dynamic(logtalk::message_prefix_stream/4).

logtalk::message_prefix_stream(debug, core, '(dbg) ', user_error).

Selective printing of debug messages

By default, all debug messages are either printed or skipped, depending on the
debug and optimize flags. When the
code is not compiled in optimal mode, the debug_messages
tool allows selectively enabling of debug messages per component and
per debug group. For example, to enable all debug and debug(Group)
messages for the parser component:

% upon loading the tool, all messages are disabled by default:
| ?- logtalk_load(debug_messages(loader)).
...

% enable both debug and debug(_) messages:
| ?- debug_messages::enable(parser).
yes

To enable only debug(tokenization) messages for the parser component:

% first disable any and all enabled messages:
| ?- debug_messages::disable(parser).
yes

% enable only debug(tokenization) messages:
| ?- debug_messages::enable(parser, tokenization).
yes

See the tool documentation for more details.

Using the term-expansion mechanism for debugging

Debugging messages only output information by default. These messages can,
however, be intercepted to perform other actions. An alternative is to use
instead the term-expansion mechanism for
conditional compilation of debugging goals. For example, the
hook_objects library provides a
print_goal_hook object that simplifies
printing entity goals before or after calling them by simply prefixing them
with an operator. See the library and hook object documentation for details.
You can also define your own specialized hook objects for custom debugging
tasks.

Ports profiling

The Logtalk distribution includes a ports_profiler tool
based on the same procedure box model described above. This tool is
specially useful for debugging performance issues (e.g. due to lack of
determinism or unexpected backtracking). See the tool documentation for
details.

Debug and trace events

The debugging API defines two multifile predicates,
logtalk::trace_event/2 and
logtalk::debug_handler/2 for handiling
trace and debug events. It also provides a
logtalk::debug_handler_provider/1
multifile predicate that allows an object (or a category) to declare itself
as a debug handler provider. The Logtalk debugger and ports_profiler
tools are regular applications thar are implemented using this API, which
can also be used to implement alternative or new debugging related tools.
See the API documentation for details and the source code of the debugger
and ports_profiler tools for usage examples.

Performance

Logtalk is implemented as a trans-compiler to Prolog. When compiling
predicates, it preserves in the generated Prolog code all cases of
first-argument indexing and tail-recursion. In practice, this mean that
if you know how to write efficient Prolog predicates, you already know
the basics of how to write efficient Logtalk predicates.

The Logtalk compiler appends a single argument to the compiled form of
all entity predicate clauses. This hidden argument is used to pass the
execution-context when proving a
query. In the common case where a predicate makes no calls to the
execution-context predicates and
message-sending control constructs and
is neither a meta-predicate nor a coinductive predicate, the
execution-context is simply passed between goals. In this case, with most
backend Prolog virtual machines, the cost of this extra argument is null
or negligible. When the execution-context needs to be accessed (e.g. to
fetch the value of self for a (::)/1 call)
there may be a small inherent overhead due to the access to the individual
arguments of the compound term used to represent the execution-context.

Source code compilation modes

Source code can be compiled in optimal, normal, or debug mode,
depending on the optimize and
debug compiler flags. Optimal mode is used when
deploying an application while normal and debug modes are used when
developing an application. Compiling code in optimal mode enables
several optimizations, notably use of static binding whenever
enough information is available at compile time. In debug mode, most
optimizations are turned off and the code is instrumented to generate
debug events that enable developer tools such
as the command-line debugger and the
ports profiler.

Local predicate calls

Local calls to object (or category) predicates have zero overhead in
terms of number of inferences, as expected, compared with local Prolog
calls.

Calls to imported or inherited predicates

Assuming the optimize flag is turned on and a
static predicate, (^^)/1 calls have zero overhead
in terms of number of inferences.

Calls to module predicates

Local calls from an object (or category) to a module predicate have zero
overhead (assuming both the module and the predicate are bound at
compile time).

Messages

Logtalk implements static binding and dynamic binding
for message sending calls. For dynamic binding, a caching mechanism is
used by the runtime. It’s useful to measure the performance overhead in
number of logic inferences compared with plain Prolog and Prolog modules.
Note that the number of logic inferences is a metric independent of the
chosen backend Prolog compiler. The results for Logtalk 3.17.0 and later
versions are:

	Static binding: 0

	Dynamic binding (object bound at compile time): +1

	Dynamic binding (object bound at runtime): +2

Static binding is the common case with libraries and most application
code; it requires compiling code with the optimize
flag turned on. Dynamic binding numbers are after the first call (i.e.
after the generalization of the query is cached). All numbers with the
events flag set to deny (setting this flag to
allow adds an overhead of +5 inferences to the results above; note
that this flag can be defined in a per-object basis as needed instead
of globally and thus minimizing the performance impact).

The dynamic binding caches assume the used backend Prolog compiler
does indexing of dynamic predicates. This is a common feature of modern
Prolog systems but the actual details vary from system to system and may
have an impact on dynamic binding performance.

Note that messages to self ((::)/1 calls) and
messages to an object ((::)/2 calls) from the
top-level interpreter always use dynamic binding as the object that
receives the message is only know at runtime.

Messages sent from Prolog modules may use static binding depending on the
used backend Prolog compiler native support for goal-expansion. Consult
the Prolog compiler documentation and adapter file notes for details.

Warning

Some Prolog systems provide a time/1 predicate that also reports
the number of inferences. But the reported numbers are often misleading
when the predicate is called from the top-level. Besides common top-level
bookkeeping operations (e.g. keeping track of goal history or applying
goal-expansion) that may influence the inference counting, the Logtalk
runtime code for a ::/2 top-level goal is necessarily different
from the code generated for a ::/2 goal from a compiled object as
it requires runtime compilation of the goal into the same low-level
message-sending primitive (assuming dynamic-binding is also required
for the compiled object goal).

Automatic expansion of built-in meta-predicates

The compiler always expands calls to the forall/2,
once/1, and ignore/1 meta-predicates into
equivalent definitions using the negation and conditional control constructs.
It also expands calls to the call/1-N, phrase/2,
and phrase/3 meta-predicates when the first argument is bound.
These expansions are performed independently of the optimize flag value.

Inlining

When the optimize flag is turned on, the Logtalk
compiler performs inlining of predicate calls whenever possible. This
includes calls to Prolog predicates that are either built-in, foreign, or
defined in a module (including user). Inlining notably allows wrapping
module or foreign predicates using an object without introducing any
overhead. In the specific case of the
execution-context predicates,
calls are inlined independently of the optimize flag value.

Generated code simplification and optimizations

When the optimize flag is turned on, the Logtalk
compiler simplifies and optimizes generated clauses (including those
resulting from the compilation of grammar rules), by flattening conjunctions,
folding left unifications (e.g. generated as a by-product of the compilation
of grammar rules), and removing redundant calls to true/0.

Size of the generated code

The size of the intermediate Prolog code generated by the compiler is
proportional to the size of the source code. Assuming that the
term-expansion mechanism is not used, each
predicate clause in the source code is compiled into a single predicate
clause. But the Logtalk compiler also generates internal tables for the
defined entities, for the entity relations, and for the declared and
defined predicates. These tables enable support for fundamental features
such as inheritance and
reflection. The size of these tables is
proportional to the number of entities, entity relations, and predicate
declarations and definitions. When the source_data
is turned on (the default when developing an application), the generated
code also includes additional data about the source code such as entity and
predicates positions in a source file. This data enables advanced developer
tool functionality but it is usually not required when deploying an
application. Thus, turning this flag off is a common setting for minimizing
an application footprint.

Debug mode overhead

Code compiled in debug mode runs slower, as expected, when compared with
normal or optimized mode. The overhead depends on the number of debug events
generated when running the application. A debug event is simply a pass on a
call or unification port of the procedure box model.
These debug events can be intercepted by defined clauses for the
logtalk::trace_event/2
and logtalk::debug_handler/2 multifile
predicates. With no application (such as a debugger or a port profiler)
loaded defining clauses for these predicates, each goal have an overhead of
four extra inferences due to the runtime checking for a definition of the
hook predicates and a meta-call of the user goal. The clause head unification
events results in one or more inferences per goal (depending on the number of
clauses whose head unify with the goal and backtracking). In practice, this
overhead translates to code compiled in debug mode running typically ~2x to
~7x slower than code compiled in normal or optimized mode depending on the
application (the exact overhead is proportional to the number of passes on
the call and unification ports; deterministic code often results in a
relatively larger overhead when compared with code performing significant
backtracking).

Other considerations

One aspect of performance, that affects both Logtalk and Prolog code, is
the characteristics of the Prolog VM. The Logtalk distribution includes
two examples,
bench [https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/bench]
and
benchmarks [https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/benchmarks],
to help evaluate performance with specific backend Prolog systems. A
table with benchmark results [https://logtalk.org/performance.html] for
a subset of the supported systems is also available at the Logtalk
website. But note that multiple factors affect the performance of an
application and the benchmark examples and their results only provide
a partial assessment.

Installing Logtalk

This page provides an overview of Logtalk installation requirements and
instructions and a description of the files contained on the Logtalk
distribution. For detailed, up-to-date installation and configuration
instructions, please see the README.md, INSTALL.md, and
CUSTOMIZE.md files distributed with Logtalk. The broad compatibility
of Logtalk, both with Prolog compilers and operating-systems, together
with all the possible user scenarios, means that installation can vary
from very simple by running an installer or a couple of scripts to the
need of patching both Logtalk and Prolog compilers to workaround the
lack of strong Prolog standards or to cope with the requirements of less
common operating-systems.

The preferred installation scenario is to have Logtalk installed in a
system-wide location, thus available for all users, and a local copy of
user-modifiable files on each user home directory (even when you are the
single user of your computer). This scenario allows each user to
independently customize Logtalk and to freely modify the provided
libraries and programming examples. Logtalk installers, installation
shell scripts, and Prolog integration scripts favor this installation
scenario, although alternative installation scenarios are always
possible. The installers set two environment variables, LOGTALKHOME
and LOGTALKUSER, pointing, respectively, to the Logtalk installation
folder and to the Logtalk user folder.

User applications should preferable be kept outside of the Logtalk user
folder created by the installation process, however, as updating Logtalk
often results in updating the contents of this folder. If your
applications depend on customizations to the distribution files, backup
those changes before updating Logtalk.

Hardware and software requirements

Computer and operating system

Logtalk is compatible with almost any computer/operating-system with a
modern, standards compliant, Prolog compiler available.

Prolog compiler

Logtalk requires a backend Prolog compiler supporting official and
de facto standards. Capabilities needed by Logtalk that are not defined in
the official ISO Prolog Core standard include:

	access to predicate properties

	operating-system access predicates

	de facto standard predicates not (yet) specified in the official
standard

Logtalk needs access to the predicate property built_in to properly
compile objects and categories that contain Prolog built-in predicates
calls. In addition, some Logtalk built-ins need to know the
dynamic/static status of predicates to ensure correct application. The
ISO standard for Prolog modules defines a predicate_property/2
predicate that is already implemented by most Prolog compilers. Note
that if these capabilities are not built-in the user cannot easily
define them.

For optimal performance, Logtalk requires that the Prolog compiler
supports first-argument indexing for both static and dynamic code
(most modern compilers support this feature).

Since most Prolog compilers are moving closer to the ISO Prolog standard
[ISO95], it is advisable that you try
to use the most recent version of your favorite Prolog compiler.

Logtalk installers

Logtalk installers are available for macOS, Linux, and Microsoft
Windows. Depending on the chosen installer, some tasks (e.g. setting
environment variables or integrating Logtalk with some Prolog compilers)
may need to be performed manually.

Source distribution

Logtalk sources are available in a tar archive compressed with
bzip2, lgt3xxx.tar.bz2. You may expand the archive by using a
decompressing utility or by typing the following commands at the
command-line:

% tar -jxvf lgt3xxx.tar.bz2

This will create a sub-directory named lgt3xxx in your current
directory. Almost all files in the Logtalk distribution are text files.
Different operating-systems use different end-of-line codes for text
files. Ensure that your decompressing utility converts the end-of-lines
of all text files to match your operating system.

Distribution overview

In the Logtalk installation directory, you will find the following files
and directories:

ACKNOWLEDGMENTS.md - List of authors, contributors, sponsors, and open source credits

BIBLIOGRAPHY.bib – Logtalk bibliography in BibTeX format

CITATION.cff - Information on how to cite Logtalk

CODE_OF_CONDUCT.md - Code of conduct for contributors and users posting on support forums

CUSTOMIZE.md – Logtalk end-user customization instructions

INSTALL.md – Logtalk installation instructions

LICENSE.txt – Logtalk user license

NOTICE.txt – Logtalk copyright notice

QUICK_START.md – Quick start instructions for those that do not like
to read manuals

README.md – several useful information

RELEASE_NOTES.md – release notes for this version

UPGRADING.md – instructions on how to upgrade your programs to the
current Logtalk version

VERSION.txt – file containing the current Logtalk version number
(used for compatibility checking when upgrading Logtalk)

loader-sample.lgt – sample loader file for user applications

settings-sample.lgt – sample file for user-defined Logtalk settings

tester-sample.lgt – sample file for helping to automate running user
application unit tests

	adapters
	NOTES.md – notes on the provided adapter files
template.pl – template adapter file
... – specific adapter files

	coding
	NOTES.md – notes on syntax highlighter and text editor support
files providing syntax coloring for publishing and editing Logtalk
source code
... – syntax coloring support files

	contributions
	NOTES.md – notes on the user-contributed code
... – user-contributed code files

	core
	NOTES.md – notes on the current status of the compiler and
runtime
... – core source files

	docs
	NOTES.md – notes on the provided documentation for core, library,
tools, and contributions entities
index.html – root document for all entities documentation
... – other entity documentation files

	examples
	NOTES.md – short description of the provided examples

	bricks
	NOTES.md – example description and other notes
SCRIPT.txt – step by step example tutorial
loader.lgt – loader utility file for the example objects
... – bricks example source files

... – other examples

	integration
	NOTES.md – notes on scripts for Logtalk integration with Prolog
compilers
... – Prolog integration scripts

	library
	NOTES.md – short description of the library contents
all_loader.lgt – loader utility file for all library entities
... – library source files

	man
	... – POSIX man pages for the shell scripts

	manuals
	NOTES.md – notes on the provided documentation
bibliography.html – bibliography
glossary.html – glossary
index.html – root document for all documentation
... – other documentation files

	paths
	NOTES.md – description on how to setup library and examples paths
paths.pl – default library and example paths

	ports
	NOTES.md – description of included ports of third-party software
... – ports

	scratch
	NOTES.md – notes on the scratch directory

	scripts
	NOTES.md – notes on scripts for Logtalk user setup, packaging,
and installation
... – packaging, installation, and setup scripts

	tests
	NOTES.md – notes on the current status of the unit tests
... – unit tests for built-in features

	tools
	NOTES.md – notes on the provided programming tools
... – programming tools

Adapter files

Adapter files provide the glue code between the Logtalk compiler/runtime
and a Prolog compiler. Each adapter file contains two sets of
predicates: ISO Prolog standard predicates and directives not built-in
in the target Prolog compiler and Logtalk specific predicates.

Logtalk already includes ready to use adapter files for most academic
and commercial Prolog compilers. If an adapter file is not available for
the compiler that you intend to use, then you need to build a new one,
starting from the included template.pl file. Start by making a copy
of the template file. Carefully check (or complete if needed) each
listed definition. If your Prolog compiler conforms to the ISO standard,
this task should only take you a few minutes. In most cases, you can
borrow code from the predefined adapter files. If you are unsure
that your Prolog compiler provides all the ISO predicates needed by
Logtalk, try to run the system by setting the unknown predicate error
handler to report as an error any call to a missing predicate. Better
yet, switch to a modern, ISO compliant, Prolog compiler. If you send me
your adapter file, with a reference to the target Prolog compiler, maybe
I can include it in the next release of Logtalk.

The adapter files specify default values for most of the Logtalk
compiler flags. They also specify values for
read-only flags that are used to describe Prolog backend specific features.

Compiler and runtime

The core sub-directory contains the Prolog and Logtalk source files that
implement the Logtalk compiler and the Logtalk runtime. The compiler and
the runtime may be split in two (or more) separate files or combined in
a single file, depending on the Logtalk release that you are installing.

Library

The Logtalk distribution includes a standard library of useful objects,
categories, and protocols. Read the corresponding NOTES.md file for
details about the library contents.

Examples

The Logtalk distribution includes a large number of programing examples.
The sources of each one of these examples can be found included in a
subdirectory with the same name, inside the directory examples. The
majority of these examples include tests and a file named SCRIPT.txt
with sample calls. Some examples may depend on other examples and
library objects to work properly. Read the corresponding NOTES.md
file for details before running an example.

Logtalk source files

Logtalk source files are text files containing one or more entity
definitions (objects, categories, or protocols). The Logtalk source
files may also contain plain Prolog code. The extension .lgt is
normally used. Logtalk compiles these files to plain Prolog by appending
to the file name a suffix derived from the extension and by replacing
the .lgt extension with .pl (.pl is the default Prolog
extension; if your Prolog compiler expects the Prolog source filenames
to end with a specific, different extension, you can set it in the
corresponding adapter file).

Prolog integration and migration

This section provides suggestions for integrating and migrating plain Prolog
code and Prolog module code to Logtalk. Detailed instructions are provided
for encapsulating plain Prolog code in objects, converting Prolog modules
into objects, and compiling and reusing Prolog modules as objects from
inside Logtalk. An interesting application of the techniques described
in this section is a solution for running a Prolog application which uses
modules on a Prolog compiler with no module system. The wrapper tool
can be used to help in migrating Prolog code.

Source files with both Prolog code and Logtalk code

Logtalk source files may contain plain Prolog code intermixed with
Logtalk code. The Logtalk compiler simply copies the plain Prolog code
as-is to the generated Prolog file. With Prolog modules, it is assumed
that the module code starts with a module/1-2 directive and ends at
the end of the file. There is no module ending directive which would
allowed us to define more than one module per file. In fact, most if not
all Prolog module systems always define a single module per file. Some
of them mandate that the module/1-2 directive be the first term on a
source file. As such, when the Logtalk compiler finds a module/1-2
directive, it assumes that all code that follows until the end of the
file belongs to the module.

Encapsulating plain Prolog code in objects

Most applications consist of several plain Prolog source files, each one
defining a few top-level predicates and auxiliary predicates that are
not meant to be directly called by the user. Encapsulating plain Prolog
code in objects allows us to make clear the different roles of each
predicate, to hide implementation details, to prevent auxiliary
predicates from being called outside the object, and to take advantage
of Logtalk advanced code encapsulating and reusing features. It also
simplifies using its developer tools.

Encapsulating Prolog code using Logtalk objects is simple. First, for each
source file, add an opening object directive, object/1-5,
to the beginning of the file and an ending object directive,
end_object/0, to the end of
the file. Choose an object name that reflects the purpose of source file
code (this is a good opportunity for code refactoring if necessary).
Second, add public/1 predicate directives for the
top-level predicates that are used directly by the user or called from
other source files. Third, we need to be able to call from inside an object
predicates defined in other source files/objects. The easiest solution,
which has the advantage of not requiring any changes to the predicate
definitions, is to use the uses/2 directive. If your
Prolog compiler supports cross-referencing tools, you may use them to
help you make sure that all calls to predicates on other source
files/objects are listed in the uses/2 directives.
The Logtalk wrapper tool can also help in detecting cross predicate
calls. Compiling the resulting objects with the Logtalk
unknown_predicates and
portability flags set to warning will
help you identify calls to predicates defined on other converted source
files and possible portability issues.

Prolog multifile predicates

Prolog multifile predicates are used when clauses for the same
predicate are spread among several source files. When encapsulating
plain Prolog code that uses multifile predicates, is often the case that
the clauses of the multifile predicates get spread between different
objects and categories but conversion is straight-forward. In the
Logtalk object (or category) holding the multifile predicate
primary declaration, add a
predicate scope directive and a
multifile/1 directive. In
all other objects (or categories) defining clauses for the multifile
predicate, add a multifile/1 directive and predicate clauses using
the format:

:- multifile(Entity::Name/Arity).

Entity::Functor(...) :-
 ...

See the section on the multifile/1
predicate directive for more information. An alternative solution is to
simply keep the clauses for the multifile predicates as plain Prolog code
and define, if necessary, a parametric object to encapsulate all predicates
working with the multifile predicate clauses. For example, assume the
following multifile/1 directive:

% city(Name, District, Population, Neighbors)
:- multifile(city/4).

We can define a parametric object with city/4 as its identifier:

:- object(city(_Name, _District, _Population, _Neighbors)).

 % predicates for working with city/4 clauses

:- end_object.

This solution is preferred when the multifile predicates are used to
represent large tables of data. See the section on Parametric objects
for more details.

Converting Prolog modules into objects

Converting Prolog modules into objects may allow an application to run
on a wider range of Prolog compilers, overcoming portability problems.
Some Prolog compilers don’t support a module system. Among those Prolog
compilers which support a module system, the lack of standardization
leads to several issues, specially with semantics, operators, and
meta-predicates. In addition, the conversion allows you to take
advantage of Logtalk more powerful abstraction and reuse mechanisms such
as separation between interface from implementation, inheritance,
parametric objects, and categories. It also allows you to take full
advantage of Logtalk developer tools for improved productivity.

Converting a Prolog module into an object is simplified when the directives
used in the module are supported by Logtalk (see the listing in the next
section). Assuming that this is the case, apply the following steps:

	Convert the module module/1 directive into an
object/1 opening object directive,
using the module name as the object name. For module/2 directives
apply the same conversion and convert the list of exported predicates
into public/1 predicate directives. Add a closing
object directive, end_object/0, at the end of the
source code.

	Convert any export/1 directives into public/1 predicate
directives.

	Convert any use_module/1 directives for modules that will not be
converted to objects into use_module/2 directives (see next section),
replacing the file spec in the first argument with the module name.

	Convert any use_module/1-2 directives referencing other modules
also being converted to objects into Logtalk uses/2
directives.

	Convert each reexport/1 directive into a uses/2
directive and public/1 predicate directives (see next section).

	Convert any meta_predicate/1 directives into Logtalk
meta_predicate/1 directives by replacing the module
meta-argument indicator, :, with the Logtalk meta-argument indicator
0 for goal meta-arguments. For closure meta-arguments, use an integer
denoting the number of additional arguments that will be appended to
construct a goal. Arguments which are not meta-arguments are represented by
the * character. Do not use argument mode indicators such as ?, or
+, or - as Logtalk supports mode directives.

	Convert any explicit qualified calls to module predicates to messages
by replacing the (:)/2 operator with the (::)/2
message sending operator when the referenced modules are also being
converted into objects. Calls in the pseudo-module user can be
encapsulated using the {}/1 Logtalk external
call control construct. You can also use instead a uses/2
directive where the first argument would be the atom user and the
second argument a list of all external predicates. This alternative has
the advantages of not requiring changes to the code making the predicate
calls and of better visibility for the documenting and diagramming tools.

	If your module uses the database built-in predicates to implement
module local mutable state using dynamic predicates, add both
private/1 and
dynamic/1 directives
for each dynamic predicate.

	If your module declares or defines clauses for multifile module
predicates, replace the (:)/2 functor by (::)/2 in the
multifile/1 directives and in the clause heads for all modules
defining the multifile predicates that are also being converted into
objects; if that is not the case, just keep the multifile/1
directives and the clause heads as-is).

	Compile the resulting objects with the Logtalk
unknown_predicates, and
portability flags set to warning
to help you locate possible issues and calls to proprietary Prolog
built-in predicates and to predicates defined on other converted
modules. In order to improve code portability, check the Logtalk
library for possible alternatives to the use of proprietary Prolog
built-in predicates.

Before converting your modules to objects, you may try to compile them
first as objects (using the logtalk_compile/1
Logtalk built-in predicates) to help identify any issues that must be
dealt with when doing the conversion to objects. Note that Logtalk
supports compiling Prolog files as Logtalk source code without requiring
changes to the file name extensions.

Compiling Prolog modules as objects

A possible alternative to port Prolog code to Logtalk is to compile the Prolog
source files using the logtalk_load/1-2 and logtalk_compile/1-2
predicates. The Logtalk compiler provides partial support for compiling Prolog
modules as Logtalk objects. This support may allow using modules from a backend
Prolog system in a different backend Prolog system although its main purpose is
to help in porting existing Prolog code to Logtalk in order to benefit from its
extended language features and its developer tools. Why partial support?
Although there is a ISO Prolog standard for modules, it is (rightfully)
ignored by most implementers and vendors (due to its flaws and deviation
from common practice). In addition, there is no de facto standard for module
systems, despite otherwise frequent misleading claims. Key system differences
include the set of implemented module directives, the directive semantics, the
handling of operators, the locality of flags, and on the integration of
term-expansion mechanisms (when provided). Another potential issue is that,
when compiling modules as objects, Logtalk assumes that any referenced module
(e.g. using use_module/1-2 directives) is also being compiled as an
object. If that’s not the case, the compiled module calls being compiled as
message sending goals will still work for normal predicates but will not
work for meta-predicates called using implicit module qualification. The
reason is that, unlike in Logtalk, calls to implicitly and explicitly
qualified module meta-predicates have different semantics. Follows a
discussion of other limitations of this approach that you should be aware.

Supported module directives

Currently, Logtalk supports the following module directives:

	module/1
	The module name becomes the object name.

	module/2
	The module name becomes the object name. The exported predicates
become public object predicates. The exported grammar rule
non-terminals become public grammar rule non-terminals. The exported
operators become public object operators but are not active elsewhere
when loading the code.

	use_module/2
	This directive is compiled as a Logtalk
uses/2 directive in order
to ensure correct compilation of the module predicate clauses. The
first argument of this directive must be the module name (an
atom), not a module file specification (the adapter files attempt to
use the Prolog dialect level term-expansion mechanism to find the
module name from the module file specification). Note that the module
is not automatically loaded by Logtalk (as it would be when compiling
the directive using Prolog instead of Logtalk; the programmer may
also want the specified module to be compiled as an object). The
second argument must be a predicate indicator (Name/Arity), a
grammar rule non-terminal indicator (Name//Arity), a operator
declaration, or a list of predicate indicators, grammar rule
non-terminal indicators, and operator declarations. Predicate aliases
can be declared using the notation Name/Arity as Alias/Arity or,
in alternative, the notation Name/Arity:Alias/Arity. Similar for
non-terminal aliases.

	export/1
	Exported predicates are compiled as public object predicates. The
argument must be a predicate indicator (Name/Arity), a grammar
rule non-terminal indicator (Name//Arity), an operator
declaration, or a list of predicate indicators, grammar rule
non-terminal indicators, and operator declarations.

	reexport/2
	Reexported predicates are compiled as public object predicates. The
first argument is the module name. The second argument must be a
predicate indicator (Name/Arity), a grammar rule non-terminal
indicator (Name//Arity), an operator declaration, or a list of
predicate indicators, grammar rule non-terminal indicators, and
operator declarations. Predicate aliases can be declared using the
notation Name/Arity as Alias/Arity or, in alternative, the notation
Name/Arity:Alias/Arity. Similar for non-terminal aliases.

	meta_predicate/1
	Module meta-predicates become object meta-predicates. Only predicate
arguments marked as goals or closures (using an integer)
are interpreted as meta-arguments. In addition, Prolog module
meta-predicates and Logtalk meta-predicates don’t share the same
explicit-qualification calling semantics: in Logtalk, meta-arguments
are always called in the context of the sender. Logtalk expects
meta-predicate/1 directives for all meta-predicates as it is not
based on the predicate-prefixing mechanism common to most Prolog
module systems.

A common issue when compiling modules as objects is the use of the atoms
dynamic, discontiguous, and multifile as operators in
directives. For better portability avoid this usage. For example, write:

:- dynamic([foo/1, bar/2]).

instead of:

:- dynamic foo/1, bar/2.

Another common issue is missing meta_predicate/1, dynamic/1,
discontiguous/1, and multifile/1 predicate directives. The Logtalk
compiler supports detection of missing directives (by setting its
missing_directives flag to warning).

When compiling modules as objects, you probably don’t need event support
turned on. You may use the events compiler flag to
deny with the Logtalk compiling and loading built-in methods for a
small performance gain for the compiled code.

Unsupported module directives

The reexport/1 and use_module/1 directives are not directly
supported by the Logtalk compiler. But most Prolog adapter files provide
support for compiling these directives using Logtalk first stage of
its term-expansion mechanism. Nevertheless,
these directives can be converted, respectively, into a sequence of
:- use_module/2 and export/1 directives and use_module/2
directives by finding which predicates exported by the
specified modules are reexported or imported into the module containing
the directive. For use_module/1 directives, finding the names of the
imported predicates that are actually used is easy. First, comment out the
directive and compile the file (making sure that the
unknown_predicates compiler flag is set
to warning). Logtalk will print a warning with a list of predicates
that are called but never defined. Second, use this list to replace the
use_module/1 directives by use_module/2 directives. You should
then be able to compile the modified Prolog module as an object.

Modules using a term-expansion mechanism

Although Logtalk supports
term and goal expansion mechanisms, the usage
semantics are different from similar mechanisms found in some Prolog
compilers. In particular, Logtalk does not support defining term and
goal expansions clauses in a source file for expanding the source file
itself. Logtalk forces a clean separation between expansions clauses and
the source files that will be subject to source-to-source expansions by
using hook objects. But hook objects also provide
a working solution here when the expansion code is separated from the
code to be expanded. Logtalk supports using a module as a hook object
as long as its name doesn’t coincide with the name of an object and
that the module uses term_expansion/2 and goal_expansion/2
predicates. Assuming that’s the case, before attempting to compile
the modules as objects, set the default hook object is to the module
containing the expansion code. For example, if the expansions stored
in a system module:

| ?- set_logtalk_flag(hook, system).
...

This, however, may not be enough as expansions may be stored in multiple
modules. A common example is to use a module named prolog for system
expansions and to store the user-defined expansions in user. The Logtalk
library provides a solution for these scenarios. Using the hook_flows
library we can select multiple hook objects or hook modules. For example,
assuming expansions stored on both user and system modules:

| ?- logtalk_load(hook_flows(loader)).
...

| ?- set_logtalk_flag(hook, hook_set([user, system])).
...

After these queries, we can try to compile the modules and look for
other porting or portability issues. A well know issue is Prolog module
term-expansions calling predicates such as prolog_load_context/2,
which will always fail when it’s the Logtalk compiler instead of the
Prolog compiler loading a source file. In some of these cases, it may
be possible to rewrite the expansion rules to use the
logtalk_load_context/2 predicate instead.

File search paths

Some Prolog systems provide a mechanism for defining file search paths
(this mechanism works differently from Logtalk own suport for defining
library path aliases). When porting Prolog code that defines file search
paths, e.g. for finding module libraries, it often helps to load the
pristine Prolog application before attempting to compile its source files
as Logtalk source files. Depending on the Prolog backend, this may allow
the file search paths to be used when compiling modules as objects that
use file directives such as use_module/2.

Dealing with proprietary Prolog directives and predicates

Most Prolog compilers define proprietary, non-standard, directives and
predicates that may be used in both plain code and module code.
Non-standard Prolog built-in predicates are usually not problematic, as
Logtalk is usually able to identify and compile them correctly (but see
the notes on built-in meta-predicates for possible caveats). However,
Logtalk will generate compilation errors on source files containing
proprietary directives unless you first specify how the directives
should be handled. Several actions are possible on a per-directive
basis: ignoring the directive (i.e. do not copy the directive, although
a goal can be proved as a consequence), rewriting and copy the directive
to the generated Prolog files, or rewriting and recompiling the
resulting directive. To specify these actions, the adapter files contain
clauses for the internal '$lgt_prolog_term_expansion'/2 predicate.
For example, assume that a given Prolog compiler defines a comment/2
directive for predicates using the format:

:- comment(foo/2, "Brief description of the predicate").

We can rewrite this predicate into a Logtalk info/2 directive by
defining a suitable clause for the '$lgt_prolog_term_expansion'/2
predicate:

'$lgt_prolog_term_expansion'(
 (:- comment(F/A, String)),
 (:- info(F/A, [comment is Atom]))
) :-
 atom_codes(Atom, String).

This Logtalk feature can be used to allow compilation of legacy Prolog
code without the need of changing the sources. When used, is advisable
to set the portability compiler flag to
warning in order to more easily identify source files that are
likely non-portable across Prolog compilers.

A second example, where a proprietary Prolog directive is discarded
after triggering a side effect:

'$lgt_prolog_term_expansion'(
 (:- load_foreign_files(Files,Libs,InitRoutine)),
 []
) :-
 load_foreign_files(Files,Libs,InitRoutine).

In this case, although the directive is not copied to the generated
Prolog file, the foreign library files are loaded as a side effect of
the Logtalk compiler calling the '$lgt_prolog_term_expansion'/2 hook
predicate.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories
by simply using explicit module qualification, i.e. by writing
Module:Goal or Goal@Module (depending on the module system).
Logtalk also supports the use of use_module/2 directives in object
and categories (with the restriction that the first argument of the
directive must be the actual module name and not the module file name or
the module file path). In this case, these directives are parsed in a
similar way to Logtalk uses/2
directives, with calls to the specified module predicates being
automatically translated to Module:Goal calls.

As a general rule, the Prolog modules should be loaded (e.g. in the
auxiliary Logtalk loader files) before compiling objects that make use
of module predicates. Moreover, the Logtalk compiler does not generate
code for the automatic loading of modules referenced in
use_module/1-2 directives. This is a consequence of the lack of
standardization of these directives, whose first argument can be a
module name, a straight file name, or a file name using some kind of
library notation, depending on the backend Prolog compiler. Worse,
modules are sometimes defined in files with names different from the
module names requiring finding, opening, and reading the file in order
to find the actual module name.

Logtalk supports the declaration of predicate aliases
and predicate shorthands in use_module/2
directives used within object and categories. For example, the ECLiPSe IC
Constraint Solvers define a (::)/2 variable domain operator that clashes
with the Logtalk (::)/2 message sending operator. We can solve the conflict
by writing:

:- use_module(ic, [(::)/2 as ins/2]).

With this directive, calls to the ins/2 predicate alias will be
automatically compiled by Logtalk to calls to the (::)/2 predicate in
the ic module.

Logtalk allows you to send a message to a module in order to call one of
its predicates. This is usually not advised as it implies a performance
penalty when compared to just using the Module:Call notation.
Moreover, this works only if there is no object with the same name as
the module you are targeting. This feature is necessary, however, in
order to properly support compilation of modules containing
use_module/2 directives as objects. If the modules specified in the
use_module/2 directives are not compiled as objects but are instead
loaded as-is by Prolog, the exported predicates would need to be called
using the Module:Call notation but the converted module will be
calling them through message sending. Thus, this feature ensures that,
on a module compiled as an object, any predicate calling other module
predicates will work as expected either these other modules are loaded
as-is or also compiled as objects.

For more details, see the Calling Prolog predicates section.

Loading converted Prolog applications

Logtalk strongly favors and advises users to provide a main
loader file for applications that explicitly
load any required libraries and the application source files. In contrast,
Prolog applications often either scatter loading of source files from multiple
files or use implicit loading of source files via use_module/1-2
directives. Due to this frequent ad-hoc approach, it’s common to find Prolog
applications with duplicated loading directives and are loading order ignores
the dependencies between source files. These issues are easily exposed by the
Logtalk linter when compiling Prolog files as Logtalk files. Also common are
Prolog files with multiple circular dependencies. While this should not
affect the semantics of the ported code, it may cause some performance
penalties as it prevents the Logtalk compiler of optimizing the message
sending goals using static-binding. It also makes the application architecture
more difficult to understand. The definition of explicit loader files
provides a good opportunity of sorting out loading order and circular
dependencies, with the linter warnings providing hints for possible code
refactoring to eliminate these issues. The diagrams tool
supports directory and file loading and dependency diagrams that are also
useful in understanding applications architecture.

Reference Manual

	Grammar
	Entities

	Object definition

	Category definition

	Protocol definition

	Entity relations

	Entity identifiers

	Source files

	Source file names

	Terms

	Directives

	Clauses and goals

	Lambda expressions

	Entity properties

	Predicate properties

	Compiler flags

	Control constructs
	Message sending

	Message delegation

	Calling imported and inherited predicates

	Calling predicates in this

	Calling external predicates

	Context switching calls

	Directives
	Source file directives

	Conditional compilation directives

	Entity directives

	Predicate directives

	Built-in predicates
	Enumerating objects, categories and protocols

	Enumerating objects, categories and protocols properties

	Creating new objects, categories and protocols

	Abolishing objects, categories and protocols

	Objects, categories, and protocols relations

	Event handling

	Multi-threading

	Multi-threading engines

	Compiling and loading source files

	Flags

	Linter

	Built-in methods
	Logic and control

	Execution context

	Reflection

	Database

	Meta-calls

	Error handling

	All solutions

	Event handling

	Message forwarding

	Definite clause grammar rules

	Term and goal expansion

	Coinduction hooks

	Message printing

	Question asking

Grammar

The Logtalk grammar is here described using W3C-style Extended Backus-Naur
Form syntax. Non-terminal symbols not defined here can be found in the ISO
Prolog Core standard. Terminal symbols are represented between double-quotes.

Entities

entity ::=
 object
 | category
 | protocol

Object definition

object ::=
 begin_object_directive (object_term)* end_object_directive

begin_object_directive ::=
 ":- object(" object_identifier ("," object_relations)? ")."

end_object_directive ::=
 ":- end_object."

object_relations ::=
 prototype_relations
 | non_prototype_relations

prototype_relations ::=
 prototype_relation
 | prototype_relation "," prototype_relations

prototype_relation ::=
 implements_protocols
 | imports_categories
 | extends_objects

non_prototype_relations ::=
 non_prototype_relation
 | non_prototype_relation "," non_prototype_relations

non_prototype_relation ::=
 implements_protocols
 | imports_categories
 | instantiates_classes
 | specializes_classes

Category definition

category ::=
 begin_category_directive (category_term)* end_category_directive

begin_category_directive ::=
 ":- category(" category_identifier ("," category_relations)? ")."

end_category_directive ::=
 ":- end_category."

category_relations ::=
 category_relation
 | category_relation "," category_relations

category_relation ::=
 implements_protocols
 | extends_categories
 | complements_objects

Protocol definition

protocol ::=
 begin_protocol_directive (protocol_directive)* end_protocol_directive

begin_protocol_directive ::=
 ":- protocol(" protocol_identifier ("," extends_protocols)? ")."

end_protocol_directive ::=
 ":- end_protocol."

Entity relations

extends_protocols ::=
 "extends(" extended_protocols ")"

extends_objects ::=
 "extends(" extended_objects ")"

extends_categories ::=
 "extends(" extended_categories ")"

implements_protocols ::=
 "implements(" implemented_protocols ")"

imports_categories ::=
 "imports(" imported_categories ")"

instantiates_classes ::=
 "instantiates(" instantiated_objects ")"

specializes_classes ::=
 "specializes(" specialized_objects ")"

complements_objects ::=
 "complements(" complemented_objects ")"

Implemented protocols

implemented_protocols ::=
 implemented_protocol
 | implemented_protocol_sequence
 | implemented_protocol_list

implemented_protocol ::=
 protocol_identifier
 | scope "::" protocol_identifier

implemented_protocol_sequence ::=
 implemented_protocol
 | implemented_protocol "," implemented_protocol_sequence

implemented_protocol_list ::=
 "[" implemented_protocol_sequence "]"

Extended protocols

extended_protocols ::=
 extended_protocol
 | extended_protocol_sequence
 | extended_protocol_list

extended_protocol ::=
 protocol_identifier
 | scope "::" protocol_identifier

extended_protocol_sequence ::=
 extended_protocol
 |extended_protocol "," extended_protocol_sequence

extended_protocol_list ::=
 "[" extended_protocol_sequence "]"

Imported categories

imported_categories ::=
 imported_category
 | imported_category_sequence
 | imported_category_list

imported_category ::=
 category_identifier
 | scope "::" category_identifier

imported_category_sequence ::=
 imported_category
 | imported_category "," imported_category_sequence

imported_category_list ::=
 "[" imported_category_sequence "]"

Extended objects

extended_objects ::=
 extended_object
 | extended_object_sequence
 | extended_object_list

extended_object ::=
 object_identifier
 | scope "::" object_identifier

extended_object_sequence ::=
 extended_object
 | extended_object "," extended_object_sequence

extended_object_list ::=
 "[" extended_object_sequence "]"

Extended categories

extended_categories ::=
 extended_category
 | extended_category_sequence
 | extended_category_list

extended_category ::=
 category_identifier
 | scope "::" category_identifier

extended_category_sequence ::=
 extended_category
 | extended_category "," extended_category_sequence

extended_category_list ::=
 "[" extended_category_sequence "]"

Instantiated objects

instantiated_objects ::=
 instantiated_object
 | instantiated_object_sequence
 | instantiated_object_list

instantiated_object ::=
 object_identifier
 | scope "::" object_identifier

instantiated_object_sequence ::=
 instantiated_object
 | instantiated_object "," instantiated_object_sequence

instantiated_object_list ::=
 "[" instantiated_object_sequence "]"

Specialized objects

specialized_objects ::=
 specialized_object
 | specialized_object_sequence
 | specialized_object_list

specialized_object ::=
 object_identifier
 | scope "::" object_identifier

specialized_object_sequence ::=
 specialized_object
 | specialized_object "," specialized_object_sequence

specialized_object_list ::=
 "[" specialized_object_sequence "]"

Complemented objects

complemented_objects ::=
 object_identifier
 | complemented_object_sequence
 | complemented_object_list

complemented_object_sequence ::=
 object_identifier
 | object_identifier "," complemented_object_sequence

complemented_object_list ::=
 "[" complemented_object_sequence "]"

Entity and predicate scope

scope ::=
 "public"
 | "protected"
 | "private"

Entity identifiers

entity_identifier ::=
 object_identifier
 | protocol_identifier
 | category_identifier

Object identifiers

object_identifier ::=
 atom
 | compound

Category identifiers

category_identifier ::=
 atom
 | compound

Protocol identifiers

protocol_identifier ::=
 atom

Module identifiers

module_identifier ::=
 atom

Source files

source_file ::=
 (source_file_content)*

source_file_content ::=
 source_file_directive
 | clause
 | grammar_rule
 | entity

Source file names

source_file_name ::=
 atom
 | library_source_file_name

library_source_file_name ::=
 library_name "(" atom ")"

library_name ::=
 atom

Terms

Object terms

object_term ::=
 object_directive
 | clause
 | grammar_rule

Category terms

category_term ::=
 category_directive
 | clause
 | grammar_rule

Directives

Source file directives

source_file_directive ::=
 ":- encoding(" atom ")."
 | ":- set_logtalk_flag(" atom "," nonvar ")."
 | ":- include(" source_file_name ")."
 | prolog_directive

Conditional compilation directives

conditional_compilation_directive ::=
 ":- if(" callable ")."
 | ":- elif(" callable ")."
 | ":- else."
 | ":- endif."

Object directives

object_directive ::=
 ":- initialization(" callable ")."
 | ":- built_in."
 | ":- threaded."
 | ":- dynamic."
 | ":- info(" entity_info_list ")."
 | ":- set_logtalk_flag(" atom "," nonvar ")."
 | ":- include(" source_file_name ")."
 | ":- uses(" object_alias_list ")."
 | ":- use_module(" module_alias_list ")."
 | conditional_compilation_directive
 | predicate_directive

Category directives

category_directive ::=
 ":- built_in."
 | ":- dynamic."
 | ":- info(" entity_info_list ")."
 | ":- set_logtalk_flag(" atom "," nonvar ")."
 | ":- include(" source_file_name ")."
 | ":- uses(" object_alias_list ")."
 | ":- use_module(" module_alias_list ")."
 | conditional_compilation_directive
 | predicate_directive

Protocol directives

protocol_directive ::=
 ":- built_in."
 | ":- dynamic."
 | ":- info(" entity_info_list ")."
 | ":- set_logtalk_flag(" atom "," nonvar ")."
 | ":- include(" source_file_name ")."
 | conditional_compilation_directive
 | predicate_directive

Predicate directives

predicate_directive ::=
 alias_directive
 | synchronized_directive
 | uses_directive
 | use_module_directive
 | scope_directive
 | mode_directive
 | meta_predicate_directive
 | meta_non_terminal_directive
 | info_directive
 | dynamic_directive
 | discontiguous_directive
 | multifile_directive
 | coinductive_directive
 | operator_directive

alias_directive ::=
 ":- alias(" entity_identifier "," alias_directive_resource_list ")."

synchronized_directive ::=
 ":- synchronized(" synchronized_directive_resource_term ")."

uses_directive ::=
 ":- uses(" (object_identifier | parameter_variable) "," uses_directive_resource_list ")."

use_module_directive ::=
 ":- use_module(" (module_identifier | parameter_variable) "," use_module_directive_resource_list ")."

scope_directive ::=
 ":- public(" scope_directive_resource_term ")."
 | ":- protected(" scope_directive_resource_term ")."
 | ":- private(" scope_directive_resource_term ")."

mode_directive ::=
 ":- mode(" (predicate_mode_term | non_terminal_mode_term) "," number_of_proofs ")."

meta_predicate_directive ::=
 ":- meta_predicate(" meta_predicate_template_term ")."

meta_non_terminal_directive ::=
 ":- meta_non_terminal(" meta_non_terminal_template_term ")."

info_directive ::=
 ":- info(" (predicate_indicator | non_terminal_indicator) "," predicate_info_list ")."

dynamic_directive ::=
 ":- dynamic(" qualified_directive_resource_term ")."

discontiguous_directive ::=
 ":- discontiguous(" qualified_directive_resource_term ")."

multifile_directive ::=
 ":- multifile(" qualified_directive_resource_term ")."

coinductive_directive ::=
 ":- coinductive(" (predicate_indicator_term | coinductive_predicate_template_term) ")."

parameter_variable ::=
 variable

scope_directive_resource_term ::=
 scope_directive_resource
 | scope_directive_resource_sequence
 | scope_directive_resource_list

scope_directive_resource ::=
 predicate_indicator
 | non_terminal_indicator
 | operator

scope_directive_resource_sequence ::=
 scope_directive_resource
 | scope_directive_resource "," scope_directive_resource_sequence

scope_directive_resource_list ::=
 "[" scope_directive_resource_sequence "]"

entity_resources_list ::=
 predicate_indicator_list
 | operator_list

predicate_indicator_term ::=
 predicate_indicator
 | predicate_indicator_sequence
 | predicate_indicator_list

predicate_indicator_sequence ::=
 predicate_indicator
 | predicate_indicator "," predicate_indicator_sequence

predicate_indicator_list ::=
 "[" predicate_indicator_sequence "]"

alias_directive_resource_list ::=
 "[" alias_directive_resource_sequence "]"

alias_directive_resource_sequence ::=
 alias_directive_resource
 | alias_directive_resource "," alias_directive_resource_sequence

alias_directive_resource ::=
 predicate_indicator_alias
 | non_terminal_indicator_alias

synchronized_directive_resource_term ::=
 synchronized_directive_resource
 | synchronized_directive_resource_sequence
 | synchronized_directive_resource_list

synchronized_directive_resource ::=
 predicate_indicator
 | non_terminal_indicator

synchronized_directive_resource_sequence ::=
 synchronized_directive_resource
 | synchronized_directive_resource "," synchronized_directive_resource_sequence

synchronized_directive_resource_list ::=
 "[" synchronized_directive_resource_sequence "]"

uses_directive_resource_list ::=
 "[" uses_directive_resource_sequence "]"

uses_directive_resource_sequence ::=
 uses_directive_resource
 | uses_directive_resource "," uses_directive_resource_sequence

uses_directive_resource ::=
 predicate_indicator
 | non_terminal_indicator
 | predicate_template_alias
 | operator

use_module_directive_resource_list ::=
 "[" use_module_directive_resource_sequence "]"

use_module_directive_resource_sequence ::=
 use_module_directive_resource
 | use_module_directive_resource "," use_module_directive_resource_sequence

use_module_directive_resource ::=
 predicate_indicator
 | non_terminal_indicator
 | predicate_template_alias
 | operator

qualified_directive_resource_term ::=
 qualified_directive_resource
 | qualified_directive_resource_sequence
 | qualified_directive_resource_list

qualified_directive_resource_sequence ::=
 qualified_directive_resource
 | qualified_directive_resource "," qualified_directive_resource_sequence

qualified_directive_resource_list ::=
 "[" qualified_directive_resource_sequence "]"

qualified_directive_resource ::=
 predicate_indicator
 | non_terminal_indicator
 | object_identifier "::" (predicate_indicator | non_terminal_indicator)
 | category_identifier "::" (predicate_indicator | non_terminal_indicator)
 | module_identifier ":" (predicate_indicator | non_terminal_indicator)

predicate_indicator_alias ::=
 predicate_indicator "as" predicate_indicator

predicate_template_alias ::=
 callable "as" callable

non_terminal_indicator ::=
 functor "//" arity

non_terminal_indicator_alias ::=
 non_terminal_indicator "as" non_terminal_indicator

operator_sequence ::=
 operator specification
 | operator specification "," operator_sequence

operator_list ::=
 "[" operator_sequence "]"

coinductive_predicate_template_term ::=
 coinductive_predicate_template
 | coinductive_predicate_template_sequence
 | coinductive_predicate_template_list

coinductive_predicate_template_sequence ::=
 coinductive_predicate_template
 | coinductive_predicate_template "," coinductive_predicate_template_sequence

coinductive_predicate_template_list ::=
 "[" coinductive_predicate_template_sequence "]"

coinductive_predicate_template ::=
 atom "(" coinductive_mode_terms ")"

coinductive_mode_terms ::=
 coinductive_mode_term
 | coinductive_mode_terms "," coinductive_mode_terms

coinductive_mode_term ::=
 "+"
 | "-"

predicate_mode_term ::=
 atom "(" mode_terms ")"

non_terminal_mode_term ::=
 atom "(" mode_terms ")"

mode_terms ::=
 mode_term
 |mode_term "," mode_terms

mode_term ::=
 "@" type?
 | "+" type?
 | "-" type?
 | "?" type?
 | "++" type?
 | "--" type?

type ::=
 prolog_type | logtalk_type | user_defined_type

prolog_type ::=
 "term"
 | "nonvar"
 | "var"
 | "compound"
 | "ground"
 | "callable"
 | "list"
 | "atomic"
 | "atom"
 | "number"
 | "integer"
 | "float"

logtalk_type ::=
 "object"
 | "category"
 | "protocol"
 | "event"

user_defined_type ::=
 atom
 | compound

number_of_proofs ::=
 "zero"
 | "zero_or_one"
 | "zero_or_more"
 | "one"
 | "one_or_more"
 | "zero_or_error"
 | "one_or_error"
 | "zero_or_one_or_error"
 | "zero_or_more_or_error"
 | "one_or_more_or_error"
 | "error"

meta_predicate_template_term ::=
 meta_predicate_template
 | meta_predicate_template_sequence
 | meta_predicate_template_list

meta_predicate_template_sequence ::=
 meta_predicate_template
 | meta_predicate_template "," meta_predicate_template_sequence

meta_predicate_template_list ::=
 "[" meta_predicate_template_sequence "]"

meta_predicate_template ::=
 object_identifier "::" atom "(" meta_predicate_specifiers ")"
 | category_identifier "::" atom "(" meta_predicate_specifiers ")"
 | module_identifier ":" atom "(" meta_predicate_specifiers ")"
 | atom "(" meta_predicate_specifiers ")"

meta_predicate_specifiers ::=
 meta_predicate_specifier
 | meta_predicate_specifier "," meta_predicate_specifiers

meta_predicate_specifier ::=
 non_negative_integer
 | "::"
 | "^"
 | "*"

meta_non_terminal_template_term ::=
 meta_predicate_template_term

entity_info_list ::=
 "[" entity_info_sequence? "]"

entity_info_sequence ::=
 entity_info_item "is" nonvar
 | entity_info_item "is" nonvar "," entity_info_sequence

entity_info_item ::=
 "comment"
 | "remarks"
 | "author"
 | "version"
 | "date"
 | "copyright"
 | "license"
 | "parameters"
 | "parnames"
 | "see_also"
 | atom

predicate_info_list ::=
 "[" predicate_info_sequence? "]"

predicate_info_sequence ::=
 predicate_info_item "is" nonvar
 | predicate_info_item "is" nonvar "," predicate_info_sequence

predicate_info_item ::=
 "comment"
 | "remarks"
 | "arguments"
 | "argnames"
 | "redefinition"
 | "allocation"
 | "examples"
 | "exceptions"
 | "see_also"
 | atom

object_alias_list ::=
 "[" object_alias_sequence "]"

object_alias_sequence ::=
 object_alias
 | object_alias "," object_alias_sequence

object_alias ::=
 object_identifier "as" object_identifier

module_alias_list ::=
 "[" module_alias_sequence "]"

module_alias_sequence ::=
 module_alias
 | module_alias "," module_alias_sequence

module_alias ::=
 module_identifier "as" module_identifier

Clauses and goals

clause ::=
 object_identifier "::" head ":-" body
 | module_identifier ":" head ":-" body
 | head ":-" body
 | object_identifier "::" fact
 | module_identifier ":" fact
 | fact

goal ::=
 message_sending
 | super_call
 | external_call
 | context_switching_call
 | callable

message_sending ::=
 message_to_object
 | message_delegation
 | message_to_self

message_to_object ::=
 receiver "::" messages

message_delegation ::=
 "[" message_to_object "]"

message_to_self ::=
 "::" messages

super_call ::=
 "^^" message

messages ::=
 message
 | "(" message "," messages ")"
 | "(" message ";" messages ")"
 | "(" message "->" messages ")"

message ::=
 callable
 | variable

receiver ::=
 "{" callable "}"
 | object_identifier
 | variable

external_call ::=
 "{" callable "}"

context_switching_call ::=
 object_identifier "<<" callable

Lambda expressions

lambda_expression ::=
 lambda_free_variables "/" lambda_parameters ">>" callable
 | lambda_free_variables "/" callable
 | lambda_parameters ">>" callable

lambda_free_variables ::=
 "{" variables? "}"

lambda_parameters ::=
 "[" terms? "]"

variables ::=
 variable
 | variable "," variables

terms ::=
 term
 | term "," terms

Entity properties

category_property ::=
 "static"
 | "dynamic"
 | "built_in"
 | "file(" atom ")"
 | "file(" atom "," atom ")"
 | "lines(" integer "," integer ")"
 | "events"
 | "source_data"
 | "public(" entity_resources_list ")"
 | "protected(" entity_resources_list ")"
 | "private(" entity_resources_list ")"
 | "declares(" predicate_indicator "," predicate_declaration_property_list ")"
 | "defines(" predicate_indicator "," predicate_definition_property_list ")"
 | "includes(" predicate_indicator "," (object_identifier | category_identifier) "," predicate_definition_property_list ")"
 | "provides(" predicate_indicator "," (object_identifier | category_identifier) "," predicate_definition_property_list ")"
 | "alias(" predicate_indicator "," predicate_alias_property_list ")"
 | "calls(" predicate "," predicate_call_update_property_list ")"
 | "updates(" predicate "," predicate_call_update_property_list ")"
 | "number_of_clauses(" integer ")"
 | "number_of_rules(" integer ")"
 | "number_of_user_clauses(" integer ")"
 | "number_of_user_rules(" integer ")"
 | "debugging"

object_property ::=
 "static"
 | "dynamic"
 | "built_in"
 | "threaded"
 | "file(" atom ")"
 | "file(" atom "," atom ")"
 | "lines(" integer "," integer ")"
 | "context_switching_calls"
 | "dynamic_declarations"
 | "events"
 | "source_data"
 | "complements(" ("allow" | "restrict") ")"
 | "complements"
 | "public(" entity_resources_list ")"
 | "protected(" entity_resources_list ")"
 | "private(" entity_resources_list ")"
 | "declares(" predicate_indicator "," predicate_declaration_property_list ")"
 | "defines(" predicate_indicator "," predicate_definition_property_list ")"
 | "includes(" predicate_indicator "," (object_identifier | category_identifier) "," predicate_definition_property_list ")"
 | "provides(" predicate_indicator "," (object_identifier | category_identifier) "," predicate_definition_property_list ")"
 | "alias(" predicate_indicator "," predicate_alias_property_list ")"
 | "calls(" predicate "," predicate_call_update_property_list ")"
 | "updates(" predicate "," predicate_call_update_property_list ")"
 | "number_of_clauses(" integer ")"
 | "number_of_rules(" integer ")"
 | "number_of_user_clauses(" integer ")"
 | "number_of_user_rules(" integer ")"
 | "module"
 | "debugging"

protocol_property ::=
 "static"
 | "dynamic"
 | "built_in"
 | "source_data"
 | "file(" atom ")"
 | "file(" atom "," atom ")"
 | "lines(" integer "," integer ")"
 | "public(" entity_resources_list ")"
 | "protected(" entity_resources_list ")"
 | "private(" entity_resources_list ")"
 | "declares(" predicate_indicator "," predicate_declaration_property_list ")"
 | "alias(" predicate_indicator "," predicate_alias_property_list ")"
 | "debugging"

predicate_declaration_property_list ::=
 "[" predicate_declaration_property_sequence "]"

predicate_declaration_property_sequence ::=
 predicate_declaration_property
 | predicate_declaration_property "," predicate_declaration_property_sequence

predicate_declaration_property ::=
 "static"
 | "dynamic"
 | "scope(" scope ")"
 | "private"
 | "protected"
 | "public"
 | "coinductive"
 | "multifile"
 | "synchronized"
 | "meta_predicate(" meta_predicate_template ")"
 | "coinductive(" coinductive_predicate_template ")"
 | "non_terminal(" non_terminal_indicator ")"
 | "include(" atom ")"
 | "line_count(" integer ")"
 | "mode(" (predicate_mode_term | non_terminal_mode_term) "," number_of_proofs ")"
 | "info(" list ")"

predicate_definition_property_list ::=
 "[" predicate_definition_property_sequence "]"

predicate_definition_property_sequence ::=
 predicate_definition_property
 | predicate_definition_property "," predicate_definition_property_sequence

predicate_definition_property ::=
 "inline"
 | "auxiliary"
 | "non_terminal(" non_terminal_indicator ")"
 | "include(" atom ")"
 | "line_count(" integer ")"
 | "number_of_clauses(" integer ")"
 | "number_of_rules(" integer ")"

predicate_alias_property_list ::=
 "[" predicate_alias_property_sequence "]"

predicate_alias_property_sequence ::=
 predicate_alias_property
 | predicate_alias_property "," predicate_alias_property_sequence

predicate_alias_property ::=
 "for(" predicate_indicator ")"
 | "from(" entity_identifier ")"
 | "non_terminal(" non_terminal_indicator ")"
 | "include(" atom ")"
 | "line_count(" integer ")"

predicate ::=
 predicate_indicator
 | "^^" predicate_indicator
 | "::" predicate_indicator
 | (variable | object_identifier) "::" predicate_indicator
 | (variable | module_identifier) ":" predicate_indicator

predicate_call_update_property_list ::=
 "[" predicate_call_update_property_sequence "]"

predicate_call_update_property_sequence ::=
 predicate_call_update_property
 | predicate_call_update_property "," predicate_call_update_property_sequence

predicate_call_update_property ::=
 "caller(" predicate_indicator ")"
 | "include(" atom ")"
 | "line_count(" integer ")"
 | "alias(" predicate_indicator ")"
 | "non_terminal(" non_terminal_indicator ")"

Predicate properties

predicate_property ::=
 "static"
 | "dynamic"
 | "scope(" scope ")"
 | "private"
 | "protected"
 | "public"
 | "logtalk"
 | "prolog"
 | "foreign"
 | "coinductive(" coinductive_predicate_template ")"
 | "multifile"
 | "synchronized"
 | "built_in"
 | "inline"
 | "recursive"
 | "declared_in(" entity_identifier ")"
 | "defined_in(" (object_identifier | category_identifier) ")"
 | "redefined_from(" (object_identifier | category_identifier) ")"
 | "meta_predicate(" meta_predicate_template ")"
 | "alias_of(" callable ")"
 | "alias_declared_in(" entity_identifier ")"
 | "non_terminal(" non_terminal_indicator ")"
 | "mode(" (predicate_mode_term | non_terminal_mode_term) "," number_of_proofs ")"
 | "info(" list ")"
 | "number_of_clauses(" integer ")"
 | "number_of_rules(" integer ")"
 | "declared_in(" entity_identifier "," line_count ")"
 | "defined_in(" (object_identifier | category_identifier) "," line_count ")"
 | "redefined_from(" (object_identifier | category_identifier) "," line_count ")"
 | "alias_declared_in(" entity_identifier "," line_count ")"

line_count ::=
 integer

Compiler flags

compiler_flag ::=
 flag "(" flag_value ")"

Control constructs

	Message sending
	(::)/2

	(::)/1

	Message delegation
	[]/1

	Calling imported and inherited predicates
	(^^)/1

	Calling predicates in this
	(@)/1

	Calling external predicates
	{}/1

	Context switching calls
	(<<)/2

Message sending

	(::)/2

	(::)/1

 control construct

(::)/2

Description

Object::Message
{Proxy}::Message

Sends a message to an object. The message argument must match a
public predicate of the receiver object. When
the message corresponds to a protected or
private predicate, the call is only valid if
the sender matches the predicate scope container. When the
predicate is declared but not defined, the message simply fails (as per
the closed-world assumption).

The {Proxy}::Message syntax allows simplified access to
parametric object proxies.
Its operational semantics is equivalent to the conjunction
(call(Proxy), Proxy::Message). I.e. Proxy is proved
within the context of the pseudo-object user and,
if successful, the Proxy term is used as an object identifier.
Exceptions thrown when proving Proxy are handled by the (::)/2
control construct. This construct construct supports backtracking over
the {Proxy} goal.

The lookups for the message declaration and the corresponding method are
performed using a depth-first strategy. Depending on the value of the
optimize flag, these lookups are performed at
compile time whenever sufficient information is available. When the
lookups are performed at runtime, a caching mechanism is used to improve
performance in subsequent messages. See the User Manual section on
performance for details.

Modes and number of proofs

+object_identifier::+callable - zero_or_more
{+object_identifier}::+callable - zero_or_more

Errors

Either Object or Message is a variable:

instantiation_error

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Message is neither a variable nor a callable term:

type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:

permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is declared protected:

permission_error(access, protected_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:

existence_error(predicate_declaration, Name/Arity)

Object does not exist:

existence_error(object, Object)

Proxy is a variable:

instantiation_error

Proxy is neither a variable nor a callable term:

type_error(callable, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:

existence_error(procedure, Name/Arity)

Examples

| ?- list::member(X, [1, 2, 3]).

X = 1 ;
X = 2 ;
X = 3
yes

See also

(::)/1,
(^^)/1,
[]/1

 control construct

(::)/1

Description

::Message

Sends a message to self. Can only used in the body of a predicate
definition. The argument should match a public
or protected predicate of self. It may
also match a private predicate
if the predicate is within the scope of the object where the method
making the call is defined, if imported from a category, if used from
within a category, or when using private inheritance. When the predicate
is declared but not defined, the message simply fails (as per the
closed-world assumption).

The lookups for the message declaration and the corresponding method are
performed using a depth-first strategy. A message to self necessarily
implies the use of dynamic binding but a caching mechanism is used
to improve performance in subsequent messages. See the User Manual section
on performance for details.

Modes and number of proofs

::+callable - zero_or_more

Errors

Message is a variable:

instantiation_error

Message is neither a variable nor a callable term:

type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:

permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:

existence_error(predicate_declaration, Name/Arity)

Examples

area(Area) :-
 ::width(Width),
 ::height(Height),
 Area is Width * Height.

See also

(::)/2,
(^^)/1,
[]/1

Message delegation

	[]/1

 control construct

[]/1

Description

[Object::Message]
[{Proxy}::Message]

This control construct allows the programmer to send a message to an
object while preserving the original sender. It is mainly used in the
definition of object handlers for unknown messages. This functionality
is usually known as delegation but be aware that this is an overloaded
word that can mean different things in different object-oriented
programming languages.

To prevent using of this control construct to break object
encapsulation, an attempt to delegate a message to the original sender
results in an error. The remaining error conditions are the same as the
(::)/2 control construct.

Note that, despite the correct functor for this control construct being
(traditionally) '.'/2, we refer to it as []/1 simply to
emphasize that the syntax is a list with a single element.

Modes and number of proofs

[+object_identifier::+callable] - zero_or_more
[{+object_identifier}::+callable] - zero_or_more

Errors

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier, Object)

Object does not exist:

existence_error(object, Object)

Object and the original sender are the same object:

permission_error(access, object, Sender)

Proxy is a variable:

instantiation_error

Proxy is neither a variable nor an object identifier:

type_error(object_identifier, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:

existence_error(procedure, Name/Arity)

Message is a variable:

instantiation_error

Message is neither a variable nor a callable term:

type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:

permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is declared protected:

permission_error(access, protected_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:

existence_error(predicate_declaration, Name/Arity)

Examples

% delegate unknown messages to the "backup" object:
forward(Message) :-
 [backup::Message].

See also

(::)/2,
(::)/1,
(^^)/1,
forward/1

Calling imported and inherited predicates

	(^^)/1

 control construct

(^^)/1

Description

^^Predicate

Calls an imported or inherited predicate definition. The call fails if
the predicate is declared but there is no imported or inherited
predicate definition (as per the closed-world assumption). This
control construct may be used within objects or categories in the body
of a predicate definition.

This control construct preserves the implicit execution context
self and sender arguments (plus the meta-call
context and coinduction stack when applicable) when calling the
inherited (or imported) predicate definition.

The lookups for the predicate declaration and the predicate definition
are performed using a depth-first strategy. Depending on the value of
the optimize flag, these lookups are performed
at compile time when the predicate is static and sufficient information
is available. When the lookups are performed at runtime, a caching
mechanism is used to improve performance in subsequent calls. See the
User Manual section on performance for
details.

When the call is made from within an object, the lookup for the
predicate definition starts at the imported categories, if any. If an
imported predicate definition is not found, the lookup proceeds to the
ancestor objects. Calls from predicates defined in complementing
categories lookup inherited definitions as if the calls were made from
the complemented object, thus allowing more comprehensive object
patching. For other categories, the predicate definition lookup is
restricted to the extended categories.

The called predicate should be declared public
or protected. It may also be declared
private if within the scope of the entity
where the method making the call is defined.

This control construct is a generalization of the Smalltalk super
keyword to take into account Logtalk support for prototypes and
categories besides classes.

Modes and number of proofs

^^+callable - zero_or_more

Errors

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a callable term:

type_error(callable, Predicate)

Predicate, with predicate indicator Name/Arity, is declared private:

permission_error(access, private_predicate, Name/Arity)

Predicate, with predicate indicator Name/Arity, is not declared:

existence_error(predicate_declaration, Name/Arity)

Examples

% specialize the inherited definition
% of the init/0 predicate:
init :-
 assertz(counter(0)),
 ^^init.

See also

(::)/2,
(::)/1,
[]/1

Calling predicates in this

	(@)/1

 control construct

(@)/1

Description

@Predicate

Calls a predicate definition in this. The argument must be a callable
term at compile time. The predicate must be declared (by a scope directive).
This control construct provides access to predicate definitions in this from
categories. For example, it allows overriding a predicate definition from a
complementing category with a new definition that calls goals before and
after calling the overriden definition (the overriding definition is sometimes
described in other programming languages as an around method). When used
within an object, it’s the same as calling its argument.

Modes and number of proofs

@ +callable - zero_or_more

Errors

Predicate, with predicate indicator Name/Arity, is not declared:

existence_error(predicate_declaration, Name/Arity)

Examples

Assuming an object declaring a make_sound/0 predicate, define an
around method in a complementing category:

make_sound :-
 write('Started making sound...'), nl,
 @make_sound,
 write('... finished making sound.'), nl.

See also

(::)/2,
(::)/1,
[]/1

Calling external predicates

	{}/1

 control construct

{}/1

Description

{Goal}
{Closure}
{Term}

This control construct allows the programmer to bypass the Logtalk compiler
(including its linter but not its optimizer) in multiple contexts:

	Calling a goal as-is (from within an object or category) in the context of
the user pseudo-object.

	Extending a closure as-is with the remaining arguments of a
call/2-N call in order to construct a goal that will
be called within the context of the user pseudo-object.

	Wrapping a source file term (either a clause or a directive) or a source file
goal to bypass the term-expansion mechanism.

	Using it in place of an object identifier when sending a message. In this
case, its argument is proved as a goal within the context of the user
pseudo-object with the resulting term being used as an object identifier
in the message sending goal. This feature is mainly used with
parametric objects when their identifiers
correspond to predicates defined in user.

	Using it as a message to an object. This is mainly useful when the message is
e.g. a conjunction of messages, some of which
being calls to Prolog built-in predicates.

Note

This control construct is opaque to cuts when used to wrap a goal (thus
ensuring the same semantics independently of the argument being bound at
compile time or at runtime).

Modes and number of proofs

{+callable} - zero_or_more

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Closure is a variable:

instantiation_error

Closure is neither a variable nor a callable term:

type_error(callable, Closure)

Term is a variable:

instantiation_error

Term is neither a variable nor a callable term:

type_error(callable, Term)

Examples

% overload the standard (<)/2 operator by
% calling its standard built-in definition:
N1/D1 < N2/D2 :-
 {N1*D2 < N2*D1}.

% call a closure in the context of "user":
call_in_user(F, X, Y, Z) :-
 call({F}, X, Y, Z).

% bypass the compiler for a proprietary backend directive:
{:- load_foreign_resource(file)}.

% use parametric object proxies:
| ?- {circle(Id, Radius, Color)}::area(Area).
...

% use Prolog built-in predicates as messages:
| ?- logtalk::{write('hello world!'), nl}.
hello world!
yes

Context switching calls

	(<<)/2

 control construct

(<<)/2

Description

Object<<Goal
{Proxy}<<Goal

Debugging control construct. Calls a goal within the context of the
specified object. The goal is called with the execution context
(sender, this, and self) set to the object.
The goal may need to be written between parenthesis to avoid parsing
errors due to operator conflicts. This control construct should only be
used for debugging or for writing unit tests. This control construct can
only be used for objects compiled with the
context_switching_calls compiler
flag set to allow. Set this compiler flag to deny to disable
this control construct and thus preventing using it to break encapsulation.

The {Proxy}<<Goal syntax allows simplified access to
parametric object proxies.
Its operational semantics is equivalent to the goal conjunction
(call(Proxy), Proxy<<Goal). I.e. Proxy is proved within the
context of the pseudo-object user and, if successful,
the goal term is used as a parametric object identifier. Exceptions thrown
when proving Proxy are handled by the (<<)/2 control construct.
This syntax construct supports backtracking over the {Proxy} goal.

Caveat: although the goal argument is fully compiled before calling,
some necessary information for the second compiler pass may not be
available at runtime.

Modes and number of proofs

+object_identifier<<+callable - zero_or_more
{+object_identifier}<<+callable - zero_or_more

Errors

Object is a variable:

instantiation_error

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Object does not contain a local definition for the Goal predicate:

existence_error(procedure, Goal)

Object does not exist:

existence_error(object, Object)

Object was created/compiled with support for context switching calls turned off:

permission_error(access, database, Goal)

Proxy is a variable:

instantiation_error

Proxy is neither a variable nor an object identifier:

type_error(object_identifier, Proxy)

The predicate Proxy does not exist in the user pseudo-object:

existence_error(procedure, ProxyFunctor/ProxyArity)

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Examples

% call the member/2 predicate in the
% context of the "list" object:
test(member) :-
 list << member(1, [1]).

Directives

	Source file directives
	encoding/1

	include/1

	initialization/1

	op/3

	set_logtalk_flag/2

	Conditional compilation directives
	if/1

	elif/1

	else/0

	endif/0

	Entity directives
	built_in/0

	category/1-4

	dynamic/0

	end_category/0

	end_object/0

	end_protocol/0

	include/1

	info/1

	initialization/1

	object/1-5

	op/3

	protocol/1-2

	set_logtalk_flag/2

	threaded/0

	uses/1

	use_module/1

	Predicate directives
	alias/2

	coinductive/1

	discontiguous/1

	dynamic/1

	info/2

	meta_predicate/1

	meta_non_terminal/1

	mode/2

	multifile/1

	op/3

	private/1

	protected/1

	public/1

	synchronized/1

	uses/2

	use_module/2

Source file directives

	encoding/1

	include/1

	initialization/1

	op/3

	set_logtalk_flag/2

 directive

encoding/1

Description

encoding(Encoding)

Declares the source file text encoding. Requires a backend Prolog compiler
supporting the chosen encoding. When used, this directive must be the first
term in the source file in the first line. This directive is also supported
in files included in a main file or in a dynamically created entity using
include/1 directives.

The encoding used in a source file (and, in the case of a Unicode
encoding, any BOM present) will be used for the intermediate Prolog
file generated by the compiler. Logtalk uses the encoding names specified by
IANA [http://www.iana.org/assignments/character-sets/character-sets.xhtml].
In those cases where a preferred MIME name alias is specified, the alias is
used instead. Examples includes 'US-ASCII', 'ISO-8859-1',
'ISO-8859-2', 'ISO-8859-15', 'UCS-2', 'UCS-2LE',
'UCS-2BE', 'UTF-8', 'UTF-16', 'UTF-16LE', 'UTF-16BE',
'UTF-32', 'UTF-32LE', 'UTF-32BE', 'Shift_JIS', and
'EUC-JP'. When writing portable code that cannot be expressed using
ASCII, 'UTF-8' is the most commonly supported Unicode encoding.

The backend Prolog compiler adapter files define a table that translates
between the Logtalk and Prolog specific atoms that represent each supported
encoding. The encoding_directive read-only
flag can be used to find if a backend supports this directive and how.

Template and modes

encoding(+atom)

Examples

:- encoding('UTF-8').

 directive

include/1

Description

include(File)

Includes a file contents, which must be valid terms, at the place of
occurrence of the directive. The file can be specified as a relative
path, an absolute path, or using library notation and is expanded
as a source file name. Relative paths are interpreted as relative to the
path of the file containing the directive. The file extension is optional
(the recognized Logtalk and Prolog file extensions are defined in the
backend adapter files).

When using the reflection API, predicates
from an included file can be distinguished from predicates from the main
file by looking for the include/1 predicate declaration property or
the include/1 predicate definition property. For the included predicates,
the line_count/1 property stores the term line number in the included file.

This directive can be used as either a source file directive or an
entity directive. As an entity directive, it can be used both in
entities defined in source files and with the entity creation built-in
predicates. In the latter case, the file should be specified using an
absolute path or using library notation (which expands to a full path)
to avoid a fragile dependency on the current working directory.

Included files may contain an encoding/1 directive, which
may specify the same encoding of the main file or a different encoding.

Warning

When using this directive as an argument in calls to the
create_object/4 and create_category/4
predicates, the objects and categories will not be recreated or redefined
when the included file(s) are modified and the logtalk_make/0
predicate or the logtalk_make/1 (with target all)
predicates are called.

Template and modes

include(@source_file_name)

Examples

% include the "raw_1.txt" text file found
% on the "data" library directory:
:- include(data('raw_1.txt')).

% include a "factbase.pl" file in the same directory
% of the source file containing the directive:
:- include('factbase.pl').

% include a file given its absolute path:
:- include('/home/me/databases/countries.pl').

% create a wrapper object for a Prolog file using
% library notation to define the file path:
| ?- create_object(cities, [], [public(city/4), include(geo('cities.pl'))], []).

 directive

initialization/1

Description

initialization(Goal)

When used within an object, this directive defines a goal to be called after
the object has been successfully loaded into memory. When used at a global
level within a source file, this directive defines a goal to be called after
the source file is successfully compiled and loaded into memory.

The loading context can be accessed from this directive by calling the
logtalk_load_context/2 predicate. Note that the usable
loading context keys depends on the directive scope (file or object).

Multiple initialization directives can be used in a source file or in an
object. Their goals will be called in the same order as the directives at
loading time.

Note

Arbitrary goals cannot be used as directives in source files. Any
goal that should be automatically called when a source file is loaded
must be wrapped using this directive.

Categories and protocols cannot contain initialization/1 directives
as the initialization goals would lack a complete
execution context that is only
available for objects.

Although technically a global initialization/1 directive in a source
file is a Prolog directive, calls to Logtalk built-in predicates from it
are usually compiled to improve portability, improve performance, and
provide better support for embedded applications.

Warning

Some backend Prolog compilers declare the atom initialization as
an operator for a lighter syntax. But this makes the code non-portable
and is therefore a practice best avoided.

Template and modes

initialization(@callable)

Examples

% call the init/0 predicate after loading the
% source file containing the directive

:- initialization(init).

% print a debug message after loading a
% source file defining an object

:- object(log).

 :- initialization(start_date).

 start_date :-
 os::date_time(Year, Month, Day, _, _, _, _),
 logtalk::print_message(debug, my_app, 'Starting date: ~d-~d-~d~n'+[Year,Month,Day]).

:- end_object.

See also

logtalk_load_context/2

 directive

op/3

Description

op(Precedence, Associativity, Operator)
op(Precedence, Associativity, [Operator, ...])

Declares operators. Global operators can be declared inside a source file
by writing the respective directives before the entity opening directives.
Operators declared inside entities have local scope. Calls to the standard
term input and output predicates take into account any locally defined
operators.

Template and modes

op(+integer, +associativity, +atom_or_atom_list)

Examples

Some of the predicate argument instantiation mode operators used by Logtalk:

:- op(200, fy, +).
:- op(200, fy, ?).
:- op(200, fy, @).
:- op(200, fy, -).

An example of using entity local operators. Consider the following ops.lgt
file:

:- initialization((write(<=>(1,2)), nl)).

:- object(ops).

 :- op(700, xfx, <=>).

 :- public(w/1).
 w(Term) :-
 write(Term), nl.

 :- public(r/1).
 r(Term) :-
 read(Term).

:- end_object.

Loading the file automatically calls the initialization goal. Compare its
output with the output of the ops::w/1 predicate. Compare also reading
a term from within the ops object versus reading from user.

| ?- {ops}.
<=>(1,2)
true.

| ?- ops::w(<=>(1,2)).
1<=>2
true.

| ?- ops::r(T).
|: 3<=>4.

T = <=>(3, 4).

| ?- read(T).
|: 5<=>6.

SYNTAX ERROR: operator expected

See also

current_op/3

 directive

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets local flag values. The scope of this directive is the entity or
the source file containing it. For global scope, use the corresponding
set_logtalk_flag/2 built-in predicate called from an
initialization/1 directive. For a description of the
predefined compiler flags, consult the Compiler flags
section in the User Manual. The directive affects the compilation of
all terms that follow it within scope of the directive.

Template and modes

set_logtalk_flag(+atom, +nonvar)

Errors

Flag is a variable:

instantiation_error

Value is a variable:

instantiation_error

Flag is not an atom:

type_error(atom, Flag)

Flag is neither a variable nor a valid flag:

domain_error(flag, Flag)

Value is not a valid value for flag Flag:

domain_error(flag_value, Flag + Value)

Flag is a read-only flag:

permission_error(modify, flag, Flag)

Examples

% turn off the compiler unknown entity warnings
% during the compilation of this source file:
:- set_logtalk_flag(unknown_entities, silent).

:- object(...).

 % generate events for messages sent from this object:
 :- set_logtalk_flag(events, allow).
 ...

 % turn off suspicious call lint checks for the next predicate:
 :- set_logtalk_flag(suspicious_calls, silent).
 foo :-
 ...
 :- set_logtalk_flag(suspicious_calls, warning).
 ...

Conditional compilation directives

	if/1

	elif/1

	else/0

	endif/0

 directive

if/1

Description

if(Goal)

Starts an if-then branch when performing conditional compilation. The code
following the directive is compiled iff Goal is true. If Goal
throws an error instead of either succeeding or failing, the error is
reported by the compiler and compilation of the enclosing source file
or entity is aborted. The goal is subjected to
goal expansion when the directive occurs
in a source file. Conditional compilation directives can be nested.

Warning

Conditional compilation goals cannot depend on predicate definitions
contained in the same source file that contains the conditional
compilation directives (as those predicates only become available after
the file is successfully compiled and loaded).

Template and modes

if(@callable)

Examples

A common example is checking if a built-in predicate exists and
providing a definition when the predicate is absent:

:- if(\+ predicate_property(length(_,_), built_in)).

 length(List, Length) :-
 ...

:- endif.

Another common example is conditionally including code for a specific
backend Prolog compiler:

:- if(current_logtalk_flag(prolog_dialect, swi)).

 % SWI-Prolog specific code
 :- set_prolog_flag(double_quotes, codes).

:- endif.

If necessary, test goal errors can be converted into failures using the
standard catch/3 control construct. For example:

:- if(catch(\+ log(7,_), _, fail)).

 % define the legacy log/2 predicate
 log(X, Y) :- Y is log(X).

:- endif.

See also

elif/1,
else/0,
endif/0

 directive

elif/1

Description

elif(Goal)

Supports embedded conditionals when performing conditional compilation.
The code following the directive is compiled iff Goal is true. If
Goal throws an error instead of either succeeding or failing, the
error is reported by the compiler and compilation of the enclosing source
file or entity is aborted. The goal is subjected to
goal expansion when the directive occurs
in a source file.

Warning

Conditional compilation goals cannot depend on predicate definitions
contained in the same source file that contains the conditional
compilation directives (as those predicates only become available after
the file is successfully compiled and loaded).

Template and modes

elif(@callable)

Examples

:- if(current_prolog_flag(double_quotes, codes)).

 ...

:- elif(current_prolog_flag(double_quotes, chars)).

 ...

:- elif(current_prolog_flag(double_quotes, atom)).

 ...

:- endif.

See also

else/0,
endif/0,
if/1

 directive

else/0

Description

else

Starts an else branch when performing conditional compilation. The
code following this directive is compiled iff the goal in the matching
if/1 or elif/1 directive is false.

Template and modes

else

Examples

An example where a hypothetic application would have some limitations
that the user should be made aware when running on a backend Prolog
compiler with bounded arithmetic:

:- if(current_prolog_flag(bounded, true)).

 :- initialization(
 logtalk::print_message(warning,app,bounded_arithmetic)
).

:- else.

 :- initialization(
 logtalk::print_message(comment,app,unbounded_arithmetic)
).

:- endif.

See also

elif/1,
endif/0,
if/1

 directive

endif/0

Description

endif

Ends conditional compilation for the matching if/1
directive.

Template and modes

endif

Examples

:- if(date::today(_,5,25)).

 :- initialization(write('Happy Towel Day!\n')).

:- endif.

See also

elif/1,
else/0,
if/1

Entity directives

	built_in/0

	category/1-4

	dynamic/0

	end_category/0

	end_object/0

	end_protocol/0

	include/1

	info/1

	initialization/1

	object/1-5

	op/3

	protocol/1-2

	set_logtalk_flag/2

	threaded/0

	uses/1

	use_module/1

 directive

built_in/0

Description

built_in

Declares an entity as built-in. Built-in entities must be static and cannot
be redefined once loaded. This directive is used in the pre-defined protocols,
categories, and objects that are automatically loaded at startup.

Template and modes

built_in

Examples

:- built_in.

 directive

category/1-4

Description

category(Category)

category(Category,
 implements(Protocols))

category(Category,
 extends(Categories))

category(Category,
 complements(Objects))

category(Category,
 implements(Protocols),
 extends(Categories))

category(Category,
 implements(Protocols),
 complements(Objects))

category(Category,
 extends(Categories),
 complements(Objects))

category(Category,
 implements(Protocols),
 extends(Categories),
 complements(Objects))

Starting category directive.

Template and modes

category(+category_identifier)

category(+category_identifier,
 implements(+implemented_protocols))

category(+category_identifier,
 extends(+extended_categories))

category(+category_identifier,
 complements(+complemented_objects))

category(+category_identifier,
 implements(+implemented_protocols),
 extends(+extended_categories))

category(+category_identifier,
 implements(+implemented_protocols),
 complements(+complemented_objects))

category(+category_identifier,
 extends(+extended_categories),
 complements(+complemented_objects))

category(+category_identifier,
 implements(+implemented_protocols),
 extends(+extended_categories),
 complements(+complemented_objects))

Examples

:- category(monitoring).

:- category(monitoring,
 implements(monitoringp)).

:- category(attributes,
 implements(protected::variables)).

:- category(extended,
 extends(minimal)).

:- category(logging,
 implements(monitoring),
 complements(employee)).

See also

end_category/0

 directive

dynamic/0

Description

dynamic

Declares an entity and its contents as dynamic. Dynamic entities can be
abolished at runtime.

As entities created at runtime (using the create_object/4,
create_protocol/3, and create_category/4
built-in predicates) are always dynamic, this directive is only necessary in
the rare cases where we want to define dynamic entities in source files.

Warning

Some backend Prolog compilers declare the atom dynamic as an operator
for a lighter syntax, forcing writing this atom between parenthesis
when using this directive.

Template and modes

dynamic

Examples

:- dynamic.

See also

dynamic/1,
object_property/2,
protocol_property/2,
category_property/2

 directive

end_category/0

Description

end_category

Ending category directive.

Template and modes

end_category

Examples

:- end_category.

See also

category/1-4

 directive

end_object/0

Description

end_object

Ending object directive.

Template and modes

end_object

Examples

:- end_object.

See also

object/1-5

 directive

end_protocol/0

Description

end_protocol

Ending protocol directive.

Template and modes

end_protocol

Examples

:- end_protocol.

See also

protocol/1-2

 directive

include/1

Description

include(File)

Includes a file contents, which must be valid terms, at the place of
occurrence of the directive. The file can be specified as a relative
path, an absolute path, or using library notation and is expanded
as a source file name. Relative paths are interpreted as relative to the
path of the file containing the directive. The file extension is optional
(the recognized Logtalk and Prolog file extensions are defined in the
backend adapter files).

When using the reflection API, predicates
from an included file can be distinguished from predicates from the main
file by looking for the include/1 predicate declaration property or
the include/1 predicate definition property. For the included predicates,
the line_count/1 property stores the term line number in the included file.

This directive can be used as either a source file directive or an
entity directive. As an entity directive, it can be used both in
entities defined in source files and with the entity creation built-in
predicates. In the latter case, the file should be specified using an
absolute path or using library notation (which expands to a full path)
to avoid a fragile dependency on the current working directory.

Included files may contain an encoding/1 directive, which
may specify the same encoding of the main file or a different encoding.

Warning

When using this directive as an argument in calls to the
create_object/4 and create_category/4
predicates, the objects and categories will not be recreated or redefined
when the included file(s) are modified and the logtalk_make/0
predicate or the logtalk_make/1 (with target all)
predicates are called.

Template and modes

include(@source_file_name)

Examples

% include the "raw_1.txt" text file found
% on the "data" library directory:
:- include(data('raw_1.txt')).

% include a "factbase.pl" file in the same directory
% of the source file containing the directive:
:- include('factbase.pl').

% include a file given its absolute path:
:- include('/home/me/databases/countries.pl').

% create a wrapper object for a Prolog file using
% library notation to define the file path:
| ?- create_object(cities, [], [public(city/4), include(geo('cities.pl'))], []).

 directive

info/1

Description

info([Key is Value, ...])

Documentation directive for objects, protocols, and categories. The
directive argument is a list of pairs using the format Key is Value.
See the Entity directives section for a description of the
default keys.

Template and modes

info(+entity_info_list)

Examples

:- info([
 version is 1:0:0,
 author is 'Paulo Moura',
 date is 2000-11-20,
 comment is 'List protocol.'
]).

See also

info/2,
object_property/2,
protocol_property/2,
category_property/2

 directive

initialization/1

Description

initialization(Goal)

When used within an object, this directive defines a goal to be called after
the object has been successfully loaded into memory. When used at a global
level within a source file, this directive defines a goal to be called after
the source file is successfully compiled and loaded into memory.

The loading context can be accessed from this directive by calling the
logtalk_load_context/2 predicate. Note that the usable
loading context keys depends on the directive scope (file or object).

Multiple initialization directives can be used in a source file or in an
object. Their goals will be called in the same order as the directives at
loading time.

Note

Arbitrary goals cannot be used as directives in source files. Any
goal that should be automatically called when a source file is loaded
must be wrapped using this directive.

Categories and protocols cannot contain initialization/1 directives
as the initialization goals would lack a complete
execution context that is only
available for objects.

Although technically a global initialization/1 directive in a source
file is a Prolog directive, calls to Logtalk built-in predicates from it
are usually compiled to improve portability, improve performance, and
provide better support for embedded applications.

Warning

Some backend Prolog compilers declare the atom initialization as
an operator for a lighter syntax. But this makes the code non-portable
and is therefore a practice best avoided.

Template and modes

initialization(@callable)

Examples

% call the init/0 predicate after loading the
% source file containing the directive

:- initialization(init).

% print a debug message after loading a
% source file defining an object

:- object(log).

 :- initialization(start_date).

 start_date :-
 os::date_time(Year, Month, Day, _, _, _, _),
 logtalk::print_message(debug, my_app, 'Starting date: ~d-~d-~d~n'+[Year,Month,Day]).

:- end_object.

See also

logtalk_load_context/2

 directive

object/1-5

Description

Stand-alone objects (prototypes)

object(Object)

object(Object,
 implements(Protocols))

object(Object,
 imports(Categories))

object(Object,
 implements(Protocols),
 imports(Categories))

Prototype extensions

object(Object,
 extends(Objects))

object(Object,
 implements(Protocols),
 extends(Objects))

object(Object,
 imports(Categories),
 extends(Objects))

object(Object,
 implements(Protocols),
 imports(Categories),
 extends(Objects))

Class instances

object(Object,
 instantiates(Classes))

object(Object,
 implements(Protocols),
 instantiates(Classes))

object(Object,
 imports(Categories),
 instantiates(Classes))

object(Object,
 implements(Protocols),
 imports(Categories),
 instantiates(Classes))

Classes

object(Object,
 specializes(Classes))

object(Object,
 implements(Protocols),
 specializes(Classes))

object(Object,
 imports(Categories),
 specializes(Classes))

object(Object,
 implements(Protocols),
 imports(Categories),
 specializes(Classes))

Classes with metaclasses

object(Object,
 instantiates(Classes),
 specializes(Classes))

object(Object,
 implements(Protocols),
 instantiates(Classes),
 specializes(Classes))

object(Object,
 imports(Categories),
 instantiates(Classes),
 specializes(Classes))

object(Object,
 implements(Protocols),
 imports(Categories),
 instantiates(Classes),
 specializes(Classes))

Starting object directive.

Template and modes

Stand-alone objects (prototypes)

object(+object_identifier)

object(+object_identifier,
 implements(+implemented_protocols))

object(+object_identifier,
 imports(+imported_categories))

object(+object_identifier,
 implements(+implemented_protocols),
 imports(+imported_categories))

Prototype extensions

object(+object_identifier,
 extends(+extended_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 extends(+extended_objects))

object(+object_identifier,
 imports(+imported_categories),
 extends(+extended_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 imports(+imported_categories),
 extends(+extended_objects))

Class instances

object(+object_identifier,
 instantiates(+instantiated_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 instantiates(+instantiated_objects))

object(+object_identifier,
 imports(+imported_categories),
 instantiates(+instantiated_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 imports(+imported_categories),
 instantiates(+instantiated_objects))

Classes

object(+object_identifier,
 specializes(+specialized_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 specializes(+specialized_objects))

object(+object_identifier,
 imports(+imported_categories),
 specializes(+specialized_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 imports(+imported_categories),
 specializes(+specialized_objects))

Class with metaclasses

object(+object_identifier,
 instantiates(+instantiated_objects),
 specializes(+specialized_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 instantiates(+instantiated_objects),
 specializes(+specialized_objects))

object(+object_identifier,
 imports(+imported_categories),
 instantiates(+instantiated_objects),
 specializes(+specialized_objects))

object(+object_identifier,
 implements(+implemented_protocols),
 imports(+imported_categories),
 instantiates(+instantiated_objects),
 specializes(+specialized_objects))

Examples

:- object(list).

:- object(list,
 implements(listp)).

:- object(list,
 extends(compound)).

:- object(list,
 implements(listp),
 extends(compound)).

:- object(object,
 imports(initialization),
 instantiates(class)).

:- object(abstract_class,
 instantiates(class),
 specializes(object)).

:- object(agent,
 imports(private::attributes)).

See also

end_object/0

 directive

op/3

Description

op(Precedence, Associativity, Operator)
op(Precedence, Associativity, [Operator, ...])

Declares operators. Global operators can be declared inside a source file
by writing the respective directives before the entity opening directives.
Operators declared inside entities have local scope. Calls to the standard
term input and output predicates take into account any locally defined
operators.

Template and modes

op(+integer, +associativity, +atom_or_atom_list)

Examples

Some of the predicate argument instantiation mode operators used by Logtalk:

:- op(200, fy, +).
:- op(200, fy, ?).
:- op(200, fy, @).
:- op(200, fy, -).

An example of using entity local operators. Consider the following ops.lgt
file:

:- initialization((write(<=>(1,2)), nl)).

:- object(ops).

 :- op(700, xfx, <=>).

 :- public(w/1).
 w(Term) :-
 write(Term), nl.

 :- public(r/1).
 r(Term) :-
 read(Term).

:- end_object.

Loading the file automatically calls the initialization goal. Compare its
output with the output of the ops::w/1 predicate. Compare also reading
a term from within the ops object versus reading from user.

| ?- {ops}.
<=>(1,2)
true.

| ?- ops::w(<=>(1,2)).
1<=>2
true.

| ?- ops::r(T).
|: 3<=>4.

T = <=>(3, 4).

| ?- read(T).
|: 5<=>6.

SYNTAX ERROR: operator expected

See also

current_op/3

 directive

protocol/1-2

Description

protocol(Protocol)

protocol(Protocol,
 extends(Protocols))

Starting protocol directive.

Template and modes

protocol(+protocol_identifier)

protocol(+protocol_identifier,
 extends(+extended_protocols))

Examples

:- protocol(listp).

:- protocol(listp,
 extends(compoundp)).

:- protocol(queuep,
 extends(protected::listp)).

See also

end_protocol/0

 directive

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets local flag values. The scope of this directive is the entity or
the source file containing it. For global scope, use the corresponding
set_logtalk_flag/2 built-in predicate called from an
initialization/1 directive. For a description of the
predefined compiler flags, consult the Compiler flags
section in the User Manual. The directive affects the compilation of
all terms that follow it within scope of the directive.

Template and modes

set_logtalk_flag(+atom, +nonvar)

Errors

Flag is a variable:

instantiation_error

Value is a variable:

instantiation_error

Flag is not an atom:

type_error(atom, Flag)

Flag is neither a variable nor a valid flag:

domain_error(flag, Flag)

Value is not a valid value for flag Flag:

domain_error(flag_value, Flag + Value)

Flag is a read-only flag:

permission_error(modify, flag, Flag)

Examples

% turn off the compiler unknown entity warnings
% during the compilation of this source file:
:- set_logtalk_flag(unknown_entities, silent).

:- object(...).

 % generate events for messages sent from this object:
 :- set_logtalk_flag(events, allow).
 ...

 % turn off suspicious call lint checks for the next predicate:
 :- set_logtalk_flag(suspicious_calls, silent).
 foo :-
 ...
 :- set_logtalk_flag(suspicious_calls, warning).
 ...

 directive

threaded/0

Description

threaded

Declares that an object supports threaded engines, concurrent calls,
and asynchronous messages. Any object containing calls to the built-in
multi-threading predicates (or importing a category that contains such
calls) must include this directive.

This directive results in the automatic creation and set up of an object
message queue when the object is loaded or created at runtime. Object
message queues are used for exchanging thread notifications and for
storing concurrent goal solutions and replies to the multi-threading
calls made within the object. The message queue for the
user pseudo-object is automatically created at
Logtalk startup (provided that multi-threading programming is supported
and enabled for the chosen backend Prolog compiler).

Note

This directive requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Template and modes

threaded

Examples

:- threaded.

See also

synchronized/1,
object_property/2

 directive

uses/1

Description

uses([Object as Alias, ...])

Declares object aliases. Typically used to shorten long object names, to
simplify and consistently send messages to parameterized objects, and to
simplify using or experimenting with different object implementations of
the same protocol when using explicit message sending. Object aliases are
local to the object (or category) where they are defined.

The objects being aliased can be parameter variables
or parametric objects where one of more parameters are parameter variables
when using the directive in a parametric object or a parametric category
defined in a source file (the common case).

Declaring multiple aliases for the same object is allowed. But repeated
declarations of the same alias, declaring an alias for an object alias,
and redefining an alias to reference a different object are reported as
compilation errors.

To enable the use of static binding, and thus optimal message sending
performance, the objects should be loaded before compiling the entities
that call their predicates.

Template and modes

uses(+object_alias_list)

Examples

:- object(foo(_HeapType_, _OptionsObject_)).

 :- uses([
 fast_random as rnd,
 time(utc) as time,
 heap(_HeapType_) as heap,
 OptionsObject as options
]).

 bar :-
 ...,
 % the same as fast_random::permutation(L, P)
 rnd::permutation(L, P),
 % the same as heap(_HeapType_)::as_heap(L, H)
 heap::as_heap(L, H),
 % the same as _OptionsObject_::get(foo, X)
 options::get(foo, X),
 % the same as time(utc)::now(T)
 time::now(T),
 ...

See also

uses/2,
use_module/1,
use_module/2

 directive

use_module/1

Description

use_module([Module as Alias, ...])

Declares module aliases. Typically used to shorten long module names and to
simplify using or experimenting with different module implementations of the
same predicates when using explicitly-qualified calls. Module aliases are local
to the object (or category) where they are defined.

The modules being aliased can be parameter variables
when using the directive in a parametric object or a parametric category
defined in a source file (the common case).

Declaring multiple aliases for the same module is allowed. But repeated
declarations of the same alias, declaring an alias for a module alias,
and redefining an alias to reference a different module are reported as
compilation errors.

To enable the use of static binding, and thus optimal predicate call
performance, the modules should be loaded before compiling the entities
that call their predicates.

Note that this directive semantics differs from the directive with the same
name found on some Prolog implementations where it is used to load a module
and import all its exported predicates.

Template and modes

use_module(+module_alias_list)

Examples

:- object(foo(_DataModule_)).

 :- use_module([
 data_noise_handler as cleaner,
 DataModule as data
]).

 bar :-
 ...,
 % the same as _DataModule_:xy(X, Y)
 data:xy(X, Y),
 % the same as data_noise_handler:filter(X, Y)
 cleaner:filter(X, Y, Z),
 ...

See also

uses/1,
uses/2,
use_module/2

Predicate directives

	alias/2

	coinductive/1

	discontiguous/1

	dynamic/1

	info/2

	meta_predicate/1

	meta_non_terminal/1

	mode/2

	multifile/1

	op/3

	private/1

	protected/1

	public/1

	synchronized/1

	uses/2

	use_module/2

 directive

alias/2

Description

alias(Entity, [Name/Arity as Alias/Arity, ...])
alias(Entity, [Name//Arity as Alias//Arity, ...])

Declares predicate and grammar rule non-terminal aliases.
A predicate (non-terminal) alias is an alternative name for a predicate
(non-terminal) declared or defined in an extended protocol, an
implemented protocol, an extended category, an imported category, an
extended prototype, an instantiated class, or a specialized class.
Predicate aliases may be used to solve conflicts between imported or
inherited predicates. It may also be used to give a predicate
(non-terminal) a name more appropriated in its usage context. This
directive may be used in objects, protocols, and categories.

Predicate (and non-terminal) aliases are specified using (preferably)
the notation Name/Arity as Alias/Arity or, in alternative, the
notation Name/Arity::Alias/Arity.

It is also possible to declare predicate and grammar rule non-terminal
aliases in implicit qualification directives for sending messages
to objects and calling module predicates.

Template and modes

alias(@entity_identifier, +list(predicate_indicator_alias))
alias(@entity_identifier, +list(non_terminal_indicator_alias))

Examples

% resolve a predicate name conflict:
:- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

% define an alternative name for a non-terminal:
:- alias(words, [singular//0 as peculiar//0]).

See also

uses/2,
use_module/2,
uses/1

 directive

coinductive/1

Description

coinductive(Name/Arity)
coinductive((Name/Arity, ...))
coinductive([Name/Arity, ...])

coinductive(Name//Arity)
coinductive((Name//Arity, ...))
coinductive([Name//Arity, ...])

coinductive(Template)
coinductive((Template1, ...))
coinductive([Template1, ...])

This is an experimental directive, used for declaring
coinductive predicates. Requires a
backend Prolog compiler with minimal support for cyclic terms.
The current implementation of coinduction allows the generation of only
the basic cycles but all valid solutions should be recognized. Use a
predicate indicator or a non-terminal indicator as argument when all the
coinductive predicate arguments are relevant for coinductive success.
Use a template when only some coinductive predicate arguments (represented
by a “+”) should be considered when testing for coinductive success
(represent the arguments that should be disregarded by a “-“). It’s
possible to define local coinductive_success_hook/1-2
predicates that are automatically called with the coinductive predicate
term resulting from a successful unification with an ancestor goal as
first argument. The second argument, when present, is the coinductive
hypothesis (i.e. the ancestor goal) used. These hook predicates can
provide an alternative to the use of tabling when defining some
coinductive predicates. There is no overhead when these hook predicates
are not defined.

This directive must precede any calls to the declared coinductive
predicates.

Template and modes

coinductive(+predicate_indicator_term)
coinductive(+non_terminal_indicator_term)
coinductive(+coinductive_predicate_template_term)

Examples

:- coinductive(comember/2).
:- coinductive(ones_and_zeros//0).
:- coinductive(controller(+,+,+,-,-)).

See also

coinductive_success_hook/1-2,
predicate_property/2

 directive

discontiguous/1

Description

discontiguous(Name/Arity)
discontiguous((Name/Arity, ...))
discontiguous([Name/Arity, ...])

discontiguous(Name//Arity)
discontiguous((Name//Arity, ...))
discontiguous([Name//Arity, ...])

Declares discontiguous predicates and
discontiguous grammar rule non-terminals. The use of this directive should
be avoided as not all backend Prolog compilers
support discontiguous predicates.

Warning

Some backend Prolog compilers declare the atom discontiguous as
an operator for a lighter syntax. But this makes the code non-portable
and is therefore a practice best avoided.

Template and modes

discontiguous(+predicate_indicator_term)
discontiguous(+non_terminal_indicator_term)

Examples

:- discontiguous(counter/1).

:- discontiguous((lives/2, works/2)).

:- discontiguous([db/4, key/2, file/3]).

 directive

dynamic/1

Description

dynamic(Name/Arity)
dynamic((Name/Arity, ...))
dynamic([Name/Arity, ...])

dynamic(Entity::Name/Arity)
dynamic((Entity::Name/Arity, ...))
dynamic([Entity::Name/Arity, ...])

dynamic(Module:Name/Arity)
dynamic((Module:Name/Arity, ...))
dynamic([Module:Name/Arity, ...])

dynamic(Name//Arity)
dynamic((Name//Arity, ...))
dynamic([Name//Arity, ...])

dynamic(Entity::Name//Arity)
dynamic((Entity::Name//Arity, ...))
dynamic([Entity::Name//Arity, ...])

dynamic(Module:Name//Arity)
dynamic((Module:Name//Arity, ...))
dynamic([Module:Name//Arity, ...])

Declares dynamic predicates and dynamic grammar
rule non-terminals. Note that an object can be static and have both static
and dynamic predicates/non-terminals. When the dynamic predicates are local
to an object, declaring them also as private predicates
allows the Logtalk compiler to generate optimized code for asserting and
retracting predicate clauses. Categories can also contain dynamic predicate
directives but cannot contain clauses for dynamic predicates.

The predicate indicators (or non-terminal indicators) can be explicitly
qualified with an object, category, or module identifier when the predicates
(or non-terminals) are also declared multifile.

Note that dynamic predicates cannot be declared synchronized (when
necessary, declare the predicates updating the dynamic predicates as
synchronized).

Warning

Some backend Prolog compilers declare the atom dynamic as an
operator for a lighter syntax. But this makes the code non-portable
and is therefore a practice best avoided.

Template and modes

dynamic(+qualified_predicate_indicator_term)
dynamic(+qualified_non_terminal_indicator_term)

Examples

:- dynamic(counter/1).

:- dynamic((lives/2, works/2)).

:- dynamic([db/4, key/2, file/3]).

See also

dynamic/0,
predicate_property/2

 directive

info/2

Description

info(Name/Arity, [Key is Value, ...])
info(Name//Arity, [Key is Value, ...])

Documentation directive for predicates and grammar rule non-terminals.
The first argument is either a predicate indicator or a grammar rule
non-terminal indicator. The second argument is a list of pairs using the
format Key is Value. See the Predicate directives
section for a description of the default keys.

Template and modes

info(+predicate_indicator, +predicate_info_list)
info(+non_terminal_indicator, +predicate_info_list)

Examples

:- info(empty/1, [
 comment is 'True if the argument is an empty list.',
 argnames is ['List']
]).

:- info(sentence//0, [
 comment is 'Rewrites a sentence into a noun phrase and a verb phrase.'
]).

See also

info/1,
mode/2,
predicate_property/2

 directive

meta_predicate/1

Description

meta_predicate(Template)
meta_predicate((Template, ...))
meta_predicate([Template, ...])

meta_predicate(Entity::Template)
meta_predicate((Entity::Template, ...))
meta_predicate([Entity::Template, ...])

meta_predicate(Module:Template)
meta_predicate((Module:Template, ...))
meta_predicate([Module:Template, ...])

Declares meta-predicates, i.e., predicates that
have arguments interpreted as goals, arguments interpreted as
closures used to construct goals, or arguments with
sub-terms that will be interpreted as goals or closures. Meta-arguments
are always called in the meta-predicate
calling context, not in the
meta-predicate definition context.

Meta-arguments which are goals are represented by the integer 0.
Meta-arguments which are closures are represented by a positive integer,
N, representing the number of additional arguments that will be
appended to the closure in order to construct the corresponding goal
(typically by calling the call/1-N built-in method).
Meta-arguments with sub-terms that will be interpreted as goals or closures
are represented by ::. Meta-arguments that will be called using the
bagof/3 or setof/3 predicates and that can thus be
existentially-qualified are represented by the atom ^. Normal arguments
are represented by the atom *.

Logtalk allows the use of this directive to override the original
meta-predicate directive. This is sometimes necessary when calling
Prolog built-in meta-predicates or Prolog module meta-predicates due
to the lack of standardization of the syntax of the meta-predicate
templates.

Warning

Some backend Prolog compilers declare the atom meta_predicate as
an operator for a lighter syntax. But this makes the code non-portable
and is therefore a practice best avoided.

Template and modes

meta_predicate(+meta_predicate_template_term)

meta_predicate(+object_identifier::+meta_predicate_template_term)
meta_predicate(+category_identifier::+meta_predicate_template_term)

meta_predicate(+module_identifier:+meta_predicate_template_term)

Examples

% findall/3 second argument is interpreted as a goal:
:- meta_predicate(findall(*, 0, *)).

% both forall/2 arguments are interpreted as goals:
:- meta_predicate(forall(0, 0)).

% maplist/3 first argument is interpreted as a closure
% that will be expanded to a goal by appending two
% arguments:
:- meta_predicate(maplist(2, *, *)).

See also

meta_non_terminal/1,
predicate_property/2

 directive

meta_non_terminal/1

Description

meta_non_terminal(Template)
meta_non_terminal((Template, ...))
meta_non_terminal([Template, ...])

meta_non_terminal(Entity::Template)
meta_non_terminal((Entity::Template, ...))
meta_non_terminal([Entity::Template, ...])

meta_non_terminal(Module:Template)
meta_non_terminal((Module:Template, ...))
meta_non_terminal([Module:Template, ...])

Declares meta-non-terminals, i.e., non-terminals that have arguments
that will be called as non-terminals (or grammar rule bodies). An
argument may also be a closure instead of a goal if the
non-terminal uses the call//1-N built-in methods to
construct and call the actual non-terminal from the closure and the
additional arguments or the phrase//1 built-in method.

Meta-arguments which are non-terminals are represented by the integer
0. Meta-arguments which are closures are represented by a positive
integer, N, representing the number of additional arguments that
will be appended to the closure in order to construct the corresponding
meta-call. Normal arguments are represented by the atom *.
Meta-arguments are always called in the meta-non-terminal calling
context, not in the meta-non-terminal definition context.

Template and modes

meta_non_terminal(+meta_non_terminal_template_term)

meta_non_terminal(+object_identifier::+meta_non_terminal_template_term)
meta_non_terminal(+category_identifier::+meta_non_terminal_template_term)

meta_non_terminal(+module_identifier:+meta_non_terminal_template_term)

Examples

:- meta_non_terminal(phrase(1, *)).
phrase(X, T) --> call(X, T).

See also

meta_predicate/1,
predicate_property/2

 directive

mode/2

Description

mode(Mode, NumberOfProofs)

Most predicates can be used with several instantiations modes. This
directive enables the specification of each
instantiation mode and the
corresponding number of proofs
(but not necessarily distinct solutions). The instantiation mode of
each argument can include type information. You may also use this
directive for documenting grammar rule non-terminals.

Template and modes

mode(+predicate_mode_term, +number_of_proofs)
mode(+non_terminal_mode_term, +number_of_proofs)

Examples

:- mode(atom_concat(-atom, -atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, -atom), one).

:- mode(var(@term), zero_or_one).

:- mode(solve(+callable, -list(atom)), zero_or_one).

See also

info/2,
predicate_property/2

 directive

multifile/1

Description

multifile(Name/Arity)
multifile((Name/Arity, ...))
multifile([Name/Arity, ...])

multifile(Entity::Name/Arity)
multifile((Entity::Name/Arity, ...))
multifile([Entity::Name/Arity, ...])

multifile(Module:Name/Arity)
multifile((Module:Name/Arity, ...))
multifile([Module:Name/Arity, ...])

multifile(Name//Arity)
multifile((Name//Arity, ...))
multifile([Name//Arity, ...])

multifile(Entity::Name//Arity)
multifile((Entity::Name//Arity, ...))
multifile([Entity::Name//Arity, ...])

multifile(Module:Name//Arity)
multifile((Module:Name//Arity, ...))
multifile([Module:Name//Arity, ...])

Declares multifile predicates and multifile
grammar rule non-terminals. In the case of object or category multifile
predicates, the predicate (or non-terminal) must also have a
scope directive in the object or category
holding its primary declaration (i.e. the declaration without the
Entity:: prefix). Entities holding multifile predicate primary
declarations must be compiled and loaded prior to any entities contributing
with clauses for the multifile predicates (to prevent using multifile
predicates to break entity encapsulation).

Protocols cannot declare or define multifile predicates as protocols cannot
contain predicate definitions.

Warning

Some backend Prolog compilers declare the atom multifile as an
operator for a lighter syntax. But this makes the code non-portable
and is therefore a practice best avoided.

Template and modes

multifile(+qualified_predicate_indicator_term)
multifile(+qualified_non_terminal_indicator_term)

Examples

:- multifile(table/3).
:- multifile(user::hook/2).

See also

public/1,
protected/1,
private/1,
predicate_property/2

 directive

op/3

Description

op(Precedence, Associativity, Operator)
op(Precedence, Associativity, [Operator, ...])

Declares operators. Global operators can be declared inside a source file
by writing the respective directives before the entity opening directives.
Operators declared inside entities have local scope. Calls to the standard
term input and output predicates take into account any locally defined
operators.

Template and modes

op(+integer, +associativity, +atom_or_atom_list)

Examples

Some of the predicate argument instantiation mode operators used by Logtalk:

:- op(200, fy, +).
:- op(200, fy, ?).
:- op(200, fy, @).
:- op(200, fy, -).

An example of using entity local operators. Consider the following ops.lgt
file:

:- initialization((write(<=>(1,2)), nl)).

:- object(ops).

 :- op(700, xfx, <=>).

 :- public(w/1).
 w(Term) :-
 write(Term), nl.

 :- public(r/1).
 r(Term) :-
 read(Term).

:- end_object.

Loading the file automatically calls the initialization goal. Compare its
output with the output of the ops::w/1 predicate. Compare also reading
a term from within the ops object versus reading from user.

| ?- {ops}.
<=>(1,2)
true.

| ?- ops::w(<=>(1,2)).
1<=>2
true.

| ?- ops::r(T).
|: 3<=>4.

T = <=>(3, 4).

| ?- read(T).
|: 5<=>6.

SYNTAX ERROR: operator expected

See also

current_op/3

 directive

private/1

Description

private(Name/Arity)
private((Name/Arity, ...))
private([Name/Arity, ...])

private(Name//Arity)
private((Name//Arity, ...))
private([Name//Arity, ...])

private(op(Precedence,Associativity,Operator))
private((op(Precedence,Associativity,Operator), ...))
private([op(Precedence,Associativity,Operator), ...])

Declares private predicates, private grammar rule
non-terminals, and private operators. A private predicate can only be called
from the object containing the private directive. A private non-terminal can
only be used in a call of the phrase/2 and
phrase/3 methods from the object containing the
private directive.

Template and modes

private(+predicate_indicator_term)
private(+non_terminal_indicator_term)
private(+operator_declaration)

Examples

:- private(counter/1).

:- private((init/1, free/1)).

:- private([data/3, key/1, keys/1]).

See also

protected/1,
public/1,
predicate_property/2

 directive

protected/1

Description

protected(Name/Arity)
protected((Name/Arity, ...))
protected([Name/Arity, ...])

protected(Name//Arity)
protected((Name//Arity, ...))
protected([Name//Arity, ...])

protected(op(Precedence,Associativity,Operator))
protected((op(Precedence,Associativity,Operator), ...))
protected([op(Precedence,Associativity,Operator), ...])

Declares protected predicates, protected
grammar rule non-terminals, and protected operators. A protected predicate
can only be called from the object containing the directive or from an
object that inherits the directive. A protected non-terminal can only be
used as an argument in a phrase/2 and phrase/3
calls from the object containing the directive or from an object that
inherits the directive.

Note

Protected operators are not inherited but declaring them provides
a reusable specification for using them in descendant objects (or
categories).

Template and modes

protected(+predicate_indicator_term)
protected(+non_terminal_indicator_term)
protected(+operator_declaration)

Examples

:- protected(init/1).

:- protected((print/2, convert/4)).

:- protected([load/1, save/3]).

See also

private/1,
public/1,
predicate_property/2

 directive

public/1

Description

public(Name/Arity)
public((Name/Arity, ...))
public([Name/Arity, ...])

public(Name//Arity)
public((Name//Arity, ...))
public([Name//Arity, ...])

public(op(Precedence,Associativity,Operator))
public((op(Precedence,Associativity,Operator), ...))
public([op(Precedence,Associativity,Operator), ...])

Declares public predicates, public grammar
rule non-terminals, and public operators. A public predicate can be called
from any object. A public non-terminal can be used as an argument in
phrase/2 and phrase/3 calls from any object.

Note

Declaring a public operator does not make it global when the entity
holding the scope directive is compiled and loaded. But declaring
public operators provides a reusable specification for using them
in the entity clients (e.g. in uses/2 directives).

Template and modes

public(+predicate_indicator_term)
public(+non_terminal_indicator_term)
public(+operator_declaration)

Examples

:- public(ancestor/1).

:- public((instance/1, instances/1)).

:- public([leaf/1, leaves/1]).

See also

private/1,
protected/1,
predicate_property/2

 directive

synchronized/1

Description

synchronized(Name/Arity)
synchronized((Name/Arity, ...))
synchronized([Name/Arity, ...])

synchronized(Name//Arity)
synchronized((Name//Arity, ...))
synchronized([Name//Arity, ...])

Declares synchronized predicates and
synchronized grammar rule non-terminals. The most common use is for
predicates that have side effects (e.g. asserting or retracting clauses
for a dynamic predicate) in multi-threaded applications. A synchronized
predicate (or synchronized non-terminal) is protected by a mutex in order
to allow for thread synchronization when proving a call to the predicate
(or non-terminal).

All predicates (and non-terminals) declared in the same synchronized
directive share the same mutex. In order to use a separate mutex for
each predicate (non-terminal) so that they are independently synchronized,
a per-predicate synchronized directive must be used.

Warning

Declaring a predicate synchronized implicitly makes it deterministic.
When using a single-threaded backend Prolog compiler, calls
to synchronized predicates behave as wrapped by the standard
once/1 meta-predicate.

Note that synchronized predicates cannot be declared
dynamic (when necessary, declare the
predicates updating the dynamic predicates as synchronized).

Template and modes

synchronized(+predicate_indicator_term)
synchronized(+non_terminal_indicator_term)

Examples

:- synchronized(db_update/1).

:- synchronized((write_stream/2, read_stream/2)).

:- synchronized([add_to_queue/2, remove_from_queue/2]).

See also

predicate_property/2

 directive

uses/2

Description

uses(Object, [Name/Arity, ...])
uses(Object, [Name/Arity as Alias/Arity, ...])

uses(Object, [Predicate as Alias, ...])

uses(Object, [Name//Arity, ...])
uses(Object, [Name//Arity as Alias//Arity, ...])

uses(Object, [op(Precedence, Associativity, Operator), ...])

Declares that all calls made from predicates (or non-terminals) defined
in the category or object containing the directive to the specified
predicates (or non-terminals) are to be interpreted as messages to the
specified object. Thus, this directive may be used to simplify writing
of predicate definitions by allowing the programmer to omit the
Object:: prefix when using the predicates listed in the directive
(as long as the calls do not occur as arguments for non-standard Prolog
meta-predicates not declared on the adapter files). It is also possible
to include operator declarations in the second argument.

This directive is also taken into account when compiling calls to the
database and
reflection built-in methods by looking
into these methods predicate arguments if bound at compile time.

It is possible to specify a predicate alias using the notation
Name/Arity as Alias/Arity or, in alternative, the notation
Name/Arity::Alias/Arity. Aliases may be used either for avoiding
conflicts between predicates specified in use_module/2 and
uses/2 directives or for giving more meaningful names considering
the calling context of the predicates. For predicates, is also
possible to define alias shorthands using the notation
Predicate as Alias or, in alternative, the notation
Predicate::Alias, where Predicate and Alias are callable
terms where some or all arguments may be instantiated.

To enable the use of static binding, and thus optimal message sending
performance, the objects should be loaded before compiling the entities
that call their predicates.

The object identifier argument can also be a parameter variable
when using the directive in a parametric object or a parametric category
defined in a source file (the common case). In this case, dynamic binding
will be used for all listed predicates (and non-terminals). The parameter
variable must be instantiated at runtime when the messages are sent.

Template and modes

uses(+object_identifier, +predicate_indicator_list)
uses(+object_identifier, +predicate_indicator_alias_list)

uses(+object_identifier, +predicate_template_alias_list)

uses(+object_identifier, +non_terminal_indicator_list)
uses(+object_identifier, +non_terminal_indicator_alias_list)

uses(+object_identifier, +operator_list)

Examples

:- uses(list, [append/3, member/2]).
:- uses(store, [data/2]).
:- uses(user, [table/4]).

foo :-
 ...,
 % the same as findall(X, list::member(X, L), A)
 findall(X, member(X, L), A),
 % the same as list::append(A, B, C)
 append(A, B, C),
 % the same as store::assertz(data(X, C))
 assertz(data(X, C)),
 % call the table/4 predicate in "user"
 table(X, Y, Z, T),
 ...

Another example, using the extended notation that allows us to define
predicate aliases:

:- uses(btrees, [new/1 as new_btree/1]).
:- uses(queues, [new/1 as new_queue/1]).

btree_to_queue :-
 ...,
 % the same as btrees::new(Tree)
 new_btree(Tree),
 % the same as queues::new(Queue)
 new_queue(Queue),
 ...

An example of defining a predicate alias that is also a shorthand:

:- uses(logtalk, [
 print_message(debug, my_app, Message) as dbg(Message)
]).

Predicate aliases can also be used to change argument order:

:- uses(meta, [
 fold_left(Closure,Accumulator,List,Result) as foldl(Closure,List,Accumulator,Result)
]).

An example of using a parameter variable in place of the object
identifier to allow using the same test set for checking multiple
implementations of the same protocol:

:- object(tests(_HeapObject_),
 extends(lgtunit)).

 :- uses(_HeapObject_, [
 as_heap/2, as_list/2, valid/1, new/1,
 insert/4, insert_all/3, delete/4, merge/3,
 empty/1, size/2, top/3, top_next/5
]).

See also

uses/1,
use_module/1,
use_module/2,
alias/2

 directive

use_module/2

Description

use_module(Module, [Name/Arity, ...])
use_module(Module, [Name/Arity as Alias/Arity, ...])

use_module(Module, [Predicate as Alias, ...])

use_module(Module, [Name//Arity, ...])
use_module(Module, [Name//Arity as Alias//Arity, ...])

use_module(Module, [op(Precedence,Associativity,Operator), ...])

This directive declares that all calls (made from predicates defined in
the category or object containing the directive) to the specified
predicates (or non-terminals) are to be interpreted as calls to
explicitly-qualified module predicates (or non-terminals). Thus, this
directive may be used to simplify writing of predicate definitions by
allowing the programmer to omit the Module: prefix when using the
predicates listed in the directive (as long as the predicate calls do
not occur as arguments for non-standard Prolog meta-predicates not
declared on the adapter files). It is also possible to include operator
declarations in the second argument.

This directive is also taken into account when compiling calls to the
database and
reflection built-in methods by looking
into these methods predicate arguments if bound at compile time.

It is possible to specify a predicate alias using the notation
Name/Arity as Alias/Arity or, in alternative, the notation
Name/Arity:Alias/Arity. Aliases may be used either for avoiding
conflicts between predicates specified in use_module/2 and
uses/2 directives or for giving more meaningful
names considering the calling context of the predicates. For predicates,
is also possible to define alias shorthands using the notation
Predicate as Alias or, in alternative, the notation
Predicate::Alias, where Predicate and Alias are callable
terms where some or all arguments may be instantiated.

Note that this directive differs from the directive with the same name
found on some Prolog implementations by requiring the first argument to
be a module name (an atom) instead of a file specification. In Logtalk,
there’s no mixing between loading a resource and (declaring the)
using (of) a resource. As a consequence, this directive doesn’t
automatically load the module. Loading the module file is dependent of
the used backend Prolog compiler and must be done separately (usually,
using a source file directive such as use_module/1 or use_module/2
in the entity file or preferably in the application loader file
file). Also, note that the name of the module may differ from the name of
the module file.

Warning

The modules must be loaded prior to the compilation of entities
that call the module predicates. This is required in general to allow
the compiler to check if the called module predicate is a meta-predicate
and retrieve its meta-predicate template to ensure proper call compilation.

The module identifier argument can also be a parameter variable
when using the directive in a parametric object or a parametric category
defined in a source file (the common case). In this case, dynamic binding
will be used for all listed predicates (and non-terminals). The parameter
variable must be instantiated at runtime when the calls are made.

Template and modes

use_module(+module_identifier, +predicate_indicator_list)
use_module(+module_identifier, +module_predicate_indicator_alias_list)

use_module(+module_identifier, +predicate_template_alias_list)

use_module(+module_identifier, +non_terminal_indicator_list)
use_module(+module_identifier, +module_non_terminal_indicator_alias_list)

use_module(+module_identifier, +operator_list)

Examples

:- use_module(lists, [append/3, member/2]).
:- use_module(store, [data/2]).
:- use_module(user, [foo/1 as bar/1]).

foo :-
 ...,
 % same as findall(X, lists:member(X, L), A)
 findall(X, member(X, L), A),
 % same as lists:append(A, B, C)
 append(A, B, C),
 % same as assertz(store:data(X, C))
 assertz(data(X, C)),
 % same as retractall(user:foo(_))
 retractall(bar(_)),
 ...

Another example, using the extended notation that allows us to define
predicate aliases:

:- use_module(ugraphs, [transpose_ugraph/2 as transpose/2]).

convert_graph :-
 ...,
 % the same as ugraphs:transpose_ugraph(Graph0, Graph)
 transpose(Graph0, Graph),
 ...

An example of defining a predicate alias that is also a shorthand:

:- use_module(pairs, [
 map_list_to_pairs(length, Lists, Pairs) as length_pairs(Lists, Pairs)
]).

An example of using a parameter variable in place of the module
identifier to delay to runtime the actual module to use:

:- object(bar(_OptionsModule_)).

 :- use_module(_OptionsModule_, [
 set/2, get/2, reset/0
]).

See also

use_module/1,
uses/2,
uses/1,
alias/2

Built-in predicates

	Enumerating objects, categories and protocols
	current_category/1

	current_object/1

	current_protocol/1

	Enumerating objects, categories and protocols properties
	category_property/2

	object_property/2

	protocol_property/2

	Creating new objects, categories and protocols
	create_category/4

	create_object/4

	create_protocol/3

	Abolishing objects, categories and protocols
	abolish_category/1

	abolish_object/1

	abolish_protocol/1

	Objects, categories, and protocols relations
	extends_object/2-3

	extends_protocol/2-3

	extends_category/2-3

	implements_protocol/2-3

	conforms_to_protocol/2-3

	complements_object/2

	imports_category/2-3

	instantiates_class/2-3

	specializes_class/2-3

	Event handling
	abolish_events/5

	current_event/5

	define_events/5

	Multi-threading
	threaded/1

	threaded_call/1-2

	threaded_once/1-2

	threaded_ignore/1

	threaded_exit/1-2

	threaded_peek/1-2

	threaded_cancel/1

	threaded_wait/1

	threaded_notify/1

	Multi-threading engines
	threaded_engine_create/3

	threaded_engine_destroy/1

	threaded_engine/1

	threaded_engine_self/1

	threaded_engine_next/2

	threaded_engine_next_reified/2

	threaded_engine_yield/1

	threaded_engine_post/2

	threaded_engine_fetch/1

	Compiling and loading source files
	logtalk_compile/1

	logtalk_compile/2

	logtalk_load/1

	logtalk_load/2

	logtalk_make/0

	logtalk_make/1

	logtalk_make_target_action/1

	logtalk_library_path/2

	logtalk_load_context/2

	Flags
	current_logtalk_flag/2

	set_logtalk_flag/2

	create_logtalk_flag/3

	Linter
	logtalk_linter_hook/7

Enumerating objects, categories and protocols

	current_category/1

	current_object/1

	current_protocol/1

 built-in predicate

current_category/1

Description

current_category(Category)

Enumerates, by backtracking, all currently defined categories. All
categories are found, either static, dynamic, or built-in.

Modes and number of proofs

current_category(?category_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:

type_error(category_identifier, Category)

Examples

% enumerate the defined categories:
| ?- current_category(Category).

Category = core_messages ;
...

See also

abolish_category/1,
category_property/2,
create_category/4,
complements_object/2,
extends_category/2-3,
imports_category/2-3

 built-in predicate

current_object/1

Description

current_object(Object)

Enumerates, by backtracking, all currently defined objects. All objects
are found, either static, dynamic or built-in.

Modes and number of proofs

current_object(?object_identifier) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Examples

% enumerate the defined objects:
| ?- current_object(Object).

Object = user ;
Object = logtalk ;
...

See also

abolish_object/1,
create_object/4,
object_property/2,
extends_object/2-3,
instantiates_class/2-3,
specializes_class/2-3,
complements_object/2

 built-in predicate

current_protocol/1

Description

current_protocol(Protocol)

Enumerates, by backtracking, all currently defined protocols. All
protocols are found, either static, dynamic, or built-in.

Modes and number of proofs

current_protocol(?protocol_identifier) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, Protocol)

Examples

% enumerate the defined protocols:
| ?- current_protocol(Protocol).

Protocol = expanding ;
Protocol = monitoring ;
Protocol = forwarding ;
...

See also

abolish_protocol/1,
create_protocol/3,
protocol_property/2,
conforms_to_protocol/2-3,
extends_protocol/2-3,
implements_protocol/2-3

Enumerating objects, categories and protocols properties

	category_property/2

	object_property/2

	protocol_property/2

 built-in predicate

category_property/2

Description

category_property(Category, Property)

Enumerates, by backtracking, the properties associated with the defined
categories. The valid properties are listed in the language grammar section
on entity properties and described in
the User Manual section on category properties.

Modes and number of proofs

category_property(?category_identifier, ?category_property) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:

type_error(category_identifier, Category)

Property is neither a variable nor a callable term:

type_error(callable, Property)

Property is a callable term but not a valid category property:

domain_error(category_property, Property)

Examples

% enumerate the properties of the core_messages built-in category:
| ?- category_property(core_messages, Property).

Property = source_data ;
Property = static ;
Property = built_in ;
...

See also

abolish_category/1,
create_category/4,
current_category/1,
complements_object/2,
extends_category/2-3,
imports_category/2-3

 built-in predicate

object_property/2

Description

object_property(Object, Property)

Enumerates, by backtracking, the properties associated with the defined
objects. The valid properties are listed in the language grammar section
on entity properties and described in
the User Manual section on object properties.

Modes and number of proofs

object_property(?object_identifier, ?object_property) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Property is neither a variable nor a callable term:

type_error(callable, Property)

Property is a callable term but not a valid object property:

domain_error(object_property, Property)

Examples

% enumerate the properties of the logtalk built-in object:
| ?- object_property(logtalk, Property).

Property = context_switching_calls ;
Property = source_data ;
Property = threaded ;
Property = static ;
Property = built_in ;
...

See also

abolish_object/1,
create_object/4,
current_object/1,
extends_object/2-3,
instantiates_class/2-3,
specializes_class/2-3,
complements_object/2

 built-in predicate

protocol_property/2

Description

protocol_property(Protocol, Property)

Enumerates, by backtracking, the properties associated with the currently
defined protocols. The valid properties are listed in the language grammar
section on entity properties and described
in the User Manual section on protocol properties.

Modes and number of proofs

protocol_property(?protocol_identifier, ?protocol_property) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, Protocol)

Property is neither a variable nor a callable term:

type_error(callable, Property)

Property is a callable term but not a valid protocol property:

domain_error(protocol_property, Property)

Examples

% enumerate the properties of the monitoring built-in protocol:
| ?- protocol_property(monitoring, Property).

Property = source_data ;
Property = static ;
Property = built_in ;
...

See also

abolish_protocol/1,
create_protocol/3,
current_protocol/1,
conforms_to_protocol/2-3,
extends_protocol/2-3,
implements_protocol/2-3

Creating new objects, categories and protocols

	create_category/4

	create_object/4

	create_protocol/3

 built-in predicate

create_category/4

Description

create_category(Identifier, Relations, Directives, Clauses)

Creates a new, dynamic category. This predicate is often used as a
primitive to implement high-level category creation methods.

Note that, when opting for runtime generated category identifiers, it’s
possible to run out of identifiers when using a backend Prolog compiler
with bounded integer support. The portable solution, when creating a
large number of dynamic category in long-running applications, is to
recycle, whenever possible, the identifiers.

When creating a new dynamic parametric category, access to the object
parameters must use the parameter/2 built-in execution
context method.

When using Logtalk multi-threading features, predicates calling this
built-in predicate may need to be declared synchronized in order to
avoid race conditions.

Modes and number of proofs

create_category(?category_identifier, @list(category_relation), @list(category_directive), @list(clause)) - one

Errors

Relations, Directives, or Clauses is a variable:

instantiation_error

Identifier is neither a variable nor a valid category identifier:

type_error(category_identifier, Identifier)

Identifier is already in use:

permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:

type_error(list, Relations)

Repeated entity relation clause:

permission_error(repeat, entity_relation, implements/1)

permission_error(repeat, entity_relation, extends/1)

permission_error(repeat, entity_relation, complements/1)

Directives is neither a variable nor a proper list:

type_error(list, Directives)

Clauses is neither a variable nor a proper list:

type_error(list, Clauses)

Examples

| ?- create_category(
 tolerances,
 [implements(comparing)],
 [],
 [epsilon(1e-15), (equal(X, Y) :- epsilon(E), abs(X-Y) =< E)]
).

See also

abolish_category/1, category_property/2,
current_category/1,
complements_object/2, extends_category/2-3,
imports_category/2-3

 built-in predicate

create_object/4

Description

create_object(Identifier, Relations, Directives, Clauses)

Creates a new, dynamic object. The word object is used here
as a generic term. This predicate can be used to create new prototypes,
instances, and classes. This predicate is often used as a primitive to
implement high-level object creation methods.

Note that, when opting for runtime generated object identifiers, it’s
possible to run out of identifiers when using a backend Prolog compiler
with bounded integer support. The portable solution, when creating a
large number of dynamic objects in long-running applications, is to
recycle, whenever possible, the identifiers.

When creating a new dynamic parametric object, access to the object parameters
must use the parameter/2 built-in execution context method.

Declared predicates (using scope clauses in the Directives argument)
are implicitly declared also as dynamic.

When using Logtalk multi-threading features, predicates calling this
built-in predicate may need to be declared synchronized in order to
avoid race conditions.

Modes and number of proofs

create_object(?object_identifier, @list(object_relation), @list(object_directive), @list(clause)) - one

Errors

Relations, Directives, or Clauses is a variable:

instantiation_error

Identifier is neither a variable nor a valid object identifier:

type_error(object_identifier, Identifier)

Identifier is already in use:

permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:

type_error(list, Relations)

Repeated entity relation clause:

permission_error(repeat, entity_relation, implements/1)

permission_error(repeat, entity_relation, imports/1)

permission_error(repeat, entity_relation, extends/1)

permission_error(repeat, entity_relation, instantiates/1)

permission_error(repeat, entity_relation, specializes/1)

Directives is neither a variable nor a proper list:

type_error(list, Directives)

Clauses is neither a variable nor a proper list:

type_error(list, Clauses)

Examples

% create a stand-alone object (a prototype):
| ?- create_object(
 translator,
 [],
 [public(int/2)],
 [int(0, zero)]
).

% create a prototype derived from a parent prototype:
| ?- create_object(
 mickey,
 [extends(mouse)],
 [public(alias/1)],
 [alias(mortimer)]
).

% create a class instance:
| ?- create_object(
 p1,
 [instantiates(person)],
 [],
 [name('Paulo Moura'), age(42)]
).

% create a subclass:
| ?- create_object(
 hovercraft,
 [specializes(vehicle)],
 [public([propeller/2, fan/2])],
 []
).

% create an object with an initialization goal:
| ?- create_object(
 runner,
 [instantiates(runners)],
 [initialization(::start)],
 [length(22), time(60)]
).

% create an object supporting dynamic predicate declarations:
| ?- create_object(
 database,
 [],
 [set_logtalk_flag(dynamic_declarations, allow)],
 []
).

See also

abolish_object/1,
current_object/1,
object_property/2,
extends_object/2-3,
instantiates_class/2-3,
specializes_class/2-3,
complements_object/2

 built-in predicate

create_protocol/3

Description

create_protocol(Identifier, Relations, Directives)

Creates a new, dynamic, protocol. This predicate is often used as a
primitive to implement high-level protocol creation methods.

Note that, when opting for runtime generated protocol identifiers, it’s
possible to run out of identifiers when using a backend Prolog compiler
with bounded integer support. The portable solution, when creating a
large number of dynamic protocols in long-running applications, is to
recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this
built-in predicate may need to be declared synchronized in order to
avoid race conditions.

Modes and number of proofs

create_protocol(?protocol_identifier, @list(protocol_relation), @list(protocol_directive)) - one

Errors

Either Relations or Directives is a variable:

instantiation_error

Identifier is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, Identifier)

Identifier is already in use:

permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:

type_error(list, Relations)

Repeated entity relation clause:

permission_error(repeat, entity_relation, extends/1)

Directives is neither a variable nor a proper list:

type_error(list, Directives)

Examples

| ?- create_protocol(
 logging,
 [extends(monitoring)],
 [public([log_file/1, log_on/0, log_off/0])]
).

See also

abolish_protocol/1,
current_protocol/1,
protocol_property/2,
conforms_to_protocol/2-3,
extends_protocol/2-3,
implements_protocol/2-3

Abolishing objects, categories and protocols

	abolish_category/1

	abolish_object/1

	abolish_protocol/1

 built-in predicate

abolish_category/1

Description

abolish_category(Category)

Abolishes a dynamic category. The category identifier can then be reused when creating a new category.

Modes and number of proofs

abolish_category(+category_identifier) - one

Errors

Category is a variable:

instantiation_error

Category is neither a variable nor a valid category identifier:

type_error(category_identifier, Category)

Category is an identifier of a static category:

permission_error(modify, static_category, Category)

Category does not exist:

existence_error(category, Category)

Examples

| ?- abolish_category(monitoring).

See also

category_property/2,
create_category/4,
current_category/1
complements_object/2,
extends_category/2-3,
imports_category/2-3

 built-in predicate

abolish_object/1

Description

abolish_object(Object)

Abolishes a dynamic object. The object identifier can then be reused when creating a new object.

Modes and number of proofs

abolish_object(+object_identifier) - one

Errors

Object is a variable:

instantiation_error

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Object is an identifier of a static object:

permission_error(modify, static_object, Object)

Object does not exist:

existence_error(object, Object)

Examples

| ?- abolish_object(list).

See also

create_object/4,
current_object/1,
object_property/2,
extends_object/2-3,
instantiates_class/2-3,
specializes_class/2-3,
complements_object/2

 built-in predicate

abolish_protocol/1

Description

abolish_protocol(Protocol)

Abolishes a dynamic protocol. The protocol identifier can then be reused when creating a new protocol.

Modes and number of proofs

abolish_protocol(@protocol_identifier) - one

Errors

Protocol is a variable:

instantiation_error

Protocol is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, Protocol)

Protocol is an identifier of a static protocol:

permission_error(modify, static_protocol, Protocol)

Protocol does not exist:

existence_error(protocol, Protocol)

Examples

| ?- abolish_protocol(listp).

See also

create_protocol/3,
current_protocol/1,
protocol_property/2,
conforms_to_protocol/2-3,
extends_protocol/2-3,
implements_protocol/2-3

Objects, categories, and protocols relations

	extends_object/2-3

	extends_protocol/2-3

	extends_category/2-3

	implements_protocol/2-3

	conforms_to_protocol/2-3

	complements_object/2

	imports_category/2-3

	instantiates_class/2-3

	specializes_class/2-3

 built-in predicate

extends_object/2-3

Description

extends_object(Prototype, Parent)
extends_object(Prototype, Parent, Scope)

Enumerates, by backtracking, all pairs of objects such that the first
one extends the second. The relation scope is represented by the atoms
public, protected, and private.

Modes and number of proofs

extends_object(?object_identifier, ?object_identifier) - zero_or_more
extends_object(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Prototype is neither a variable nor a valid object identifier:

type_error(object_identifier, Prototype)

Parent is neither a variable nor a valid object identifier:

type_error(object_identifier, Parent)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% enumerate objects derived from the state_space prototype:
| ?- extends_object(Object, state_space).

% enumerate objects publicly derived from the list prototype:
| ?- extends_object(Object, list, public).

See also

current_object/1,
instantiates_class/2-3,
specializes_class/2-3

 built-in predicate

extends_protocol/2-3

Description

extends_protocol(Protocol, ParentProtocol)
extends_protocol(Protocol, ParentProtocol, Scope)

Enumerates, by backtracking, all pairs of protocols such that the first
one extends the second. The relation scope is represented by the atoms
public, protected, and private.

Modes and number of proofs

extends_protocol(?protocol_identifier, ?protocol_identifier) - zero_or_more
extends_protocol(?protocol_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, Protocol)

ParentProtocol is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, ParentProtocol)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% enumerate the protocols extended by the listp protocol:
| ?- extends_protocol(listp, Protocol).

% enumerate protocols that privately extend the termp protocol:
| ?- extends_protocol(Protocol, termp, private).

See also

current_protocol/1,
implements_protocol/2-3,
conforms_to_protocol/2-3

 built-in predicate

extends_category/2-3

Description

extends_category(Category, ParentCategory)
extends_category(Category, ParentCategory, Scope)

Enumerates, by backtracking, all pairs of categories such that the first
one extends the second. The relation scope is represented by the atoms
public, protected, and private.

Modes and number of proofs

extends_category(?category_identifier, ?category_identifier) - zero_or_more
extends_category(?category_identifier, ?category_identifier, ?scope) - zero_or_more

Errors

Category is neither a variable nor a valid protocol identifier:

type_error(category_identifier, Category)

ParentCategory is neither a variable nor a valid protocol identifier:

type_error(category_identifier, ParentCategory)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% enumerate the categories extended by the derailleur category:
| ?- extends_category(derailleur, Category).

% enumerate categories that privately extend the basics category:
| ?- extends_category(Category, basics, private).

See also

current_category/1,
complements_object/2,
imports_category/2-3

 built-in predicate

implements_protocol/2-3

Description

implements_protocol(Object, Protocol)
implements_protocol(Category, Protocol)

implements_protocol(Object, Protocol, Scope)
implements_protocol(Category, Protocol, Scope)

Enumerates, by backtracking, all pairs of entities such that an object
or a category implements a protocol. The relation scope is represented
by the atoms public, protected, and private. This predicate
only returns direct implementation relations. For a transitive closure,
see the conforms_to_protocol/2-3 predicate.

Modes and number of proofs

implements_protocol(?object_identifier, ?protocol_identifier) - zero_or_more
implements_protocol(?category_identifier, ?protocol_identifier) - zero_or_more

implements_protocol(?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
implements_protocol(?category_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:

type_error(category_identifier, Category)

Protocol is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, Protocol)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% check that the list object implements the listp protocol:
| ?- implements_protocol(list, listp).

% check that the list object publicly implements the listp protocol:
| ?- implements_protocol(list, listp, public).

% enumerate only objects that implement the listp protocol:
| ?- current_object(Object), implements_protocol(Object, listp).

% enumerate only categories that implement the serialization protocol:
| ?- current_category(Category), implements_protocol(Category, serialization).

See also

current_object/1,
current_protocol/1,
current_category/1,
conforms_to_protocol/2-3

 built-in predicate

conforms_to_protocol/2-3

Description

conforms_to_protocol(Object, Protocol)
conforms_to_protocol(Category, Protocol)

conforms_to_protocol(Object, Protocol, Scope)
conforms_to_protocol(Category, Protocol, Scope)

Enumerates, by backtracking, all pairs of entities such that an object
or a category conforms to a protocol. The relation scope is represented
by the atoms public, protected, and private. This predicate
implements a transitive closure for the protocol implementation
relation.

Modes and number of proofs

conforms_to_protocol(?object_identifier, ?protocol_identifier) - zero_or_more
conforms_to_protocol(?category_identifier, ?protocol_identifier) - zero_or_more

conforms_to_protocol(?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
conforms_to_protocol(?category_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:

type_error(category_identifier, Category)

Protocol is neither a variable nor a valid protocol identifier:

type_error(protocol_identifier, Protocol)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% enumerate objects and categories that conform to the listp protocol:
| ?- conforms_to_protocol(Object, listp).

% enumerate objects and categories that privately conform to the listp protocol:
| ?- conforms_to_protocol(Object, listp, private).

% enumerate only objects that conform to the listp protocol:
| ?- current_object(Object), conforms_to_protocol(Object, listp).

% enumerate only categories that conform to the serialization protocol:
| ?- current_category(Category), conforms_to_protocol(Category, serialization).

See also

current_object/1,
current_protocol/1,
current_category/1,
implements_protocol/2-3

 built-in predicate

complements_object/2

Description

complements_object(Category, Object)

Enumerates, by backtracking, all category–object pairs such that the
category explicitly complements the object.

Modes and number of proofs

complements_object(?category_identifier, ?object_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:

type_error(category_identifier, Prototype)

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Parent)

Examples

% check that the logging category complements the employee object:
| ?- complements_object(logging, employee).

See also

current_category/1,
imports_category/2-3

 built-in predicate

imports_category/2-3

Description

imports_category(Object, Category)

imports_category(Object, Category, Scope)

Enumerates, by backtracking, importation relations between objects and
categories. The relation scope is represented by the atoms public,
protected, and private.

Modes and number of proofs

imports_category(?object_identifier, ?category_identifier) - zero_or_more
imports_category(?object_identifier, ?category_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:

type_error(category_identifier, Category)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% check that the xref_diagram object imports the diagram category:
| ?- imports_category(xref_diagram, diagram).

% enumerate the objects that privately import the diagram category:
| ?- imports_category(Object, diagram, private).

See also

current_category/1,
complements_object/2

 built-in predicate

instantiates_class/2-3

Description

instantiates_class(Instance, Class)
instantiates_class(Instance, Class, Scope)

Enumerates, by backtracking, all pairs of objects such that the first
one instantiates the second. The relation scope is represented by the
atoms public, protected, and private.

Modes and number of proofs

instantiates_class(?object_identifier, ?object_identifier) - zero_or_more
instantiates_class(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Instance is neither a variable nor a valid object identifier:

type_error(object_identifier, Instance)

Class is neither a variable nor a valid object identifier:

type_error(object_identifier, Class)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% check that the water_jug is an instante of state_space:
| ?- instantiates_class(water_jug, state_space).

% enumerate the state_space instances where the
% instantiation relation is public:
| ?- instantiates_class(Space, state_space, public).

See also

current_object/1,
extends_object/2-3,
specializes_class/2-3

 built-in predicate

specializes_class/2-3

Description

specializes_class(Class, Superclass)
specializes_class(Class, Superclass, Scope)

Enumerates, by backtracking, all pairs of objects such that the first
one specializes the second. The relation scope is represented by the
atoms public, protected, and private.

Modes and number of proofs

specializes_class(?object_identifier, ?object_identifier) - zero_or_more
specializes_class(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Class is neither a variable nor a valid object identifier:

type_error(object_identifier, Class)

Superclass is neither a variable nor a valid object identifier:

type_error(object_identifier, Superclass)

Scope is neither a variable nor an atom:

type_error(atom, Scope)

Scope is an atom but an invalid entity scope:

domain_error(scope, Scope)

Examples

% enumerate the state_space subclasses:
| ?- specializes_class(Subclass, state_space).

% enumerate the state_space subclasses where the
% specialization relation is public:
| ?- specializes_class(Subclass, state_space, public).

See also

current_object/1,
extends_object/2-3,
instantiates_class/2-3

Event handling

	abolish_events/5

	current_event/5

	define_events/5

 built-in predicate

abolish_events/5

Description

abolish_events(Event, Object, Message, Sender, Monitor)

Abolishes all matching events. The two types of events are represented
by the atoms before and after. When the predicate is called with
the first argument unbound, both types of events are abolished.

Modes and number of proofs

abolish_events(@term, @term, @term, @term, @term) - one

Errors

Event is neither a variable nor a valid event identifier:

type_error(event, Event)

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Message is neither a variable nor a callable term:

type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:

type_error(object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:

type_error(object_identifier, Monitor)

Examples

% abolish all events for messages sent to the "list"
% object being monitored by the "debugger" object:
| ?- abolish_events(_, list, _, _, debugger).

See also

current_event/5,
define_events/5,
before/3,
after/3

 built-in predicate

current_event/5

Description

current_event(Event, Object, Message, Sender, Monitor)

Enumerates, by backtracking, all defined events. The two types of events
are represented by the atoms before and after.

Modes and number of proofs

current_event(?event, ?term, ?term, ?term, ?object_identifier) - zero_or_more

Errors

Event is neither a variable nor a valid event identifier:

type_error(event, Event)

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Message is neither a variable nor a callable term:

type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:

type_error(object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:

type_error(object_identifier, Monitor)

Examples

% enumerate all events monitored by the "debugger" object:
| ?- current_event(Event, Object, Message, Sender, debugger).

See also

abolish_events/5,
define_events/5,
before/3,
after/3

 built-in predicate

define_events/5

Description

define_events(Event, Object, Message, Sender, Monitor)

Defines a new set of events. The two types of events are represented by
the atoms before and after. When the predicate is called with
the first argument unbound, both types of events are defined. The object
Monitor must define the event handler methods required by the
Event argument.

Modes and number of proofs

define_events(@term, @term, @term, @term, +object_identifier) - one

Errors

Event is neither a variable nor a valid event identifier:

type_error(event, Event)

Object is neither a variable nor a valid object identifier:

type_error(object_identifier, Object)

Message is neither a variable nor a callable term:

type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:

type_error(object_identifier, Sender)

Monitor is a variable:

instantiation_error

Monitor is neither a variable nor a valid object identifier:

type_error(object_identifier, Monitor)

Monitor does not define the required before/3 method:

existence_error(procedure, before/3)

Monitor does not define the required after/3 method:

existence_error(procedure, after/3)

Examples

% define "debugger" as a monitor for member/2 messages
% sent to the "list" object:
| ?- define_events(_, list, member(_, _), _ , debugger).

See also

abolish_events/5,
current_event/5,
before/3,
after/3

Multi-threading

	threaded/1

	threaded_call/1-2

	threaded_once/1-2

	threaded_ignore/1

	threaded_exit/1-2

	threaded_peek/1-2

	threaded_cancel/1

	threaded_wait/1

	threaded_notify/1

 built-in predicate

threaded/1

Description

threaded(Conjunction)
threaded(Disjunction)

Proves each goal in a conjunction or a disjunction of goals in its own
thread. This meta-predicate is deterministic and opaque to cuts. The
predicate argument is not flattened.

When the argument is a conjunction of goals, a call to this predicate
blocks until either all goals succeed, one of the goals fail, or one of
the goals generate an exception; the failure of one of the goals or an
exception on the execution of one of the goals results in the
termination of the remaining threads. The predicate call is true iff
all goals are true. The predicate call fails if all goals fails. When
one of the goals throw an exception, the predicate call re-throws that
exception.

When the argument is a disjunction of goals, a call to this predicate
blocks until either one of the goals succeeds or all the goals fail or
throw exceptions; the success of one of the goals results in the
termination of the remaining threads. The predicate call is true iff
one of the goals is true. The predicate call fails if all goals fails.
When no goal succeeds and one of the goals throws an exception, the
predicate call re-throws that exception.

When the predicate argument is neither a conjunction not a disjunction
of goals, no threads are used. In this case, the predicate call is
equivalent to a once/1 predicate call.

A dedicated message queue is used per call of this predicate to collect
the individual goal results.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Meta-predicate template

threaded(0)

Modes and number of proofs

threaded(+callable) - zero_or_one

Errors

Goals is a variable:

instantiation_error

A goal in Goals is a variable:

instantiation_error

Goals is neither a variable nor a callable term:

type_error(callable, Goals)

A goal Goal in Goals is neither a variable nor a callable term:

type_error(callable, Goal)

Examples

Prove a conjunction of goals, each one in its own thread:

threaded((Goal, Goals))

Prove a disjunction of goals, each one in its own thread:

threaded((Goal; Goals))

See also

threaded_call/1-2,
threaded_once/1-2,
threaded_ignore/1,
synchronized/1

 built-in predicate

threaded_call/1-2

Description

threaded_call(Goal)
threaded_call(Goal, Tag)

Proves Goal asynchronously using a new thread. The argument can be a
message sending goal. Calls to this predicate always succeeds and return
immediately. The results (success, failure, or exception) are sent back
to the message queue of the object containing the call (this) and
can be retrieved by calling the
threaded_exit/1 predicate.

The threaded_call/2 variant returns a threaded call identifier tag that
can be used with the threaded_exit/2
and threaded_cancel/1 predicates. Tags shall be regarded
as opaque terms; users shall not rely on its type.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Meta-predicate template

threaded_call(0)
threaded_call(0, *)

Modes and number of proofs

threaded_call(@callable) - one
threaded_call(@callable, --nonvar) - one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Tag is not a variable:

uninstantiation_error(Tag)

Examples

Prove Goal asynchronously in a new thread:

threaded_call(Goal)

Prove ::Message asynchronously in a new thread:

threaded_call(::Message)

Prove Object::Message asynchronously in a new thread:

threaded_call(Object::Message)

See also

threaded_exit/1-2,
threaded_ignore/1,
threaded_once/1-2,
threaded_peek/1-2,
threaded_cancel/1,
threaded/1,
synchronized/1

 built-in predicate

threaded_once/1-2

Description

threaded_once(Goal)
threaded_once(Goal, Tag)

Proves Goal asynchronously using a new thread. Only the first goal
solution is found. The argument can be a message sending goal. This call
always succeeds. The result (success, failure, or exception) is sent
back to the message queue of the object containing the call
(this).

The threaded_once/2 variant returns a threaded call identifier tag that
can be used with the threaded_exit/2
and threaded_cancel/1 predicates. Tags shall be regarded
as opaque terms; users shall not rely on its type.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Meta-predicate template

threaded_once(0)
threaded_once(0, *)

Modes and number of proofs

threaded_once(@callable) - one
threaded_once(@callable, --nonvar) - one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Tag is not a variable:

uninstantiation_error(Tag)

Examples

Prove Goal asynchronously in a new thread:

threaded_once(Goal)

Prove ::Message asynchronously in a new thread:

threaded_once(::Message)

Prove Object::Message asynchronously in a new thread:

threaded_once(Object::Message)

See also

threaded_call/1-2,
threaded_exit/1-2,
threaded_ignore/1,
threaded_peek/1-2,
threaded_cancel/1,
threaded/1,
synchronized/1

 built-in predicate

threaded_ignore/1

Description

threaded_ignore(Goal)

Proves Goal asynchronously using a new thread. Only the first goal
solution is found. The argument can be a message sending goal. This call
always succeeds, independently of the result (success, failure, or
exception), which is simply discarded instead of being sent back to the
message queue of the object containing the call
(this).

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Meta-predicate template

threaded_ignore(0)

Modes and number of proofs

threaded_ignore(@callable) - one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Examples

Prove Goal asynchronously in a new thread:

threaded_ignore(Goal)

Prove ::Message asynchronously in a new thread:

threaded_ignore(::Message)

Prove Object::Message asynchronously in a new thread:

threaded_ignore(Object::Message)

See also

threaded_call/1-2,
threaded_exit/1-2,
threaded_once/1-2,
threaded_peek/1-2,
threaded/1,
synchronized/1

 built-in predicate

threaded_exit/1-2

Description

threaded_exit(Goal)
threaded_exit(Goal, Tag)

Retrieves the result of proving Goal in a new thread. This predicate
blocks execution until the reply is sent to the this message queue
by the thread executing the goal. When there is no thread proving the goal,
the predicate generates an exception. This predicate is non-deterministic,
providing access to any alternative solutions of its argument.

The argument of this predicate should be a variant of the argument of
the corresponding threaded_call/1
or threaded_once/1 call.
When the predicate argument is subsumed by the threaded_call/1 or
threaded_once/1 call argument, the threaded_exit/1 call will
succeed iff its argument is a solution of the (more general) goal.

The threaded_exit/2 variant accepts a threaded call identifier tag
generated by the calls to the threaded_call/2
and threaded_once/2 predicates. Tags
shall be regarded as an opaque term; users shall not rely on its type.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Modes and number of proofs

threaded_exit(+callable) - zero_or_more
threaded_exit(+callable, +nonvar) - zero_or_more

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

No thread is running for proving Goal in the Object calling context:

existence_error(thread, Object)

Tag is a variable:

instantiation_error

Examples

To retrieve an asynchronous goal proof result:

threaded_exit(Goal)

To retrieve an asynchronous message to self result:

threaded_exit(::Goal)

To retrieve an asynchronous message result:

threaded_exit(Object::Goal)

See also

threaded_call/1-2,
threaded_ignore/1,
threaded_once/1-2,
threaded_peek/1-2,
threaded_cancel/1,
threaded/1

 built-in predicate

threaded_peek/1-2

Description

threaded_peek(Goal)
threaded_peek(Goal, Tag)

Checks if the result of proving Goal in a new thread is already
available. This call succeeds or fails without blocking execution
waiting for a reply to be available. When there is no thread proving
the goal, the predicate generates an exception.

The argument of this predicate should be a variant of the argument of
the corresponding threaded_call/1
or threaded_once/1 call.
When the predicate argument is subsumed by the threaded_call/1 or
threaded_once/1 call argument, the threaded_peek/1 call will
succeed iff its argument unifies with an already available solution of
the (more general) goal.

The threaded_peek/2 variant accepts a threaded call identifier tag
generated by the calls to the threaded_call/2
and threaded_once/2 predicates. Tags
shall be regarded as an opaque term; users shall not rely on its type.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Modes and number of proofs

threaded_peek(+callable) - zero_or_one
threaded_peek(+callable, +nonvar) - zero_or_one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

No thread is running for proving Goal in the Object calling context:

existence_error(thread, Object)

Tag is a variable:

instantiation_error

Examples

To check for an asynchronous goal proof result:

threaded_peek(Goal)

To check for an asynchronous message to self result:

threaded_peek(::Goal)

To check for an asynchronous message result:

threaded_peek(Object::Goal)

See also

threaded_call/1-2,
threaded_exit/1-2,
threaded_ignore/1,
threaded_once/1-2,
threaded_cancel/1,
threaded/1

 built-in predicate

threaded_cancel/1

Description

threaded_cancel(Tag)

Cancels a tagged threaded call. When there is no asynchronous call with the
given tag, calling this predicate succeeds assuming the asynchronous call
have already terminated or canceled. The threaded call identifier tag is
generated by calls to the threaded_call/2
and threaded_once/2 predicates. Tags
shall be regarded as an opaque term; users shall not rely on its type.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Modes and number of proofs

threaded_cancel(+nonvar) - one

Errors

Tag is a variable:

instantiation_error

Examples

(none)

See also

threaded_call/1-2,
threaded_exit/1-2,
threaded_ignore/1,
threaded_once/1-2,
threaded/1

 built-in predicate

threaded_wait/1

Description

threaded_wait(Term)
threaded_wait([Term| Terms])

Suspends the thread making the call until a notification is received
that unifies with Term. The call must be made within the same object
(this) containing the calls to the
threaded_notify/1 predicate that will
eventually send the notification. The argument may also be a list of
notifications, [Term| Terms]. In this case, the thread making the
call will suspend until all notifications in the list are received.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Modes and number of proofs

threaded_wait(?term) - one
threaded_wait(+list(term)) - one

Errors

(none)

Examples

% wait until the "data_available" notification is received:
..., threaded_wait(data_available), ...

See also

threaded_notify/1

 built-in predicate

threaded_notify/1

Description

threaded_notify(Term)
threaded_notify([Term| Terms])

Sends Term as a notification to any thread suspended waiting for it
in order to proceed. The call must be made within the same object
(this) containing the calls to the
threaded_wait/1 predicate waiting for the
notification. The argument may also be a list of notifications,
[Term| Terms]. In this case, all notifications in the list will be
sent to any threads suspended waiting for them in order to proceed.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
threads flag is set to supported when that
is the case.

Modes and number of proofs

threaded_notify(@term) - one
threaded_notify(@list(term)) - one

Errors

(none)

Examples

% send a "data_available" notification:
..., threaded_notify(data_available), ...

See also

threaded_wait/1

Multi-threading engines

	threaded_engine_create/3

	threaded_engine_destroy/1

	threaded_engine/1

	threaded_engine_self/1

	threaded_engine_next/2

	threaded_engine_next_reified/2

	threaded_engine_yield/1

	threaded_engine_post/2

	threaded_engine_fetch/1

 built-in predicate

threaded_engine_create/3

Description

threaded_engine_create(AnswerTemplate, Goal, Engine)

Creates a new engine for proving the given goal and defines an answer
template for retrieving the goal solution bindings. A message queue for
passing arbitrary terms to the engine is also created. If the name for
the engine is not given, a unique name is generated and returned. Engine
names shall be regarded as opaque terms; users shall not rely on its
type.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Meta-predicate template

threaded_engine_create(*, 0, *)

Modes and number of proofs

threaded_engine_create(@term, @callable, @nonvar) - one
threaded_engine_create(@term, @callable, --nonvar) - one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Engine is the name of an existing engine:

permission_error(create, engine, Engine)

Examples

% create a new engine for finding members of a list:
| ?- threaded_engine_create(X, member(X, [1,2,3]), worker_1).

See also

threaded_engine_destroy/1,
threaded_engine_self/1,
threaded_engine/1,
threaded_engine_next/2,
threaded_engine_next_reified/2

 built-in predicate

threaded_engine_destroy/1

Description

threaded_engine_destroy(Engine)

Stops and destroys an engine.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine_destroy(@nonvar) - one

Errors

Engine is a variable:

instantiation_error

Engine is neither a variable nor the name of an existing engine:

existence_error(engine, Engine)

Examples

% stop the worker_1 engine:
| ?- threaded_engine_destroy(worker_1).

% stop all engines:
| ?- forall(
 threaded_engine(Engine),
 threaded_engine_destroy(Engine)
).

See also

threaded_engine_create/3,
threaded_engine_self/1,
threaded_engine/1

 built-in predicate

threaded_engine/1

Description

threaded_engine(Engine)

Enumerates, by backtracking, all existing engines. Engine names shall be
regarded as opaque terms; users shall not rely on its type.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine(?nonvar) - zero_or_more

Errors

(none)

Examples

% check that the worker_1 engine exists:
| ?- threaded_engine(worker_1).

% write the names of all existing engines:
| ?- forall(
 threaded_engine(Engine),
 (writeq(Engine), nl)
).

See also

threaded_engine_create/3,
threaded_engine_self/1,
threaded_engine_destroy/1

 built-in predicate

threaded_engine_self/1

Description

threaded_engine_self(Engine)

Queries the name of engine calling the predicate. Fails if not called from
within an engine or if the argument doesn’t unify with the engine name.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine_self(?nonvar) - zero_or_one

Errors

(none)

Examples

% find the name of the engine making the query:
..., threaded_engine_self(Engine), ...

% check if the the engine making the query is worker_1:
..., threaded_engine_self(worker_1), ...

See also

threaded_engine_create/3,
threaded_engine_destroy/1,
threaded_engine/1

 built-in predicate

threaded_engine_next/2

Description

threaded_engine_next(Engine, Answer)

Retrieves an answer from an engine and signals it to start computing the
next answer. This predicate blocks until an answer becomes available.
The predicate fails when there are no more solutions to the engine goal.
If the engine goal throws an exception, calling this predicate will
re-throw the exception and subsequent calls will fail.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine_next(@nonvar, ?term) - zero_or_one

Errors

Engine is a variable:

instantiation_error

Engine is neither a variable nor the name of an existing engine:

existence_error(engine, Engine)

Examples

% get the next answer from the worker_1 engine:
| ?- threaded_engine_next(worker_1, Answer).

See also

threaded_engine_create/3,
threaded_engine_next_reified/2,
threaded_engine_yield/1

 built-in predicate

threaded_engine_next_reified/2

Description

threaded_engine_next_reified(Engine, Answer)

Retrieves an answer from an engine and signals it to start computing the
next answer. This predicate always succeeds and blocks until an answer
becomes available. Answers are returned using the terms the(Answer),
no, and exception(Error).

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine_next_reified(@nonvar, ?nonvar) - one

Errors

Engine is a variable:

instantiation_error

Engine is neither a variable nor the name of an existing engine:

existence_error(engine, Engine)

Examples

% get the next reified answer from the worker_1 engine:
| ?- threaded_engine_next_reified(worker_1, Answer).

See also

threaded_engine_create/3,
threaded_engine_next/2,
threaded_engine_yield/1

 built-in predicate

threaded_engine_yield/1

Description

threaded_engine_yield(Answer)

Returns an answer independent of the solutions of the engine goal. Fails
if not called from within an engine. This predicate is usually used when
the engine goal is a call to a recursive predicate processing terms from
the engine term queue.

This predicate blocks until the returned answer is consumed.

Note that this predicate should not be called as the last element of a
conjunction resulting in an engine goal solution as, in this case, an
answer will always be returned. For example, instead of
(threaded_engine_yield(ready); member(X,[1,2,3])) use
(X=ready; member(X,[1,2,3])).

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine_yield(@term) - zero_or_one

Errors

(none)

Examples

% returns the atom "ready" as an engine answer:
..., threaded_engine_yield(ready), ...

See also

threaded_engine_create/3,
threaded_engine_next/2,
threaded_engine_next_reified/2

 built-in predicate

threaded_engine_post/2

Description

threaded_engine_post(Engine, Term)

Posts a term to the engine term queue.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine_post(@nonvar, @term) - one

Errors

Engine is a variable:

instantiation_error

Engine is neither a variable nor the name of an existing engine:

existence_error(engine, Engine)

Examples

% post the atom "ready" to the worker_1 engine queue:
| ?- threaded_engine_post(worker_1, ready).

See also

threaded_engine_fetch/1

 built-in predicate

threaded_engine_fetch/1

Description

threaded_engine_fetch(Term)

Fetches a term from the engine term queue. Blocks until a term is
available. Fails if not called from within an engine.

Note

This predicate requires a backend Prolog compiler providing
compatible multi-threading primitives. The value of the read-only
engines flag is set to supported when that
is the case.

Modes and number of proofs

threaded_engine_fetch(?term) - zero_or_one

Errors

(none)

Examples

% fetch a term from the engine term queue:
..., threaded_engine_fetch(Term), ...

See also

threaded_engine_post/2

Compiling and loading source files

	logtalk_compile/1

	logtalk_compile/2

	logtalk_load/1

	logtalk_load/2

	logtalk_make/0

	logtalk_make/1

	logtalk_make_target_action/1

	logtalk_library_path/2

	logtalk_load_context/2

 built-in predicate

logtalk_compile/1

Description

logtalk_compile(File)
logtalk_compile(Files)

Compiles to disk a source file or a list of source files using
the default compiler flag values. The Logtalk source file name extension
(by default, .lgt) can be omitted. Source file paths can be absolute,
relative to the current directory, or use library notation. This
predicate can also be used to compile Prolog source files as Logtalk source
code. When no recognized Logtalk or Prolog extension is specified, the
compiler tries first to append a Logtalk source file extension and then a
Prolog source file extension. If that fails, the compiler tries to use the
file name as-is. The recognized Logtalk and Prolog file extensions are
defined in the backend adapter files.

Note

This predicate does not load into memory the compiled source file.
If you want to both compile and load a source file, use instead the
logtalk_load/1 built-in predicate.

When this predicate is called from the top-level interpreter, relative source
file paths are resolved using the current working directory. When the calls
are made from a source file, relative source file paths are resolved using
the source file directory.

Note that only the errors related to problems in the predicate argument
are listed below. This predicate fails on the first error found during
compilation of a source file. In this case, no file with the compiled
code is written to disk.

Modes and number of proofs

logtalk_compile(@source_file_name) - zero_or_one
logtalk_compile(@list(source_file_name)) - zero_or_one

Errors

File is a variable:

instantiation_error

Files is a variable or a list with an element which is a variable:

instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:

type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:

existence_error(library, Library)

File or an element File of the Files list does not exist:

existence_error(file, File)

Examples

% compile to disk the "set" source file in the
% current directory:
| ?- logtalk_compile(set).

% compile to disk the "tree" source file in the
% "types" library directory:
| ?- logtalk_load(types(tree)).

% compile to disk the "listp" and "list" source
% files in the current directory:
| ?- logtalk_compile([listp, list]).

See also

logtalk_compile/2,
logtalk_load/1,
logtalk_load/2,
logtalk_make/0,
logtalk_make/1,
logtalk_library_path/2

 built-in predicate

logtalk_compile/2

Description

logtalk_compile(File, Flags)
logtalk_compile(Files, Flags)

Compiles to disk a source file or a list of source files using a
list of compiler flags. The Logtalk source file name extension (by default,
.lgt) can be omitted. Source file paths can be absolute, relative to
the current directory, or use library notation. This predicate can
also be used to compile Prolog source files as Logtalk source code. When no
recognized Logtalk or Prolog extension is specified, the compiler tries
first to append a Logtalk source file extension and then a Prolog source
file extension. If that fails, the compiler tries to use the file name
as-is. Compiler flags are represented as flag(value). For a description
of the available compiler flags, please see the Compiler flags
section in the User Manual. The recognized Logtalk and Prolog file
extensions are defined in the backend adapter files.

Note

This predicate does not load into memory the compiled source file.
If you want to both compile and load a source file, use instead the
logtalk_load/2 built-in predicate.

When this predicate is called from the top-level interpreter, relative source
file paths are resolved using the current working directory. When the calls
are made from a source file, relative source file paths are resolved by
default using the source file directory (unless a
relative_to flag is passed).

Note that only the errors related to problems in the predicate argument
are listed below. This predicate fails on the first error found during
compilation of a source file. In this case, no file with the compiled
code is written to disk.

Warning

The compiler flags specified in the second argument only apply to the
files listed in the first argument. Notably, if you are compiling a
loader file, the flags only apply to the loader file itself.

Modes and number of proofs

logtalk_compile(@source_file_name, @list(compiler_flag)) - zero_or_one
logtalk_compile(@list(source_file_name), @list(compiler_flag)) - zero_or_one

Errors

File is a variable:

instantiation_error

Files is a variable or a list with an element which is a variable:

instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:

type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:

existence_error(library, Library)

File or an element File of the Files list, does not exist:

existence_error(file, File)

Flags is a variable or a list with an element which is a variable:

instantiation_error

Flags is neither a variable nor a proper list:

type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:

type_error(compiler_flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:

permission_error(modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:

domain_error(flag_value, Flag+Value)

Examples

% compile to disk the "list" source file in the
% current directory using default compiler flags:
| ?- logtalk_compile(list, []).

% compile to disk the "tree" source file in the "types"
% library directory with the source_data flag turned on:
| ?- logtalk_compile(types(tree), [source_data(on)]).

% compile to disk the "file_system" source file in the
% current directory with portability warnings suppressed:
| ?- logtalk_compile(file_system, [portability(silent)]).

See also

logtalk_compile/1,
logtalk_load/1,
logtalk_load/2,
logtalk_make/0,
logtalk_make/1,
logtalk_library_path/2

 built-in predicate

logtalk_load/1

Description

logtalk_load(File)
logtalk_load(Files)

Compiles to disk and then loads to memory a source file or a list
of source files using the default compiler flag values. The Logtalk source
file name extension (by default, .lgt) can be omitted. Source file
paths can be absolute, relative to the current directory, or use
library notation. This predicate can also be used to compile Prolog
source files as Logtalk source code. When no recognized Logtalk or Prolog
extension is specified, the compiler tries first to append a Logtalk source
file extension and then a Prolog source file extension. If that fails, the
compiler tries to use the file name as-is. The recognized Logtalk and Prolog
file extensions are defined in the backend adapter files.

When this predicate is called from the top-level interpreter, relative source
file paths are resolved using the current working directory. When the calls
are made from a source file, relative source file paths are resolved
using the source file directory.

Note that only the errors related to problems in the predicate argument
are listed below. This predicate fails on the first error found during
compilation of a source file. In this case, no contents of the source
file are loaded.

Depending on the backend Prolog compiler, the shortcuts {File}
or {File1, File2, ...} may be used in alternative. Check the adapter
files for the availability of these shortcuts as they are not part of
the language (and thus should only be used at the top-level
interpreter).

Modes and number of proofs

logtalk_load(@source_file_name) - zero_or_one
logtalk_load(@list(source_file_name)) - zero_or_one

Errors

File is a variable:

instantiation_error

Files is a variable or a list with an element which is a variable:

instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:

type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:

existence_error(library, Library)

File or an element File of the Files list, does not exist:

existence_error(file, File)

Examples

% compile and load the "set" source file in the
% current directory:
| ?- logtalk_load(set).

% compile and load the "tree" source file in the
% "types" library directory:
| ?- logtalk_load(types(tree)).

% compile and load the "listp" and "list" source
% files in the current directory:
| ?- logtalk_load([listp, list]).

See also

logtalk_compile/1,
logtalk_compile/2,
logtalk_load/2,
logtalk_make/0,
logtalk_make/1,
logtalk_library_path/2

 built-in predicate

logtalk_load/2

Description

logtalk_load(File, Flags)
logtalk_load(Files, Flags)

Compiles to disk and then loads to memory a source file or a list
of source files using a list of compiler flags. The Logtalk source file name
extension (by default, .lgt) can be omitted. Source file paths can be
absolute, relative to the current directory, or use library notation.
Compiler flags are represented as flag(value). This predicate can also be
used to compile Prolog source files as Logtalk source code. When no recognized
Logtalk or Prolog extension is specified, the compiler tries first to append a
Logtalk source file extension and then a Prolog source file extension. If that
fails, the compiler tries to use the file name as-is. For a description of the
available compiler flags, please see the Compiler flags section in
the User Manual. The recognized Logtalk and Prolog file extensions are defined
in the backend adapter files. The recognized Logtalk
and Prolog file extensions are defined in the
backend adapter files.

When this predicate is called from the top-level interpreter, relative source
file paths are resolved using the current working directory. When the calls
are made from a source file, relative source file paths are resolved by
default using the source file directory (unless a
relative_to flag is passed).

Note that only the errors related to problems in the predicate argument
are listed below. This predicate fails on the first error found during
compilation of a source file. In this case, no contents of the source
file are loaded.

Warning

The compiler flags specified in the second argument only apply to the
files listed in the first argument and not to any files that those files
may load or compile. Notably, if you are loading a loader file,
the flags only apply to the loader file itself and not to the files
loaded by it.

Modes and number of proofs

logtalk_load(@source_file_name, @list(compiler_flag)) - zero_or_one
logtalk_load(@list(source_file_name), @list(compiler_flag)) - zero_or_one

Errors

File is a variable:

instantiation_error

Files is a variable or a list with an element which is a variable:

instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:

type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:

existence_error(library, Library)

File or an element File of the Files list, does not exist:

existence_error(file, File)

Flags is a variable or a list with an element which is a variable:

instantiation_error

Flags is neither a variable nor a proper list:

type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:

type_error(compiler_flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:

permission_error(modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:

domain_error(flag_value, Flag+Value)

Examples

% compile and load the "list" source file in the
% current directory using default compiler flags:
| ?- logtalk_load(list, []).

% compile and load the "tree" source file in the "types"
% library directory with the source_data flag turned on:
| ?- logtalk_load(types(tree)).

% compile and load the "file_system" source file in the
% current directory with portability warnings suppressed:
| ?- logtalk_load(file_system, [portability(silent)]).

See also

logtalk_compile/1,
logtalk_compile/2,
logtalk_load/1,
logtalk_make/0,
logtalk_make/1,
logtalk_library_path/2

 built-in predicate

logtalk_make/0

Description

logtalk_make

Reloads all Logtalk source files that have been modified since the time
they are last loaded. Only source files loaded using the
logtalk_load/1 and logtalk_load/2
predicates are reloaded. Non-modified files will
also be reloaded when there is a change to the compilation mode (i.e.
when the files were loaded without explicit debug or
optimize flags and the default values of these
flags changed after loading; no check is made, however, for other implicit
compiler flags that may have changed since loading). When an included file
is modified, this predicate reloads its main file (i.e. the file that
contains the include/1 directive).

Depending on the backend Prolog compiler, the shortcut {*} may
be used in alternative. Check the adapter files for
the availability of the shortcut as it is not part of the language.

Warning

Only use the {*} shortcut at the top-level interpreter and
never in source files.

This predicate can be extended by the user by defining clauses for the
logtalk_make_target_action/1 multifile and dynamic hook
predicate using the argument all. The additional user defined actions
are run after the default one.

Modes and number of proofs

logtalk_make - one

Errors

(none)

Examples

% reload all files modified since last loaded:
| ?- logtalk_make.

See also

logtalk_compile/1,
logtalk_compile/2,
logtalk_load/1,
logtalk_load/2,
logtalk_make/1,
logtalk_make_target_action/1

 built-in predicate

logtalk_make/1

Description

logtalk_make(Target)

Runs a make target. Prints a warning message and fails when the target is
not valid.

Allows reloading all Logtalk source files that have been modified since
last loaded when called with the target all, deleting all
intermediate files generated by the compilation of Logtalk source files
when called with the target clean, checking for code issues when
called with the target check, listing of circular dependencies
between pairs or trios of objects when called with the target
circular, generating documentation when called with the target
documentation, and deleting the dynamic binding caches with
the target caches.

There are also three variants of the all target: debug,
normal, and optimal. These targets change the compilation mode
(by changing the default value of the debug and
optimize flags) and reload all affected files
(i.e. all files loaded without an explicit debug/1 or optimize/1
compiler option).

When using the all target, only source files loaded using the
logtalk_load/1 and logtalk_load/2
predicates are reloaded. Non-modified files will also be reloaded when
there is a change to the compilation mode (i.e. when the files were loaded
without explicit debug or optimize
flags and the default values of these flags changed after loading; no check
is made, however, for other implicit compiler flags that may have changed
since loading). When an included file is modified, this target reloads its
main file (i.e. the file that contains the include/1
directive).

When using the check or circular targets, be sure to compile
your source files with the source_data flag
turned on for complete and detailed reports.

The check target scans for missing entities (objects, protocols,
categories, and modules), missing entity predicates, and duplicated
library aliases. Predicates for messages sent to objects that implement
the forwarding built-in protocol are not
reported. While this usually avoids only false positives, it may
also result in failure to report true missing predicates in some cases.

When using the circular target, be prepared for a lengthy computation
time for applications with a large combined number of objects and message
calls. Only mutual and triangular dependencies are checked due to the
computational cost. Circular dependencies occur when an object sends a
message to a second object that, in turn, sends a message to the first
object. These circular dependencies are often a consequence of lack of
separation of concerns. But, when they cannot be fixed, the only practical
consequence is a small performance cost as some of the messages would be
forced to use dynamic binding.

The documentation target requires the doclet tool and a single
doclet object to be loaded. See the doclet tool documentation
for more details.

Depending on the backend Prolog compiler, the following top-level
shortcuts are usually defined:

	{*} - logtalk_make(all)

	{!} - logtalk_make(clean)

	{?} - logtalk_make(check)

	{@} - logtalk_make(circular)

	{#} - logtalk_make(documentation)

	{$} - logtalk_make(caches)

	{+d} - logtalk_make(debug)

	{+n} - logtalk_make(normal)

	{+o} - logtalk_make(optimal)

Check the adapter files for the availability of
these shortcuts as they are not part of the language.

Warning

Only use the shortcuts at the top-level interpreter and
never in source files.

The target actions can be extended by defining clauses for the multifile
and dynamic hook predicate
logtalk_make_target_action(Target)
where Target is one of the targets listed above. The additional user
defined actions are run after the default ones.

Modes and number of proofs

logtalk_make(+atom) - zero_or_one

Errors

(none)

Examples

% reload loaded source files in debug mode:
| ?- logtalk_make(debug).

% check for code issues in the loaded source files:
| ?- logtalk_make(check).

% delete all intermediate files generated by
% the compilation of Logtalk source files:
| ?- logtalk_make(clean).

See also

logtalk_compile/1,
logtalk_compile/2,
logtalk_load/1,
logtalk_load/2,
logtalk_make/0,
logtalk_make_target_action/1

 built-in predicate

logtalk_make_target_action/1

Description

logtalk_make_target_action(Target)

Multifile and dynamic hook predicate that allows defining user actions for
the logtalk_make/1 targets. The user defined actions are
run after the default ones using a failure driven loop. This loop does not
catch any exceptions thrown when calling the user-defined actions.

Modes and number of proofs

logtalk_make_target_action(+atom) - zero_or_more

Errors

(none)

Examples

% integrate the dead_code_scanner tool with logtalk_make/1

:- multifile(logtalk_make_target_action/1).
:- dynamic(logtalk_make_target_action/1).

logtalk_make_target_action(check) :-
 dead_code_scanner::all.

See also

logtalk_make/1,
logtalk_make/0

 built-in predicate

logtalk_library_path/2

Description

logtalk_library_path(Library, Path)

Dynamic and multifile user-defined predicate, allowing the declaration
of aliases to library paths. Library aliases may also be used on
the second argument (using the notation alias(path)). Paths must always
end with the path directory separator character ('/').

Warning

Library aliases should be unique. The logtalk_make/1
built-in predicate can be used to detect and report duplicated library
aliases using the check target.

Clauses for this predicate should preferably be facts. Defining rules to
dynamically compute at runtime both library alias names and their paths,
although sometimes handy, can inadvertently result in endless loops when
those rules also attempt to expand library paths. When asserting facts
for this predicate, use preferably asserta/1 instead of assertz/1
to help ensure the facts will be used before any rules.

Relative paths (e.g. '../' or './') should only be used within
the alias(path)) notation so that library paths can always be expanded
to absolute paths independently of the (usually unpredictable) current
directory at the time the logtalk_library_path/2 predicate is
called.

When working with a relocatable application, the actual application
installation directory can be retrieved by calling the
logtalk_load_context/2 predicate with the directory
key and using the returned value to define the logtalk_library_path/2
predicate. On a settings file file or a loader file file,
simply use an initialization/1 directive to wrap the
call to the logtalk_load_context/2 predicate and the assert of the
logtalk_library_path/2 fact.

This predicate may be used to override the default scratch directory
by defining the library alias scratch_directory in a backend Prolog
initialization file (assumed to be loaded prior to Logtalk loading). This
allows e.g. Logtalk to be installed in a read-only directory by setting
this alias to the operating-system directory for temporary files. It also
allows several Logtalk instances to run concurrently without conflict by
using a unique scratch directory per instance (e.g. using a process ID or
a UUID generator).

This predicate may be used to override the default location used by the
packs tool to store registries and packs by defining
the logtalk_packs library alias in settings file or in a backend
Prolog initialization file (assumed to be loaded prior to Logtalk loading).

The logtalk built-in object provides an
expand_library_path/2
predicate that can be used to expand library aliases and files expressed
using library notation.

Modes and number of proofs

logtalk_library_path(?atom, -atom) - zero_or_more
logtalk_library_path(?atom, -compound) - zero_or_more

Errors

(none)

Examples

:- initialization((
 logtalk_load_context(directory, Directory),
 asserta(logtalk_library_path(my_application_root, Directory))
)).

| ?- logtalk_library_path(viewpoints, Path).

Path = examples('viewpoints/')
yes

| ?- logtalk_library_path(Library, Path).

Library = home,
Path = '$HOME/' ;

Library = logtalk_home,
Path = '$LOGTALKHOME/' ;

Library = logtalk_user
Path = '$LOGTALKUSER/' ;

Library = examples
Path = logtalk_user('examples/') ;

Library = library
Path = logtalk_user('library/') ;

Library = viewpoints
Path = examples('viewpoints/')
yes

| ?- logtalk::expand_library_path(viewpoints, Path).

Path = '/Users/pmoura/logtalk/examples/viewpoints/'.
yes

| ?- logtalk::expand_library_path(viewpoints('loader.lgt'), Path).

Path = '/Users/pmoura/logtalk/examples/viewpoints/loader.lgt'.
yes

See also

logtalk_compile/1,
logtalk_compile/2,
logtalk_load/1,
logtalk_load/2

 built-in predicate

logtalk_load_context/2

Description

logtalk_load_context(Key, Value)

Provides access to the Logtalk compilation/loading context. The following keys
are currently supported:

	entity_identifier - identifier of the entity being compiled if any

	entity_prefix - internal prefix for the entity compiled code

	entity_type - returns the value module when compiling a module as an object

	entity_relation - returns the entity relations as declared in the entity opening directive

	source - full path of the source file being compiled

	file - the actual file being compiled, different from source only when processing an include/1 directive

	basename - source file basename

	directory - source file directory

	stream - input stream being used to read source file terms

	target - the full path of the intermediate Prolog file

	flags - the list of the explicit flags used for the compilation of the source file

	term - the source file term being compiled

	term_position - the position of the term being compiled (StartLine-EndLine)

	variables - the variables of the term being compiled ([Variable1, ...])

	variable_names - the variable names of the term being compiled ([Name1=Variable1, ...])

	variable_names(Term) - the variable names of the term being compiled ([Name1=Variable1, ...])

	singletons - the singleton variables of the term being compiled ([Name1=Variable1, ...])

	singletons(Term) - the singleton variables of the term being compiled ([Name1=Variable1, ...])

	parameter_variables - list of parameter variable names and positions ([Name1-Position1, ...])

For the entity_relation key, the possible values are:

	extends_protocol(Protocol, ParentProtocol, Scope)

	implements_protocol(ObjectOrCategory, Protocol, Scope)

	extends_category(Category, ParentCategory, Scope)

	imports_category(Object, Category, Scope)

	extends_object(Prototype, Parent, Scope)

	instantiates_class(Instance, Class, Scope)

	specializes_class(Class, Superclass, Scope)

	complements_object(Category, Object)

Calling this predicate with the parameter_variables key only succeeds
when compiling a parametric entity containing parameter variables.

This predicate is usually called by the term_expansion/2
and goal_expansion/2 methods. It can also be called directly
from initialization/1 directives in a source file. Note
that the entity keys are only available when compiling an entity term or
from an object initialization/1 directive.

Warning

The term_position key is only supported in
backend Prolog compilers
that provide access to the start and end lines of a read term. When
such support is not available, the value -1 is returned for both
the start and the end lines.

Variables in the values of the term, variables, variable_names,
and singletons keys are not shared with, respectively, the term and
goal arguments of the term_expansion/2 and goal_expansion/2 methods.
Use instead the variable_names(Term) and singletons(Term) keys.

Modes and number of proofs

logtalk_load_context(?atom, -nonvar) - zero_or_more

Errors

(none)

Examples

% expand source file terms only if they are entity terms
term_expansion(Term, ExpandedTerms) :-
 logtalk_load_context(entity_identifier, _),

% expand source file term while accessing its variable names
term_expansion(Term, ExpandedTerms) :-
 logtalk_load_context(variable_names(Term), VariableNames),

% define a library alias based on the source directory
:- initialization((
 logtalk_load_context(directory, Directory),
 assertz(logtalk_library_path(my_app, Directory))
)).

See also

term_expansion/2,
goal_expansion/2,
initialization/1

Flags

	current_logtalk_flag/2

	set_logtalk_flag/2

	create_logtalk_flag/3

 built-in predicate

current_logtalk_flag/2

Description

current_logtalk_flag(Flag, Value)

Enumerates, by backtracking, the current Logtalk flag values. For
a description of the predefined compiler flags, please see the
Compiler flags section in the User Manual.

Modes and number of proofs

current_logtalk_flag(?atom, ?atom) - zero_or_more

Errors

Flag is neither a variable nor an atom:

type_error(atom, Flag)

Flag is an atom but an invalid flag:

domain_error(flag, Value)

Examples

% get the current value of the source_data flag:
| ?- current_logtalk_flag(source_data, Value).

See also

create_logtalk_flag/3,
set_logtalk_flag/2

 built-in predicate

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets global, default, flag values. For local flag scope, use the
corresponding set_logtalk_flag/2 directive. To set a
global flag value when compiling and loading a source file, wrap the calls
to this built-in predicate with an initialization/1
directive. For a description of the predefined compiler flags, please see
the Compiler flags section in the User Manual.

Modes and number of proofs

set_logtalk_flag(+atom, +nonvar) - one

Errors

Flag is a variable:

instantiation_error

Value is a variable:

instantiation_error

Flag is neither a variable nor an atom:

type_error(atom, Flag)

Flag is an atom but an invalid flag:

domain_error(flag, Flag)

Value is not a valid value for flag Flag:

domain_error(flag_value, Flag + Value)

Flag is a read-only flag:

permission_error(modify, flag, Flag)

Examples

% turn off globally and by default the compiler
% unknown entities warnings:
| ?- set_logtalk_flag(unknown_entities, silent).

See also

create_logtalk_flag/3,
current_logtalk_flag/2

 built-in predicate

create_logtalk_flag/3

Description

create_logtalk_flag(Flag, Value, Options)

Creates a new Logtalk flag and sets its default value. User-defined
flags can be queried and set in the same way as predefined flags by
using, respectively, the current_logtalk_flag/2 and
set_logtalk_flag/2 built-in predicates. For a
description of the predefined compiler flags, please see the
Compiler flags section in the User Manual.

This predicate is based on the specification of the SWI-Prolog
create_prolog_flag/3 built-in predicate and supports the same
options: access(Access), where Access can be either
read_write (the default) or read_only; keep(Keep), where
Keep can be either false (the default) or true, for deciding
if an existing definition of the flag should be kept or replaced by the
new one; and type(Type) for specifying the type of the flag, which
can be boolean, atom, integer, float, or term (which
only restricts the flag value to ground terms). When the type/1
option is not specified, the type of the flag is inferred from its
initial value.

Modes and number of proofs

create_logtalk_flag(+atom, +ground, +list(ground)) - one

Errors

Flag is a variable:

instantiation_error

Value is not a ground term:

instantiation_error

Options is not a ground term:

instantiation_error

Flag is neither a variable nor an atom:

type_error(atom, Flag)

Options is neither a variable nor a list:

type_error(atom, Flag)

Value is not a valid value for flag Flag:

domain_error(flag_value, Flag + Value)

Flag is a system-defined flag:

permission_error(modify, flag, Flag)

An element Option of the list Options is not a valid option

domain_error(flag_option,Option)

The list Options contains a type(Type) option and Value is not of type Type

type_error(Type, Value)

Examples

% create a new boolean flag with default value set to false:
| ?- create_logtalk_flag(pretty_print_blobs, false, []).

See also

current_logtalk_flag/2,
set_logtalk_flag/2

Linter

	logtalk_linter_hook/7

 built-in predicate

logtalk_linter_hook/7

Description

logtalk_linter_hook(Goal, Flag, File, Lines, Type, Entity, Warning)

Multifile user-defined predicate, supporting the definition of custom linter
warnings. Experimental. The Goal argument can be a message sending goal,
Object::Message, a call to a Prolog built-in predicate, or a call to a
module predicate, Module:Predicate. The Flag argument must be a
supported linter flag. The Warning argument must be a valid core
message term. For a given Goal, only the first successful call to this
predicate is considered.

Modes and number of proofs

logtalk_linter_hook(@callable, +atom, +atom, +pair(integer), +atom, @object_identifier, --callable) - zero_or_one

Errors

(none)

Examples

:- multifile(user::logtalk_linter_hook/7).
% warn about using list::append/3 to construct a list from an head and a tail
user::logtalk_linter_hook(
 list::append(L1,L2,L), suspicious_calls,
 File, Lines, Type, Entity,
 suspicious_call(File, Lines, Type, Entity, list::append(L1,L2,L), [L=[Head|L2]])
) :-
 nonvar(L1),
 L1 = [Head].

Built-in methods

	Logic and control
	!/0

	true/0

	fail/0

	false/0

	repeat/0

	Execution context
	context/1

	parameter/2

	self/1

	sender/1

	this/1

	Reflection
	current_op/3

	current_predicate/1

	predicate_property/2

	Database
	abolish/1

	asserta/1

	assertz/1

	clause/2

	retract/1

	retractall/1

	Meta-calls
	call/1-N

	ignore/1

	once/1

	(\+)/1

	Error handling
	catch/3

	throw/1

	instantiation_error/0

	uninstantiation_error/1

	type_error/2

	domain_error/2

	existence_error/2

	permission_error/3

	representation_error/1

	evaluation_error/1

	resource_error/1

	syntax_error/1

	system_error/0

	All solutions
	bagof/3

	findall/3

	findall/4

	forall/2

	setof/3

	Event handling
	before/3

	after/3

	Message forwarding
	forward/1

	Definite clause grammar rules
	call//1-N

	eos//0

	phrase//1

	phrase/2

	phrase/3

	Term and goal expansion
	expand_term/2

	term_expansion/2

	expand_goal/2

	goal_expansion/2

	Coinduction hooks
	coinductive_success_hook/1-2

	Message printing
	print_message/3

	message_tokens//2

	message_hook/4

	message_prefix_stream/4

	print_message_tokens/3

	print_message_token/4

	Question asking
	ask_question/5

	question_hook/6

	question_prompt_stream/4

Logic and control

	!/0

	true/0

	fail/0

	false/0

	repeat/0

 built-in method

!/0

Description

!

Always succeeds with the side-effect of discarding choice-points. See also
the ISO Prolog standard definition. This built-in method is declared as a
public method and can be used as a message to an object.

Modes and number of proofs

! - one

Errors

(none)

Examples

(none)

See also

true/0,
fail/0,
false/0,
repeat/0

 built-in method

true/0

Description

true

Always succeeds. See also the ISO Prolog standard definition. This built-in
method is declared as a public method and can be used as a message to an
object.

Modes and number of proofs

true - one

Errors

(none)

Examples

(none)

See also

!/0,
fail/0,
false/0,
repeat/0

 built-in method

fail/0

Description

fail

Always fails. See also the ISO Prolog standard definition. This built-in
method is declared as a public method and can be used as a message to an
object.

Modes and number of proofs

fail - one

Errors

(none)

Examples

(none)

See also

!/0,
true/0,
false/0,
repeat/0

 built-in method

false/0

Description

false

Always fails. See also the ISO Prolog standard definition. This built-in
method is declared as a public method and can be used as a message to an
object.

Modes and number of proofs

false - one

Errors

(none)

Examples

(none)

See also

!/0,
true/0,
fail/0,
repeat/0

 built-in method

repeat/0

Description

repeat

Always succeeds when called and when backtracking into its call with
an infinite number of choice-points. See also the ISO Prolog standard
definition. This built-in method is declared as a public method
and can be used as a message to an object.

Modes and number of proofs

repeat - one_or_more

Errors

(none)

Examples

(none)

See also

!/0,
true/0,
fail/0,
false/0

Execution context

	context/1

	parameter/2

	self/1

	sender/1

	this/1

 built-in method

context/1

Description

context(Context)

Returns the execution context for a predicate clause using the term
logtalk(Head,ExecutionContext) where Head is the head of the
clause containing the call. This private predicate is mainly used for
providing an error context when type-checking predicate arguments. The
ExecutionContext term should be regarded as an opaque term, which
can be decoded using the
logtalk::execution_context/7
predicate. Calls to this predicate are inlined at compilation time.

Modes and number of proofs

context(--callable) - one

Errors

(none)

Examples

foo(A, N) :-
 % type-check arguments
 context(Context),
 type::check(atom, A, Context),
 type::check(integer, N, Context),
 % arguments are fine; go ahead

See also

parameter/2,
self/1,
sender/1,
this/1

 built-in method

parameter/2

Description

parameter(Number, Term)

Used in parametric objects (and
parametric categories), this private method provides runtime access to
the parameter values of the entity that contains the predicate clause
whose body is being executed by using the argument number in the entity
identifier. This predicate is implemented as a unification between its
second argument and the corresponding implicit execution-context
argument in the predicate clause making the call. This unification
occurs at the clause head when the second argument is not instantiated
(the most common case). When the second argument is instantiated, the
unification must be delayed to runtime and thus occurs at the clause
body.

Entity parameters can also be accessed using parameter variables,
which use the syntax _VariableName_. The compiler recognizes
occurrences of these variables in directives and clauses. Parameter
variables allows us to abstract parameter positions thus simplifying
code maintenance.

Modes and number of proofs

parameter(+integer, ?term) - zero_or_one

Errors

Number is a variable:

instantiation_error

Number is neither a variable nor an integer value:

type_error(integer, Number)

Number is smaller than one or greater than the parametric entity identifier arity:

domain_error(out_of_range, Number)

Entity identifier is not a compound term:

type_error(compound, Entity)

Examples

:- object(box(_Color, _Weight)).

 ...

 % this clause is translated into
 % a fact upon compilation
 color(Color) :-
 parameter(1, Color).

 % upon compilation, the >/2 call will be
 % the single goal in the clause body
 heavy :-
 parameter(2, Weight),
 Weight > 10.
 ...

The same example using parameter variables:

:- object(box(_Color_, _Weight_)).

 ...

 color(_Color_).

 heavy :-
 Weight > 10.

 ...

See also

context/1,
self/1,
sender/1,
this/1

 built-in method

self/1

Description

self(Self)

Unifies its argument with the object that received the message under
processing. This private method is compiled into a unification between
its argument and the corresponding implicit context argument in the
predicate clause making the call. This unification occurs at the clause
head when the argument is not bound at compile time (the most common case).

Modes and number of proofs

self(?object_identifier) - zero_or_one

Errors

(none)

Examples

% upon compilation, the write/1 call will be
% the first goal on the clause body
test :-
 self(Self),
 write('executing a method in behalf of '),
 writeq(Self), nl.

See also

context/1,
parameter/2,
sender/1,
this/1

 built-in method

sender/1

Description

sender(Sender)

Unifies its argument with the object that sent the message under processing.
This private method is translated into a unification between its argument and
the corresponding implicit context argument in the predicate clause making
the call. This unification occurs at the clause head when the argument is not
bound at compile time (the most common case).

Modes and number of proofs

sender(?object_identifier) - zero_or_one

Errors

(none)

Examples

% after compilation, the write/1 call will
% be the first goal on the clause body
test :-
 sender(Sender),
 write('executing a method to answer a message sent by '),
 writeq(Sender), nl.

See also

context/1,
parameter/2,
self/1,
this/1

 built-in method

this/1

Description

this(This)

Unifies its argument with the identifier of the object for which the
predicate clause whose body is being executed is defined (or the object
importing the category that contains the predicate clause). This private
method is implemented as a unification between its argument and the
corresponding implicit execution-context argument in the predicate
clause making the call. This unification occurs at the clause head when
the argument is not bound at compile time (the most common case). This
method is useful for avoiding hard-coding references to an object
identifier or for retrieving all object parameters with a single call
when using parametric objects.

Modes and number of proofs

this(?object_identifier) - zero_or_one

Errors

(none)

Examples

% after compilation, the write/1 call will
% be the first goal on the clause body
test :-
 this(This),
 write('Using a predicate clause contained in '),
 writeq(This), nl.

See also

context/1,
parameter/2,
self/1,
sender/1

Reflection

	current_op/3

	current_predicate/1

	predicate_property/2

 built-in method

current_op/3

Description

current_op(Priority, Specifier, Operator)

Enumerates, by backtracking, the visible operators declared for an
object. Operators not declared using a scope directive are not
enumerated.

Modes and number of proofs

current_op(?operator_priority, ?operator_specifier, ?atom) - zero_or_more

Errors

Priority is neither a variable nor an integer:

type_error(integer, Priority)

Priority is an integer but not a valid operator priority:

domain_error(operator_priority, Priority)

Specifier is neither a variable nor an atom:

type_error(atom, Specifier)

Specifier is an atom but not a valid operator specifier:

domain_error(operator_specifier, Specifier)

Operator is neither a variable nor an atom:

type_error(atom, Operator)

Examples

To enumerate, by backtracking, the local operators or the operators visible in this:

current_op(Priority, Specifier, Operator)

To enumerate, by backtracking, the public and protected operators visible in self:

::current_op(Priority, Specifier, Operator)

To enumerate, by backtracking, the public operators visible for an explicit object:

Object::current_op(Priority, Specifier, Operator)

See also

current_predicate/1,
predicate_property/2,
op/3

 built-in method

current_predicate/1

Description

current_predicate(Predicate)

Enumerates, by backtracking, visible, user-defined, object predicates.
Built-in predicates and predicates not declared using a scope directive
are not enumerated.

This predicate also succeeds for any predicates listed in uses/2
and use_module/2 directives.

When Predicate is bound at compile time to a (:)/2 term, this
predicate enumerates module predicates (assuming that the
backend Prolog compiler supports modules).

Modes and number of proofs

current_predicate(?predicate_indicator) - zero_or_more

Errors

Predicate is neither a variable nor a valid predicate indicator:

type_error(predicate_indicator, Predicate)

Predicate is a Name/Arity term but Functor is neither a variable nor an atom:

type_error(atom, Name)

Predicate is a Name/Arity term but Arity is neither a variable nor an integer:

type_error(integer, Arity)

Predicate is a Name/Arity term but Arity is a negative integer:

domain_error(not_less_than_zero, Arity)

Examples

To enumerate, by backtracking, the locally visible user predicates or the user predicates visible in this:

current_predicate(Predicate)

To enumerate, by backtracking, the public and protected user predicates visible in self:

::current_predicate(Predicate)

To enumerate, by backtracking, the public user predicates visible for an explicit object:

Object::current_predicate(Predicate)

An example of enumerating locally visible object predicates. These include
predicates listed using uses/2 and use_module/2
directives:

:- object(foo).

 :- uses(bar, [
 baz/1, quux/2
]).

 :- public(pred/1).
 pred(X) :-
 current_predicate(X).

:- end_object.

| ?- foo::pred(X).
X = pred/1 ;
X = baz/1 ;
X = quux/2 ;
no

See also

current_op/3,
predicate_property/2,
uses/2,
use_module/2

 built-in method

predicate_property/2

Description

predicate_property(Predicate, Property)

Enumerates, by backtracking, the properties of a visible object predicate.
Properties for predicates not declared using a scope directive are not
enumerated. The valid predicate properties are listed in the language
grammar section on predicate properties
and described in the User Manual section on
predicate properties.

When Predicate is listed in a uses/2 or
use_module/2 directive, properties are enumerated for
the referenced object or module predicate.

When Predicate is bound at compile time to a (:)/2 term, this
predicate enumerates properties for module predicates (assuming that
the backend Prolog compiler supports modules).

Modes and number of proofs

predicate_property(+callable, ?predicate_property) - zero_or_more

Errors

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a callable term:

type_error(callable, Predicate)

Property is neither a variable nor a valid predicate property:

domain_error(predicate_property, Property)

Examples

To enumerate, by backtracking, the properties of a locally visible user predicate or a user predicate visible in this:

predicate_property(Predicate, Property)

To enumerate, by backtracking, the properties of a public or protected predicate visible in self:

::predicate_property(Predicate, Property)

To enumerate, by backtracking, the properties of a public predicate visible in an explicit object:

Object::predicate_property(Predicate, Property)

An example of enumerating properties for locally visible object predicates.
These include predicates listed using uses/2 and
use_module/2 directives:

:- object(foo).

 :- uses(bar, [
 baz/1, quux/2
]).

 :- public(pred/1).
 pred_prop(Pred, Prop) :-
 predicate_property(Pred, Prop).

:- end_object.

| ?- foo::pred(baz(_), Prop).
Prop = logtalk ;
Prop = scope(public) ;
Prop = public ;
Prop = declared_in(bar) ;
...

See also

current_op/3,
current_predicate/1,
uses/2,
use_module/2

Database

	abolish/1

	asserta/1

	assertz/1

	clause/2

	retract/1

	retractall/1

 built-in method

abolish/1

Description

abolish(Predicate)

Abolishes a runtime declared object dynamic predicate or an object local
dynamic predicate. Only predicates that are dynamically declared at runtime
(using a call to the asserta/1 or assertz/1
built-in methods) can be abolished.

When the predicate indicator is declared in a uses/2
or use_module/2 directive, the predicate is abolished in
the referenced object or module. When the backend Prolog compiler supports
a module system, the predicate argument can also be module qualified.

Modes and number of proofs

abolish(@predicate_indicator) - one

Errors

Predicate is a variable:

instantiation_error

Functor is a variable:

instantiation_error

Arity is a variable:

instantiation_error

Predicate is neither a variable nor a valid predicate indicator:

type_error(predicate_indicator, Predicate)

Functor is neither a variable nor an atom:

type_error(atom, Functor)

Arity is neither a variable nor an integer:

type_error(integer, Arity)

Predicate is statically declared:

permission_error(modify, predicate_declaration, Name/Arity)

Predicate is a private predicate:

permission_error(modify, private_predicate, Name/Arity)

Predicate is a protected predicate:

permission_error(modify, protected_predicate, Name/Arity)

Predicate is a static predicate:

permission_error(modify, static_predicate, Name/Arity)

Predicate is not declared for the object receiving the message:

existence_error(predicate_declaration, Name/Arity)

Examples

To abolish a local dynamic predicate or a dynamic predicate in this:

abolish(Predicate)

To abolish a public or protected dynamic predicate in self:

::abolish(Predicate)

To abolish a public dynamic predicate in an explicit object:

Object::abolish(Predicate)

See also

asserta/1,
assertz/1,
clause/2,
retract/1,
retractall/1
dynamic/0,
dynamic/1,
uses/2,
use_module/2

 built-in method

asserta/1

Description

asserta(Head)
asserta((Head:-Body))

Asserts a clause as the first one for an object dynamic predicate.

When the predicate was not previously declared (using a scope directive),
a dynamic predicate declaration is added to the object. In this case, the
predicate scope depends on how this method is called:

	asserta(Clause)
	The predicate is dynamically declared as private.

	::asserta(Clause)
	The predicate is dynamically declared as protected.

	Object::asserta(Clause)
	The predicate is dynamically declared as public.

Note, however, that dynamically declaring a new predicate requires either a
local assert or the dynamic_declarations
compiler flag set to allow when the object was created or compiled.

When the predicate indicator for Head is declared in a
uses/2 or use_module/2 directive, the
clause is asserted in the referenced object or module. When the backend
Prolog compiler supports a module system, the predicate argument can also
be module qualified.

This method may be used to assert clauses for predicates that are not
declared dynamic for dynamic objects provided that the predicates are
declared in this. This allows easy initialization of dynamically
created objects when writing constructors.

Modes and number of proofs

asserta(+clause) - one

Errors

Head is a variable:

instantiation_error

Head is a neither a variable nor a callable term:

type_error(callable, Head)

Body cannot be converted to a goal:

type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:

permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:

permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:

permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was created or compiled with support for dynamic declaration of predicates turned off:

permission_error(create, predicate_declaration, Name/Arity)

Examples

To assert a clause as the first one for a local dynamic predicate or a dynamic predicate in this:

asserta(Clause)

To assert a clause as the first one for any public or protected dynamic predicate in self:

::asserta(Clause)

To assert a clause as the first one for any public dynamic predicate in an explicit object:

Object::asserta(Clause)

An example of asserting clauses in this and in self from a category:

:- category(attributes,
 implements(attributes_protocol)).

 :- private(attr_/1).
 :- dynamic(attr_/1).

 set_in_this(A, X) :-
 asserta(attr_(A, X)).

 set_in_self(A, X) :-
 ::asserta(attr_(A, X)).

 ...

An example of asserting clauses into another object with the predicates
listed using a uses/2 directive (similar when using a
use_module/2 directive):

:- object(reasoner(_KnowledgeBase_)).

 :- uses(_KnowledgeBase_, [
 foo/1, bar/1
]).

 baz(X) :-
 % compiled as _KnowledgeBase_::assertz(foo(X))
 asserta(foo(X)).

 foobar(Name, Argument) :-
 Clause =.. [Name, Argument],
 % runtime resolved to _KnowledgeBase_::assertz(Clause)
 % when Name is either foo or bar
 asserta(Clause).

 ...

See also

abolish/1,
assertz/1,
clause/2,
retract/1,
retractall/1
dynamic/0,
dynamic/1,
uses/2,
use_module/2

 built-in method

assertz/1

Description

assertz(Head)
assertz((Head:-Body))

Asserts a clause as the last one for a dynamic predicate.

When the predicate was not previously declared (using a scope directive),
a dynamic predicate declaration is added to the object. In this case, the
predicate scope depends on how this method is called:

	assertz(Clause)
	The predicate is dynamically declared as private.

	::assertz(Clause)
	The predicate is dynamically declared as protected.

	Object::assertz(Clause)
	The predicate is dynamically declared as public.

Note, however, that dynamically declaring a new predicate requires either a
local assert or the dynamic_declarations
compiler flag set to allow when the object was created or compiled.

When the predicate indicator for Head is declared in a uses/2 or
use_module/2 directive, the clause is asserted in the referenced
object or module. When the backend Prolog compiler supports a module system, the
predicate argument can also be module qualified.

This method may be used to assert clauses for predicates that are not
declared dynamic for dynamic objects provided that the predicates are
declared in this. This allows easy initialization of dynamically
created objects when writing constructors.

Modes and number of proofs

assertz(+clause) - one

Errors

Head is a variable:

instantiation_error

Head is a neither a variable nor a callable term:

type_error(callable, Head)

Body cannot be converted to a goal:

type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:

permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:

permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:

permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was created/compiled with support for dynamic declaration of predicates turned off:

permission_error(create, predicate_declaration, Name/Arity)

Examples

To assert a clause as the last one for a local dynamic predicate or a dynamic predicate in this:

assertz(Clause)

To assert a clause as the last one for any public or protected dynamic predicate in self:

::assertz(Clause)

To assert a clause as the last one for any public dynamic predicate in an explicit object:

Object::assertz(Clause)

An example of asserting clauses in this and in self from a category:

:- category(attributes,
 implements(attributes_protocol)).

 :- private(attr_/1).
 :- dynamic(attr_/1).

 set_in_this(A, X) :-
 assertz(attr_(A, X)).

 set_in_self(A, X) :-
 ::assertz(attr_(A, X)).

 ...

An example of asserting clauses into another object with the predicates
listed using a uses/2 directive (similar when using a
use_module/2 directive):

:- object(reasoner(_KnowledgeBase_)).

 :- uses(_KnowledgeBase_, [
 foo/1, bar/1
]).

 baz(X) :-
 % compiled as _KnowledgeBase_::assertz(foo(X))
 assertz(foo(X)).

 foobar(Name, Argument) :-
 Clause =.. [Name, Argument],
 % runtime resolved to _KnowledgeBase_::assertz(Clause)
 % when Name is either foo or bar
 assertz(Clause).

 ...

See also

abolish/1,
asserta/1,
clause/2,
retract/1,
retractall/1
dynamic/0,
dynamic/1,
uses/2,
use_module/2

 built-in method

clause/2

Description

clause(Head, Body)

Enumerates, by backtracking, the clauses of a dynamic predicate.

When the predicate indicator for Head is declared in a
uses/2 or use_module/2 directive,
the predicate enumerates the clauses in the referenced object or module.
When the backend Prolog compiler supports a module system, the head
argument can also be module qualified.

This method may be used to enumerate clauses for predicates that are not
declared dynamic for dynamic objects provided that the predicates are
declared in this.

Modes and number of proofs

clause(+callable, ?body) - zero_or_more

Errors

Head is a variable:

instantiation_error

Head is a neither a variable nor a callable term:

type_error(callable, Head)

Body is a neither a variable nor a callable term:

type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:

permission_error(access, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:

permission_error(access, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:

permission_error(access, static_predicate, Name/Arity)

Head is not a declared predicate:

existence_error(predicate_declaration, Name/Arity)

Examples

To retrieve a matching clause of a local dynamic predicate or a dynamic predicate in this:

clause(Head, Body)

To retrieve a matching clause of a public or protected dynamic predicate in self:

::clause(Head, Body)

To retrieve a matching clause of a public dynamic predicate in an explicit object:

Object::clause(Head, Body)

See also

abolish/1,
asserta/1,
assertz/1,
retract/1,
retractall/1
dynamic/0,
dynamic/1,
uses/2,
use_module/2

 built-in method

retract/1

Description

retract(Head)
retract((Head:-Body))

Retracts a clause for an object dynamic predicate. On backtracking, the
predicate retracts the next matching clause.

When the predicate indicator for Head is declared in a
uses/2 or use_module/2 directive,
the clause is retracted in the referenced object or module. When the
backend Prolog compiler supports a module system, the predicate
argument can also be module qualified.

This method may be used to retract clauses for predicates that are not
declared dynamic for dynamic objects provided that the predicates are
declared in this.

Modes and number of proofs

retract(+clause) - zero_or_more

Errors

Head is a variable:

instantiation_error

Head is neither a variable nor a callable term:

type_error(callable, Head)

The predicate indicator of Head, Name/Arity, is that of a private predicate:

permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:

permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:

permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is not declared:

existence_error(predicate_declaration, Name/Arity)

Examples

To retract a matching clause of a dynamic predicate in this:

retract(Clause)

To retract a matching clause of a public or protected dynamic predicate in self:

::retract(Clause)

To retract a matching clause of a public dynamic predicate in an explicit object:

Object::retract(Clause)

See also

abolish/1,
asserta/1,
assertz/1,
clause/2,
retractall/1,
dynamic/0,
dynamic/1,
uses/2,
use_module/2

 built-in method

retractall/1

Description

retractall(Head)

Retracts all clauses with a matching head for an object dynamic predicate.

When the predicate indicator for Head is declared in a
uses/2 or use_module/2 directive,
the clauses are retracted in the referenced object or module. When the
backend Prolog compiler supports a module system, the predicate argument
can also be module qualified.

This method may be used to retract clauses for predicates that are not
declared dynamic for dynamic objects provided that the predicates are
declared in this.

Modes and number of proofs

retractall(@callable) - one

Errors

Head is a variable:

instantiation_error

Head is neither a variable nor a callable term:

type_error(callable, Head)

The predicate indicator of Head, Name/Arity, is that of a private predicate:

permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:

permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:

permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is not declared:

existence_error(predicate_declaration, Name/Arity)

Examples

To retract all clauses with a matching head of a dynamic predicate in this:

retractall(Head)

To retract all clauses with a matching head of a public or protected dynamic predicate in self:

::retractall(Head)

To retract all clauses with a matching head of a public dynamic predicate in an explicit object:

Object::retractall(Head)

See also

abolish/1,
asserta/1,
assertz/1,
clause/2,
retract/1,
dynamic/0,
dynamic/1,
uses/2,
use_module/2

Meta-calls

	call/1-N

	ignore/1

	once/1

	(\+)/1

 built-in method

call/1-N

Description

call(Goal)
call(Closure, Arg1, ...)

Calls a goal constructed by appending additional arguments to a
closure. The upper limit for N depends on the upper limit
for the arity of a compound term of the backend Prolog compiler.
This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object. The Closure argument can
also be a lambda expression or a Logtalk control construct. When using a
backend Prolog compiler supporting a module system, calls in the format
call(Module:Closure, Arg1, ...) may also be used.

This meta-predicate is opaque to cuts in its arguments.

Meta-predicate template

call(0)
call(1, *)
call(2, *, *)
...

Modes and number of proofs

call(+callable) - zero_or_more
call(+callable, ?term) - zero_or_more
call(+callable, ?term, ?term) - zero_or_more
...

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Closure is a variable:

instantiation_error

Closure is neither a variable nor a callable term:

type_error(callable, Closure)

Examples

Call a goal, constructed by appending additional arguments to a closure, in the context of the object or category containing the call:

call(Closure, Arg1, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to self:

call(::Closure, Arg1, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to an explicit object:

call(Object::Closure, Arg1, Arg2, ...)

See also

ignore/1,
once/1,
(\+)/1

 built-in method

ignore/1

Description

ignore(Goal)

This predicate succeeds whether its argument succeeds or fails and it is
not re-executable. This built-in meta-predicate is declared as a private
method and thus cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Meta-predicate template

ignore(0)

Modes and number of proofs

ignore(+callable) - one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Examples

Call a goal and succeeding even if it fails:

ignore(Goal)

To send a message succeeding even if it fails to self:

ignore(::Goal)

To send a message succeeding even if it fails to an explicit object:

ignore(Object::Goal)

See also

call/1-N,
once/1,
(\+)/1

 built-in method

once/1

Description

once(Goal)

This predicate behaves as call(Goal) but it is not re-executable.
This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Meta-predicate template

once(0)

Modes and number of proofs

once(+callable) - zero_or_one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Examples

Call a goal deterministically in the context of the object or category containing the call:

once(Goal)

To send a goal as a non-backtracable message to self:

once(::Goal)

To send a goal as a non-backtracable message to an explicit object:

once(Object::Goal)

See also

call/1-N,
ignore/1,
(\+)/1

 built-in method

(\+)/1

Description

\+ Goal

Not-provable meta-predicate. True iff call(Goal) is false. This
built-in meta-predicate is declared as a private method and thus cannot
be used as a message to an object.

Warning

The argument is always compiled. As a consequence, when the argument
is a control construct (e.g. a conjunction), any meta-variables will
be wrapped with the equivalent to the call/1 control construct.
Note that these semantics differ from the ISO Prolog Core standard
specification for the (\+)/1 built-in predicate.

Meta-predicate template

\+ 0

Modes and number of proofs

\+ +callable - zero_or_one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Examples

Not-provable goal in the context of the object or category containing the call:

\+ Goal

Not-provable goal sent as a message to self:

\+ ::Goal

Not-provable goal sent as a message to an explicit object:

\+ Object::Goal

See also

call/1-N,
ignore/1,
once/1

Error handling

	catch/3

	throw/1

	instantiation_error/0

	uninstantiation_error/1

	type_error/2

	domain_error/2

	existence_error/2

	permission_error/3

	representation_error/1

	evaluation_error/1

	resource_error/1

	syntax_error/1

	system_error/0

 built-in method

catch/3

Description

catch(Goal, Catcher, Recovery)

Catches exceptions thrown by a goal. See also the ISO Prolog standard
definition. This built-in meta-predicate is declared as a private method
and thus cannot be used as a message to an object.

Modes and number of proofs

catch(?callable, ?term, ?callable) - zero_or_more

Errors

(none)

Examples

(none)

See also

throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
evaluation_error/1,
representation_error/1
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

throw/1

Description

throw(Exception)

Throws an exception. See also the ISO Prolog standard definition. This
built-in method is declared private and thus cannot be used as a message
to an object.

Modes and number of proofs

throw(+nonvar) - error

Errors

Exception is a variable:

instantiation_error

Exception does not unify with the second argument of any call of catch/3:

system_error

Examples

(none)

See also

catch/3,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
evaluation_error/1,
representation_error/1
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

instantiation_error/0

Description

instantiation_error

Throws an instantiation error. Used when an argument or one of its
sub-arguments is a variable but a non-variable term is required. For example,
trying to open a file with a variable for the input/output mode.

This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence
of calls:

...,
context(Context),
throw(error(instantiation_error, Context)).

This allows the user to generate errors in the same format used by the
runtime.

Modes and number of proofs

instantiation_error - error

Errors

When called:

instantiation_error

Examples

...,
var(Handler),
instantiation_error.

See also

catch/3,
throw/1,
context/1,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1,
evaluation_error/1,
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

uninstantiation_error/1

Description

uninstantiation_error(Culprit)

Throws an uninstantiation error. Used when an argument or one of its
sub-arguments is bound but a variable is required. For example, trying
to open a file with a stream argument bound.

This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence
of calls:

...,
context(Context),
throw(error(uninstantiation_error(Culprit), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Modes and number of proofs

uninstantiation_error(@nonvar) - error

Errors

When called:

uninstantiation_error(Culprit)

Examples

...,
var(Handler),
uninstantiation_error(my_stream).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1,
evaluation_error/1,
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

type_error/2

Description

type_error(Type, Culprit)

Throws a type error. Used when the type of an argument is incorrect. For example,
trying to use a non-callable term as a message. This built-in method is declared
private and thus cannot be used as a message to an object. Calling this predicate
is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(type_error(Type,Culprit), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Possible values for Type include all the types defined by the type
library object and by other libraries such as os, expecteds, and
optionals. The value of Culprit is the argument or one of its sub-terms
that caused the error.

Modes and number of proofs

type_error(@nonvar, @term) - error

Errors

When called:

type_error(Type, Culprit)

Examples

...,
\+ atom(Name),
type_error(atom, Name).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1
evaluation_error/1,
resource_error/1,
syntax_error/1,
system_error/0,

 built-in method

domain_error/2

Description

domain_error(Domain, Culprit)

Throws a domain error. Used when an argument is of the correct type but
outside the valid domain. For example, trying to use an atom as an operator
specifier that is not a valid specifier. This built-in method is declared
private and thus cannot be used as a message to an object. Calling this
predicate is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(domain_error(Domain,Culprit), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Possible values for Domain include:

	character_code_list

	close_option

	flag_option

	flag_value

	compiler_flag

	flag

	prolog_flag

	io_mode

	non_empty_list

	not_less_than_zero

	operator_priority

	operator_specifier

	read_option

	source_sink

	stream

	stream_option

	stream_or_alias

	stream_position

	stream_property

	write_option

	character_code_list

	text_encoding

	directive

	object_directive

	protocol_directive

	category_directive

	object_relation

	protocol_relation

	category_relation

	object_property

	protocol_property

	category_property

	predicate_property

	meta_argument_specifier

	meta_directive_template

	closure

	allocation

	redefinition

	message_sending_goal

	class

	prototype

	scope

	boolean

The value of Culprit is the argument or one of its sub-terms that caused
the error.

Modes and number of proofs

domain_error(+atom, @nonvar) - error

Errors

When called:

domain_error(Domain, Culprit)

Examples

...,
atom(Color),
\+ color(Color),
domain_error(color, Color).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
existence_error/2,
permission_error/3,
representation_error/1,
evaluation_error/1,
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

existence_error/2

Description

existence_error(Thing, Culprit)

Throws an existence error. Used when the subject of an operation does not
exist. This built-in method is declared private and thus cannot be used as a
message to an object. Calling this predicate is equivalent to the following
sequence of goals:

...,
context(Context),
throw(error(existence_error(Thing,Culprit), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Possible values for Thing include:

	predicate_declaration

	procedure

	source_sink

	stream

	object

	protocol

	category

	module

	library

	file

	goal_thread

The value of Culprit is the argument or one of its sub-terms that caused
the error.

Modes and number of proofs

existence_error(@nonvar, @nonvar) - error

Errors

When called:

existence_error(Thing, Culprit)

Examples

...,
\+ current_object(payroll),
existence_error(object, payroll).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
evaluation_error/1,
permission_error/3,
representation_error/1,
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

permission_error/3

Description

permission_error(Operation, Permission, Culprit)

Throws an permission error. Used when an operation is not allowed. For example,
sending a message for a predicate that is not within the scope of the sender.
This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence
of goals:

...,
context(Context),
throw(error(permission_error(Operation,Permission,Culprit), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Possible values for Operation include:

	access

	create

	modify

	open

	input

	output

	reposition

	repeat

Possible values for Permission include:

	predicate_declaration

	protected_predicate

	private_predicate

	static_predicate

	database

	object

	static_object

	static_protocol

	static_category

	entity_relation

	operator

	flag

	engine

	binary_stream

	text_stream

	source_sink

	stream

	past_end_of_stream

The value of Culprit is the argument or one of its sub-terms that caused
the error.

Modes and number of proofs

permission_error(@nonvar, @nonvar, @nonvar) - error

Errors

When called:

permission_error(Operation, Permission, Culprit)

Examples

...,
\+ writable(File),
permission_error(modify, file, File).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
representation_error/1,
evaluation_error/1,
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

representation_error/1

Description

representation_error(Flag)

Throws a representation error. Used when some representation limit is exceeded.
For example, trying to construct a compound term that exceeds the maximum arity
supported by the backend Prolog system. This built-in method is declared private
and thus cannot be used as a message to an object. Calling this predicate is
equivalent to the following sequence of goals:

...,
context(Context),
throw(error(representation_error(Flag), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Possible values for Flag include:

	character

	character_code

	in_character_code

	max_arity

	max_integer

	min_integer

	lambda_parameters

	entity_prefix

Modes and number of proofs

representation_error(+atom) - error

Errors

When called:

representation_error(Flag)

Examples

...,
Code > 127,
representation_error(character_code).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
evaluation_error/1,
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

evaluation_error/1

Description

evaluation_error(Error)

Throws an evaluation error. Used when evaluating an arithmetic expression
generates an exception. This built-in method is declared private and thus
cannot be used as a message to an object. Calling this predicate is
equivalent to the following sequence of goals:

...,
context(Context),
throw(error(evaluation_error(Error), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Possible values for Error include:

	float_overflow

	int_overflow

	undefined

	underflow

	zero_divisor

Modes and number of proofs

evaluation_error(@nonvar) - error

Errors

When called:

evaluation_error(Exception)

Examples

...,
Divisor =:= 0,
evaluation_error(zero_divisor).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1,
resource_error/1,
syntax_error/1,
system_error/0

 built-in method

resource_error/1

Description

resource_error(Resource)

Throws a resource error. Used when a required resource (e.g. memory or disk
space) to complete execution is not available. This built-in method is declared
private and thus cannot be used as a message to an object. Calling this
predicate is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(resource_error(Resource), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Possible values for Resource include:

	threads

	coinduction

	soft_cut_support

Modes and number of proofs

resource_error(@nonvar) - error

Errors

When called:

resource_error(Resource)

Examples

...,
empty(Tank),
resource_error(gas).

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1,
syntax_error/1,
system_error/0

 built-in method

syntax_error/1

Description

syntax_error(Description)

Throws a syntax error. Used when the sequence of characters being read are not
syntactically valid. This built-in method is declared private and thus cannot
be used as a message to an object. Calling this predicate is equivalent to the
following sequence of goals:

...,
context(Context),
throw(error(syntax_error(Description), Context)).

This allows the user to generate errors in the same format used by the
runtime.

Modes and number of proofs

syntax_error(@nonvar) - error

Errors

When called:

syntax_error(Description)

Examples

(none)

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1,
system_error/0
resource_error/1

 built-in method

system_error/0

Description

system_error

Throws a system error. Used when runtime execution can no longer proceed. For
example, an exception is thrown without an active catcher. This built-in method
is declared private and thus cannot be used as a message to an object. Calling
this predicate is equivalent to the following sequence of goals:

...,
context(Context),
throw(error(system_error, Context)).

This allows the user to generate errors in the same format used by the
runtime.

Modes and number of proofs

system_error - error

Errors

When called:

system_error

Examples

(none)

See also

catch/3,
throw/1,
context/1,
instantiation_error/0,
uninstantiation_error/1,
type_error/2,
domain_error/2,
existence_error/2,
permission_error/3,
representation_error/1
evaluation_error/1,
resource_error/1,
syntax_error/1,

All solutions

	bagof/3

	findall/3

	findall/4

	forall/2

	setof/3

 built-in method

bagof/3

Description

bagof(Template, Goal, List)

Collects a bag of solutions for the goal for each set of instantiations
of the free variables in the goal. The order of the elements in the bag
follows the order of the goal solutions. The free variables in the goal
are the variables that occur in the goal but not in the template. Free
variables can be ignored, however, by using the ^/2 existential
qualifier. For example, if T is term containing all the free
variables that we want to ignore, we can write T^Goal. Note that the
term T can be written as V1^V2^....

When there are free variables, this method is re-executable on
backtracking. This method fails when there are no solutions, never
returning an empty list.

This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object.

Meta-predicate template

bagof(*, ^, *)

Modes and number of proofs

bagof(@term, +callable, -list) - zero_or_more

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Goal is a call to a non-existing predicate:

existence_error(procedure, Predicate)

Examples

To find a bag of solutions in the context of the object or category containing the call:

bagof(Template, Goal, List)

To find a bag of solutions of sending a message to self:

bagof(Template, ::Message, List)

To find a bag of solutions of sending a message to an explicit object:

bagof(Template, Object::Message, List)

See also

findall/3,
findall/4,
forall/2,
setof/3

 built-in method

findall/3

Description

findall(Template, Goal, List)

Collects a list of solutions for the goal. The order of the elements in
the list follows the order of the goal solutions. It succeeds returning
an empty list when the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object.

Meta-predicate template

findall(*, 0, *)

Modes and number of proofs

findall(?term, +callable, ?list) - zero_or_one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Goal is a call to a non-existing predicate:

existence_error(procedure, Predicate)

Examples

To find all solutions in the context of the object or category containing the call:

findall(Template, Goal, List)

To find all solutions of sending a message to self:

findall(Template, ::Message, List)

To find all solutions of sending a message to an explicit object:

findall(Template, Object::Message, List)

See also

bagof/3,
findall/4,
forall/2,
setof/3

 built-in method

findall/4

Description

findall(Template, Goal, List, Tail)

Variant of the findall/3 method that allows passing the
tail of the results list. It succeeds returning the tail argument when
the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object.

Meta-predicate template

findall(*, 0, *, *)

Modes and number of proofs

findall(?term, +callable, ?list, ?term) - zero_or_one

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Goal is a call to a non-existing predicate:

existence_error(procedure, Predicate)

Examples

To find all solutions in the context of the object or category containing the call:

findall(Template, Goal, List, Tail)

To find all solutions of sending a message to self:

findall(Template, ::Message, List, Tail)

To find all solutions of sending a message to an explicit object:

findall(Template, Object::Message, List, Tail)

See also

bagof/3,
findall/3,
forall/2,
setof/3

 built-in method

forall/2

Description

forall(Generator, Test)

For all solutions of Generator, Test is true. This meta-predicate
implements a generate-and-test loop using a definition equivalent to
\+ (Generator, \+ Test). As a consequence, no variables in the arguments
are bound by a call to this predicate. This predicate often provides a better
alternative to a failure-driven loop as an unexpected Test failure will
not be ignored as it will make the forall/2 call fail.

This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object.

Meta-predicate template

forall(0, 0)

Modes and number of proofs

forall(@callable, @callable) - zero_or_one

Errors

Either Generator or Test is a variable:

instantiation_error

Generator is neither a variable nor a callable term:

type_error(callable, Generator)

Test is neither a variable nor a callable term:

type_error(callable, Test)

Examples

To call both goals in the context of the object or category containing the call:

forall(Generator, Test)

To send both goals as messages to self:

forall(::Generator, ::Test)

To send both goals as messages to explicit objects:

forall(Object1::Generator, Object2::Test)

See also

bagof/3,
findall/3,
findall/4,
setof/3

 built-in method

setof/3

Description

setof(Template, Goal, List)

Collects a set of solutions for the goal for each set of instantiations
of the free variables in the goal. The solutions are sorted using
standard term order. The free variables in the goal are the variables
that occur in the goal but not in the template. Free variables can be
ignored, however, by using the ^/2 existential qualifier. For
example, if T is term containing all the free variables that we want
to ignore, we can write T^Goal. Note that the term T can be
written as V1^V2^....

When there are free variables, this method is re-executable on
backtracking. This method fails when there are no solutions, never
returning an empty list.

This built-in meta-predicate is declared as a private method and thus
cannot be used as a message to an object.

Meta-predicate template

setof(*, ^, *)

Modes and number of proofs

setof(@term, +callable, -list) - zero_or_more

Errors

Goal is a variable:

instantiation_error

Goal is neither a variable nor a callable term:

type_error(callable, Goal)

Goal is a call to a non-existing predicate:

existence_error(procedure, Predicate)

Examples

To find a set of solutions in the context of the object or category containing the call:

setof(Template, Goal, List)

To find a set of solutions of sending a message to self:

setof(Template, ::Message, List)

To find a set of solutions of sending a message to an explicit object:

setof(Template, Object::Message, List)

See also

bagof/3,
findall/3,
findall/4,
forall/2

Event handling

	before/3

	after/3

 built-in method

before/3

Description

before(Object, Message, Sender)

User-defined method for handling before events.
This method is declared in the monitoring built-in
protocol as a public predicate and automatically called by the runtime for
messages sent using the (::)/2 control construct
from within objects compiled with the events flag set
to allow.

Note that you can make this predicate scope protected or private by using,
respectively, protected or private implementation
of the monitoring protocol.

Modes and number of proofs

before(?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

Examples

:- object(...,
 implements(monitoring),
 ...).

 % write a log message when a message is sent:
 before(Object, Message, Sender) :-
 writeq(Object), write('::'), writeq(Message),
 write(' from '), writeq(Sender), nl.

See also

after/3,
abolish_events/5,
current_event/5,
define_events/5

 built-in method

after/3

Description

after(Object, Message, Sender)

User-defined method for handling after events.
This method is declared in the monitoring built-in
protocol as a public predicate and automatically called by the runtime for
messages sent using the (::)/2 control construct
from within objects compiled with the events flag set
to allow.

Note that you can make this predicate scope protected or private by using,
respectively, protected or private implementation
of the monitoring protocol.

Modes and number of proofs

after(?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

Examples

:- object(...,
 implements(monitoring),
 ...).

 % write a log message when a message is successful:
 after(Object, Message, Sender) :-
 writeq(Object), write('::'), writeq(Message),
 write(' from '), writeq(Sender), nl.

See also

before/3,
abolish_events/5,
current_event/5,
define_events/5

Message forwarding

	forward/1

 built-in method

forward/1

Description

forward(Message)

User-defined method for forwarding unknown messages sent to an object (using
the (::)/2 control construct), automatically called
by the runtime when defined. This method is declared in the
forwarding built-in protocol as a
public predicate. Note that you can make
its scope protected or private by using, respectively, protected or
private implementation of the forwarding protocol.

Modes and number of proofs

forward(+callable) - zero_or_more

Errors

(none)

Examples

:- object(proxy,
 implements(forwarding),
 ...).

 forward(Message) :-
 % delegate unknown messages to the "real" object
 [real::Message].

See also

[]/1

Definite clause grammar rules

	call//1-N

	eos//0

	phrase//1

	phrase/2

	phrase/3

 built-in method

call//1-N

Description

call(Closure)
call(Closure, Arg1, ...)
call(Object::Closure, Arg1, ...)
call(::Closure, Arg1, ...)
call(^^Closure, Arg1, ...)
...

This non-terminal takes a closure and is processed by appending the
two implicit grammar rule arguments to the arguments of the closure. This
built-in non-terminal is interpreted as a private non-terminal and thus
cannot be used as a message to an object.

Using this non-terminal is recommended when calling a predicate whose
last two arguments are the two implicit grammar rule arguments to avoid
hard-coding assumptions about how grammar rules are compiled into clauses.
Note that the compiler ensures zero overhead when using this non-terminal
with a bound argument at compile time. To call a predicate with a different
argument order, use a lambda expression. For example:

square -->
 call([Number, Double]>>(Double is Number*Number)).

When using a backend Prolog compiler supporting a module system,
calls in the format call(Module:Closure) may also be used.

Meta-non-terminal template

call(0)
call(1, *)
call(2, *, *)
...

Modes and number of proofs

call(+callable) - zero_or_more
call(+callable, ?term) - zero_or_more
call(+callable, ?term, ?term) - zero_or_more
...

Errors

Closure is a variable:

instantiation_error

Closure is neither a variable nor a callable term:

type_error(callable, Closure)

Examples

Calls a goal, constructed by appending the two implicit grammar rule arguments to the closure, in in the context of the object or category containing the call:

call(Closure)

To make a super call, constructed by appending the two implicit grammar rule arguments to the closure:

call(^^Closure)

To send a goal, constructed by appending the two implicit grammar rule arguments to the closure, as a message to self:

call(::Closure)

To send a goal, constructed by appending the two implicit grammar rule arguments to the closure, as a message to an explicit object:

call(Object::Closure)

See also

eos//0,
phrase//1,
phrase/2,
phrase/3

 built-in method

eos//0

Description

eos

This non-terminal matches the end-of-input. It is implemented by
checking that the implicit difference list unifies with []-[].

Modes and number of proofs

eos - zero_or_one

Errors

(none)

Examples

abc --> a, b, c, eos.

See also

call//1-N,
phrase//1,
phrase/2,
phrase/3

 built-in method

phrase//1

Description

phrase(GrammarRuleBody)

This non-terminal takes a grammar rule body and parses it using the two
implicit grammar rule arguments. A common use is to wrap what otherwise
would be a naked meta-variable in a grammar rule body when defining
a meta non-terminal.

Meta-non-terminal template

phrase(0)

Modes and number of proofs

phrase(+callable) - zero_or_more

Errors

GrammarRuleBody is a variable:

instantiation_error

GrammarRuleBody is neither a variable nor a callable term:

type_error(callable, GrammarRuleBody)

Examples

(none)

See also

call//1-N,
phrase/2,
phrase/3

 built-in method

phrase/2

Description

phrase(GrammarRuleBody, Input)
phrase(::GrammarRuleBody, Input)
phrase(Object::GrammarRuleBody, Input)

True when the GrammarRuleBody grammar rule body can be applied to
the Input list of tokens. In the most common case,
GrammarRuleBody is a non-terminal defined by a grammar rule. This
built-in method is declared private and thus cannot be used as a message
to an object. When using a backend Prolog compiler supporting a
module system, calls in the format phrase(Module:GrammarRuleBody, Input)
may also be used.

This method is opaque to cuts in the first argument. When the first
argument is sufficiently instantiated at compile time, the method call
is compiled in order to eliminate the implicit overheads of converting
the grammar rule body into a goal and meta-calling it. For performance
reasons, the second argument is only type-checked at compile time.

Meta-predicate template

phrase(2, *)

Modes and number of proofs

phrase(+callable, ?list) - zero_or_more

Errors

GrammarRuleBody is a variable:

instantiation_error

GrammarRuleBody is neither a variable nor a callable term:

type_error(callable, GrammarRuleBody)

Examples

To parse a list of tokens using a local non-terminal:

phrase(NonTerminal, Input)

To parse a list of tokens using a non-terminal within the scope of self:

phrase(::NonTerminal, Input)

To parse a list of tokens using a public non-terminal of an explicit object:

phrase(Object::NonTerminal, Input)

See also

call//1-N,
phrase//1,
phrase/3

 built-in method

phrase/3

Description

phrase(GrammarRuleBody, Input, Rest)
phrase(::GrammarRuleBody, Input, Rest)
phrase(Object::GrammarRuleBody, Input, Rest)

True when the GrammarRuleBody grammar rule body can be applied to
the Input-Rest difference list of tokens. In the most common case,
GrammarRuleBody is a non-terminal defined by a grammar rule. This
built-in method is declared private and thus cannot be used as a message
to an object. When using a backend Prolog compiler supporting a
module system, calls in the format
phrase(Module:GrammarRuleBody, Input, Rest) may also be used.

This method is opaque to cuts in the first argument. When the first
argument is sufficiently instantiated at compile time, the method call
is compiled in order to eliminate the implicit overheads of converting
the grammar rule body into a goal and meta-calling it. For performance
reasons, the second and third arguments are only type-checked at compile
time.

Meta-predicate template

phrase(2, *, *)

Modes and number of proofs

phrase(+callable, ?list, ?list) - zero_or_more

Errors

GrammarRuleBody is a variable:

instantiation_error

GrammarRuleBody is neither a variable nor a callable term:

type_error(callable, GrammarRuleBody)

Examples

To parse a list of tokens using a local non-terminal:

phrase(NonTerminal, Input, Rest)

To parse a list of tokens using a non-terminal within the scope of self:

phrase(::NonTerminal, Input, Rest)

To parse a list of tokens using a public non-terminal of an explicit object:

phrase(Object::NonTerminal, Input, Rest)

See also

call//1-N,
phrase/2,
phrase/3

Term and goal expansion

	expand_term/2

	term_expansion/2

	expand_goal/2

	goal_expansion/2

 built-in method

expand_term/2

Description

expand_term(Term, Expansion)

Expands a term. The most common use is to expand a grammar rule into a
clause. Users may override the default Logtalk grammar rule translator
by defining clauses for the term_expansion/2 hook predicate.

The expansion works as follows: if the first argument is a variable,
then it is unified with the second argument; if the first argument is
not a variable and there are local or inherited clauses for the
term_expansion/2 hook predicate within scope, then this predicate is
called to provide an expansion that is then unified with the second
argument; if the term_expansion/2 predicate is not used and the
first argument is a compound term with functor -->/2 then the
default Logtalk grammar rule translator is used, with the resulting
clause being unified with the second argument; when the translator is
not used, the two arguments are unified. The expand_term/2 predicate
may return a single term or a list of terms.

This built-in method may be used to expand a grammar rule into a clause
for use with the built-in database methods.

Automatic term expansion is only performed at compile time (to expand
terms read from a source file) when using a hook object. This
predicate can be used by the user to manually perform term expansion
at runtime (for example, to convert a grammar rule into a clause).

Modes and number of proofs

expand_term(?term, ?term) - one

Errors

(none)

Examples

(none)

See also

expand_goal/2,
goal_expansion/2,
term_expansion/2

 built-in method

term_expansion/2

Description

term_expansion(Term, Expansion)

Defines an expansion for a term. This predicate, when defined and within
scope, is automatically called by the expand_term/2 method.
When that is not the case, the expand_term/2 method only uses the
default expansions. Use of this predicate by the expand_term/2 method
may be restricted by changing its default public scope.

The term_expansion/2 predicate may return a list of terms. Returning
an empty list effectively suppresses the term.

Term expansion may be also be applied when compiling source files by
defining the object providing access to the term_expansion/2 clauses
as a hook object. Clauses for the
term_expansion/2 predicate defined within an object or a category
are never used in the compilation of the object or the category
itself. Moreover, in this context, terms wrapped using the
{}/1 compiler bypass control
construct are not expanded and any expanded term wrapped in this control
construct will not be further expanded.

Objects and categories implementing this predicate should declare that
they implement the expanding protocol if no
ancestor already declares it. This protocol implementation relation can
be declared as either protected or private to
restrict the scope of this predicate.

Modes and number of proofs

term_expansion(+nonvar, -nonvar) - zero_or_one
term_expansion(+nonvar, -list(nonvar)) - zero_or_one

Errors

(none)

Examples

term_expansion((:- license(default)), (:- license(gplv3))).
term_expansion(data(Millimeters), data(Meters)) :- Meters is Millimeters / 1000.

See also

expand_goal/2,
expand_term/2,
goal_expansion/2,
logtalk_load_context/2

 built-in method

expand_goal/2

Description

expand_goal(Goal, ExpandedGoal)

Expands a goal. The expansion works as follows: if the first argument
is a variable, then it is unified with the second argument; if the first
argument is not a variable and there are local or inherited clauses for
the goal_expansion/2 hook predicate within scope, then this predicate
is recursively called until a fixed-point is reached to provide an
expansion that is then unified with the second argument; if the
goal_expansion/2 predicate is not within scope, the two arguments
are unified.

Automatic goal expansion is only performed at compile time (to expand
the body of clauses and meta-directives read from a source file) when
using hook objects. This predicate can be
used by the user to manually perform goal expansion at runtime (for
example, before asserting a clause).

Modes and number of proofs

expand_goal(?term, ?term) - one

Errors

(none)

Examples

(none)

See also

expand_term/2,
goal_expansion/2,
term_expansion/2

 built-in method

goal_expansion/2

Description

goal_expansion(Goal, ExpandedGoal)

Defines an expansion for a goal. The first argument is the goal to be
expanded. The expanded goal is returned in the second argument. This
predicate is called recursively on the expanded goal until a fixed point
is reached. Thus, care must be taken to avoid compilation loops. This
predicate, when defined and within scope, is automatically called by the
expand_goal/2 method. Use of this predicate
by the expand_goal/2 method may be restricted by changing its
default public scope.

Goal expansion may be also be applied when compiling source files by
defining the object providing access to the goal_expansion/2 clauses
as a hook object. Clauses for the
goal_expansion/2 predicate defined within an object or a category
are never used in the compilation of the object or the category
itself. Moreover, in this context, goals wrapped using the
{}/1 compiler bypass control
construct are not expanded and any expanded goal wrapped in this control
construct will not be further expanded.

Objects and categories implementing this predicate should declare that
they implement the expanding built-in protocol if
no ancestor already declares it. This protocol implementation relation can
be declared as either protected or private to
restrict the scope of this predicate.

Modes and number of proofs

goal_expansion(+callable, -callable) - zero_or_one

Errors

(none)

Examples

goal_expansion(write(Term), (write_term(Term, []), nl)).
goal_expansion(read(Term), (write('Input: '), {read(Term)})).

See also

expand_goal/2,
expand_term/2,
term_expansion/2,
logtalk_load_context/2

Coinduction hooks

	coinductive_success_hook/1-2

 built-in method

coinductive_success_hook/1-2

Description

coinductive_success_hook(Head, Hypothesis)
coinductive_success_hook(Head)

User-defined hook predicates that are automatically called in case of
coinductive success when proving a query for a coinductive predicates.
The hook predicates are called with the head of the coinductive
predicate on coinductive success and, optionally, with the hypothesis
used that to reach coinductive success.

When both hook predicates are defined, the
coinductive_success_hook/1 clauses are only used if no
coinductive_success_hook/2 clause applies. The compiler ensures zero
performance penalties when defining coinductive predicates without a
corresponding definition for the coinductive success hook predicates.

The compiler assumes that these hook predicates are defined as static
predicates in order to optimize their use.

Modes and number of proofs

coinductive_success_hook(+callable, +callable) - zero_or_one
coinductive_success_hook(+callable) - zero_or_one

Errors

(none)

Examples

% Are there "occurrences" of arg1 in arg2?
:- public(member/2).
:- coinductive(member/2).

member(X, [X| _]).
member(X, [_| T]) :-
 member(X, T).

% Are there infinitely many "occurrences" of arg1 in arg2?
:- public(comember/2).
:- coinductive(comember/2).
comember(X, [_| T]) :-
 comember(X, T).

coinductive_success_hook(member(_, _)) :-
 fail.
coinductive_success_hook(comember(X, L)) :-
 member(X, L).

See also

coinductive/1

Message printing

	print_message/3

	message_tokens//2

	message_hook/4

	message_prefix_stream/4

	print_message_tokens/3

	print_message_token/4

 built-in method

print_message/3

Description

print_message(Kind, Component, Term)

Built-in method for printing a message represented by a term, which is
converted to the message text using the
logtalk::message_tokens(Term, Component)
hook non-terminal. This method is declared in the
logtalk built-in
object as a public predicate. The line prefix and the output stream used
for each Kind-Component pair can be found using the
logtalk::message_prefix_stream(Kind, Component, Prefix, Stream)
hook predicate.

This predicate starts by converting the message term to a list of tokens
and by calling the
logtalk::message_hook(Message, Kind, Component, Tokens)
hook predicate. If this predicate succeeds, the print_message/3
predicate assumes that the message have been successfully printed.

By default: messages of kind debug or debug(_) are only printed when
the debug flag is turned on; messages of kind banner, comment, or
comment(_) are only printed when the report flag is set to on;
messages of kind warning and warning(_) are not printed when the
report flag is set to off; messages of kind silent and silent()
are not printed (but can be intercepted).

Modes and number of proofs

print_message(+nonvar, +nonvar, +nonvar) - one

Errors

(none)

Examples

..., logtalk::print_message(information, core, redefining_entity(object, foo)), ...

See also

message_hook/4,
message_prefix_stream/4,
message_tokens//2,
print_message_tokens/3,
print_message_token/4,
ask_question/5,
question_hook/6,
question_prompt_stream/4

 built-in method

message_tokens//2

Description

message_tokens(Message, Component)

User-defined non-terminal hook used to rewrite a message term into a list
of tokens and declared in the logtalk built-in
object as a public, multifile, and dynamic non-terminal. The list of tokens
can be printed by calling the print_message_tokens/3 method.
This non-terminal hook is automatically called by the
print_message/3 method.

Modes and number of proofs

message_tokens(+nonvar, +nonvar) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

logtalk::message_tokens(redefining_entity(Type, Entity), core) -->
 ['Redefining ~w ~q'-[Type, Entity], nl].

See also

message_hook/4,
message_prefix_stream/4,
print_message/3,
print_message_tokens/3,
print_message_token/4,
ask_question/5,
question_hook/6,
question_prompt_stream/4

 built-in method

message_hook/4

Description

message_hook(Message, Kind, Component, Tokens)

User-defined hook method for intercepting printing of a message, declared
in the logtalk built-in object as a public,
multifile, and dynamic predicate. This hook method is automatically called
by the print_message/3 method. When the call
succeeds, the print_message/3 method assumes that the message have
been successfully printed.

Modes and number of proofs

message_hook(@nonvar, @nonvar, @nonvar, @list(nonvar)) - zero_or_one

Errors

(none)

Examples

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

% print silent messages instead of discarding them as default
logtalk::message_hook(_, silent, core, Tokens) :-
 logtalk::message_prefix_stream(silent, core, Prefix, Stream),
 logtalk::print_message_tokens(Stream, Prefix, Tokens).

See also

message_prefix_stream/4,
message_tokens//2,
print_message/3,
print_message_tokens/3,
print_message_token/4,
ask_question/5,
question_hook/6,
question_prompt_stream/4

 built-in method

message_prefix_stream/4

Description

message_prefix_stream(Kind, Component, Prefix, Stream)

User-defined hook method for specifying the default prefix and stream
for printing a message for a given kind and component. This
method is declared in the logtalk built-in
object as a public, multifile, and dynamic predicate.

Modes and number of proofs

message_prefix_stream(?nonvar, ?nonvar, ?atom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::message_prefix_stream/4).
:- dynamic(logtalk::message_prefix_stream/4).

logtalk::message_prefix_stream(information, core, '% ', user_output).

See also

message_hook/4,
message_tokens//2,
print_message/3,
print_message_tokens/3,
print_message_token/4,
ask_question/5,
question_hook/6,
question_prompt_stream/4

 built-in method

print_message_tokens/3

Description

print_message_tokens(Stream, Prefix, Tokens)

Built-in method for printing a list of message tokens, declared in the
logtalk built-in object as a public predicate.
This method is automatically called by the
print_message/3 method (assuming that the
message was not intercepted by a
message_hook/4 definition) and calls the
user-defined hook predicate
print_message_token/4 for each
token. When a call to this hook predicate succeeds, the
print_message_tokens/3 predicate assumes that the token have been
printed. When the call fails, the print_message_tokens/3 predicate
uses a default printing procedure for the token.

Modes and number of proofs

print_message_tokens(@stream_or_alias, +atom, @list(nonvar)) - zero_or_one

Errors

(none)

Examples

...,
logtalk::print_message_tokens(user_error, '% ', ['Redefining ~w ~q'-[object,foo], nl]),
...

See also

message_hook/4,
message_prefix_stream/4,
message_tokens//2,
print_message/3,
print_message_token/4,
ask_question/5,
question_hook/6,
question_prompt_stream/4

 built-in method

print_message_token/4

Description

print_message_token(Stream, Prefix, Token, Tokens)

User-defined hook method for printing a message token, declared in the
logtalk built-in object as a public, multifile,
and dynamic predicate. It allows the user to intercept the printing of
a message token. This hook method is automatically called by the
print_message_tokens/3 built-in
method for each token.

Modes and number of proofs

print_message_token(@stream_or_alias, @atom, @nonvar, @list(nonvar)) - zero_or_one

Errors

(none)

Examples

:- multifile(logtalk::print_message_token/4).
:- dynamic(logtalk::print_message_token/4).

% ignore all flush tokens
logtalk::print_message_token(_Stream, _Prefix, flush, _Tokens).

See also

message_hook/4,
message_prefix_stream/4,
message_tokens//2,
print_message/3,
print_message_tokens/3,
ask_question/5,
question_hook/6,
question_prompt_stream/4

Question asking

	ask_question/5

	question_hook/6

	question_prompt_stream/4

 built-in method

ask_question/5

Description

ask_question(Question, Kind, Component, Check, Answer)

Built-in method for asking a question represented by a term,
Question, which is converted to the question text using the
logtalk::message_tokens(Question, Component)
hook predicate. This method is declared in the logtalk built-in
object as a public predicate. The default question prompt and the input
stream used for each Kind-Component pair can be found using the
logtalk::question_prompt_stream(Kind, Component, Prompt, Stream)
hook predicate. The Check argument is a closure that is converted
into a checking goal by extending it with the user supplied answer. This
predicate implements a read-loop that terminates when the checking
predicate succeeds.

This predicate starts by calling the
logtalk::question_hook(Question, Kind, Component, Check, Answer)
hook predicate. If this predicate succeeds, the ask_question/5
predicate assumes that the question have been successfully asked and
replied.

Modes and number of proofs

ask_question(+nonvar, +nonvar, +nonvar, +callable, -term) - one

Meta-predicate template

ask_question(*, *, *, 1, *)

Errors

(none)

Examples

...,
logtalk::ask_question(enter_age, question, my_app, integer, Age),
...

See also

question_hook/6,
question_prompt_stream/4,
message_hook/4,
message_prefix_stream/4,
message_tokens//2,
print_message/3,
print_message_tokens/3,
print_message_token/4

 built-in method

question_hook/6

Description

question_hook(Question, Kind, Component, Tokens, Check, Answer)

User-defined hook method for intercepting asking a question, declared in
the logtalk built-in object as a public, multifile,
and dynamic predicate. This hook method is automatically called by the
ask_question/5 method. When the call
succeeds, the ask_question/5 method assumes that the question have
been successfully asked and replied.

Modes and number of proofs

question_hook(+nonvar, +nonvar, +nonvar, +list(nonvar), +callable, -term) - zero_or_one

Meta-predicate template

question_hook(*, *, *, *, 1, *)

Errors

(none)

Examples

:- multifile(logtalk::question_hook/6).
:- dynamic(logtalk::question_hook/6).

% use a pre-defined answer instead of asking the user
logtalk::question_hook(upper_limit, question, my_app, _, _, 3.7).

See also

ask_question/5,
question_prompt_stream/4
message_hook/4,
message_prefix_stream/4,
message_tokens//2,
print_message/3,
print_message_tokens/3,
print_message_token/4,

 built-in method

question_prompt_stream/4

Description

question_prompt_stream(Kind, Component, Prompt, Stream)

User-defined hook method for specifying the default prompt and input
stream for asking a question for a given kind and component.
This method is declared in the logtalk built-in
object as a public, multifile, and dynamic predicate.

Modes and number of proofs

question_prompt_stream(?nonvar, ?nonvar, ?atom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::question_prompt_stream/4).
:- dynamic(logtalk::question_prompt_stream/4).

logtalk::question_prompt_stream(question, debugger, ' > ', user_input).

See also

ask_question/5,
question_hook/6,
message_hook/4,
message_prefix_stream/4,
message_tokens//2,
print_message/3,
print_message_tokens/3,
print_message_token/4

Tutorial

	List predicates
	Defining a list object

	Defining a list protocol

	Summary

	Dynamic object attributes
	Defining a category

	Importing the category

	Summary

	A reflective class-based system
	Defining the base classes

	Summary

	Profiling programs
	Messages as events

	Profilers as monitors

	Summary

List predicates

In this example, we will illustrate the use of:

	objects

	protocols

by using common list utility predicates.

Defining a list object

We will start by defining an object, list, containing predicate
definitions for some common list predicates like append/3,
length/2, and member/2:

:- object(list).

 :- public([
 append/3, length/2, member/2
]).

 append([], List, List).
 append([Head| Tail], List, [Head| Tail2]) :-
 append(Tail, List, Tail2).

 length(List, Length) :-
 length(List, 0, Length).

 length([], Length, Length).
 length([_| Tail], Acc, Length) :-
 Acc2 is Acc + 1,
 length(Tail, Acc2, Length).

 member(Element, [Element| _]).
 member(Element, [_| List]) :-
 member(Element, List).

:- end_object.

What is different here from a regular Prolog program? The definitions of
the list predicates are the usual ones. We have two new directives,
object/1-5 and
end_object/0, that
encapsulate the object’s code. In Logtalk, by default, all object
predicates are private; therefore, we have to explicitly declare all
predicates that we want to be public, that is, that we want to call from
outside the object. This is done using the
public/1 scope directive.

After we copy the object code to a text file and saved it under the name
list.lgt, we need to change the Prolog working directory to the one
used to save our file (consult your Prolog compiler reference manual).
Then, after starting Logtalk (see the
Installing and running Logtalk section on
the User Manual), we can compile and load the object using the
logtalk_load/1 Logtalk built-in predicate:

| ?- logtalk_load(list).

object list loaded
yes

We can now try goals like:

| ?- list::member(X, [1, 2, 3]).

X = 1;
X = 2;
X = 3;
no

or:

| ?- list::length([1, 2, 3], L).

L = 3
yes

The infix operator
(::)/2 is used in
Logtalk to send a message to an object. The message must match a public
object predicate. If we try to call a non-public predicate such as the
length/3 auxiliary predicate an exception will be generated:

| ?- list::length([1, 2, 3], 0, L).

uncaught exception:
 error(
 existence_error(predicate_declaration, length/3),
 logtalk(list::length([1,2,3],0,_), ...)
)

The exception term describes the type of error and the context
where the error occurred.

Defining a list protocol

As we saw in the above example, a Logtalk object may contain predicate
directives and predicate definitions (clauses). The set of predicate
directives defines what we call the object’s protocol or interface. An
interface may have several implementations. For instance, we may want to
define a new object that implements the list predicates using difference
lists. However, we do not want to repeat the predicate directives in the
new object. Therefore, what we need is to split the object’s protocol
from the object’s implementation by defining a new Logtalk entity known
as a protocol. Logtalk protocols are compilations units, at the same
level as objects and categories. That said, let us define a listp
protocol:

:- protocol(listp).

 :- public([
 append/3, length/2, member/2
]).

:- end_protocol.

Similar to what we have done for objects, we use the
protocol/1-2 and end_protocol/0
directives to encapsulate the predicate directives. We can improve
this protocol by documenting the call/return modes and the
number of proofs of each predicate using the mode/2
directive:

:- protocol(listp).

 :- public(append/3).
 :- mode(append(?list, ?list, ?list), zero_or_more).

 :- public(length/2).
 :- mode(length(?list, ?integer), zero_or_more).

 :- public(member/2).
 :- mode(member(?term, ?list), zero_or_more).

:- end_protocol.

We now need to change our definition of the list object by removing
the predicate directives and by declaring that the object implements the
listp protocol:

:- object(list,
 implements(listp)).

 append([], List, List).
 append([Head| Tail], List, [Head| Tail2]) :-
 append(Tail, List, Tail2).
 ...

:- end_object.

The protocol declared in listp may now be alternatively implemented
using difference lists by defining a new object, difflist:

:- object(difflist,
 implements(listp).

 append(L1-X, X-L2, L1-L2).
 ...

:- end_object.

Summary

	It is easy to define a simple object: just put your Prolog code
inside starting and ending object directives and add the necessary
scope directives. The object will be self-defining and ready to use.

	Define a protocol when you may want to provide or enable several
alternative definitions to a given set of predicates. This way we
avoid needless repetition of predicate directives.

Dynamic object attributes

In this example, we will illustrate the use of:

	categories

	category predicates

	dynamic predicates

by defining a category that implements a set of predicates for handling
dynamic object attributes.

Defining a category

We want to define a set of predicates to handle dynamic object
attributes. We need public predicates to set, get, and delete
attributes, and a private dynamic predicate to store the attributes
values. Let us name these predicates set_attribute/2 and
get_attribute/2, for getting and setting an attribute value,
del_attribute/2 and del_attributes/2, for deleting attributes,
and attribute_/2, for storing the attributes values.

But we do not want to encapsulate these predicates in an object. Why?
Because they are a set of useful, closely related, predicates that may
be used by several, unrelated, objects. If defined at an object level,
we would be constrained to use inheritance in order to have the
predicates available to other objects. Furthermore, this could force us
to use multi-inheritance or to have some kind of generic root object
containing all kinds of possible useful predicates.

For this kind of situation, Logtalk enables the programmer to
encapsulate the predicates in a category, so that they can be used in
any object. A category is a Logtalk entity, at the same level as objects
and protocols. It can contain predicates directives and/or definitions.
Category predicates can be imported by any object, without code
duplication and without resorting to inheritance.

When defining category predicates, we need to remember that a category
can be imported by more than one object. Thus, the calls to the built-in
methods that handle the private dynamic predicate (such as
assertz/1 or retract/1) must be made
either in the context of self, using the message to self control
structure, (::)/1, or in
the context of this (i.e. in the context of the object importing the
category). This way, we ensure that when we call one of the attribute
predicates on an object, the intended object own definition of
attribute_/2 will be used. The predicates definitions are
straightforward. For example, if opting for storing the attributes in
self:

:- category(attributes).

 :- public(set_attribute/2).
 :- mode(set_attribute(+nonvar, +nonvar), one).

 :- public(get_attribute/2).
 :- mode(get_attribute(?nonvar, ?nonvar), zero_or_more).

 :- public(del_attribute/2).
 :- mode(del_attribute(?nonvar, ?nonvar), zero_or_more).

 :- public(del_attributes/2).
 :- mode(del_attributes(@term, @term), one).

 :- private(attribute_/2).
 :- mode(attribute_(?nonvar, ?nonvar), zero_or_more).
 :- dynamic(attribute_/2).

 set_attribute(Attribute, Value):-
 ::retractall(attribute_(Attribute, _)),
 ::assertz(attribute_(Attribute, Value)).

 get_attribute(Attribute, Value):-
 ::attribute_(Attribute, Value).

 del_attribute(Attribute, Value):-
 ::retract(attribute_(Attribute, Value)).

 del_attributes(Attribute, Value):-
 ::retractall(attribute_(Attribute, Value)).

:- end_category.

The alternative, opting for storing the attributes on this, is
similar: just delete the uses of the (::)/1 control structure from the
code above.

We have two new directives, category/1-4 and
end_category/0, that
encapsulate the category code. If needed, we can put the predicates
directives inside a protocol that will be implemented by the category:

:- category(attributes,
 implements(attributes_protocol)).

 ...

:- end_category.

Any protocol can be implemented by either an object, a category, or
both.

Importing the category

We reuse a category’s predicates by importing them into an object:

:- object(person,
 imports(attributes)).

 ...

:- end_object.

After compiling and loading this object and our category, we can now try
queries like:

| ?- person::set_attribute(name, paulo).

yes

| ?- person::set_attribute(gender, male).

yes

| ?- person::get_attribute(Attribute, Value).

Attribute = name, Value = paulo ;
Attribute = gender, Value = male ;
no

Summary

	Categories are similar to objects: we just write our predicate
directives and definitions bracketed by opening and ending category
directives.

	An object reuses a category by importing it. The imported predicates
behave as if they have been defined in the object itself.

	When do we use a category instead of an object? Whenever we have a
set of closely related predicates that we want to reuse in several,
unrelated, objects without being constrained by inheritance
relations. Thus, categories can be interpreted as object building
components.

A reflective class-based system

When compiling an object, Logtalk distinguishes prototypes from instance
or classes by examining the object relations. If an object instantiates
and/or specializes another object, then it is compiled as an instance or
class, otherwise it is compiled as a prototype. A consequence of this is
that, in order to work with instance or classes, we always have to
define root objects for the instantiation and specialization hierarchies
(however, we are not restricted to a single hierarchy). The best
solution is often to define a reflective class-based system [Maes87],
where every class is also an object and, as such, an instance of some class.

In this example, we are going to define the basis for a reflective
class-based system, based on an extension of the ideas presented in
[Cointe87]. This extension
provides, along with root objects for the instantiation and
specialization hierarchies, explicit support for abstract classes
[Moura94].

Defining the base classes

We will start by defining three classes: object, abstract_class,
and class. The class object will contain all predicates common
to all objects. It will be the root of the inheritance graph:

:- object(object,
 instantiates(class)).

 % predicates common to all objects

:- end_object.

The class abstract_class specializes object by adding predicates
common to all classes. It will be the default meta-class for abstract
classes:

:- object(abstract_class,
 instantiates(class),
 specializes(object)).

 % predicates common to all classes

:- end_object.

The class class specializes abstract_class by adding predicates
common to all instantiable classes. It will be the root of the
instantiation graph and the default meta-class for instantiable classes:

:- object(class,
 instantiates(class),
 specializes(abstract_class)).

 % predicates common to all instantiable classes

:- end_object.

Note that all three objects are instances of class class. The
instantiation and specialization relationships are chosen so that each
object may use the predicates defined in itself and in the other two
objects, with no danger of message lookup endless loops.

Summary

	An object that does not instantiate or specialize other objects is
always compiled as a prototype.

	An instance must instantiate at least one object (its class).
Similarly, a class must at least specialize or instantiate other
object.

	The distinction between abstract classes and instantiable classes is
an operational one, depending on the class inherited methods. A class
is instantiable if inherits methods for creating instances.
Conversely, a class is abstract if does not inherit any instance
creation method.

Profiling programs

In this example, we will illustrate the use of:

	events

	monitors

by defining a simple profiler that prints the starting and ending time
for processing a message sent to an object.

Messages as events

In a pure object-oriented system, all computations start by sending
messages to objects. We can thus define an event as the sending of a
message to an object. An event can then be specified by the tuple
(Object, Message, Sender). This definition can be refined by
interpreting the sending of a message and the return of the control to
the object that has sent the message as two distinct events. We call
these events respectively before and after. Therefore, we end up
by representing an event by the tuple
(Event, Object, Message, Sender). For instance, if we send the
message:

| ?- foo::bar(X).

X = 1
yes

the two corresponding events will be:

(before, foo, bar(X), user)
(after, foo, bar(1), user)

Note that the second event is only generated if the message succeeds. If
the message as a goal have multiple solutions, then one after event
will be generated for each solution.

Events are automatically generated by the message sending mechanisms for
each public message sent using the
(::)/2 operator.

Profilers as monitors

A monitor is an object that reacts whenever a spied event occurs. The
monitor actions are defined by two event handlers:
before/3 for before events
and after/3 for after
events. These predicates are automatically called by the message sending
mechanisms when an event registered for the monitor occurs. These event
handlers are declared as public predicates in the monitoring
built-in protocol.

In our example, we need a way to get the current time before and after
we process a message. We will assume that we have a time object
implementing a cpu_time/1 predicate that returns the current CPU
time for the Prolog session:

:- object(time).

 :- public(cpu_time/1).
 :- mode(cpu_time(-number), one).
 ...

:- end_object.

Our profiler will be named stop_watch. It must define event handlers
for the before and after events that will print the event
description (object, message, and sender) and the current time:

:- object(stop_watch,
 % event handler predicates protocol
 implements(monitoring)).

 :- uses(time, [cpu_time/1]).

 before(Object, Message, Sender) :-
 write(Object), write(' <-- '), writeq(Message),
 write(' from '), write(Sender), nl, write('STARTING at '),
 cpu_time(Seconds), write(Seconds), write(' seconds'), nl.

 after(Object, Message, Sender) :-
 write(Object), write(' <-- '), writeq(Message),
 write(' from '), write(Sender), nl, write('ENDING at '),
 cpu_time(Seconds), write(Seconds), write(' seconds'), nl.

:- end_object.

After compiling and loading the stop_watch object (and the objects
that we want to profile), we can use the define_events/5
built-in predicate to set up our profiler. For example, to profile all
messages that are sent to the object foo, we need to call the goal:

| ?- define_events(_, foo, _, _, stop_watch).

yes

This call will register stop_watch as a monitor to all messages sent
to object foo, for both before and after events. Note that
we say “as a monitor”, not “the monitor”: we can have any number of
monitors over the same events.

From now on, every time we sent a message to foo, the stop_watch
monitor will print the starting and ending times for the message
execution. For instance:

| ?- foo::bar(X).

foo <-- bar(X) from user
STARTING at 12.87415 seconds
foo <-- bar(1) from user
ENDING at 12.87419 seconds

X = 1
yes

To stop profiling the messages sent to foo we use the
abolish_events/5 built-in predicate:

| ?- abolish_events(_, foo, _, _, stop_watch).

yes

This call will abolish all events defined over the object foo
assigned to the stop_watch monitor.

Summary

	An event is defined as the sending of a (public) message to an
object.

	There are two kinds of events: before events, generated before a
message is processed, and after events, generated after the
message processing completed successfully.

	Any object can be declared as a monitor to any event. A monitor shall
reference the monitoring built-in protocol in the object opening
directive.

	A monitor defines event handlers, the predicates
before/3 and after/3, that are
automatically called by the runtime engine when a spied event occurs.

	Three built-in predicates, define_events/5,
current_event/5, and
abolish_events/5,
enables us define, query, and abolish both events and monitors.

FAQ

	General
	Why are all versions of Logtalk numbered 2.x or 3.x?

	Why do I need a Prolog compiler to use Logtalk?

	Is the Logtalk implementation based on Prolog modules?

	Does the Logtalk implementation use term-expansion?

	Compatibility
	What are the backend Prolog compiler requirements to run Logtalk?

	Can I use constraint-based packages with Logtalk?

	Can I use Logtalk objects and Prolog modules at the same time?

	Installation
	The integration scripts/shortcuts are not working!

	I get errors when starting up Logtalk after upgrading to the latest version!

	Portability
	Are my Logtalk applications portable across Prolog compilers?

	Are my Logtalk applications portable across operating systems?

	Programming
	Should I use prototypes or classes in my application?

	Can I use both classes and prototypes in the same application?

	Can I mix classes and prototypes in the same hierarchy?

	Can I use a protocol or a category with both prototypes and classes?

	What support is provided in Logtalk for defining and using components?

	What support is provided in Logtalk for reflective programming?

	Troubleshooting
	Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

	Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!

	Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

	Usability
	Is there a shortcut for compiling and loading source files?

	Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

	Are there shortcuts for the make functionality?

	Deployment
	Can I create standalone applications with Logtalk?

	Performance
	Is Logtalk implemented as a meta-interpreter?

	What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

	How about message-sending performance? Does Logtalk use static binding or dynamic binding?

	Which Prolog-dependent factors are most crucial for good Logtalk performance?

	How does Logtalk performance compare with plain Prolog and with Prolog modules?

	Licensing
	What’s the Logtalk distribution license?

	Can Logtalk be used in commercial applications?

	What’s the final license for a combination of Logtalk with a Prolog compiler?

	Support
	Are there professional consulting, training and supporting services?

General

	Why are all versions of Logtalk numbered 2.x or 3.x?

	Why do I need a Prolog compiler to use Logtalk?

	Is the Logtalk implementation based on Prolog modules?

	Does the Logtalk implementation use term-expansion?

Why are all versions of Logtalk numbered 2.x or 3.x?

The numbers “2” and “3” in the Logtalk version string refers to,
respectively, the second and the third generations of the Logtalk
language. Development of Logtalk 2 started on January 1998, with the
first alpha release for registered users on July and the first public
beta on October. The first stable version of Logtalk 2 was released
on February 9, 1999. Development of Logtalk 3 started on April 2012,
with the first public alpha released on August 21, 2012. The first
stable version of Logtalk 3 was released on January 7, 2015.

Why do I need a Prolog compiler to use Logtalk?

Currently, the Logtalk language is implemented as a Prolog extension
instead of as a standalone compiler. Compilation of Logtalk source
files is performed in two steps. First, the Logtalk compiler converts
a source file to a Prolog file. Second, the chosen Prolog compiler is
called by Logtalk to compile the intermediate Prolog file generated
on the first step. The implementation of Logtalk as a Prolog
extension allows users to use Logtalk together with features only
available on specific Prolog compilers.

Is the Logtalk implementation based on Prolog modules?

No. Logtalk is (currently) implemented is plain Prolog code. Only a
few Prolog compilers include a module system, with several
compatibility problems between them. Moreover, the current ISO Prolog
standard for modules is next to worthless and is ignored by most of
the Prolog community. Nevertheless, the Logtalk compiler is able to
compile simple modules (using a common subset of module directives)
as objects for backward-compatibility with existing code (see the
Prolog integration and migration for details).

Does the Logtalk implementation use term-expansion?

No. Term-expansion mechanisms are not standard and are not available
in all supported Prolog compilers.

Compatibility

	What are the backend Prolog compiler requirements to run Logtalk?

	Can I use constraint-based packages with Logtalk?

	Can I use Logtalk objects and Prolog modules at the same time?

What are the backend Prolog compiler requirements to run Logtalk?

See the backend Prolog compiler requirements guide [https://logtalk.org/backend_requirements.html].

Can I use constraint-based packages with Logtalk?

Usually, yes. Some constraint-based packages may define operators
which clash with the ones defined by Logtalk. In these cases,
compatibility with Logtalk depends on the constraint-based packages
providing an alternative for accessing the functionality provided by
those operators. When the constraint solver is encapsulated using a
Prolog module, a possible workaround is to use either explicit module
qualification or encapsulate the call using the {}/1
control construct (thus bypassing the Logtalk compiler).

Can I use Logtalk objects and Prolog modules at the same time?

Yes. In order to call a module predicate from within an object (or category)
you may use an use_module/2 directive or use explicit
module qualification (possibly wrapping the call using the Logtalk
control construct {}/1 that allows bypassing of
the Logtalk compiler when compiling a predicate call). Logtalk also allows
modules to be compiled as objects (see the Prolog integration and migration
for details).

Installation

	The integration scripts/shortcuts are not working!

	I get errors when starting up Logtalk after upgrading to the latest version!

The integration scripts/shortcuts are not working!

Check that the LOGTALKHOME and LOGTALKUSER environment
variables are defined, that the Logtalk user folder is available on
the location pointed by LOGTALKUSER (you can create this folder
by running the logtalk_user_setup shell script), and that the Prolog
compilers that you want to use are supported and available from the
system path. If the problem persists, run the shell script that
creates the integration script or shortcut manually and check for any
error message or additional instructions. For some Prolog compilers
such as XSB and Ciao, the first call of the integration script or
shortcut must be made by an administrator user. If you are using
Windows, make sure that any anti-virus or other security software
that you might have installed is not silently blocking some of the
installer tasks.

I get errors when starting up Logtalk after upgrading to the latest version!

Changes in the Logtalk compiler between releases may render Prolog
adapter files from older versions incompatible with new ones. You may
need to update your local Logtalk user files by running e.g. the
logtalk_user_setup shell script. Check the UPGRADING.md file
on the root of the Logtalk installation directory and the release
notes for any incompatible changes to the adapter files.

Portability

	Are my Logtalk applications portable across Prolog compilers?

	Are my Logtalk applications portable across operating systems?

Are my Logtalk applications portable across Prolog compilers?

Yes, as long you don’t use built-in predicates or special features
only available on some Prolog compilers. There is a
portability compiler flag that you can set
to instruct Logtalk to print a warning for each occurrence of non-ISO
Prolog standard features such as proprietary built-in predicates. In
addition, it is advisable that you constrain, if possible, the use of
platform or compiler dependent code to a small number of objects with
clearly defined protocols. You may also use Logtalk support for
conditional compilation to compile different entity or predicate
definitions depending on the backend Prolog compiler being used.

Are my Logtalk applications portable across operating systems?

Yes, as long you don’t use built-in predicates or special features
that your chosen backend Prolog compiler only supports in some
operating-systems. You may need to change the end-of-lines characters
of your source files to match the ones on the target operating system
and the expectations of your Prolog compiler. Some Prolog compilers
silently fail to compile source files with the wrong end-of-lines
characters.

Programming

	Should I use prototypes or classes in my application?

	Can I use both classes and prototypes in the same application?

	Can I mix classes and prototypes in the same hierarchy?

	Can I use a protocol or a category with both prototypes and classes?

	What support is provided in Logtalk for defining and using components?

	What support is provided in Logtalk for reflective programming?

Should I use prototypes or classes in my application?

Prototypes and classes provide different patterns of code reuse. A
prototype encapsulates code that can be used by itself and by its
descendent prototypes. A class encapsulates code to be used by its
descendent instances. Prototypes provide the best replacement to the
use of modules as encapsulation units, avoiding the need to
instantiate a class in order to access its code.

Can I use both classes and prototypes in the same application?

Yes. In addition, you may freely exchange messages between
prototypes, classes, and instances.

Can I mix classes and prototypes in the same hierarchy?

No. However, you may define as many prototype hierarchies and class
hierarchies and classes as needed by your application.

Can I use a protocol or a category with both prototypes and classes?

Yes. A protocol may be implemented by both prototypes and classes in
the same application. Likewise, a category may be imported by both
prototypes and classes in the same application.

What support is provided in Logtalk for defining and using components?

Logtalk supports component-based programming (since its inception on
January 1998), by using categories (which are first-class entities
like objects and protocols). Logtalk categories can be used with both
classes and prototypes and are inspired on the Smalltalk-80
(documentation-only) concept of method categories and on Objective-C
categories, hence the name. For more information, please consult the
Categories section and the examples provided with
the distribution.

What support is provided in Logtalk for reflective programming?

Logtalk supports meta-classes, behavioral reflection through the use
of event-driven programming, and structural reflection through the
use of a set of built-in predicates and built-in methods which allow
us to query the system about existing entities, entity relations, and
entity predicates.

Troubleshooting

	Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

	Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!

	Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

Using compiler options on calls to the Logtalk logtalk_compile/2
and logtalk_load/2 built-in predicates only apply the file being
compiled. If the first argument is a loader file, the compiler
options will only be used in the compilation of the loader file
itself, not in the compilation of the files loaded by the loader
file. The solution is to edit the loader file and add the compiler
options to the calls that compile/load the individual files.

Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!

Using Gecko-based browsers (e.g. Firefox) show non-rendered HTML
entities (e.g. –) when browsing XML documenting files after
running the lgt2xml shell script in the directory containing the
XML documenting files. This is a consequence of the lack of support
for the disable-output-escaping attribute in the browser XSLT
processor. The workaround is to use other browser (e.g. Safari or
Opera) or to use instead the lgt2html shell script in the
directory containing the XML documenting files to convert them to
(X)HTML files for browsing.

Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

This may happen when your Prolog compiler implementation of the ISO
Prolog standard write_canonical/2 built-in predicate is buggy and
writes terms that cannot be read back when consulting the
intermediate Prolog files generated by the Logtalk compiler. Often,
syntax errors found when consulting result in error messages but not
in exceptions as the Prolog compiler tries to continue the
compilation despite the problems found. As the Logtalk compiler
relies on the exception mechanisms to catch compilation problems, it
may report zero errors and zero warnings despite the error messages.
Send a bug report to the Prolog compiler developers asking them to
fix the write_canonical/2 buggy implementation.

Usability

	Is there a shortcut for compiling and loading source files?

	Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

	Are there shortcuts for the make functionality?

Is there a shortcut for compiling and loading source files?

Yes. With most backend Prolog compilers, you can use {File} as a
shortcut for logtalk_load(File). For compiling and loading
multiple files simply use {File1, File2, ...}. See the documentation
of the logtalk_load/1 predicate for details.

Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

You can use the goal logtalk_load(File, [reload(skip)]) to ensure
that File is only loaded once. See the documentation
of the logtalk_load/2 predicate for details.

Are there shortcuts for the make functionality?

Yes. With most backend Prolog compilers, you can use {*} as a
shortcut for logtalk_make(all) to reload all files modified since
last compiled and loaded, {!} as a shortcut for
logtalk_make(clean) to delete all intermediate Prolog files
generated by the compilation of Logtalk source files, {?} as a
shortcut for logtalk_make(missing) to list missing entities and
predicates, and {@} as a shortcut for logtalk_make(circular)
to list circular references. See the documentation
of the logtalk_make/1 predicate for details.

Deployment

	Can I create standalone applications with Logtalk?

Can I create standalone applications with Logtalk?

It depends on the Prolog compiler that you use to run Logtalk. Assuming
that your Prolog compiler supports the creation of standalone executables,
your application must include the adapter file for your compiler and the
Logtalk compiler and runtime. The distribution includes embedding scripts
for selected backend Prolog compilers and embedding examples.

For instructions on how to embed Logtalk and Logtalk applications see
the embedding guide [https://logtalk.org/embedding.html].

Performance

	Is Logtalk implemented as a meta-interpreter?

	What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

	How about message-sending performance? Does Logtalk use static binding or dynamic binding?

	How does Logtalk performance compare with plain Prolog and with Prolog modules?

Is Logtalk implemented as a meta-interpreter?

No. Objects and their encapsulated predicates are compiled, not
meta-interpreted. In particular, inheritance relations are
pre-compiled for improved performance. Moreover, no meta-interpreter
is used even for objects compiled in debug mode.

What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

Static objects are compiled to static code. Static objects containing
dynamic predicates are also compiled to static code, except, of
course, for the dynamic predicates themselves. Dynamic objects are
necessarily compiled to dynamic code. As in Prolog programming, for
best performance, dynamic object predicates and dynamic objects
should only be used when truly needed.

How about message-sending performance? Does Logtalk use static binding or dynamic binding?

Logtalk supports both static binding and dynamic binding. When static
binding is not possible, Logtalk uses dynamic binding coupled with a
caching mechanism that avoids repeated lookups of predicate
declarations and predicate definitions. This is a solution common to
other programming languages supporting dynamic binding. Message
lookups are automatically cached the first time a message is sent.
Cache entries are automatically removed when loading entities or
using Logtalk dynamic features that invalidate the cached lookups.
Whenever static binding is used, message sending performance is
essentially the same as a predicate call in plain Prolog. Performance
of dynamic binding when lookups are cached is close to the
performance that would be achieved with static binding. See the
User Manual section on performance
for more details.

Which Prolog-dependent factors are most crucial for good Logtalk performance?

Logtalk compiles objects assuming first-argument indexing for static
code. First-argument indexing of dynamic code, when available, helps
to improve performance due to the automatic caching of method lookups
and the necessary use of book-keeping tables by the runtime engine
(this is specially important when using event-driven programming).
Dynamic objects and static objects containing dynamic predicates also
benefit from first-argument indexing of dynamic predicates. The
availability of multi-argument indexing, notably for dynamic
predicates, also benefits dynamic binding performance.

How does Logtalk performance compare with plain Prolog and with Prolog modules?

Plain Prolog, Prolog modules, and Logtalk objects provide different
trade-offs between performance and features. In general, for a given
predicate definition, the best performance will be attained using
plain Prolog, second will be Prolog modules (assuming no explicitly
qualified calls are used), and finally Logtalk objects. Whenever
static binding is used, the performance of Logtalk is equal or close
to that of plain Prolog (depending on the Prolog virtual machine
implementation and compiler optimizations). See the
simple benchmark test results [https://logtalk.org/performance.html] using some
popular Prolog compilers.

Licensing

	What’s the Logtalk distribution license?

	Can Logtalk be used in commercial applications?

	What’s the final license for a combination of Logtalk with a Prolog compiler?

What’s the Logtalk distribution license?

Logtalk follows the Apache License 2.0 [https://github.com/LogtalkDotOrg/logtalk3/blob/master/LICENSE.txt].

Can Logtalk be used in commercial applications?

Yes, the Apache License 2.0 allows commercial use. See e.g. the
Apache License and Distribution FAQ [https://www.apache.org/foundation/license-faq.html].

What’s the final license for a combination of Logtalk with a Prolog compiler?

See the licensing guide [https://logtalk.org/licensing.html]
for details and relevant resources.

Support

	Are there professional consulting, training and supporting services?

Are there professional consulting, training and supporting services?

Yes. Please visit logtalk.pt [https://logtalk.pt] for professional
consulting, developing, training, and other supporting services.

Developer Tools

The documentation of each developer tool can also be found in the tool
directory in the NOTES.md file.

	Overview
	Loading the developer tools

	Tools documentation

	Tools common flags

	Tools requirements

	asdf

	assertions
	API documentation

	Loading

	Testing

	Adding assertions to your source code

	Automatically adding file and line context information to assertions

	Suppressing assertion calls from source code

	Redirecting assertion failure messages

	Converting assertion failures into errors

	code_metrics
	API documentation

	Loading

	Testing

	Available metrics

	Coupling metrics

	Halstead metric

	UPN metric

	Cyclomatic complexity metric

	Usage

	Excluding code from analysis

	Defining new metrics

	Third-party tools

	Applying metrics to Prolog modules

	Applying metrics to plain Prolog code

	dead_code_scanner
	API documentation

	Loading

	Testing

	Usage

	Excluding code from analysis

	Integration with the make tool

	Caveats

	Scanning Prolog modules

	Scanning plain Prolog files

	debug_messages
	API documentation

	Loading

	Testing

	Usage

	debugger
	API documentation

	Loading

	Testing

	Usage

	Alternative debugger tools

	Known issues

	diagrams
	Requirements

	API documentation

	Loading

	Testing

	Supported diagrams

	Graph elements

	Supported graph languages

	Customization

	Linking diagrams

	Creating diagrams for Prolog module applications

	Creating diagrams for plain Prolog files

	Other notes

	doclet
	API documentation

	Loading

	Automating running doclets

	Integration with the make tool

	help
	API documentation

	Loading

	Testing

	Supported operating-systems

	Usage

	Experimental features

	Known issues

	issue_creator
	Requirements

	Loading

	Usage

	Known issues

	lgtdoc
	API documentation

	Loading

	Testing

	Documenting source code

	Generating documentation

	Documentation linter checks

	lgtunit
	Main files

	API documentation

	Loading

	Testing

	Writing and running tests

	Automating running tests

	Parametric test objects

	Test dialects

	User-defined test dialects

	QuickCheck

	Skipping tests

	Checking test goal results

	Testing local predicates

	Testing non-deterministic predicates

	Testing generators

	Testing input/output predicates

	Suppressing tested predicates output

	Tests with timeout limits

	Setup and cleanup goals

	Test annotations

	Test execution times and memory usage

	Working with test data files

	Flaky tests

	Mocking

	Debugging messages in tests

	Debugging failed tests

	Code coverage

	Utility predicates

	Exporting test results in xUnit XML format

	Exporting test results in the TAP output format

	Generating Allure reports

	Exporting code coverage results in XML format

	Automatically creating bug reports at issue trackers

	Minimizing test results output

	Known issues

	linter
	Main linter checks

	Help on linter warnings

	Extending the linter

	Linting Prolog modules

	Linting plain Prolog files

	make
	API documentation

	packs
	Requirements

	API documentation

	Loading

	Testing

	Usage

	Registries and packs storage

	Virtual environments

	Registry specification

	Registry handling

	Registry development

	Pack specification

	Pack URLs and Single Sign-On

	Multiple pack versions

	Pack dependencies

	Pack portability

	Pack development

	Pack handling

	Pack documentation

	Pinning registries and packs

	Testing packs

	Security considerations

	Best practices

	Installing Prolog packs

	Known issues

	ports_profiler
	API documentation

	Loading

	Testing

	Compiling source files for port profiling

	Generating profiling data

	Printing profiling data reports

	Interpreting profiling data

	Profiling Prolog modules

	Profiling plain Prolog code

	Known issues

	profiler
	Loading

	Testing

	Supported backend Prolog compilers

	Compiling source code for profiling

	tutor
	API documentation

	Loading

	Usage

	wrapper
	API documentation

	Loading

	Workflows

	Customization

	Current limitations

Overview

The following developer tools are available, each one with its own
loader.lgt loader file (except for the built-in linter and
make tools, which are integrated with the compiler/runtime) and
NOTES.md documentation files:

	asdf

	assertions

	code_metrics

	dead_code_scanner

	debug_messages

	debugger

	diagrams

	doclet

	help

	issue_creator

	lgtdoc

	lgtunit

	linter

	make

	packs

	ports_profiler

	profiler

	tutor

	wrapper

Loading the developer tools

To load the main developer tools, use the following goal:

| ?- logtalk_load(tools(loader)).

The ports_profiler tool is not loaded by default, however, as it
conflicts with the debugger tool as both provide a debug handler
that must be unique in a running session.

The profiler tool is also not loaded by default as it provides
integration with selected backend Prolog compiler profilers that are not
portable.

The tutor tool is also not loaded by default given its useful mainly
for new users that need help understanding compiler warning and error
messages.

The wrapper tool is also not loaded by default given its specialized
purpose and beta status.

To load a specific tool, either change your Prolog working directory to
the tool folder and then compile and load the corresponding loader
utility file or simply use library notation as argument for the
compiling and loading predicates. For example:

| ?- logtalk_load(lgtunit(loader)).

Tools documentation

Specific notes about each tool can be found in the corresponding
NOTES.md files. HTML documentation for each tool API can be found on
the docs directory (open the ../docs/index.html file with your
web browser). The documentation for these tools can be regenerated using
the shell scripts ../scripts/update_html_docs.sh and
../scripts/update_svg_diagrams.sh.

Tools common flags

The lgtdoc and lgtunit tools share a suppress_path_prefix
flag that can be used to suppress a prefix when printing file paths. For
example (after loading the tools):

| ?- set_logtalk_flag(suppress_path_prefix, '/home/jdoe/').

Tools requirements

Some of the developer tools have third-party dependencies. For example,
the lgtdoc tool depends on XSLT processors to generate documentation
final formats and uses Sphinx for the preferred HTML final format. Be
sure to consult the tools documentation details on those requirements
and possible alternatives. For convenience, follows a global list of the
main tool requirements and suggestions for installing them per
operating-system. If your operating-system or a dependency for it is not
listed, see the dependency websites for installation instructions.

Tool dependencies for full functionality

	diagrams: Graphviz

	help: info

	issue_creator: gh, glab

	lgtdoc: Sphinx, libxslt, fop

	lgtunit: Allure

	packs: coreutils, libarchive, gnupg2, git

Python dependencies (all operating-systems)

$ pip install --upgrade pygments
$ pip install --upgrade sphinx
$ pip install --upgrade sphinx_rtd_theme

macOS - MacPorts

$ sudo port install graphviz
$ sudo port install texinfo
$ sudo port install libxslt fop
$ sudo port install coreutils libarchive gnupg2 git
$ sudo port install gh glab

macOS - Homebrew

$ brew install graphviz
$ brew install texinfo
$ brew install libxslt fop
$ brew install allure
$ brew install coreutils libarchive gnupg2 git
$ brew install gh glab

Ubuntu

$ sudo apt install graphviz
$ sudo apt install info
$ sudo apt install xsltproc fop
$ sudo apt-add-repository ppa:qameta/allure && sudo apt install allure
$ sudo apt install libarchive-tools gnupg2 git

RedHat

$ sudo dnf install graphviz
$ sudo dnf install libxslt fop
$ sudo dnf install bsdtar gnupg2 git

Windows - Chocolatey

> choco install graphviz
> choco install xsltproc apache-fop
> choco install gnupg git
> choco install gh glab

Windows - installers

https://www.graphviz.org/download/

https://docs.qameta.io/allure-report/

https://www.gnupg.org/

https://gitforwindows.org

https://cli.github.com

https://glab.readthedocs.io

asdf

A Logtalk plugin for the asdf [https://asdf-vm.com] extendable
version manager is available at:

https://github.com/LogtalkDotOrg/asdf-logtalk

This plugin provides an alternative to the logtalk_version_select
script that can be useful to manage Logtalk versions when developing
solutions that use other languages and tools that can also be handled by
asdf.

assertions

The assertions.lgt file contains definitions for two
meta-predicates, assertion/1-2, which allows using of assertions on
your source code to print warning and error messages (using the message
printing mechanism). The assertions_messages.lgt file defines the
default message translations generated on assertions succeed, fail, or
throw an exception.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#assertions

Loading

This tool can be loaded using the query:

| ?- logtalk_load(assertions(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(assertions(tester)).

Adding assertions to your source code

The assertion/1 predicate takes a goal as argument. For example:

foo(L) :-
 assertions::assertion(non_empty_list(L)),
 ...

The assertion/2 predicate takes as arguments a term for passing
context information and a goal. Using again a unit test as an example:

foo(L) :-
 assertions::assertion(foo_list_alerts, non_empty_list(L)),
 ...

When using a large number of assertions, you can use a lighter syntax by
adding a uses/2 directive. For example:

:- uses(assertions, [assertion/1, assertion/2]).

Automatically adding file and line context information to assertions

The assertions/1 parametric object can be used as a hook object to
automatically add file and line context information, represented by the
term file_lines(File, BeginLine-EndLine), to calls to the
assertion/1 predicate by goal-expanding it to calls to the
assertion/2 predicate (the expansion assumes that a uses/2
directive is being used in the code that will be expanded to direct
assertion/1 calls to the assertions object). For example,
assuming the file using assertions is named source, it would be
compiled and loaded using the call:

logtalk_load(source, [hook(assertions(debug))])

Suppressing assertion calls from source code

The assertions/1 parametric object can be used as a hook object to
suppress calls to the assertion/1-2 predicates using goal-expansion
(the expansion assumes assertions::assertion/1-2 messages). For
example, assuming the file using assertions is named source, it
would be compiled and loaded using the call:

logtalk_load(source, [hook(assertions(production))])

Redirecting assertion failure messages

By default, assertion failures and errors are printed to the standard
output stream. These messages, however, can be intercepted by defining
the logtalk::message_hook/4 multifile predicate. For example:

:- category(redirect_assertions_messages).

 :- multifile(logtalk::message_hook/4).
 :- dynamic(logtalk::message_hook/4).

 logtalk::message_hook(Message, error, assertions, _) :-
 writeq(my_log_file, Message), write(my_log_file, '.\n').

:- end_category.

Converting assertion failures into errors

If you want an assertion failure to result in a failure or a runtime
error, you can intercept the assertion failure messages, optionally
still printing them, and throw an error. For example:

:- category(assertions_failures_to_errors).

 :- multifile(logtalk::message_hook/4).
 :- dynamic(logtalk::message_hook/4).

 logtalk::message_hook(Message, error, assertions, Tokens) :-
 % uncomment the next two lines to also print the default message
 % logtalk::message_prefix_stream(error, assertions, Prefix, Stream),
 % logtalk::print_message_tokens(Stream, Prefix, Tokens),
 throw(error(Message, _)).

:- end_category.

In alternative, if you want assertions to always trigger an exception,
use instead the lgtunit tool assertions/1-2 public predicates.

code_metrics

The purpose of this tool is to assess qualities of source code that may
predict negative aspects such as entity coupling, cohesion, complexity,
error-proneness, and overall maintainability. It is meant to be
extensible via the addition of objects implementing new metrics.

This tool provides predicates for computing metrics for source files,
entities, libraries, files, and directories. The actual availability of
a particular predicate depends on the specific metric. One set of
predicates prints, by default, the computed metric values to the
standard output. A second set of predicates computes and returns a score
(usually a compound term with the computed metric values as arguments).

API documentation

This tool API documentation is available at:

../../docs/library_index.html#code-metrics

Loading

This tool can be loaded using the query:

| ?- logtalk_load(code_metrics(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(code_metrics(tester)).

Available metrics

Currently, the following metrics are provided:

	Number of Clauses (noc_metric)

	Number of Rules (nor_metric)

	Unique Predicate Nodes (upn_metric)

	Cyclomatic Complexity (cc_metric)

	Depth of Inheritance (dit_metric)

	Efferent coupling, afferent coupling, instability, and abstractness
(coupling_metric)

	Documentation (doc_metric)

	Source code size (size_metric)

	Halstead complexity (halstead_metric and
halstead_metric(Stroud))

A helper object, code_metrics, is also provided allowing running all
loaded individual metrics. For code coverage metrics, see the
lgtunit tool documentation.

Coupling metrics

	Efferent coupling (Ce): Number of entities that an entity depends
on. These include objects receiving messages from the entity plus the
implemented protocols, imported categories, and
extended/instantiated/specialized objects.

	Afferent coupling (Ca): Number of entities that depend on an
entity. For a protocol, the number of protocols that extend it plus
the number of objects and categories that implement it. For a
category, the number of objects that import it. For an object, the
number of categories and objects that send messages to it plus the
number of objects that extend/instantiate/specialize it.

	Instability: Computed as Ce / (Ce + Ca). Measures the entity
resilience to change. Ranging from 0.0 to 1.0, with 0.0 indicating a
maximally stable entity and 1.0 indicating a maximally unstable
entity. Ideally, an entity is either maximally stable or maximally
unstable.

	Abstractness: Computed as the ratio between the number of static
predicates with scope directives without a local definition and the
number of static predicates with scope directives. Measures the
rigidity of an entity. Ranging from 0.0 to 1.0, with 0.0 indicating a
fully concrete entity and 1.0 indicating a fully abstract entity.

The dependencies count include direct entity relations plus predicate
calls or dynamic updates to predicates in external objects or
categories.

For more information on the interpretation of the coupling metric
scores, see e.g. the original paper by Robert Martin:

@inproceedings{citeulike:1579528,
 author = "Martin, Robert",
 booktitle = "Workshop Pragmatic and Theoretical Directions in Object-Oriented Software Metrics",
 citeulike-article-id = 1579528,
 citeulike-linkout-0 = "http://www.objectmentor.com/resources/articles/oodmetrc.pdf",
 keywords = "diplomarbeit",
 organization = "OOPSLA'94",
 posted-at = "2007-08-21 11:08:44",
 priority = 0,
 title = "OO Design Quality Metrics - An Analysis of Dependencies",
 url = "http://www.objectmentor.com/resources/articles/oodmetrc.pdf",
 year = 1994
}

The coupling metric was also influenced by the metrics rating system in
Microsoft Visual Studio and aims to eventually emulate the functionality
of a maintainability index score.

Halstead metric

Predicates declared, user-defined, and called are interpreted as
operators. Built-in predicates and built-in control constructs are
ignored. Predicate arguments are abstracted, assumed distinct, and
interpreted as operands. Note that this definition of operands is a
significant deviation from the original definition, which used syntactic
literals. A computation closer to the original definition of the metric
would require switching to use the parser to collect information on
syntactic literals, which would imply a much large computation cost.

The computation of this metric is parameterized by the Stroud
coefficient for computing the time required to program (default is 18).
The following individual measures are computed:

	Number of distinct predicates (declared, defined, called, or updated;
Pn).

	Number of predicate arguments (assumed distinct; PAn).

	Number of predicate calls/updates + number of clauses (Cn).

	Number of predicate call/update arguments + number of clause head
arguments (CAn).

	Entity vocabulary (EV). Computed as EV = Pn + PAn.

	Entity length (EL). Computed as EL = Cn + CAn.

	Volume (V). Computed as V = EL * log2(EV).

	Difficulty (D). Computed as D = (Pn/2) * (CAn/An).

	Effort (E). Computed as E = D * V.

	Time required to program (T). Computed as T = E/k seconds
(where k is the Stroud number; defaults to 18).

	Number of delivered bugs (B). Computed as B = V/3000.

UPN metric

The Unique Predicate Nodes (UPN) metric is described in the following
paper:

@article{MOORES199845,
 title = "Applying Complexity Measures to Rule-Based Prolog Programs",
 journal = "Journal of Systems and Software",
 volume = "44",
 number = "1",
 pages = "45 - 52",
 year = "1998",
 issn = "0164-1212",
 doi = "https://doi.org/10.1016/S0164-1212(98)10042-0",
 url = "http://www.sciencedirect.com/science/article/pii/S0164121298100420",
 author = "Trevor T Moores"
}

The nodes include called and updated predicates independently of where
they are defined.

Cyclomatic complexity metric

The cyclomatic complexity metric evaluates code complexity by measuring
the number of linearly independent paths through the code. In its
current implementation, all defined predicates that are not called or
updated are counted as graph connected components (the reasoning being
that these predicates can be considered entry points). The
implementation uses the same predicate abstraction as the UPN metric.

For more details on this metric, see the original paper by Thomas J.
McCabe:

@inproceedings{McCabe:1976:CM:800253.807712,
 author = "McCabe, Thomas J.",
 title = "A Complexity Measure",
 booktitle = "Proceedings of the 2Nd International Conference on Software Engineering",
 series = "ICSE '76",
 year = 1976,
 location = "San Francisco, California, USA",
 pages = "407--",
 url = "http://dl.acm.org/citation.cfm?id=800253.807712",
 acmid = 807712,
 publisher = "IEEE Computer Society Press",
 address = "Los Alamitos, CA, USA",
 keywords = "Basis, Complexity measure, Control flow, Decomposition, Graph theory, Independence, Linear, Modularization, Programming, Reduction, Software, Testing",
}

Usage

All metrics require the source code to be analyzed to be loaded with the
source_data flag turned on. For usage examples, see the
SCRIPT.txt file in the tool directory.

Be sure to fully understand the metrics individual meanings and any
implementation limitations before using them to support any evaluation
or decision process.

Excluding code from analysis

A set of options are available to specify code that should be excluded
when applying code metrics:

	
exclude_directories(Directories)

list of directories to exclude (default is []); all
sub-directories of the excluded directories are also excluded;
directories may be listed by full or relative path

	
exclude_files(Files)

list of source files to exclude (default is []); files may be
listed by full path or basename, with or without extension

	
exclude_libraries(Libraries)

list of libraries to exclude (default is
[startup, scratch_directory])

	
exclude_entities(Entities)

list of entities to exclude (default is [])

Defining new metrics

New metrics can be implemented by defining an object that imports the
code_metric category and implements its score predicates. There is
also a code_metrics_utilities category that defines useful
predicates for the definition of metrics.

Third-party tools

cloc is an open-source command-line program that counts blank lines,
comment lines, and lines of source code in many programming languages
including Logtalk. Available at https://github.com/AlDanial/cloc

ohcount is an open-source command-line program that counts blank
lines, comment lines, and lines of source code in many programming
languages including Logtalk. Available at
https://github.com/blackducksoftware/ohcount

tokei is an open-source command-line program that counts blank
lines, comment lines, and lines of source code in many programming
languages including Logtalk. Available at
https://github.com/XAMPPRocky/tokei

Applying metrics to Prolog modules

Some of the metrics can also be applied to Prolog modules that Logtalk
is able to compile as objects. For example, if the Prolog module file is
named module.pl, try:

| ?- logtalk_load(module, [source_data(on)]).

Due to the lack of standardization of module systems and the abundance
of proprietary extensions, this solution is not expected to work for all
cases.

Applying metrics to plain Prolog code

Some of the metrics can also be applied to plain Prolog code. For
example, if the Prolog file is named code.pl, simply define an
object including its code:

:- object(code).
 :- include('code.pl').
:- end_object.

Save the object to an e.g. code.lgt file in the same directory as
the Prolog file and then load it in debug mode:

| ?- logtalk_load(code, [source_data(on)]).

In alternative, use the object_wrapper_hook provided by the
hook_objects library:

| ?- logtalk_load(hook_objects(loader)).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook), source_data(on)]).

With either wrapping solution, pay special attention to any compilation
warnings that may signal issues that could prevent the plain Prolog code
of working when wrapped by an object.

dead_code_scanner

This tool detects likely dead code in Logtalk entities and in Prolog
modules compiled as objects. Predicates (and non-terminals) are
classified as dead code when:

	There is no scope directive for them and they are not called,
directly or indirectly, by any predicate with a (local or inherited)
scope directive.

	They are listed in uses/2 and use_module/2 directives but not
called.

Besides dead code, this tool can also help detect other problems in the
code that often result in reporting false positives. For example, typos
in alias/2 directives, missing scope directives, and missing
meta_non_terminal/1 and meta_predicate/1 directives.

Given the possibility of false positives, care must be taken before
deleting reported dead code to ensure that it’s, in fact, code that is
not used. A common cause of false positives is the use of conditional
compilation directives to provide implementations for predicates missing
in some systems or different predicate implementations per
operating-system.

The dead_code_scanner.lgt source file implements the scanning
predicates for finding dead code in entities, libraries, and
directories. The source file dead_code_scanner_messages.lgt defines
the default translations for the messages printed when scanning for dead
code. These messages can be intercepted to customize output, e.g. to
make it less verbose, or for integration with e.g. GUI IDEs and
continuous integration servers.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#dead-code-scanner

For sample queries, please see the SCRIPT.txt file in the tool
directory.

Loading

This tool can be loaded using the query:

| ?- logtalk_load(dead_code_scanner(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(dead_code_scanner(tester)).

Usage

This tool provides a set of predicates that allows scanning entities,
libraries, files, and directories. See the tool API documentation for
details. The source code to be analyzed should be loaded with the
source_data and optimize flags turned on (possibly set from a
loader file).

As an example, assume that we want to scan an application with a library
alias my_app. The following goals could be used:

| ?- set_logtalk_flag(source_data, on),
 set_logtalk_flag(optimize, on).
yes

| ?- logtalk_load(my_app(loader)).
...
yes

| ?- dead_code_scanner::library(my_app).
...

For complex applications that make use of sub-libraries, there are also
rlibrary/1-2 predicates that performs a recursive scan of a library
and all its sub-libraries. Conversely, we may be interested in scanning
a single entity:

| ?- dead_code_scanner::entity(some_object).
...

For other usage examples, see the SCRIPT.txt file in the tool
directory.

Excluding code from analysis

A set of options are available to specify code that should be excluded
when looking for unused predicates (and non-terminals):

	
exclude_directories(Directories)

list of directories to exclude (default is []); all
sub-directories of the excluded directories are also excluded;
directories may be listed by full or relative path

	
exclude_files(Files)

list of source files to exclude (default is []); files may be
listed by full path or basename, with or without extension

	
exclude_libraries(Libraries)

list of libraries to exclude (default is
[startup, scratch_directory])

	
exclude_entities(Entities)

list of entities to exclude (default is [])

Integration with the make tool

The loader.lgt file sets a make target action that will call the
dead_code_scanner::all goal whenever the logtalk_make(check)
goal (or its top-level abbreviation, {?}) is called.

Caveats

Use of local meta-calls with goal arguments only known at runtime can
result in false positives. When using library or user-defined
meta-predicates, compilation of the source files with the optimize
flag turned on may allow meta-calls to be resolved at compile time and
thus allow calling information for the meta-arguments to be recorded,
avoiding false positives for predicates that are only meta-called.

Scanning Prolog modules

This tool can also be applied to Prolog modules that Logtalk is able to
compile as objects. For example, if the Prolog module file is named
module.pl, try:

| ?- logtalk_load(module, [source_data(on)]).

Due to the lack of standardization of module systems and the abundance
of proprietary extensions, this solution is not expected to work for all
cases.

Scanning plain Prolog files

This tool can also be applied to plain Prolog code. For example, if the
Prolog file is named code.pl, simply define an object including its
code:

:- object(code).
 :- include('code.pl').
:- end_object.

Save the object to an e.g. code.lgt file in the same directory as
the Prolog file and then load it in debug mode:

| ?- logtalk_load(code, [source_data(on), optimize(on)]).

In alternative, use the object_wrapper_hook provided by the
hook_objects library:

| ?- logtalk_load(hook_objects(loader)).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook), source_data(on), optimize(on)]).

With either wrapping solution, pay special attention to any compilation
warnings that may signal issues that could prevent the plain Prolog from
being fully analyzed when wrapped by an object.

debug_messages

By default, debug and debug(Group) messages are only printed
when the debug flag is turned on. These messages are also suppressed
when compiling code with the optimize flag turned on. This tool
supports selective enabling of debug and debug(Group) messages
in normal and debug modes.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#debug-messages

For general information on debugging, open in a web browser the
following link and consult the debugging section of the User Manual:

../../manuals/userman/debugging.html

Loading

This tool can be loaded using the query:

| ?- logtalk_load(debug_messages(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(debug_messages(tester)).

Usage

The tool provides two sets of predicates. The first set allows enabling
and disabling of all debug and debug(Group) messages for a given
component. The second set allows enabling and disabling of
debug(Group) messages for a given group and component for
fine-grained control.

Upon loading the tool, all debug messages are skipped. The user is then
expected to use the tool API to selectively enable the messages that
will be printed. As an example, consider the following object, part of a
xyz component:

:- object(foo).

 :- public([bar/0, baz/0]).
 :- uses(logtalk, [print_message/3]).

 bar :-
 print_message(debug(bar), xyz, @'bar/0 called').

 baz :-
 print_message(debug(baz), xyz, @'baz/0 called').

:- end_object.

Assuming the object foo is compiled and loaded in normal or debug
mode, after also loading this tool, bar/0 and baz/0 messages
will not print any debug messages:

| ?- {debug_messages(loader), foo}.
...
yes

| ?- foo::(bar, baz).
yes

We can then enable all debug messages for the xyz component:

| ?- debug_messages::enable(xyx).
yes

| ?- foo::(bar, baz).
bar/0 called
baz/0 called
yes

Or we can selectively enable only debug messages for a specific group:

| ?- debug_messages::disable(xyx).
yes

| ?- debug_messages::enable(xyx, bar).
yes

| ?- foo::(bar, baz).
bar/0 called
yes

debugger

This tool provides the default Logtalk command-line debugger. Unlike
Prolog systems, the Logtalk debugger is a regular application, using a
public API. As a consequence, it must be explicitly loaded by the
programmer, either manually at the top-level interpreter or
automatically from a settings file.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#debugger

Loading

This tool can be loaded using the query:

| ?- logtalk_load(debugger(loader)).

Note that this tool cannot be loaded at the same time as other tools
(e.g. the ports profiler) that also provide a debug handler, which must
be unique in a running session.

When the code to be debugged runs computationally expensive
initializations, loading this tool after the code may have a noticeable
impact in loading times.

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(debugger(tester)).

Usage

Debugging Logtalk source code (with this debugger) requires compiling
source files using the debug(on) compiler flag. For example:

| ?- logtalk_load(my_buggy_code, [debug(on)]).

In alternative, you may also turn on the debug flag globally by
typing:

| ?- set_logtalk_flag(debug, on).

But note that loader files may override this flag setting (e.g. by using
debug(off) or optimize(on) options for loaded files). If that’s
the case, you will need to either edit the loader files or write
customized loader files enabling debugging. For detailed information on
using the debugger, consult the debugging section of the User Manual:

../../manuals/userman/debugging.html

The debugger_messages.lgt source file defines the default debugger
message translations.

The dump_trace.lgt provides a simple solution for dumping a goal
trace to a file. For example:

| ?- dump_trace::start_redirect_to_file('trace.txt', some_goal),
 dump_trace::stop_redirect_to_file.

A full trace can also be obtained at the top-level by using the S
(Skip) command at the call port for the top-levle goal when tracing it.

Alternative debugger tools

Logtalk provides basic support for the SWI-Prolog graphical tracer. The
required settings are described in the settings-sample.lgt file.
Logtalk queries can be traced using this tool by using the
gtrace/0-1 predicates. For example:

| ?- gtrace(foo::bar).

or:

| ?- gtrace, foo::bar.

You can also use the gspy/1 predicate to spy a Logtalk predicate
specified as Entity::Functor/Arity when using the graphical tracer.
When using this tool, internal Logtalk compiler/runtime predicates and
compiled predicates that resulted from the term-expansion mechanism may
be exposed in some cases. This issue is shared with Prolog code and
results from the non-availability of source code for the predicates
being traced.

Known issues

Line number spy points (aka breakpoints) require a Prolog backend
compiler that supports accessing read term starting line but only some
backends (B-Prolog, GNU Prolog, JIProlog, LVM, SICStus Prolog,
SWI-Prolog, Trealla Prolog, and YAP) provide accurate line numbers.

As a workaround, you can check the start line number for an entity
predicate definition using a query such as:

| ?- object_property(Entity, defines(Functor/Arity, Properties)).

and checking the returned line_count/1 property to find if there’s
any offset to the source file number of the predicate clause that you
want to trace. This issue, if present, usually only affects the first
predicate clause.

Line number spy points are currently not available when using XSB as the
Prolog backend compiler.

diagrams

This tool generates library, directory, file, entity, and
predicate diagrams for source files and for libraries of source files
using the Logtalk reflection API to collect the relevant information and
a graph language for representing the diagrams. Limited support is also
available for generating diagrams for Prolog module applications. It’s
also possible in general to generate predicate cross-referencing
diagrams for plain Prolog files.

Linking library diagrams to entity diagrams to predicate
cross-referencing diagrams and linking directory diagrams to file
diagrams is also supported when using SVG output. This feature allows
using diagrams for understanding the architecture of applications by
navigating complex code and zooming into details. SVG output can also
easily link to both source code repositories and API documentation. This
allows diagrams to be used for source code navigation.

Diagrams can also be used to uncover code issues. For example, comparing
loading diagrams with dependency diagrams can reveal implicit
dependencies. Loading diagrams can reveal circular dependencies that may
warrant code refactoring. Entity diagrams can provide a good overview of
code coupling. Predicate cross-referencing diagrams can be used to
visually access entity code complexity, complementing the
code_metrics tool.

All diagrams support a comprehensive set of options, discussed below, to
customize the final contents and appearance.

Diagram generation can be easily automated using the doclet tool and
the logtalk_doclet scripts. See the doclet tool examples and
documentation for details. See also the diagrams tool own
lgt2svg Bash and PowerShell scripts.

Requirements

A recent version of Graphviz is required for generating diagrams in the
final formats. It can be installed using a Graphviz installer or e.g.
the following per operating-system commands:

macOS - MacPorts

$ sudo port install graphviz

macOS - Homebrew

$ brew install graphviz

Ubuntu

$ sudo apt install graphviz

Windows - Chocolatey

> choco install graphviz

Installers

https://www.graphviz.org/download/

On Linux systems, use the distribution own package manager to install
any missing command.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#diagrams

For sample queries, please see the SCRIPT.txt file in the tool
directory.

Loading

This tool can be loaded using the query:

| ?- logtalk_load(diagrams(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(diagrams(tester)).

Supported diagrams

The following entity diagrams are supported:

	entity diagrams showing entity public interfaces, entity
inheritance relations, and entity predicate cross-reference relations

	predicate cross-reference diagrams (between entities or within an
entity)

	inheritance diagrams showing entity inheritance relations

	uses diagrams showing which entities use resources from other
entities

The following library diagrams are supported:

	library loading diagrams showing which libraries load other
libraries

	library dependency diagrams showing which libraries contain
entities with references to entities defined in other libraries

The following file diagrams are supported:

	file loading diagrams showing which files load or include other
files

	file dependency diagrams showing which files contain entities with
references to entities defined in other files

File dependency diagrams are specially useful in revealing dependencies
that are not represented in file loading diagrams due to files being
loaded indirectly by files external to the libraries being documented.

The following directory diagrams are supported:

	directory loading diagrams showing which directories contain files
that load files in other directories

	directory dependency diagrams showing which directories contain
entities with references to entities defined in other directories

Comparing directory (or file) loading diagrams with directory (or file)
dependency diagrams allows comparing what is explicitly loaded with the
actual directory (or file) dependencies, which are inferred from the
source code.

Library and directory dependency diagrams are specially useful for large
applications where file diagrams would be too large and complex to be
useful, specially when combined with the zoom option to link to,
respectively, entity and file diagrams.

A utility object, diagrams, is provided for generating all supported
diagrams in one step. This object provides an interface common to all
diagrams but note that some predicates that generate diagrams only make
sense for some types of diagrams. For best results and fine-grained
customization of each diagram, the individual diagram objects should be
used with the intended set of options.

Graph elements

Limitations in both the graph language and UML forces the invention of a
modeling language that can represent all kinds of Logtalk entities and
entity relations. Currently we use the following Graphviz DOT shapes
(libraries, entities, predicates, and files) and arrows (entity,
predicate, and file relations):

	
libraries

tab (lightsalmon)

	
library loading and dependency relations

normal (arrow ending with a black triangle)

	
objects (classes, instances, and prototypes)

box (rectangle, yellow for instances/classes and beige for
prototypes)

	
protocols

note (aqua marine rectangle with folded right-upper corners)

	
categories

component (light cyan rectangle with two small rectangles
intercepting the left side)

	
modules

tab (plum rectangle with small tab at top)

	
public predicates

box (springgreen)

	
public, multifile, predicates

box (skyblue)

	
protected predicates

box (yellow)

	
private predicates

box (indianred)

	
external predicates

box (beige)

	
exported module predicates

box (springgreen)

	
directories

tab (lightsalmon)

	
directory loading and dependency relations

normal (arrow ending with a black triangle)

	
files

box (pale turquoise rectangle)

	
file loading and dependency relations

normal (arrow ending with a black triangle)

	
specialization relation

onormal (arrow ending with a white triangle)

	
instantiation relation

normal (arrow ending with a black triangle)

	
extends relation

vee (arrow ending with a “v”)

	
implements relation

dot (arrow ending with a black circle)

	
imports relation

box (arrow ending with a black square)

	
complements relation

obox (arrow ending with a white square)

	
uses and use module relations

rdiamond (arrow ending with a black half diamond)

	
predicate calls

normal (arrow ending with a black triangle)

	
dynamic predicate updates

diamond (arrow ending with a black diamond)

The library, directory, file, entity, and predicate nodes that are not
part of the predicates, entities, files, or libraries for which we are
generating a diagram use a dashed border, a darker color, and are
described as external.

Note that all the elements above can have captions. See below the
diagrams node_type_captions/1 and relation_labels/1 output
options.

Supported graph languages

Currently only the DOT graph language is supported (tested with Graphviz
version 10.0 on macOS; visit the http://www.graphviz.org/ website for
more information). There’s also preliminary support for Mermaid (which
is not loaded by default as its current version lacks required features
for parity with Graphviz).

The diagrams .dot files are created on the current directory by
default. These files can be easily converted into a printable format
such as SVG, PDF, or Postscript. For example, using the dot
command-line executable we can simply type:

dot -Tpdf diagram.dot > diagram.pdf

This usually works fine for entity and predicate call cross-referencing
diagrams. For directory and file diagrams, the fdp and circo
command-line executables may produce better results. For example:

fdp -Tsvg diagram.dot > diagram.svg
circo -Tsvg diagram.dot > diagram.svg

It’s also worth to experiment with different layouts to find the one
that produces the best results (see the layout/1 option described
below).

Some output formats such as SVG support tooltips and URL links, which
can be used for showing e.g. entity types, relation types, file paths,
and for navigating to files and directories of files (libraries) or to
API documentation. See the relevant diagram options below in order to
take advantage of these features (see the discussion below on “linking
diagrams”).

Sample helper scripts are provided for batch converting a directory of
.dot files to .svg files:

	lgt2svg.sh for POSIX systems

	lgt2svg.ps1 for Windows systems

	lgt2svg.js and lgt2svg.bat for Windows systems (deprecated)

The scripts assume that the Graphviz command-line executables are
available from the system path (the default is the dot executable
but the scripts accept a command-line option to select in alternative
the circo, fdp, or neato executables).

When generating diagrams for multiple libraries or directories, it’s
possible to split a diagram with several disconnected library or
directory graphs using the ccomps command-line executable. For
example:

ccomps -x -o subdiagram.dot diagram.dot

For more information on the DOT language and related tools see:

http://www.graphviz.org/

When using Windows, there are known issues with some Prolog compilers
due to the internal representation of paths. If you encounter problems
with a specific backend Prolog compiler, try if possible to use another
supported backend Prolog compiler when generating diagrams.

For printing large diagrams, you will need to either use a tool to slice
the diagram in page-sized pieces or, preferably, use software capable of
tiled printing (e.g. Adobe Reader). You can also hand-edit the generated
.dot files and play with settings such as aspect ratio for
fine-tuning the diagrams layout.

Customization

A set of options are available to specify the details to include in the
generated diagrams. For entity diagrams the options are:

	
layout(Layout)

diagram layout (one of the atoms
{top_to_bottom,bottom_to_top,left_to_right,right_to_left};
default is bottom_to_top)

	
title(Title)

diagram title (an atom; default is '')

	
date(Boolean)

print current date and time (true or false; default is
true)

	
versions(Boolean)

print Logtalk and backend version data (true or false;
default is false)

	
interface(Boolean)

print public predicates (true or false; default is
true)

	
file_labels(Boolean)

print file labels (true or false; default is true)

	
file_extensions(Boolean)

print file name extensions (true or false; default is
true)

	
relation_labels(Boolean)

print entity relation labels (true or false; default is
true)

	
externals(Boolean)

print external nodes (true or false; default is true)

	
node_type_captions(Boolean)

print node type captions (true or false; default is
true)

	
inheritance_relations(Boolean)

print inheritance relations (true or false; default is
true for entity inheritance diagrams and false for other
entity diagrams)

	
provide_relations(Boolean)

print provide relations (true or false; default is
false)

	
xref_relations(Boolean)

print predicate call cross-reference relations (true or
false; default depends on the specific diagram)

	
xref_calls(Boolean)

print predicate cross-reference calls (true or false;
default depends on the specific diagram)

	
output_directory(Directory)

directory for the .dot files (an atom; default is './dot_dias')

	
exclude_directories(Directories)

list of directories to exclude (default is []); all
sub-directories of the excluded directories are also excluded;
directories may be listed by full or relative path

	
exclude_files(Files)

list of source files to exclude (default is []); files may be
listed by full path or basename, with or without extension

	
exclude_libraries(Libraries)

list of libraries to exclude (default is
[startup, scratch_directory])

	
exclude_entities(Entities)

list of entities to exclude (default is [])

	
path_url_prefixes(PathPrefix, CodeURLPrefix, DocURLPrefix)

code and documenting URL prefixes for a path prefix used when
generating cluster, library, directory, file, and entity links
(atoms; no default; can be specified multiple times)

	
url_prefixes(CodeURLPrefix, DocURLPrefix)

default URL code and documenting URL prefixes used when generating
cluster, library, file, and entity links (atoms; no default)

	
entity_url_suffix_target(Suffix, Target)

extension for entity documenting URLs (an atom; default is
'.html') and target separating symbols (an atom; default is
'#')

	
omit_path_prefixes(Prefixes)

omit common path prefixes when printing directory paths and when
constructing URLs (a list of atoms; default is a list with the user
home directory)

	
zoom(Boolean)

generate sub-diagrams and add links and zoom icons to library and
entity nodes (true or false; default is false)

	
zoom_url_suffix(Suffix)

extension for linked diagrams (an atom; default is '.svg')

In the particular case of cross-referencing diagrams, there are also the
options:

	
recursive_relations(Boolean)

print recursive predicate relations (true or false; default
is false)

	
url_line_references(Host)

syntax for the URL source file line part (an atom; possible values
are {github,gitlab,bitbucket}; default is github); when
using this option, the CodeURLPrefix should be a permanent link
(i.e. it should include the commit SHA1)

	
predicate_url_target_format(Generator)

documentation final format generator (an atom; default is
sphinx)

For directory and file diagrams the options are:

	
layout(Layout)

diagram layout (one of the atoms
{top_to_bottom,bottom_to_top,left_to_right,right_to_left};
default is top_to_bottom)

	
title(Title)

diagram title (an atom; default is '')

	
date(Boolean)

print current date and time (true or false; default is
true)

	
versions(Boolean)

print Logtalk and backend version data (true or false;
default is false)

	
directory_paths(Boolean)

print file directory paths (true or false; default is
false)

	
file_extensions(Boolean)

print file name extensions (true or false; default is
true)

	
path_url_prefixes(PathPrefix, CodeURLPrefix, DocURLPrefix)

code and documenting URL prefixes for a path prefix used when
generating cluster, directory, file, and entity links (atoms; no
default; can be specified multiple times)

	
url_prefixes(CodeURLPrefix, DocURLPrefix)

default URL code and documenting URL prefixes used when generating
cluster, library, file, and entity links (atoms; no default)

	
omit_path_prefixes(Prefixes)

omit common path prefixes when printing directory paths and when
constructing URLs (a list of atoms; default is a list with the user
home directory)

	
relation_labels(Boolean)

print entity relation labels (true or false; default is
false)

	
externals(Boolean)

print external nodes (true or false; default is true)

	
node_type_captions(Boolean)

print node type captions (true or false; default is
false)

	
output_directory(Directory)

directory for the .dot files (an atom; default is './dot_dias')

	
exclude_directories(Directories)

list of directories to exclude (default is [])

	
exclude_files(Files)

list of source files to exclude (default is [])

	
zoom(Boolean)

generate sub-diagrams and add links and zoom icons to library and
entity nodes (true or false; default is false)

	
zoom_url_suffix(Suffix)

extension for linked diagrams (an atom; default is '.svg')

For library diagrams the options are:

	
layout(Layout)

diagram layout (one of the atoms
{top_to_bottom,bottom_to_top,left_to_right,right_to_left};
default is top_to_bottom)

	
title(Title)

diagram title (an atom; default is '')

	
date(Boolean)

print current date and time (true or false; default is
true)

	
versions(Boolean)

print Logtalk and backend version data (true or false;
default is false)

	
directory_paths(Boolean)

print file directory paths (true or false; default is
false)

	
path_url_prefixes(PathPrefix, CodeURLPrefix, DocURLPrefix)

code and documenting URL prefixes for a path prefix used when
generating cluster, library, file, and entity links (atoms; no
default; can be specified multiple times)

	
url_prefixes(CodeURLPrefix, DocURLPrefix)

default URL code and documenting URL prefixes used when generating
cluster, library, file, and entity links (atoms; no default)

	
omit_path_prefixes(Prefixes)

omit common path prefixes when printing directory paths and when
constructing URLs (a list of atoms; default is a list with the user
home directory)

	
relation_labels(Boolean)

print entity relation labels (true or false; default is
false)

	
externals(Boolean)

print external nodes (true or false; default is true)

	
node_type_captions(Boolean)

print node type captions (true or false; default is
false)

	
output_directory(Directory)

directory for the .dot files (an atom; default is './dot_dias')

	
exclude_directories(Directories)

list of directories to exclude (default is [])

	
exclude_files(Files)

list of source files to exclude (default is [])

	
exclude_libraries(Libraries)

list of libraries to exclude (default is
[startup, scratch_directory])

	
zoom(Boolean)

generate sub-diagrams and add links and zoom icons to library and
entity nodes (true or false; default is false)

	
zoom_url_suffix(Suffix)

extension for linked diagrams (an atom; default is '.svg')

When using the zoom(true) option, the layout(Layout) option
applies only to the top diagram; sub-diagrams will use their own layout
default.

The option omit_path_prefixes(Prefixes) with a non-empty list of
prefixes should preferably be used together with the option
directory_paths(true) when generating library or file diagrams that
reference external libraries or files. To confirm the exact default
options used by each type of diagram, send the default_options/1
message to the diagram object.

Be sure to set the source_data flag on before compiling the
libraries or files for which you want to generated diagrams.

Support for displaying Prolog modules and Prolog module files in
diagrams of Logtalk applications:

	
ECLiPSe

file diagrams don’t display module files

	
SICStus Prolog

file diagrams don’t display module files

	
SWI-Prolog

full support (uses the SWI-Prolog prolog_xref library)

	
YAP

full support (uses the YAP prolog_xref library)

Linking diagrams

When using SVG output, it’s possible to generate diagrams that link to
other diagrams, to API documentation, and to source code repositories
(to both files and directories).

For generating links between diagrams, use the zoom(true) option.
This option allows (1) linking library diagrams to entity diagrams to
predicate cross-referencing diagrams and (2) linking directory diagrams
to file diagrams. The sub-diagrams are automatically generated. For
example, using the predicates that generate library diagrams will
automatically also generate the entity and predicate cross-referencing
diagrams.

To generate links to API documentation and source code repositories, use
the options path_url_prefixes/3 (or url_prefixes/2 for simpler
cases) and omit_path_prefixes/1. The idea is that the
omit_path_prefixes/1 option specifies local file prefixes that will
be cut and replaced by the URL prefixes (which can be path prefix
specific when addressing multiple code repositories). To generate local
file system URLs, define the empty atom, '', as a prefix. As an
example, consider the Logtalk library. Its source code is available from
a GitHub repository and its documentation is published in the Logtalk
website. The relevant URLs in this case are:

	https://github.com/LogtalkDotOrg/logtalk3/ (source code)

	https://logtalk.org/library/ (API documentation)

Git source code URLs should include the commit SHA1 to ensure that
entity and predicate file line information in the URLs remain valid if
the code changes in later commits. Assuming a GitHub variable bound
to the SHA1 commit URL we want to reference, an inheritance diagram can
be generated using the goal:

| ?- GitHub = 'https://github.com/LogtalkDotOrg/logtalk3/commit/eb156d46e135ac47ef23adcc5d20d49dd8b66abb',
 APIDocs = 'https://logtalk.org/library/',
 logtalk_load(diagrams(loader)),
 set_logtalk_flag(source_data, on),
 logtalk_load(library(all_loader)),
 inheritance_diagram::rlibrary(library, [
 title('Logtalk library'),
 node_type_captions(true),
 zoom(true),
 path_url_prefixes('$LOGTALKUSER/', GitHub, APIDocs),
 path_url_prefixes('$LOGTALKHOME/', GitHub, APIDocs),
 omit_path_prefixes(['$LOGTALKUSER/', '$LOGTALKHOME/', '$HOME/'])
]).

The two path_url_prefixes/3 options take care of source code and API
documentation for entities loaded either from the Logtalk installation
directory (whose location is given by the LOGTALKHOME environment
variable) or from the Logtalk user directory (whose location is given by
the LOGTALKUSER environment variable). As we also don’t want any
local operating-system paths to be exposed in the diagram, we use the
omit_path_prefixes/1 option to suppress those path prefixes, Note
that all the paths and URLs must end with a slash for proper handling.
The git library may be useful to retrieve the commit SHA1 from a
local repo directory.

For both path_url_prefixes/3 and omit_path_prefixes/1 options,
when a path prefix is itself a prefix of another path, the shorter path
must come last to ensure correct links.

See the SCRIPT.txt file in the tool directory for additional
examples. To avoid retyping such complex goals when updating diagrams,
use the doclet tool to save and reapply them easily (e.g. by using
the make tool with the documentation target).

Creating diagrams for Prolog module applications

Currently limited to SWI-Prolog and YAP Prolog module applications due
to the lack of a comprehensive reflection API in other Prolog systems.

Simply load your Prolog module application and its dependencies and then
use diagram entity, directory, or file predicates. Library diagram
predicates are not supported. See the SCRIPT.txt file in the tool
directory for some usage examples. Note that support for diagrams with
links to API documentation is quite limited, however, due to the lack of
Prolog standards.

Creating diagrams for plain Prolog files

This tool can also be used to create predicate cross-referencing
diagrams for plain Prolog files. For example, if the Prolog file is
named code.pl, simply define an object including its code:

:- object(code).
 :- include('code.pl').
:- end_object.

Save the object to an e.g. code.lgt file in the same directory as
the Prolog file and then load it and create the diagram:

| ?- logtalk_load(code),
 xref_diagram::entity(code).

An alternative is to use the object_wrapper_hook provided by the
hook_objects library:

| ?- logtalk_load(hook_objects(loader)).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook)]),
 xref_diagram::entity(code).

Other notes

Generating complete diagrams requires that all referenced entities are
loaded. When that is not the case, notably when generating
cross-referencing diagrams, missing entities can result in incomplete
diagrams.

When generating entity predicate call cross-reference diagrams, caller
nodes are not created for auxiliary predicates. For example, if the
meta_compiler library is used to optimize meta-predicates calls, the
diagrams may show predicates that are not apparently called by any other
predicate when the callers are from the optimized meta-predicate goals
(which are called via library generated auxiliary predicates). A
workaround in this case would be creating a dedicated loader file that
doesn’t load (and apply) the meta_compiler library when generating
the diagrams.

The zoom icons, zoom.png and zoom.svg have been designed by Xinh
Studio:

https://www.iconfinder.com/xinhstudio

Currently, only the zoom.png file is used. A copy of this file must
exist in any directory used for publishing diagrams using it. The
lgt2svg scripts take care of copying this file.

When generating diagrams in SVG format, a copy of the diagrams.css
file must exist in any directory used for publishing diagrams using it.
The lgt2svg scripts also take care of copying this file.

The Graphviz command-line utilities, e.g. dot, are notorious for
random crashes (segmentation faults usually), often requiring re-doing
conversions from .dot files to other formats. A possible workaround
is to repeat the command until it completes without error. See for
example the lgt2svg.sh script.

doclet

This folder provides a simple tool for (re)generating documentation for
a project. The tool defines a doclet object that is expected to be
extended by the user to specify a sequence of goals and a sequence of
shell commands that load the application and (re)generate its
documentation.

Doclet source files are preferably named doclet.lgt (or
doclet.logtalk) and the doclet object are usually named after the
application or library to be documented with a _doclet suffix. By
using an initialization/1 directive to automatically send the
update/0 message that generates the documentation upon doclet
loading, we can abstract the name of the doclet object. The usual query
to load and run a doclet is therefore:

| ?- logtalk_load([doclet(loader), doclet]).

For usage examples see the sample_doclet.lgt, doclet1.lgt,
zoom_doclet.lgt, and tools_doclet.lgt source files.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#doclet

For sample queries, please see the SCRIPT.txt file in the tool
directory.

Loading

This tool can be loaded using the query:

| ?- logtalk_load(doclet(loader)).

Automating running doclets

You can use the scripts/logtalk_doclet.sh Bash shell script for
automating running doclets. The script expects the doclet source files
to be named either doclet.lgt or doclet.logtalk. See the
scripts/NOTES.md file or the script man page for details.

Integration with the make tool

Loading this tool adds a definition for the
logtalk_make_target_action/1 hook predicate for the target
documentation. The hook definition sends an update/0 message to
each loaded doclet.

help

This tool provides basic on-line help for Logtalk features and libraries
when running in most operating-systems. For help on the Logtalk compiler
error and warning messages, see the tutor tool.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#help

For sample queries, please see the SCRIPT.txt file in the tool
directory.

Loading

| ?- logtalk_load(help(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(help(tester)).

Supported operating-systems

Currently, support is limited to Linux, macOS, and Windows.

On Windows, the start command must be available. On Linux, the
xdg-open command must be available. On macOS, the command open
is used.

This tool relies on the library portable operating-system access
abstraction.

Usage

After loading the tool, use the query help::help to get started.

Experimental features

On POSIX systems, when using Ciao Prolog, ECLiPSe, GNU Prolog (1.5.1 or
later version), LVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, or XSB
as the backend, apis/1 and handbook/0-1 predicates are made
available. These predicates open inline at the top-level interpreter the
Texinfo versions of the Handbook and the APIs documentation. The
optional argument is a starting node, which can be an atom, a predicate
indicator, or a non-terminal indicator. When there are several nodes for
the same argument (e.g. multiple implementations of the member/2
predicate), one of them will be displayed. Some examples:

| ?- help::handbook.

| ?- help::handbook(base64).

| ?- help::handbook(logtalk_load/2).

| ?- help::apis.

| ?- help::apis(check/2).

| ?- help::apis(message_tokens//2).

Although less useful, you can also browse the man pages of Logtalk
scripts. For example:

| ?- help::man(logtalk_tester).

When you finish consult the documentation and quit the info process,
you will be back to the top-level prompt (if you find that the top-level
have scrolled from its last position, try to set your terminal terminfo
to xterm-256colour).

If you’re running Logtalk from a git clone of its repo, you will need to
run the scripts/update_html_docs.sh or
scripts/update_html_docs.ps1 scripts to generate the APIs
documentation .info file and also run the
manuals/sources/build_manuals.sh or
manuals/sources/build_manuals.ps1 scripts to generated the Handbook
.info file. In alternative, you can download the .info files for
the latest stable release from the Logtalk website and save them to the
docs and manuals directories.

The required info command is provided by the third-party texinfo
package (tested with version 6.8). On macOS, this package can be
installed with either MacPorts:

$ sudo port install texinfo

Or using Homebrew:

$ brew install texinfo

On Linux systems, use the distribution own package manager to install
the texinfo package. For example, in Ubuntu systems:

$ sudo apt install info

Known issues

The open commands used to open documentation URLs drop the fragment
part, thus preventing navigating to the specified position on the
documentation page.

ECLiPSe defines a help prefix operator that forces wrapping this
atom between parenthesis when sending messages to the tool. E.g. use
(help)::help instead of help::help.

issue_creator

This is a complementary tool for the lgtunit tool for automatically
creating bug report issues for failed tests in GitHub or GitLab servers.

Requirements

This tool requires that the GitHub and GitLab CLIs be installed. For the
installation instructions see:

	GitHub: https://cli.github.com

	GitLab: https://glab.readthedocs.io

Loading

This tool can be loaded using the query:

| ?- logtalk_load(issue_creator(loader)).

But in the most common usage scenario, this tool is automatically loaded
by the logtalk_tester automation script.

Usage

The logtalk_tester automation script accepts a -b option for
automatically using this tool (see the script man page for details). In
the most simple case, this option possible values are github and
gitlab. For example:

$ logtalk_tester \
 -p gnu \
 -b github \
 -s "/home/jdoe/foo/" \
 -u https://github.com/jdoe/foo/tree/55aa900775befa135e0d5b48ea63098df8b97f5c/

The logtalk_tester script must be called from a git repo
directory or one of its sub-directories, which is a common setup in
CI/CD pipelines. Moreover, prior to running the tests, the CLI must be
used, if required, to authenticate and login to the server where the bug
report issues will be created:

	GitHub:
gh auth login --hostname <string> --with-token < token.txt

	GitLab: glab auth login --hostname <string> --token <string>

The access token must ensure the necessary scopes that allow bug reports
to be created. See the CLIs documentation for details. Typically, the
auth command is called from the CI/CD pipeline definition scripts.
However, depending on the CI/CD workflow, the authentication may be done
implicitly.

The bug reports are created using by default the label bug and
assigned to the author of the latest commit of the git repo. The -b
option can also be used to override the label with a comma separated set
of labels. For example, to use both bug and auto labels:

$ logtalk_tester \
 -p gnu \
 -b github:bug,auto \
 -s "/home/jdoe/foo/" \
 -u https://github.com/jdoe/foo/tree/55aa900775befa135e0d5b48ea63098df8b97f5c/

Note that the labels must be predefined in the issue tracker server
for the bug report to be successfully created.

The bug reports use Markdown formatting, which is the default in GitHub
and GitLab issue trackers.

But reports are only created for non-flaky tests. The bug report title
and labels are used to prevent creating duplicated bug reports.
Therefore, the same labels should be used for multiple runs of the same
tests and preserved when editing the bug reports.

There are cases where we may want to postpone or temporarily disable the
automatic creation of bug reports. E.g. a WIP branch that’s known to
break multiple tests. A solution is to define a pull/merge request
label, e.g. NO_AUTO_BUG_REPORTS, that can then be checked by the
CI/CD workflow. For example, we can test the presence of that label to
set a AUTO_BUG_REPORTS environment variable to either an empty
string or a -b option and use:

logtalk_tester.sh $AUTO_BUG_REPORTS -p ...

Known issues

GitLab creates CI/CD pipelines in a detached HEAD state. As a
consequence, the bug reports always show “Git branch: HEAD”.

This tool is in a beta stage of development. Your feedback is most
appreciated.

lgtdoc

This is the default Logtalk documenting tool for generating API
documentation for libraries and applications. It uses the structural
reflection API to extract and output in XML format relevant
documentation about a source file, a library or directory of source
files, or all loaded source files. The tool predicates accept several
options for generating the XML files, including the output directory.

The lgtdoc/xml directory contains several ready to use Bash and
PowerShell scripts for converting the XML documenting files into final
formats including (X)HTML, PDF, Markdown, and reStructuredText (for use
with Sphinx), or plain text files. The scripts are described in their
man pages and made available in the system path by default. See also
the lgtdoc/xml/NOTES.md for details, including the required
third-party software.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#lgtdoc

Loading

This tool can be loaded using the query:

| ?- logtalk_load(lgtdoc(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(lgtdoc(tester)).

Documenting source code

For information on documenting your source code, notably on documenting
directives, consult the documenting section of the User Manual:

../../manuals/userman/documenting.html

Extracting documenting information from your source code using with this
tool requires compiling the source files using the source_data(on)
compiler flag. For example:

| ?- logtalk_load(source_file, [source_data(on)]).

Usually, this flag is set for all application source files in the
corresponding loader file. In alternative, you may also turn on the
source_data flag globally by typing:

| ?- set_logtalk_flag(source_data, on).

The tool API allows generating documentation for libraries, directories,
and files, complemented with library, directory, entity, and predicate
indexes. Note that the source files to be documented must be loaded
prior to using this tool predicates to generate the documentation.

Generating documentation

For a simple application, assuming a library alias is defined for it
(e.g. my_app), and at the top-level interpreter, we can generate the
application documentation by typing:

| ?- {my_app(loader)}.
...

| ?- {lgtdoc(loader)}.
...

| ?- lgtdoc::library(my_app).
...

By default, the documenting XML files are created in a xml_docs
directory in the current working directory. But usually all documenting
files are collected for both the application and the libraries it uses
in a common directory so that all documentation links resolved properly.
The lgtdoc predicates can take a list of options to customize the
generated XML documenting files. See the remarks section in the
lgtdocp [https://logtalk.org/docs/library_index.html#lgtdoc]
protocol documentation for details on the available options.

After generating the XML documenting files, these can be easily
converted into final formats using the provided scripts. For example,
assuming that we want to generate HTML documentation:

$ cd xml_docs
$ lgt2html -t "My app"

To generate the documentation in Sphinx format instead (as used by
Logtalk itself for its APIs):

$ cd xml_docs
$ lgt2rst -s -- -q -p "Application name" -a "Author name" -v "Version X.YZ.P"
$ make html

In this case, the generated documentation will be in the
xml_docs/_build/html/ directory. See the scripts man pages or call
them using the -h option to learn more about their supported
options.

For more complex applications, you can use the doclet tool to define
a doclet to automate all the steps required to generate documentation.
The doclet message that triggers the process can also be sent
automatically when the make tool is used with the documentation
target.

Documentation linter checks

When the lgtdoc_missing_directives flag is set to warning (its
usual default value), the lgtdoc tool prints warnings on missing
entity info/1 directives and missing predicate info/2 and
mode/2 directives.

When the lgtdoc_missing_info_key flag is set to warning (its
usual default value), the lgtdoc tool prints warnings on entity
info/1 directive and predicate info/2 directive missing de facto
required keys (e.g comment, parameters or parnames for
parametric entities, arguments or argnames for
predicates/non-terminals with arguments).

When the lgtdoc_invalid_dates flag is set to warning (its usual
default value), the lgtdoc tool prints warnings on invalid dates
(including dates in the future) in info/1 directives.

When the lgtdoc_non_standard_exceptions flag is set to warning
(its usual default value), the lgtdoc tool prints warnings on
non-standard exceptions. This linter check is particularly effective in
detecting typos when specifying standard exceptions.

When the lgtdoc_missing_punctuation flag is set to warning (its
usual default value), the lgtdoc tool prints warnings on missing
ending periods (full stops), exclamation marks, or question marks in
info/1-2 directives (in comments, remarks, parameter descriptions,
and argument descriptions).

Set a flag value to silent to turn off the corresponding linter
warnings.

lgtunit

The lgtunit tool provides testing support for Logtalk. It can also
be used for testing plain Prolog code and Prolog module code.

This tool is inspired by the xUnit frameworks architecture and by the
works of Joachim Schimpf (ECLiPSe library test_util) and Jan
Wielemaker (SWI-Prolog plunit package).

Tests are defined in objects, which represent a test set or test
suite. In simple cases, we usually define a single object containing
the tests. But it is also possible to use parametric test objects or
multiple objects defining parametrizable tests or test subsets for
testing more complex units and facilitate tests maintenance. Parametric
test objects are specially useful to test multiple implementations of
the same protocol using a single set of tests by passing the
implementation object as a parameter value.

Main files

The lgtunit.lgt source file implements a framework for defining and
running unit tests in Logtalk. The lgtunit_messages.lgt source file
defines the default translations for the messages printed when running
unit tests. These messages can be intercepted to customize output, e.g.
to make it less verbose, or for integration with e.g. GUI IDEs and
continuous integration servers.

Other files part of this tool provide support for alternative output
formats of test results and are discussed below.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#lgtunit

Loading

This tool can be loaded using the query:

| ?- logtalk_load(lgtunit(loader)).

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(lgtunit(tester)).

Writing and running tests

In order to write your own unit tests, define objects extending the
lgtunit object. You may start by copying the tests-sample.lgt
file (at the root of the Logtalk distribution) to a tests.lgt file
in your project directory and edit it to add your tests:

:- object(tests,
 extends(lgtunit)).

 % test definitions
 ...

:- end_object.

The section on test dialects below describes in
detail how to write tests. See the tests top directory for examples
of actual unit tests. Other sources of examples are the library and
examples directories.

The tests must be term-expanded by the lgtunit object by compiling
the source files defining the test objects using the option
hook(lgtunit). For example:

| ?- logtalk_load(lgtunit(loader)),
 logtalk_load(tests, [hook(lgtunit)]).

As the term-expansion mechanism applies to all the contents of a source
file, the source files defining the test objects should preferably not
contain entities other than the test objects. Additional code necessary
for the tests should go to separate files. In general, the tests
themselves can be compiled in optimized mode. Assuming that’s the
case, also use the optimize(on) compiler option for faster tests
execution.

The term-expansion performed by the lgtunit object sets the test
object source_data flag to on and the
context_switching_calls flag to allow for code coverage and
debugging support. But these settings can always be overriden in the
test objects.

The tester-sample.lgt file (at the root of the Logtalk distribution)
exemplifies how to compile and load lgtunit tool, the source code
under testing, the unit tests, and for automatically run all the tests
after loading:

:- initialization((
 % minimize compilation reports to the essential ones (errors and warnings)
 set_logtalk_flag(report, warnings),
 % load any necessary library files for your application; for example
 logtalk_load(basic_types(loader)),
 % load the unit test tool
 logtalk_load(lgtunit(loader)),
 % load your application files (e.g. "source.lgt") enabling support for
 % code coverage, which requires compilation in debug mode and collecting
 % source data information; if code coverage is not required, remove the
 % "debug(on)" option for faster execution
 logtalk_load(source, [source_data(on), debug(on)]),
 % compile the unit tests file expanding it using "lgtunit" as the hook
 % object to preprocess the tests; if you have failing tests, add the
 % option debug(on) to debug them (see "tools/lgtunit/NOTES.md" for
 % debugging advice); tests should be loaded after the code being tested
 % is loaded to avoid warnings such as references to unknown entities
 logtalk_load(tests, [hook(lgtunit)]),
 % run all the unit tests; assuming your tests object is named "tests"
 tests::run
)).

You may copy this sample file to a tester.lgt file in your project
directory and edit it to load your project and tests files. The
logtalk_tester testing automation script defaults to look for test
driver files named tester.lgt or tester.logtalk (if you have
work-in-progress test sets that you don’t want to run by default, simply
use a different file name such as tester_wip.lgt; you can still run
them automated by using logtalk_tester -n tester_wip).

Debugged test sets should preferably be compiled in optimal mode,
specially when containing deterministic tests and when using the utility
benchmarking predicates.

Assuming a tester.lgt driver file as exemplified above, the tests
can be run by simply loading this file:

| ?- logtalk_load(tester).

Assuming your test object is named tests, you can re-run the tests
by typing:

| ?- tests::run.

You can also re-run a single test (or a list of tests) using the
run/1 predicate:

| ?- tests::run(test_identifier).

When testing complex units, it is often desirable to split the tests
between several test objects or using parametric test objects to be able
to run the same tests using different parameters (e.g. different data
sets or alternative implementations of the same protocol). In this case,
you can run all test subsets using the goal:

| ?- lgtunit::run_test_sets([test_set_1, test_set_2, ...]).

where the run_test_sets/1 predicate argument is a list of two or
more test object identifiers. This predicate makes possible to get a
single code coverage report that takes into account all the tests.

It’s also possible to automatically run loaded tests when using the
make tool by calling the goal that runs the tests from a definition
of the hook predicate logtalk_make_target_action/1. For example, by
adding to the tests tester.lgt driver file the following code:

% integrate the tests with logtalk_make/1
:- multifile(logtalk_make_target_action/1).
:- dynamic(logtalk_make_target_action/1).

logtalk_make_target_action(check) :-
 tests::run.

Alternatively, you can define the predicate make/1 inside the test
set object. For example:

:- object(tests, extends(lgtunit)).

 make(check).
 ...

:- end_object.

This clause will cause all tests to be run when calling the
logtalk_make/1 predicate with the target check (or its top-level
shortcut, {?}). The other possible target is all (with top-level
shortcut {*}).

Note that you can have multiple test driver files. For example, one
driver file that runs the tests collecting code coverage data and a
quicker driver file that skips code coverage and compiles the code to be
tested in optimized mode.

Automating running tests

You can use the scripts/logtalk_tester.sh Bash shell script or the
scripts/logtalk_tester.ps1 PowerShell script for automating running
unit tests (e.g. from a CI/CD pipeline). For example, assuming your
current directory (or sub-directories) contain one or more
tester.lgt files:

$ logtalk_tester -p gnu

The only required argument is the identifier of the backend Prolog
system. For other options, see the scripts/NOTES.md file or type:

$ logtalk_tester -h

On POSIX systems, you can also access extended documentation by
consulting the script man page:

$ man logtalk_tester

The scripts support the same set of options but the option for passing
additional arguments to the tests use different syntax. For example:

$ logtalk_tester -p gnu -- foo bar baz

PS> logtalk_tester -p gnu -a foo,bar,baz

On POSIX systems, assuming Logtalk was installed using one of the
provided installers or installation scripts, there is also a man
page for the script:

$ man logtalk_tester

Alternatively, an HTML version of this man page can be found at:

https://logtalk.org/man/logtalk_tester.html

The logtalk_tester.ps1 PowerShell script timeout option requires
that Git for Windows is also installed as it requires the GNU timeout
command bundled with it.

In alternative to using the logtalk_tester.ps1 PowerShell script,
the Bash shell version of the automation script can also be used in
Windows operating-systems with selected backends by using the Bash shell
included in the Git for Windows installer. That requires defining a
.profile file setting the paths to the Logtalk scripts and the
Prolog backend executables. For example:

$ cat ~/.profile
YAP
export PATH="/C/Program Files/Yap64/bin":$PATH
GNU Prolog
export PATH="/C/GNU-Prolog/bin":$PATH
SWI/Prolog
export PATH="/C/Program Files/swipl/bin":$PATH
ECLiPSe
export PATH="/C/Program Files/ECLiPSe 7.0/lib/x86_64_nt":$PATH
SICStus Prolog
export PATH="/C/Program Files/SICStus Prolog VC16 4.6.0/bin":$PATH
Logtalk
export PATH="$LOGTALKHOME/scripts":"$LOGTALKHOME/integration":$PATH

The Git for Windows installer also includes GNU coreutils and its
timeout command, which is used by the logtalk_tester script
-t option.

Note that some tests may give different results when run from within the
Bash shell compared with running the tests manually using a Windows GUI
version of the Prolog backend. Some backends may also not be usable for
automated testing due to the way their are made available as Windows
applications.

Additional advice on testing and on automating testing using continuous
integration servers can be found at:

https://logtalk.org/testing.html

Parametric test objects

Parameterized unit tests can be easily defined by using parametric test
objects. A typical example is testing multiple implementations of the
same protocol. In this case, we can use a parameter to pass the specific
implementation being tested. For example, assume that we want to run the
same set of tests for the library random_protocol protocol. We can
write:

:- object(tests(_RandomObject_),
 extends(lgtunit)).

 :- uses(_RandomObject_, [
 random/1, between/3, member/2,
 ...
]).

 test(between_3_in_interval) :-
 between(1, 10, Random),
 1 =< Random, Random =< 10.

 ...

:- end_object.

We can then test a specific implementation by instantiating the
parameter. For example:

| ?- tests(fast_random)::run.

Or use the lgtunit::run_test_sets/1 predicate to test all the
implementations:

| ?- lgtunit::run_test_sets([
 tests(backend_random),
 tests(fast_random),
 tests(random)
]).

Test dialects

Multiple test dialects are supported by default. See the next section
on how to define your own test dialects. In all dialects, a ground
callable term, usually an atom, is used to uniquely identify a test.
This simplifies reporting failed tests and running tests selectively. An
error message is printed if invalid or duplicated test identifiers are
found. These errors must be corrected otherwise the reported test
results can be misleading. Ideally, tests should have descriptive names
that clearly state the purpose of the test and what is being tested.

Unit tests can be written using any of the following predefined
dialects:

test(Test) :- Goal.

This is the most simple dialect, allowing the specification of tests
that are expected to succeed. The argument of the test/1 predicate
is the test identifier, which must be unique. A more versatile dialect
is:

succeeds(Test) :- Goal.
deterministic(Test) :- Goal.
fails(Test) :- Goal.
throws(Test, Ball) :- Goal.
throws(Test, Balls) :- Goal.

This is a straightforward dialect. For succeeds/1 tests, Goal is
expected to succeed. For deterministic/1 tests, Goal is expected
to succeed once without leaving a choice-point. For fails/1 tests,
Goal is expected to fail. For throws/2 tests, Goal is
expected to throw the exception term Ball or one of the exception
terms in the list Balls. The specified exception must subsume the
actual exception for the test to succeed.

An alternative test dialect that can be used with more expressive power
is:

test(Test, Outcome) :- Goal.

The possible values of the outcome argument are:

	
true

The test is expected to succeed.

	
true(Assertion)

The test is expected to succeed and satisfy the Assertion goal.

	
deterministic

The test is expected to succeed once without leaving a
choice-point.

	
deterministic(Assertion)

The test is expected to succeed once without leaving a choice-point
and satisfy the Assertion goal.

	
subsumes(Expected, Result)

The test is expected to succeed binding Result to a term that
is subsumed by the Expected term.

	
variant(Term1, Term2)

The test is expected to succeed binding Term1 to a term that is
a variant of the Term2 term.

	
exists(Assertion)

A solution exists for the test goal that satisfies the
Assertion goal.

	
all(Assertion)

All test goal solutions satisfy the Assertion goal.

	
fail

The test is expected to fail.

	
false

The test is expected to fail.

	
error(Error)

The test is expected to throw the exception term
error(ActualError, _) where ActualError is subsumed
Error.

	
errors(Errors)

The test is expected to throw an exception term
error(ActualError, _) where ActualError is subsumed by an
element of the list Errors.

	
ball(Ball)

The test is expected to throw the exception term ActualBall
where ActualBall is subsumed Ball.

	
balls(Balls)

The test is expected to throw an exception term ActualBall
where ActualBall is subsumed by an element of the list
Balls.

In the case of the true(Assertion), deterministic(Assertion),
and all(Assertion) outcomes, a message that includes the assertion
goal is printed for assertion failures and errors to help to debug
failed unit tests. Same for the subsumes(Expected, Result) and
variant(Term1, Term2) assertions. Note that this message is only
printed when the test goal succeeds as its failure will prevent the
assertion goal from being called. This allows distinguishing between
test goal failure and assertion failure.

Note that the all(Assertion) outcome simplifies pinpointing which
test goal solution failed the assertion. See also the section below on
testing non-deterministic predicates.

The fail and false outcomes are better reserved to cases where
there is a single test goal. With multiple test goals, the test will
succeed when any of those goals fail.

Some tests may require individual condition, setup, or cleanup goals. In
this case, the following alternative test dialect can be used:

test(Test, Outcome, Options) :- Goal.

The currently supported options are (non-recognized options are
ignored):

	
condition(Goal)

Condition for deciding if the test should be run or skipped
(default goal is true).

	
setup(Goal)

Setup goal for the test (default goal is true).

	
cleanup(Goal)

Cleanup goal for the test (default goal is true).

	
flaky

Declare the test as a flaky test.

	
note(Term)

Annotation to print (between parenthesis by default) after the test
result (default is ''); the annotation term can share variables
with the test goal, which can be used to pass additional
information about the test result.

Also supported is QuickCheck testing where random tests are
automatically generated and run given a predicate mode template with
type information for each argument (see the section below for more
details):

quick_check(Test, Template, Options).
quick_check(Test, Template).

The valid options are the same as for the test/3 dialect plus all
the supported QuickCheck specific options (see the QuickCheck section
below for details).

For examples of how to write unit tests, check the tests folder or
the testing example in the examples folder in the Logtalk
distribution. Most of the provided examples also include unit tests,
some of them with code coverage.

User-defined test dialects

Additional test dialects can be easily defined by extending the
lgtunit object and by term-expanding the new dialect into one of the
default dialects. As an example, suppose that you want a dialect where
you can simply write a file with tests defined by clauses using the
format:

test_identifier :-
 test_goal.

First, we define an expansion for this file into a test object:

:- object(simple_dialect,
 implements(expanding)).

 term_expansion(begin_of_file, [(:- object(tests,extends(lgtunit)))]).
 term_expansion((Head :- Body), [test(Head) :- Body]).
 term_expansion(end_of_file, [(:- end_object)]).

:- end_object.

Then we can use this hook object to expand and run tests written in this
dialect by using a tester.lgt driver file with contents such as:

:- initialization((
 set_logtalk_flag(report, warnings),
 logtalk_load(lgtunit(loader)),
 logtalk_load(library(hook_flows_loader)),
 logtalk_load(simple_dialect),
 logtalk_load(tests, [hook(hook_pipeline([simple_dialect,lgtunit]))]),
 tests::run
)).

The hook pipeline first applies our simple_dialect expansion
followed by the default lgtunit expansion. This solution allows
other hook objects (e.g. required by the code being tested) to also be
used by updating the pipeline.

QuickCheck

QuickCheck was originally developed for Haskell. Implementations for
several other programming languages soon followed. QuickCheck provides
support for property-based testing. The idea is to express properties
that predicates must comply with and automatically generate tests for
those properties. The lgtunit tool supports both quick_check/2-3
test dialects, as described above, and quick_check/1-3 public
predicates for interactive use:

quick_check(Template, Result, Options).
quick_check(Template, Options).
quick_check(Template).

The following options are supported:

	n/1: number of random tests that will be generated and run
(default is 100).

	s/1: maximum number of shrink operations when a counter-example
is found (default is 64).

	ec/1: boolean option deciding if type edge cases are tested
before generating random tests (default is true).

	rs/1: starting seed to be used when generating the random tests
(no default).

	pc/1: pre-condition closure for generated tests (extended with
the test arguments; no default).

	l/1: label closure for classifying the generated tests (extended
with the test arguments plus the label argument; no default).

	v/1: boolean option for verbose reporting of generated random
tests (default is false).

	pb/2: progress bar option for executed random tests when the
verbose option is false (first argument is a boolean, default is
false; second argument is the tick number, a positive integer).

The quick_check/1 predicate uses the default option values. The
quick_check/1-2 predicates print the test results and are thus
better reserved for testing at the top-level interpreter. The
quick_check/3 predicate returns results in reified form:

	passed(SequenceSeed, Discarded, Labels)

	failed(Goal, SequenceSeed, TestSeed)

	error(Error, Goal, SequenceSeed, TestSeed)

	broken(Why, Culprit)

The broken(Why, Culprit) result only occurs when the user-defined
testing setup is broken. For example, a non-callable template (e.g. a
non-existing predicate), an invalid option, a problem with the
pre-condition closure or with the label closure (e.g. a pre-condition
that always fails or a label that fails to classify a generated test),
or errors/failures when generating tests (e.g. due to an unknown type
being used in the template or a broken custom type arbitrary value
generator).

The Goal argument is the random test that failed.

The SequenceSeed argument is the starting seed used to generate the
sequence of random tests. The TestSeed is the seed used to generate
the test that failed. Both seems should be regarded as opaque terms.
When the test seed equal to the sequence seed, this means means that the
failure or error occurred while using only type edge cases. See below
how to use the seeds when testing bug fixes.

The Discarded argument returns the number of generated tests that
were discarded for failing to comply a pre-condition specified using the
pc/1 option. This option is specially useful when constraining or
enforcing a relation between the generated arguments and is often used
as an alternative to define a custom type. For example, if we define the
following predicate:

condition(I) :-
 between(0, 127, I).

we can then use it to filter the generated tests:

| ?- lgtunit::quick_check(integer(+byte), [pc(condition)]).
% 100 random tests passed, 94 discarded
% starting seed: seed(416,18610,17023)
yes

The Labels argument returns a list of pairs Label-N where N
is the number of generated tests that are classified as Label by a
closure specified using the l/1 option. For example, assuming the
following predicate definition:

label(I, Label) :-
 (I mod 2 =:= 0 ->
 Label = even
 ; Label = odd
).

we can try:

| ?- lgtunit::quick_check(integer(+byte), [l(label), n(10000)]).
% 10000 random tests passed, 0 discarded
% starting seed: seed(25513,20881,16407)
% even: 5037/10000 (50.370000%)
% odd: 4963/10000 (49.630000%)
yes

The label statistics are key to verify that the generated tests provide
the necessary coverage. The labelling predicates can return a single
test label or a list of test labels. Labels should be ground and are
typically atoms. To examine the generated tests themselves, you can use
the verbose option, v/1. For example:

| ?- lgtunit::quick_check(integer(+integer), [v(true), n(7), pc([I]>>(I>5))]).
% Discarded: integer(0)
% Passed: integer(786)
% Passed: integer(590)
% Passed: integer(165)
% Discarded: integer(-412)
% Passed: integer(440)
% Discarded: integer(-199)
% Passed: integer(588)
% Discarded: integer(-852)
% Discarded: integer(-214)
% Passed: integer(196)
% Passed: integer(353)
% 7 random tests passed, 5 discarded
% starting seed: seed(23671,3853,29824)
yes

When a counter-example is found, the verbose option also prints the
shrink steps. For example:

| ?- lgtunit::quick_check(atom(+atomic), [v(true), ec(false)]).
% Passed: atom('dyO=Xv_MX-3b/U4KH U')
* Failure: atom(-198)
* Shrinked: atom(-99)
* Shrinked: atom(-49)
* Shrinked: atom(-24)
* Shrinked: atom(-12)
* Shrinked: atom(-6)
* Shrinked: atom(-3)
* Shrinked: atom(-1)
* Shrinked: atom(0)
* quick check test failure (at test 2 after 8 shrinks):
* atom(0)
* starting seed: seed(3172,9814,20125)
* test seed: seed(7035,19506,18186)
no

The template can be a (::)/2, (<<)/2, or (:)/2 qualified
callable term. When the template is an unqualified callable term, it
will be used to construct a goal to be called in the context of the
sender using the (<<)/2 debugging control construct. Another
simple example by passing a template that will trigger a failed test (as
the random::random/1 predicate always returns non-negative floats):

| ?- lgtunit::quick_check(random::random(-negative_float)).
* quick check test failure (at test 1 after 0 shrinks):
* random::random(0.09230089279334841)
* starting seed: seed(3172,9814,20125)
* test seed: seed(3172,9814,20125)
no

When QuickCheck exposes a bug in the tested code, we can use the
reported counter-example to help diagnose it and fix it. As tests are
randomly generated, we can use the starting seed reported with the
counter-example to confirm the bug fix by calling the
quick_check/2-3 predicates with the rs(Seed) option. For
example, assume the following broken predicate definition:

every_other([], []).
every_other([_, X| L], [X | R]) :-
 every_other(L, R).

The predicate is supposed to construct a list by taking every other
element of an input list. Cursory testing may fail to notice the bug:

| ?- every_other([1,2,3,4,5,6], List).
List = [2, 4, 6]
yes

But QuickCheck will report a bug with lists with an odd number of
elements with a simple property that verifies that the predicate always
succeed and returns a list of integers:

| ?- lgtunit::quick_check(every_other(+list(integer), -list(integer))).
* quick check test failure (at test 2 after 0 shrinks):
* every_other([0],A)
* starting seed: seed(3172,9814,20125)
* test seed: seed(3172,9814,20125)
no

We could fix this particular bug by rewriting the predicate:

every_other([], []).
every_other([H| T], L) :-
 every_other(T, H, L).

every_other([], X, [X]).
every_other([_| T], X, [X| L]) :-
 every_other(T, L).

By retesting with the same test seed that uncovered the bug, the same
random test that found the bug will be generated and run again:

| ?- lgtunit::quick_check(
 every_other(+list(integer), -list(integer)),
 [rs(seed(3172,9814,20125))]
).
% 100 random tests passed, 0 discarded
% starting seed: seed(3172,9814,20125)
yes

Still, after verifying the bug fix, is also a good idea to re-run the
tests using the sequence seed instead as bug fixes sometimes cause
regressions elsewhere.

When retesting using the logtalk_tester automation script, the
starting seed can be set using the -r option. For example:

$ logtalk_tester -r "seed(3172,9814,20125)"

We could now move to other properties that the predicate should comply
(e.g. all elements in the output list being present in the input list).
Often, both traditional unit tests and QuickCheck tests are used,
complementing each other to ensure the required code coverage.

Another example using a Prolog module predicate:

| ?- lgtunit::quick_check(
 pairs:pairs_keys_values(
 +list(pair(atom,integer)),
 -list(atom),
 -list(integer)
)
).
% 100 random tests passed, 0 discarded
% starting seed: seed(3172,9814,20125)
yes

As illustrated by the examples above, properties are expressed using
predicates. In the most simple cases, that can be the predicate that we
are testing itself. But, in general, it will be an auxiliary predicate
calling the predicate or predicates being tested and checking properties
that the results must comply with.

The QuickCheck test dialects and predicates take as argument the mode
template for a property, generate random values for each input argument
based on the type information, and check each output argument. For
common types, the implementation tries first (by default) common edge
cases (e.g. empty atom, empty list, or zero) before generating arbitrary
values. When the output arguments check fails, the QuickCheck
implementation tries (by default) up to 64 shrink operations of the
counter-example to report a simpler case to help debugging the failed
test. Edge cases, generating of arbitrary terms, and shrinking terms
make use of the library arbitrary category via the type object
(both entities can be extended by the user by defining clauses for
multifile predicates).

The mode template syntax is the same used in the info/2 predicate
directives with an additional notation, {}/1, for passing argument
values as-is instead of generating random values for these arguments.
For example, assume that we want to verify the type::valid/2
predicate, which takes as first argument a type. Randomly generating
random types would be cumbersome at best but the main problem is that we
need to generate random values for the second argument according to the
first argument. Using the {}/1 notation we can solve this problem
for any specific type, e.g. integer, by writing:

| ?- lgtunit::quick_check(type::valid({integer}, +integer)).

We can also test all (ground, i.e. non-parametric) types with arbitrary
value generators by writing:

| ?- forall(
 (type::type(Type), ground(Type), type::arbitrary(Type)),
 lgtunit::quick_check(type::valid({Type}, +Type))
).

You can find the list of the basic supported types for using in the
template in the API documentation for the library entities type and
arbitrary. Note that other library entities, including third-party
or your own, can contribute with additional type definitions as both
type and arbitrary entities are user extensible by defining
clauses for their multifile predicates.

The user can define new types to use in the property mode templates to
use with its QuickCheck tests by defining clauses for the type
library object and the arbitrary library category multifile
predicates. QuickCheck will use the later to generate arbitrary input
arguments and the former to verify output arguments. As a toy example,
assume that the property mode template have an argument of type bit
with possible values 0 and 1. We would then need to define:

:- multifile(type::type/1).
type::type(bit).

:- multifile(type::check/2).
type::check(bit, Term) :-
 once((Term == 0; Term == 1)).

:- multifile(arbitrary::arbitrary/1).
arbitrary::arbitrary(bit).

:- multifile(arbitrary::arbitrary/2).
arbitrary::arbitrary(bit, Arbitrary) :-
 random::member(Arbitrary, [0, 1]).

Skipping tests

A test object can define the condition/0 predicate (which defaults
to true) to test if some necessary condition for running the tests
holds. The tests are skipped if the call to this predicate fails or
generates an error.

Individual tests that for some reason should be unconditionally skipped
can have the test clause head prefixed with the (-)/1 operator. For
example:

- test(not_yet_ready) :-
 ...

In this case, it’s a good idea to use the test/3 dialect with a
note/1 option that briefly explains why the test is being skipped.
For example:

- test(xyz_reset, true, [note('Feature xyz reset not yet implemented')]) :-
 ...

The number of skipped tests is reported together with the numbers of
passed and failed tests. To skip a test depending on some condition, use
the test/3 dialect and the condition/1 option. For example:

test(test_id, true, [condition(current_prolog_flag(bounded,true))) :-
 ...

The test is skipped if the condition goal fails or generates an error.
The conditional compilation directives can also be used in alternative
but note that in this case there will be no report on the number of
skipped tests.

Checking test goal results

Checking test goal results can be performed using the test/2-3
supported outcomes such as true(Assertion) and
deterministic(Assertion). For example:

test(compare_3_order_less, deterministic(Order == (<))) :-
 compare(Order, 1, 2).

For the other test dialects, checking test goal results can be performed
by calling the assertion/1-2 utility predicates or by writing the
checking goals directly in the test body. For example:

test(compare_3_order_less) :-
 compare(Order, 1, 2),
 ^^assertion(Order == (<)).

or:

succeeds(compare_3_order_less) :-
 compare(Order, 1, 2),
 Order == (<).

Using assertions is, however, preferable to directly check test results
in the test body as it facilitates debugging by printing the unexpected
results when the assertions fail.

The assertion/1-2 utility predicates are also useful for the
test/2-3 dialects when we want to check multiple assertions in the
same test. For example:

test(dictionary_clone_4_01, true) :-
 as_dictionary([], Dictionary),
 clone(Dictionary, DictionaryPairs, Clone, ClonePairs),
 empty(Clone),
 ^^assertion(original_pairs, DictionaryPairs == []),
 ^^assertion(clone_pairs, ClonePairs == []).

Ground results can be compared using the standard ==/2 term equality
built-in predicate. Non-ground results can be compared using the
variant/2 predicate provided by lgtunit. The standard
subsumes_term/2 built-in predicate can be used when testing a
compound term structure while abstracting some of its arguments.
Floating-point numbers can be compared using the =~=/2,
approximately_equal/3, essentially_equal/3, and
tolerance_equal/4 predicates provided by lgtunit. Using the
=/2 term unification built-in predicate is almost always an error as
it would mask test goals failing to bind output arguments. The
lgtunit tool implements a linter check for the use of unification
goals in test outcome assertions. In the rare cases that a unification
goal is intended, wrapping the (=)/2 goal using the {}/1 control
construct avoids the linter warning.

Testing local predicates

The (<<)/2 debugging control construct can be used to access and
test object local predicates (i.e. predicates without a scope
directive). In this case, make sure that the context_switching_calls
compiler flag is set to allow for those objects. This is seldom
required, however, as local predicates are usually auxiliary predicates
called by public predicates and thus tested when testing those public
predicates. The code coverage support can pinpoint any local predicate
clause that is not being exercised by the tests.

Testing non-deterministic predicates

For testing non-deterministic predicates (with a finite and manageable
number of solutions), you can wrap the test goal using the standard
findall/3 predicate to collect all solutions and check against the
list of expected solutions. When the expected solutions are a set, use
in alternative the standard setof/3 predicate.

If you want to check that all solutions of a non-deterministic predicate
satisfy an assertion, use the test/2 or test/3 test dialect with
the all(Assertion) outcome. For example:

test(atom_list, all(atom(Item))) :-
 member(Item, [a, b, c]).

See also the next section on testing generators.

If you want to check that a solution exists for a non-deterministic
predicate that satisfies an assertion, use the test/2 or test/3
test dialect with the exists(Assertion) outcome. For example:

test(at_least_one_atom, exists(atom(Item))) :-
 member(Item, [1, foo(2), 3.14, abc, 42]).

Testing generators

To test all solutions of a predicate that acts as a generator, we can
use either the all/1 outcome or the forall/2 predicate as the
test goal with the assertion/2 predicate called to report details on
any solution that fails the test. For example:

test(test_solution_generator, all(test(X,Y,Z))) :-
 generator(X, Y, Z).

or:

:- uses(lgtunit, [assertion/2]).
...

test(test_solution_generator_2) :-
 forall(
 generator(X, Y, Z),
 assertion(generator(X), test(X,Y,Z))
).

While using the all/1 outcome results in a more compact test
definition, using the forall/2 predicate allows customizing the
assertion description. In the example above, we use the generator(X)
description instead of the test(X,Y,Z) description implicit when we
use the all/1 outcome.

Testing input/output predicates

Extensive support for testing input/output predicates is provided, based
on similar support found on the Prolog conformance testing framework
written by Péter Szabó and Péter Szeredi.

Two sets of predicates are provided, one for testing text input/output
and one for testing binary input/output. In both cases, temporary files
(possibly referenced by a user-defined alias) are used. The predicates
allow setting, checking, and cleaning text/binary input/output. These
predicate are declared as protected and thus called using the (^^/1)
control construct.

As an example of testing an input predicate, consider the standard
get_char/1 predicate. This predicate reads a single character (atom)
from the current input stream. Some test for basic functionality could
be:

test(get_char_1_01, true(Char == 'q')) :-
 ^^set_text_input('qwerty'),
 get_char(Char).

test(get_char_1_02, true(Assertion)) :-
 ^^set_text_input('qwerty'),
 get_char(_Char),
 ^^text_input_assertion('werty', Assertion).

As you can see in the above example, the testing pattern consist on
setting the input for the predicate being tested, calling it, and then
checking the results. It is also possible to work with streams other
than the current input/output streams by using the lgtunit predicate
variants that take a stream alias as argument. For example, when testing
the standard get_char/2 predicate, we could write:

test(get_char_2_01, true(Char == 'q')) :-
 ^^set_text_input(in, 'qwerty'),
 get_char(in, Char).

test(get_char_2_02, true(Assertion)) :-
 ^^set_text_input(in, 'qwerty'),
 get_char(in, _Char),
 ^^text_input_assertion(in, 'werty', Assertion).

Testing output predicates follows a similar pattern by using instead the
set_text_output/1-2 and text_output_assertion/2-3 predicates.
For example:

test(put_char_2_02, true(Assertion)) :-
 ^^set_text_output(out, 'qwert'),
 put_char(out, y),
 ^^text_output_assertion(out, 'qwerty', Assertion).

The set_text_output/1 predicate diverts only the standard output
stream (to a temporary file) using the standard set_output/1
predicate. Most backend Prolog systems also support writing to the de
facto standard error stream. But there’s no standard solution to divert
this stream. However, several systems provide a set_stream/2 or
similar predicate that can be used for stream redirection. For example,
assume that you wanted to test a backend Prolog system warning when an
initialization/1 directive fails that is written to user_error.
An hypothetical test could be:

test(singletons_warning, true(Assertion)) :-
 ^^set_text_output(''),
 current_output(Stream),
 set_stream(Stream, alias(user_error)),
 consult(broken_file),
 ^^text_output_assertion('WARNING: initialization/1 directive failed', Assertion).

For testing binary input/output predicates, equivalent testing
predicates are provided. There is also a small set of helper predicates
for dealing with stream handles and stream positions. For testing with
files instead of streams, testing predicates are provided that allow
creating text and binary files with given contents and check text and
binary files for expected contents.

For more practical examples, check the included tests for Prolog
standard conformance of built-in input/output predicates.

Suppressing tested predicates output

Sometimes predicates being tested output text or binary data that at
best clutters testing logs and at worse can interfere with parsing of
test logs. If that output itself is not under testing, you can suppress
it by using the goals ^^suppress_text_output or
^^suppress_binary_output at the beginning of the tests. For example:

test(proxies_04, true(Color == yellow)) :-
 ^^suppress_text_output,
 {circle('#2', Color)}::print.

The suppress_text_output/0 and suppress_binary_output/0
predicates work by redirecting standard output to the operating-system
null device. But the application may also output to e.g. user_error
and other streams. If this output must also be suppressed, several
alternatives are described next.

Output of expected warnings can be suppressed by turning off the
corresponding linter flags. In this case, it is advisable to restrict
the scope of the flag value changes as much as possible.

Output of expected compiler errors can be suppressed by defining
suitable clauses for the logtalk::message_hook/4 hook predicate. For
example:

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

% ignore expected domain error
logtalk::message_hook(compiler_error(_,_,error(domain_error(foo,bar),_)), error, core, _).

In this case, it is advisable to restrict the scope of the clauses as
much as possible to exact exception terms. For the exact message terms,
see the core_messages category source file. Defining this hook
predicate can also be used to suppress all messages from a given
component. For example:

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(_Message, _Kind, code_metrics, _Tokens).

Note that there’s no portable solution to suppress all output.
However, several systems provide a set_stream/2 or similar predicate
that can be used for stream redirection. Check the documentation of the
backend Prolog systems you’re using for details.

Tests with timeout limits

There’s no portable way to call a goal with a timeout limit. However,
some backend Prolog compilers provide this functionality:

	B-Prolog: time_out/3 built-in predicate

	ECLiPSe: timeout/3 and timeout/7 library predicates

	LVM: call_with_timeout/2-3 built-in predicates

	SICStus Prolog: time_out/3 library predicate

	SWI-Prolog: call_with_time_limit/2 library predicate

	Trealla Prolog: call_with_time_limit/2 and time_out/3 library
predicates

	XSB: timed_call/2 built-in predicate

	YAP: time_out/3 library predicate

Logtalk provides a timeout portability library implementing a simple
abstraction for those backend Prolog compilers.

The logtalk_tester automation script accepts a timeout option that
can be used to set a limit per test set.

Setup and cleanup goals

A test object can define setup/0 and cleanup/0 goals. The
setup/0 predicate is called, when defined, before running the object
unit tests. The cleanup/0 predicate is called, when defined, after
running all the object unit tests. The tests are skipped when the setup
goal fails or throws an error. For example:

cleanup :-
 this(This),
 object_property(This, file(_,Directory)),
 atom_concat(Directory, serialized_objects, File),
 catch(ignore(os::delete_file(File)), _, true).

Per test setup and cleanup goals can be defined using the test/3
dialect and the setup/1 and cleanup/1 options. The test is
skipped when the setup goal fails or throws an error. Note that a broken
test cleanup goal doesn’t affect the test but may adversely affect any
following tests. Variables in the setup and cleanup goals are shared
with the test body.

Test annotations

It’s possible to define per unit and per test annotations to be printed
after the test results or when tests are skipped. This is particularly
useful when some units or some unit tests may be run while still being
developed. Annotations can be used to pass additional information to a
user reviewing test results. By intercepting the unit test framework
message printing calls (using the message_hook/4 hook predicate),
test automation scripts and integrating tools can also access these
annotations.

Units can define a global annotation using the predicate note/1. To
define per test annotations, use the test/3 dialect and the
note/1 option. For example, you can inform why a test is being
skipped by writing:

- test(foo_1, true, [note('Waiting for Deep Thought answer')]) :-
 ...

Another common use is to return the execution time of one of the test
sub-goals. For example:

test(foobar, true, [note(bar(seconds-Time))]) :-
 foo(...),
 benchmark(bar(...), Time).

Annotations are written, by default, between parenthesis after and in
the same line as the test results.

Test execution times and memory usage

Individual test CPU and wall execution times (in seconds) are reported
by default when running the tests. Total CPU and wall execution times
for passed and failed tests are reported after the tests complete.
Starting and ending date and time when running a set of tests is also
reported by default. The lgtunit object also provides several public
benchmarking predicates that can be useful for e.g. reporting test
sub-goals execution times using either CPU or wall clocks. When running
multi-threaded code, the CPU time may or may not include all threads CPU
time depending on the backend.

Test memory usage is not reported by default due to the lack of a
portable solution to access memory data. However, several backend Prolog
systems provide a statistics/2 or similar predicate that can be used
for a custom solution. Depending on the system, individual keys may be
provided for each memory area (heap, trail, atom table, …).
Aggregating keys may also be provided. As an hypothetical example,
assume you’re running Logtalk with a backend providing a
statistics/2 predicate with a memory_used key:

test(ack_3, true(Result == 125), [note(memory-Memory)]) :-
 statistics(memory_used, Memory0),
 ack::ack(3, 4, Result),
 statistics(memory_used, Memory1),
 Memory is Memory1 - Memory0.

Consult the documentation of the backend Prolog systems for actual
details.

Working with test data files

Frequently tests make use of test data files that are usually stored in
the test set directory or in sub-directories. These data files are
referenced using their relative paths. But to allow the tests to run
independently of the Logtalk process current directory, the relative
paths often must be expanded into an absolute path before being passed
to the predicates being tested. The file_path/2 protected predicate
can be used in the test definitions to expand the relative paths. For
example:

% check that the encoding/1 option is accepted
test(lgt_unicode_open_4_01, true) :-
 ^^file_path(sample_utf_8, Path),
 open(Path, write, Stream, [encoding('UTF-8')]),
 close(Stream).

The absolute path is computed relative to the path of self, i.e.
relative to the path of the test object that received the message that
runs the tests.

It’s also common for tests to create temporary files and directories
that should be deleted after the tests completion. The clean_file/1
and clean_directory/1 protected predicates can be used for this
purpose. For example, assuming that the tests create a foo.txt text
file and a tmp directory in the same directory of the tests object:

cleanup :-
 ^^clean_file('foo.txt'),
 ^^clean_directory('tmp').

Similar to the file_path/2 predicate, relative paths are interpreted
as relative to the path of the test object. This predicate also closes
any open stream connected to the file before deleting it.

Flaky tests

Flaky tests are tests that pass or fail non-deterministically, usually
due to external conditions (e.g. computer or network load). Thus, flaky
tests often don’t result from bugs in the code being tested itself but
from test execution conditions that are not predictable. The flaky/0
test option declares a test to be flaky. For example:

test(foo, true, [flaky]) :-
 ...

For backawards compatibility, the note/1 annotation can also be used
to alert that a test failure is for a flaky test when its argument is an
atom containing the sub-atom flaky.

The testing automation support outputs the text [flaky] when
reporting failed flaky tests. Moreover, the logtalk_tester
automation script will ignore failed flaky tests when setting its exit
status.

Mocking

Sometimes the code being tested performs complex tasks that are not
feasible or desirable when running tests. For example, the code may
perform a login operation requiring the user to provide a username and a
password using some GUI widget. In this case, the tests may required the
login operation to still be performed but using canned data (also
simplifying testing automation). I.e. we want to mock (as in
imitate) the login procedure. Ideally, this should be accomplished
without requiring any changes to the code being tested. Logtalk provides
two solutions that can be used for mocking: term-expansion and hot
patching. A third solution is possible if the code we want to mock uses
the message printing mechanism.

Using the term-expansion mechanism, we would define a hook object that
expands the login predicate into a fact:

:- object(mock_login,
 implements(expanding)).

 term_expansion((login(_, _) :- _), login(jdoe, test123)).

:- end_object.

The tests driver file would then load the application object responsible
for user management using this hook object:

:- initialization((
 ...,
 logtalk_load(mock_login),
 logtalk_load(user_management, [hook(mock_login)]),
 ...
)).

Using hot patching, we would define a complementing category patching
the object that defines the login predicate:

:- category(mock_login,
 complements(user_management)).

 login(jdoe, test123).

:- end_category.

The tests driver file would then set the complements flag to
allow and load the patch after loading application code:

:- initialization((
 ...,
 set_logtalk_flag(complements, allow),
 logtalk_load(application),
 logtalk_load(mock_login),
 ...
)).

There are pros and cons for each solution. Term-expansion works by
defining hook objects that are used at compile time while hot patching
happens at runtime. Complementing categories can also be dynamically
created, stacked, and abolished. Hot patching disables static binding
optimizations but that’s usually not a problem as the code being tested
if often compiled in debug mode to collect code coverage data. Two
advantages of the term-expansion solution is that it allows defining
conditions for expanding terms and goals and can replace both predicate
definitions and predicate calls. Limitations in the current Prolog
standards prevent patching callers to local predicates being patched.
But often both solutions can be used with the choice depending on code
clarity and user preference. See the Handbook sections on term-expansion
and hot patching for more details on these mechanisms.

In those cases where the code we want to mock uses the message printing
mechanism, the solution is to intercept and rewrite the messages being
printed and/or the questions being asked using the
logtalk::message_hook/4 and logtalk::question_hook/6 hook
predicates.

Debugging messages in tests

Sometimes is useful to write debugging or logging messages from tests
when running them manually. But those messages are better suppressed
when running the tests automated. A common solution is to use debug
meta-messages. For example:

:- uses(logtalk, [
 print_message(debug, my_app, Message) as dbg(Message)
]).

test(some_test_id, ...) :-
 ...,
 dbg('Some intermediate value'-Value),
 ...,
 dbg([Stream]>>custom_print_goal(Stream, ...)),
 ...

The messages are only printed (and the user-defined printing goals are
only called) when the debug flag is turned on. Note that this
doesn’t require compiling the tests in debug mode: you simply toggle the
flag to toggle the debug messages. Also note that the
print_message/3 goals are suppressed by compiler when compiling with
the optimize flag turned on.

Debugging failed tests

Debugging of failed unit tests is simplified by using test assertions as
the reason for the assertion failures is printed out. Thus, use
preferably the test/2-3 dialects with true(Assertion),
deterministic(Assertion), subsumes(Expected, Result), or
variant(Term1, Term2) outcomes. If a test checks multiple
assertions, you can use the predicate assertion/2 in the test body.
In the case of QuickCheck tests, the v(true) verbose option can be
used to print the generated test case that failed if necessary.

If the assertion failures don’t provide enough information, you can use
the debugger tool to debug failed unit tests. Start by compiling the
unit test objects and the code being tested in debug mode. Load the
debugger and trace the test that you want to debug. For example,
assuming your tests are defined in a tests object and that the
identifier of test to be debugged is test_foo:

| ?- logtalk_load(debugger(loader)).
...

| ?- debugger::trace.
...

| ?- tests::run(test_foo).
...

You can also compile the code and the tests in debug mode but without
using the hook/1 compiler option for the tests compilation. Assuming
that the context_switching_calls flag is set to allow, you can
then use the (<<)/2 debugging control construct to debug the tests.
For example, assuming that the identifier of test to be debugged is
test_foo and that you used the test/1 dialect:

| ?- logtalk_load(debugger(loader)).
...

| ?- debugger::trace.
...

| ?- tests<<test(test_foo).
...

In the more complicated cases, it may be worth to define
loader_debug.lgt and tester_debug.lgt driver files that load
code and tests in debug mode and also load the debugger.

Code coverage

If you want entity predicate clause coverage information to be collected
and printed, you will need to compile the entities that you’re testing
using the flags debug(on) and source_data(on). Be aware,
however, that compiling in debug mode results in a performance penalty.

A single test object may include tests for one or more entities
(objects, protocols, and categories). The entities being tested by a
unit test object for which code coverage information should be collected
must be declared using the cover/1 predicate. For example, to
collect code coverage data for the objects foo and bar include
in the tests object the two clauses:

cover(foo).
cover(bar).

Code coverage is listed using the predicates clause indexes (counting
from one). For example, using the points example in the Logtalk
distribution:

% point: default_init_option/1 - 2/2 - (all)
% point: instance_base_name/1 - 1/1 - (all)
% point: move/2 - 1/1 - (all)
% point: position/2 - 1/1 - (all)
% point: print/0 - 1/1 - (all)
% point: process_init_option/1 - 1/2 - [1]
% point: position_/2 - 0/0 - (all)
% point: 7 out of 8 clauses covered, 87.500000% coverage

The numbers after the predicate indicators represents the clauses
covered and the total number of clauses. E.g. for the
process_init_option/1 predicate, the tests cover 1 out of 2 clauses.
After these numbers, we either get (all) telling us that all clauses
are covered or a list of indexes for the covered clauses. E.g. only the
first clause for the process_init_option/1 predicate, [1].
Summary clause coverage numbers are also printed for entities and for
clauses across all entities.

In the printed predicate clause coverage information, you may get a
total number of clauses smaller than the covered clauses. This results
from the use of dynamic predicates with clauses asserted at runtime. You
may easily identify dynamic predicates in the results as their clauses
often have an initial count equal to zero.

The list of indexes of the covered predicate clauses can be quite long.
Some backend Prolog compilers provide a flag or a predicate to control
the depth of printed terms that can be useful:

	CxProlog: write_depth/2 predicate

	ECLiPSe: print_depth flag

	LVM 3.2.0 or later: answer_write_options flag

	SICStus Prolog: toplevel_print_options flag

	SWI-Prolog 7.1.10 or earlier: toplevel_print_options flag

	SWI-Prolog 7.1.11 or later: answer_write_options flag

	Trealla Prolog: answer_write_options flag

	XSB: set_file_write_depth/1 predicate

	YAP: write_depth/2-3 predicates

Code coverage is only available when testing Logtalk code. But Prolog
modules can often be compiled as Logtalk objects and plain Prolog code
may be wrapped in a Logtalk object. For example, assuming a
module.pl module file, we can compile and load the module as an
object by simply calling:

| ?- logtalk_load(module).
...

The module exported predicates become object public predicates. For a
plain Prolog file, say plain.pl, we can define a Logtalk object that
wraps the code using an include/1 directive:

:- object(plain).

 :- include('plain.pl').

:- end_object.

The object can also declare as public the top Prolog predicates to
simplify writing the tests. In alternative, we can use the
object_wrapper_hook provided by the hook_objects library:

| ?- logtalk_load(hook_objects(loader)).
...

| ?- logtalk_load(plain, [hook(object_wrapper_hook)]).
...

These workarounds may thus allow generating code coverage data also for
Prolog code by defining tests that use the (<<)/2 debugging control
construct to call the Prolog predicates.

See also the section below on exporting code coverage results to XML
files, which can be easily converted and published as e.g. HTML reports.

Utility predicates

The lgtunit tool provides several public utility predicates to
simplify writing unit tests and for general use:

	
variant(Term1, Term2)

To check when two terms are a variant of each other (e.g. to check
expected test results against actual results when they contain
variables).

	
assertion(Goal)

To generate an exception in case the goal argument fails or throws
an error.

	
assertion(Description, Goal)

To generate an exception in case the goal argument fails or throws
an error (the first argument allows assertion failures to be
distinguished when using multiple assertions).

	
approximately_equal(Number1, Number2)

For number approximate equality using the epsilon arithmetic
constant value.

	
approximately_equal(Number1, Number2, Epsilon)

For number approximate equality. Weaker equality than essential
equality.

	
essentially_equal(Number1, Number2, Epsilon)

For number essential equality. Stronger equality than approximate
equality.

	
tolerance_equal(Number1, Number2, RelativeTolerance, AbsoluteTolerance)

For number equality within tolerances.

	
Number1 =~= Number2

For number (or list of numbers) close equality (usually
floating-point numbers).

	
benchmark(Goal, Time)

For timing a goal.

	
benchmark_reified(Goal, Time, Result)

Reified version of benchmark/2.

	
benchmark(Goal, Repetitions, Time)

For finding the average time to prove a goal.

	
benchmark(Goal, Repetitions, Clock, Time)

For finding the average time to prove a goal using a cpu or a
wall clock.

	
deterministic(Goal)

For checking that a predicate succeeds without leaving a
choice-point.

	
deterministic(Goal, Deterministic)

Reified version of the deterministic/1 predicate.

The assertion/1-2 predicates can be used in the body of tests where
using two or more assertions is convenient or in the body of tests
written using the test/1, succeeds/1, and deterministic/1
dialects to help differentiate between the test goal and checking the
test goal results and to provide more informative test failure messages.

When the assertion, benchmarking, and deterministic meta-predicates call
a local predicate of the tests object, you must call them using an
implicit or explicit message instead of a using super call. For
example, to use an implicit message to call the assertion/1-2
meta-predicates, add the following directive to the tests object:

:- uses(lgtunit, [assertion/1, assertion/2]).

The reason this is required is that meta-predicates goals arguments are
always called in the context of the sender, which would be the
lgtunit object in the case of a (^^)/2 call (as it preserves
both self and sender and the tests are internally run by a message
sent from the lgtunit object to the tests object).

As the benchmark/2-4 predicates are meta-predicates, turning on the
optimize compiler flag is advised to avoid runtime compilation of
the meta-argument, which would add an overhead to the timing results.
But this advice conflicts with collecting code coverage data, which
requires compilation in debug mode. The solution is to use separate test
objects for benchmarking and for code coverage. Note that the CPU and
wall execution times (in seconds) for each individual test are reported
by default when running the tests.

The (=~=)/2 predicate is typically used by adding the following
directive to the object (or category) calling it:

:- uses(lgtunit, [
 op(700, xfx, =~=), (=~=)/2
]).

Consult the lgtunit object API documentation for more details on
these predicates.

Exporting test results in xUnit XML format

To output test results in the xUnit XML format (from JUnit; see e.g.
https://github.com/windyroad/JUnit-Schema or
https://llg.cubic.org/docs/junit/), simply load the xunit_output.lgt
file before running the tests. This file defines an object,
xunit_output, that intercepts and rewrites unit test execution
messages, converting them to the xUnit XML format.

To export the test results to a file using the xUnit XML format, simply
load the xunit_report.lgt file before running the tests. A file
named xunit_report.xml will be created in the same directory as the
object defining the tests. When running a set of test suites as a single
unified suite (using the run_test_sets/1 predicate), the single
xUnit report is created in the directory of the first test suite object
in the set.

To use in alternative the xUnit.net v2 XML format
(https://xunit.net/docs/format-xml-v2), load either the
xunit_net_v2_output.lgt file or the xunit_net_v2_report.lgt
file.

When using the logtalk_tester automation script, use either the
-f xunit option or the -f xunit_net_v2 option to generate the
xunit_report.xml files on the test set directories.

There are several third-party xUnit report converters that can generate
HTML files for easy browsing. For example:

	https://docs.qameta.io/allure-report/ (supports multiple reports)

	https://github.com/Zir0-93/xunit-to-html (supports multiple test sets
in a single report)

	https://www.npmjs.com/package/xunit-viewer

	https://github.com/JatechUK/NUnit-HTML-Report-Generator

	https://plugins.jenkins.io/xunit

Exporting test results in the TAP output format

To output test results in the TAP (Test Anything Protocol) format,
simply load the tap_output.lgt file before running the tests. This
file defines an object, tap_output, that intercepts and rewrites
unit test execution messages, converting them to the TAP output format.

To export the test results to a file using the TAP (Test Anything
Protocol) output format, load instead the tap_report.lgt file before
running the tests. A file named tap_report.txt will be created in
the same directory as the object defining the tests.

When using the logtalk_tester automation script, use the -f tap
option to generate the tap_report.xml files on the test set
directories.

When using the test/3 dialect with the TAP format, a note/1
option whose argument is an atom starting with a TODO or todo
word results in a test report with a TAP TODO directive.

When running a set of test suites as a single unified suite, the single
TAP report is created in the directory of the first test suite object in
the set.

There are several third-party TAP report converters that can generate
HTML files for easy browsing. For example:

	https://github.com/Quobject/tap-to-html

	https://plugins.jenkins.io/tap/

Generating Allure reports

A logtalk_allure_report.pl Bash shell script and a
logtalk_allure_report.ps1 PowerShell script are provided for
generating Allure reports [https://docs.qameta.io/allure-report/].
This requires exporting test results in xUnit XML format. A simple usage
example (assuming a current directory containing tests):

$ logtalk_tester -p gnu -f xunit
$ logtalk_allure_report
$ allure open

The logtalk_allure_report script supports command-line options to
pass the tests directory (i.e. the directory where the
logtalk_tester script was run), the directory where to collect all
the xUnit report files for generating the report, the directory where
the report is to be saved, and the report title (see the script man page
or type logtalk_allure_report -h). The script also supports saving
the history of past test runs. In this case, a persistant location for
both the results and report directories must be used.

It’s also possible to use the script just to collect the xUnit report
files generated by lgtunit and delegate the actual generation of the
report to e.g. an Allure Docker container or to a Jenkins plug-in. Two
examples are:

	https://github.com/fescobar/allure-docker-service

	https://plugins.jenkins.io/allure-jenkins-plugin/

In this case, we would use the logtalk_allure_report script option
to only perform the preprocessing step:

$ logtalk_allure_report -p

The scripts also supports passing environment pairs, which are
displayed in the generated Allure reports in the environment pane. This
feature can be used to pass e.g. the backend name and the backend
version or git commit hash. The option syntax differs, however, between
the two scripts. For example, using the Bash script:

$ logtalk_allure_report -- Backend='GNU Prolog' Version=1.5.0

Or:

$ logtalk_allure_report -- Project='Deep Thought' Commit=`git rev-parse --short HEAD`

In the case of the PowerShell script, the pairs are passed comma
separated inside a string:

PS> logtalk_allure_report -e "Backend='GNU Prolog',Version=1.5.0"

Or:

PS> logtalk_allure_report -e "Project='Deep Thought',Commit=bf166b6"

To show tests run trends in the report (e.g. when running the tests for
each application source code commit), save the processed test results
and the report data to permanent directories. For example:

$ logtalk_allure_report \
 -i "$HOME/my_project/allure-results" \
 -o "$HOME/my_project/allure-report"
$ allure open "$HOME/my_project/allure-report"

Note that Allure cleans the report directory when generating a new
report. Be careful to always specify a dedicated directory to prevent
accidental data loss.

When using the Allure 2.21.0 or a later version, it’s possible to
generate reports with links to the tests source code. This requires
using the logtalk_tester shell script option that allows passing the
base URL for those links. This option needs to be used together with the
option to suppress the tests directory prefix so that the links can be
constructed by appending the tests file relative path to the base URL.
For example, assuming that you want to generate a report for the tests
included in the Logtalk distribution when using the GNU Prolog backend:

$ cd $LOGTALKUSER
$ logtalk_tester \
 -p gnu \
 -f xunit \
 -s "$LOGTALKUSER" \
 -u "https://github.com/LogtalkDotOrg/logtalk3/tree/3e4ea295986fb09d0d4aade1f3b4968e29ef594e"

The use of a git hash in the base URL ensures that the generated links
will always show the exact versions of the tests that were run. The
links include the line number for the tests in the tests files (assuming
that the git repo is stored in a BitBucket, GitHub, or GitLab server).
But note that not all supported backends provide accurate line numbers.

When using the Allure 2.24.0 or a later version, it’s possible to
generate single file reports. For example:

$ logtalk_allure_report -s -t "My Amazing Tests Report"

There are some caveats when generating Allure reports that users must be
aware. First, Allure expects test names to be unique across different
tests sets. If there are two test with the same name in two different
test sets, only one of them will be reported. Second, when using the
xunit format, dates are reported as MM/DD/YYYY. Finally, when using
the xunit_net_v2 format, tests are reported in a random order
instead of their run order and dates are displayed as “unknown” in the
overview page.

Exporting code coverage results in XML format

To export code coverage results in XML format, load the
coverage_report.lgt file before running the tests. A file named
coverage_report.xml will be created in the same directory as the
object defining the tests.

The XML file can be opened in most web browsers (with the notorious
exception of Google Chrome) by copying to the same directory the
coverage_report.dtd and coverage_report.xsl files found in the
tools/lgtunit directory (when using the logtalk_tester script,
these two files are copied automatically). In alternative, an XSLT
processor can be used to generate an XHTML file instead of relying on a
web browser for the transformation. For example, using the popular
xsltproc processor:

$ xsltproc -o coverage_report.html coverage_report.xml

On Windows operating-systems, this processor can be installed using e.g.
Chocolatey. On a POSIX operating-systems (e.g. Linux, macOS, …) use
the system package manager to install it if necessary.

The coverage report can include links to the source code when hosted on
Bitbucket, GitHub, or GitLab. This requires passing the base URL as the
value for the url XSLT parameter. The exact syntax depends on the
XSLT processor, however. For example:

$ xsltproc \
 --stringparam url https://github.com/LogtalkDotOrg/logtalk3/blob/master \
 -o coverage_report.html coverage_report.xml

Note that the base URL should preferably be a permanent link (i.e. it
should include the commit SHA1) so that the links to source code files
and lines remain valid if the source code is later updated. It’s also
necessary to suppress the local path prefix in the generated
coverage_report.xml file. For example:

$ logtalk_tester -c xml -s $HOME/logtalk/

Alternatively, you can pass the local path prefix to be suppressed to
the XSLT processor (note that the logtalk_tester script suppresses
the $HOME prefix by default):

$ xsltproc \
 --stringparam prefix logtalk/ \
 --stringparam url https://github.com/LogtalkDotOrg/logtalk3/blob/master \
 -o coverage_report.html coverage_report.xml

If you are using Bitbucket, GitHub, or GitLab hosted in your own
servers, the url parameter may not contain a bitbucket,
github, or gitlab string. In this case, you can use the XSLT
parameter host to indicate which service are you running.

Automatically creating bug reports at issue trackers

To automatically create bug report issues for failed tests in GitHub or
GitLab servers, see the issue_creator tool.

Minimizing test results output

To minimize the test results output, simply load the
minimal_output.lgt file before running the tests. This file defines
an object, minimal_output, that intercepts and summarizes the unit
test execution messages.

Known issues

Deterministic unit tests are currently not available when using Quintus
Prolog as it lacks built-in support that cannot be sensibly defined in
Prolog.

Parameter variables (_VariableName_) cannot currently be used in the
definition of the condition/1, setup/1, and cleanup/1 test
options when using the test/3 dialect. For example, the following
condition will not work:

test(some_id, true, [condition(_ParVar_ == 42)]) :-
 ...

The workaround is to define an auxiliary predicate called from those
options. For example:

test(check_xyz, true, [condition(xyz_condition)]) :-
 ...

xyz_condition :-
 ParVar == 42.

linter

Logtalk provides a built-in linter tool that runs automatically when
compiling and loading source files. The lint warnings are controlled by
a set of flags.
The default values for these flags are defined in the backend Prolog
compiler adapter files and can be overriden from a settings file or from
a source file (e.g. a loader file). These flags can be set globally
using the
set_logtalk_flag/2
built-in predicate. For (source file or entity) local scope, use instead
the
set_logtalk_flag/2
directive.

Some lint checks are turned off by default, specially when
computationally expensive. Still, it’s a good idea to turn them on to
check your code on a regular basis (e.g. in CI/CD pipelines).

Note that, in some cases, the linter may generate false warnings due to
source code analysis limitations or special cases that, while valid when
intended, usually result from programming issues. When a code rewrite is
not a sensible solution to avoid the warning, the workaround is to turn
off as locally as possible the flag that controls the warning.

Main linter checks

Lint checks include:

	Missing directives (including scope, meta-predicate, dynamic,
discontiguous, and multifile directives)

	Duplicated directives, clauses, and grammar rules

	Missing predicates (unknown messages plus calls to non-declared and
non-defined predicates)

	Calls to declared but not defined static predicates

	Non-terminals called as predicates (instead of via the phrase/2-3
built-in methods)

	Predicates called as non-terminals (instead of via the call//1
built-in method)

	Non-portable predicate calls, predicate options, arithmetic function
calls, directives, flags, and flag values

	Missing arithmetic functions (with selected backends)

	Suspicious calls (syntactically valid calls that are likely semantic
errors; e.g. float comparisons using the standard arithmetic
comparison operators or comparing numbers using unification)

	Deprecated directives, predicates, arithmetic functions, control
constructs, and flags

	References to unknown entities (objects, protocols, categories, or
modules)

	Top-level shortcuts used as directives

	Unification goals that will succeed without binding any variables

	Unification goals that will succeed creating a cyclic term

	Goals that are always true or always false

	Trivial goal fails (due to no matching predicate clause)

	Redefined built-in predicates

	Redefined standard operators

	Lambda expression unclassified variables and mixed up variables

	Lambda expression with parameter variables used elsewhere in a clause

	Singleton variables

	If-then-else and soft cut control constructs without an else part

	If-then-else and soft cut control constructs where the test is a
unification between a variable and a ground term

	Missing parenthesis around if-then-else and disjunction control
constructs in the presence of cuts in the first argument

	Cuts in clauses for multifile predicates

	Missing cut in repeat loops

	Possible non-steadfast predicate definitions

	Non-tail recursive predicate definitions

	Redundant calls to control constructs and built-in predicates

	Calls to all-solutions predicates with existentially qualified
variables not occurring in the qualified goal

	Calls to all-solutions predicates with no shared variables between
template and goal

	Calls to bagof/3 and setof/3 where the goal argument contains
singleton variables

	Calls to findall/3 used to backtrack over all solutions of a goal
without collecting them

	Calls to catch/3 that catch all exceptions

	Calls to standard predicates that have more efficient alternatives

	Unsound calls in grammar rules

	File, entity, predicate, and variable names not following official
coding guidelines

	Variable names that differ only on case

	Clauses whose body is a disjunction (and that can be rewritten as
multiple clauses per coding guidelines)

	Naked meta-variables in cut-transparent control constructs

Additional lint checks are provided by the lgtunit, lgtdoc,
make, and dead_code_scanner tools. For large projects, the data
generated by the code_metrics tool may also be relevant in accessing
code quality and suggesting code refactoring candidates.

Help on linter warnings

By loading the tutor tool, most lint warnings are expanded with
explanations and suggestions on how to fix the reported issues. See also
the coding
guidelines [https://logtalk.org/coding_style_guidelines.html] for
additional explanations.

Extending the linter

Experimental support for extending the linter with user-defined warnings
is available using the
logtalk_linter_hook/7
multifile hook predicate. For example, the format and list
library objects define this hook predicate to lint calls to the
format/2-3 and append/3 predicates for common errors and
misuses.

Linting Prolog modules

This tool can also be applied to Prolog modules that Logtalk is able to
compile as objects. For example, if the Prolog module file is named
module.pl, try:

| ?- logtalk_load(module, [source_data(on)]).

Due to the lack of standardization of module systems and the abundance
of proprietary extensions, this solution is not expected to work for all
cases.

Linting plain Prolog files

This tool can also be applied to plain Prolog code. For example, if the
Prolog file is named code.pl, simply define an object including its
code:

:- object(code).
 :- include('code.pl').
:- end_object.

Save the object to an e.g. code.lgt file in the same directory as
the Prolog file and then load it:

| ?- logtalk_load(code, [source_data(on)]).

In alternative, use the object_wrapper_hook provided by the
hook_objects library:

| ?- logtalk_load(hook_objects(loader)).
...

| ?- logtalk_load(code, [hook(object_wrapper_hook), source_data(on)]).

With either wrapping solution, pay special attention to any compilation
warnings that may signal issues that could prevent the plain Prolog from
being fully checked when wrapped by an object.

make

Logtalk provides a make tool supporting several targets using the
logtalk_make/0-1 built-in predicates. Top-level shortcuts for the
targets are also provided.

API documentation

To consult the documentation of the logtalk_make/0-1 built-in
predicates, open in a web browser the links:

	../refman/predicates/logtalk_make_0.html

	../refman/predicates/logtalk_make_1.html

There is also a user-defined hook predicate that supports defining
additional actions for the make targets (e.g. running tests
automatically on make check or regenerating API documentation on make
documentation):

	../refman/predicates/logtalk_make_target_action_1.html

packs

This tool provides predicates for downloading, installing, upgrading,
and uninstalling third-party libraries and applications, generically
known as packs. Collections of pack specifications are made available
using registries. Registries can be local to a system, publicly
shared, or private to a company (e.g. only available in a VPN). There is
no concept of a central registry. Users decide which registries they
trust and want to use and add them using their published URLs. The tool
supports both pack checksums and signatures and takes several steps to
sanitize registry and pack specifications. As other Logtalk developer
tools, portability is a main goal. This tool can be used with any
supported Prolog backend and run in both POSIX and Windows systems.
Moreover, this tool can be used not only for handling Logtalk packs but
also Prolog only packs, thus providing a solution for sharing portable
resources between multiple systems.

A list of public Logtalk and Prolog pack registries is available at:

https://github.com/LogtalkDotOrg/pack-registries

This tool is the beta stage of development. Feedback is most welcome.

Requirements

On POSIX systems (Linux, macOS, …), the following shell commands are
required:

	sha256sum (provided by GNU coreutils)

	curl

	bsdtar (provided by libarchive or libarchive-tools)

	gpg (provided by gnupg2)

	git

	direnv (when using virtual environments)

The tool uses bsdtar instead of GNU tar so that it can
uncompress .zip archives (unzip doesn’t provide the desired
options that allows a simple and reliable solution for ignoring the
non-predictable name of the wrapper directory).

On Windows systems, the following shell commands are required:

	certutil.exe

	curl.exe

	tar.exe

	gpg.exe

	git.exe

	Set-PsEnv (when using virtual environments)

In recent Windows 10 builds, only gpg, git, and Set-PsEnv
should require installation. You can download the GnuPG software from:

https://www.gnupg.org/

You can download Git from:

https://gitforwindows.org

To install Set-PsEnv [https://github.com/rajivharris/Set-PsEnv] from
the PowerShell Gallery:

PS> Install-Module -Name Set-PsEnv

On macOS systems, Apple bundles both curl and BSD tar (under the
name tar; you can simply create a bsdtar alias or install a more
recent version). The required commands can be easily installed using
MacPorts:

$ sudo port install coreutils libarchive gnupg2 git direnv

Or using Homebrew:

$ brew install coreutils libarchive gnupg2 git direnv

On Linux systems, use the distribution own package manager to install
any missing command. For example, in recent Ubuntu versions:

$ sudo apt update
$ sudo apt install coreutils curl libarchive-tools gnupg2 git direnv

API documentation

This tool API documentation is available at:

../../docs/library_index.html#packs

Loading

This tool can be loaded using the query:

| ?- logtalk_load(packs(loader)).

Testing

To run the tool tests, use the query:

| ?- logtalk_load(packs(tester)).

The tests can be run without interfering with the user packs setup.

Usage

The packs tool loads at startup all the currently defined registry
and pack specifications (from the registries/packs storage directory;
see below). When no registry/pack setup exists, a new one is
automatically created.

The tool provides two main objects, registries and packs, for
handling, respectively, registries and packs. Both objects accept a
help/0 message that describes the most common queries.

Registries and packs storage

The tool uses a directory specified using the logtalk_packs library
alias when defined (in a settings file or in a backend Prolog
initialization file). When this library alias is not defined, the tool
uses the value of the LOGTALKPACKS environment variable when
defined. Otherwise it defaults to the ~/logtalk_packs directory. The
actual directory can be retrieved by the query:

| ?- packs::logtalk_packs(Directory).
...

This directory holds sub-directories for registries, packs, and
archives. These sub-directories are automatically created when loading
the packs tool if they don’t exist . Users shouldn’t manually modify
the contents of these directories. Multiple and independent
registry/pack setups are possible using virtual environments as
explained next.

Your registries and packs setup can be saved and restored (e.g. in a
different system) by using the packs::save/1-2 and
packs::restore/1-2 predicates, as explained in the next section
about virtual environments. If necessary, before restoring, the
packs::reset/0 predicate can be called to delete any defined
registries and installed packs.

Virtual environments

An application may require specific pack versions. These requirements
may differ between applications. Different applications may also have
conflicting requirements. Therefore, a virtual environment where an
application requirements are fulfilled may be required to develop and/or
run it. A virtual environment is essentially a registries/packs storage
directory.

Defining the logtalk_packs library alias in a settings file or
defining the LOGTALKPACKS environment variable before starting
Logtalk allows easy creation and switching between virtual environments.
By using a per application settings file (or a per application
environment variable definition) each application can thus use its own
virtual environment. The settings.lgt file can define the
logtalk_packs library alias using code such as:

:- initialization((
 logtalk_load_context(directory, Directory),
 assertz(logtalk_library_path(logtalk_packs, Directory))
)).

The definition of the logtalk_packs library alias must always be
an atom and thus never use library notation (i.e. it must never depend
on other library aliases).

When a virtual environment also requires a specific Logtalk version
(e.g. the version used to test and certify it), this can be installed as
a pack from the official
talkshow [https://github.com/LogtalkDotOrg/talkshow] registry and
used by (re)defining the LOGTALKHOME and LOGTALKUSER environment
variables to point to its pack directory (which can be queried by using
the packs::directory/2 message).

Experimental lgtenv.sh and lgtenv.ps1 scripts are included to
simplify creating virtual environments. For example:

$ lgtenv -d ~/my_venv -c
$ cd ~/my_venv/
direnv: loading ~/my_venv/.envrc
direnv: export +LOGTALKPACKS

These scripts require, respectively,
direnv [https://github.com/direnv/direnv] and
Set-PsEnv [https://github.com/rajivharris/Set-PsEnv] to be
installed. These utilities load and unload environment variables when
changing the current directory. On Windows systems, when using the
lgtenv.ps1 script, you also need to redefine the PowerShell prompt
in a profile file (e.g. $HOME\Documents\PowerShell\Profile.ps1) to
mimic the functionality of direnv of automatically loading an
existing .env file when changing to its directory. For example:

function prompt {
 Set-PsEnv
 'PS ' + $(Get-Location) + '> '
}

A virtual environment setup (i.e. the currently defined registries and
installed packs) can be saved into a file (e.g. requirements.lgt)
using the packs::save/1 predicate:

| ?- packs::save('requirements.lgt').
...

This query saves a listing of all the installed packs and their
registries. Using the saved file, the virtual environment setup can then
be restored using the packs::restore/1-2 predicates. The file uses a
simple format with registry/2, pack/3, pinned_registry/1,
and pinned_pack/1 facts (in this order) and can be manually created
or edited if necessary. For example:

registry(talkshow, 'https://github.com/LogtalkDotOrg/talkshow.git').
pack(talkshow, logtalk, 3:45:0).
pack(talkshow, lflat, 2:1:0).

These files can be distributed with applications so that users can
easily fulfill application requirements by running once the query:

| ?- packs::restore('requirements.lgt').

After, the application loader.lgt file can then load the required
packs using their loader files:

:- initialization((
 % load required packs
 logtalk_load(foo(loader)),
 logtalk_load(bar(loader)),
 ...
 % load application files
 ...
)).

Registry specification

A registry is a git remote repo that can be cloned, a downloadable
archive, or a local directory containing a Logtalk loader file that
loads source files defining the registry itself and the packs it
provides. The registry name is ideally a valid unquoted atom. The
registry directory must contain at least two Logtalk source files:

	A file defining an object named after the registry with a
_registry suffix, implementing the registry_protocol. This
naming convention helps preventing name conflicts.

	A loader file (named loader.lgt or loader.logtalk) that loads
the registry object file and all pack object files.

An example of a registry specification object would be:

:- object(jdoe_awesome_packs_registry,
 implements(registry_protocol)).

 :- info([
 version is 1:0:0,
 author is 'John Doe',
 date is 2021-10-18,
 comment is 'John Doe awesome packs registry spec.'
]).

 name(jdoe_awesome_packs).

 description('John Doe awesome packs').

 home('https://example.com/jdoe_awesome_packs').

 clone('https://github.com/jdoe/jdoe_awesome_packs.git').

 archive('https://github.com/jdoe/jdoe_awesome_packs/archive/main.zip').

:- end_object.

Optionally, the registry object can also define a note(Action, Note)
predicate. The Action argument is an atom: add, update, or
delete. The Note argument is also an atom. The tool will print
any available notes when executing one of the registry actions. See the
registry_protocol documentation for more details.

The registry directory should also contain LICENSE and README.md
files (individual packs can use a different license, however). The path
to the README.md file is printed when the registry is added. It can
also be queried using the registries::directory/2 predicate. The
NOTES.md file name can also be used in alternative to the
recommended README.md file name.

Summarizing the required directory structure using the above example
(note that the registry and pack specification files are named after the
objects):

jdoe_awesome_packs
 LICENSE
 README.md
 jdoe_awesome_packs_registry.lgt
 loader.lgt
 foo_pack.lgt
 bar_pack.lgt
 ...

With the contents of the loader.lgt file being:

:- initialization((
 logtalk_load(jdoe_awesome_packs_registry),
 logtalk_load(foo_pack),
 logtalk_load(bar_pack),
 ...
)).

It would be of course possible to have all objects in a single source
file. But having a file per object and a loader file helps maintenance
and it’s also a tool requirement for applying safety procedures to the
source file contents and thus successfully loding the registry and pack
specs.

As registries are git repos in the most common case and thus adding them
performs a git repo cloning, they should only contain the strictly
required files.

Registry handling

Registries can be added using the registries::add/1-3 predicates,
which take a registry URL. Using the example above:

| ?- registries::add('https://github.com/jdoe/jdoe_awesome_packs.git').

HTTPS URLs must end with either a .git extension or a an archive
extension. Git cloning URLs are preferred but a registry can also be
made available via a local directory (using a file:// URL) or a
downloadable archive (using a https:// URL).

For registries made available using an archive, the
registries::add/2-3 predicates must be used as the registry name
cannot in general be inferred from the URL basename or from the archived
directory name. The registry argument must also be the declared registry
name in the registry specification object. For example:

| ?- registries::add(
 jdoe_awesome_packs,
 'https://github.com/jdoe/jdoe_awesome_packs/archive/main.zip'
).

When a registry may be already defined, you can use the update(true)
option to ensure that the registry will be updated to its latest
definition:

| ?- registries::add(
 jdoe_awesome_packs,
 'https://github.com/jdoe/jdoe_awesome_packs/archive/main.zip',
 [update(true)]
).

The added registries can be listed using the registries::list/0
predicate:

| ?- registries::list.

% Defined registries:
% jdoe_awesome_packs (git)
% ...

The registries::describe/1 predicate can be used to print the
details of a registry:

| ?- registries::describe(jdoe_awesome_packs).

% Registry: jdoe_awesome_packs
% Description: John Doe awesome packs
% Home: https://example.com/jdoe_awesome_packs
% Cloning URL: https://github.com/jdoe/jdoe_awesome_packs.git
% Archive URL: https://github.com/jdoe/jdoe_awesome_packs/archive/main.zip

To update all registries, use the registries::update/0 predicate. To
update a single registry, use the registries::update/1-2 predicates.
After updating, you can use the packs::outdated/0-1 predicates to
list any outdated packs.

Registries can also be deleted using the registries::delete/1-2
predicate. By default, any registries with installed packs cannot be
deleted. If you force deletion (by using the force(true) option),
you can use the packs::orphaned/0 predicate to list any orphaned
packs that are installed.

See the tool API documentation on the
registries object for other useful
predicates.

Registry development

To simplify registry development and testing, use a local directory and
a file:// URL when calling the registries::add/1 predicate. For
example:

| ?- registries::add('file:///home/jdoe/work/my_pack_collection').

If the directory is a git repo, the tool will clone it when adding it.
Otherwise, the files in the directory are copied to the registry
definition directory. This allows the registry to be added and deleted
without consequences for the original registry source files.

To check your registry specifications, use the registries::lint/0-1
predicates after adding the registry.

Pack specification

A pack is specified using a Logtalk source file defining an object that
implements the pack_protocol. The source file should be named after
the pack with a _pack suffix. This naming convention helps
preventing name conflicts, notably with the pack own objects. The file
must be available from a declared pack registry (by having the registry
loader file loading it). The pack name is preferably a valid unquoted
atom. An example of a pack specification object would be:

:- object(lflat_pack,
 implements(pack_protocol)).

 :- info([
 version is 1:0:0,
 author is 'Paulo Moura',
 date is 2021-10-18,
 comment is 'L-FLAT - Logtalk Formal Language and Automata Toolkit pack spec.'
]).

 name(lflat).

 description('L-FLAT - Logtalk Formal Language and Automata Toolkit').

 license('MIT').

 home('https://github.com/l-flat/lflat').

 version(
 2:1:0,
 stable,
 'https://github.com/l-flat/lflat/archive/refs/tags/v2.1.0.tar.gz',
 sha256 - '9c298c2a08c4e2a1972c14720ef1498e7f116c7cd8bf7702c8d22d8ff549b6a1',
 [logtalk @>= 3:42:0],
 all
).

 version(
 2:0:2,
 stable,
 'https://github.com/l-flat/lflat/archive/refs/tags/v2.0.2.tar.gz',
 sha256 - '8774b3863efc03bb6c284935885dcf34f69f115656d2496a33a446b6199f3e19',
 [logtalk @>= 3:36:0],
 all
).

:- end_object.

The license/1 argument must be an atom and should whenever possible
be a license identifier as specified in the SPDX
standard [https://spdx.org/licenses/].

Optionally, the pack object can also define a
note(Action, Version, Note) predicate. The Action argument is an
atom: install, update, or uninstall. The Note argument
is also an atom. The tool will print any available notes when executing
one of the registry actions. See the pack_protocol documentation for
more details.

The pack sources must be available either as a local directory (when
using a file:// URL) or for downloading as a supported archive. The
checksum for the archive must use the SHA-256 hash algorithm
(sha256). The pack may optionally be signed. Supported archive
formats and extensions are:

	.zip

	.tgz, .tar.gz

	.tbz2, .tar.bz2

The pack sources should contain LICENSE, README.md (or
NOTES.md), and loader.lgt (or loader.logtalk) files.
Ideally, it should also contain a tester.lgt (tester.logtalk)
file. The path to the README.md file is printed when the pack is
installed or updated. It can also be queried using the
packs::directory/2 predicate.

Pack URLs and Single Sign-On

Typically, pack archive download URLs are HTTPS URLs and handled using
curl. It’s also possible to use git archive to download pack
archives, provided that the server supports it (as of this writing,
Bitbucket and GitLab public hosting services support it but not GitHub).
Using git archive is specially useful when the packs registry in
hosted in a server using Single Sign-On (SSO) for authentication. In
this case, HTTPS URLs can only be handled by curl by passing a token
(see below for an example). When the user have setup SSH keys to
authenticate to the packs registry server, git archive simplifies
pack installation, providing a better user experience. For example:

version(
 1:0:1,
 stable,
 'git@gitlab.com:me/foo.git/v1.0.1.zip',
 sha256 - '0894c7cdb8968b6bbcf00e3673c1c16cfa98232573af30ceddda207b20a7a207',
 [logtalk @>= 3:36:0],
 all
).

The pseudo-URL must be the concatenation of the SSH repo cloning URL
with the archive name. The archive name must be the concatenation of a
valid tag with a supported archive extension. SSH repo cloning URLs use
the format:

git@<hostname>:path/to/project.git

They can usually be easily copied from the hosting service repo webpage.
To compute the checksum, you must first download the archive. For
example:

$ git archive --output=foo-v1.0.1.zip --remote=git@gitlab.com:me/foo.git v1.0.1
$ openssl sha256 foo-v1.0.1.zip

Be sure to use a format that is supported by both the packs tool and
the git archive command (the format is inferred from the
--output option). Do not download the archive from the web interface
of the git hosting service in order to compute the checksum. Different
implementations of the archiving and compressing algorithms may be used
resulting in mismatched checksums.

Multiple pack versions

A pack may specify multiple versions. Each version is described using a
version/6 predicate clause as illustrated in the example above. The
versions must be listed ordered from newest to oldest. For details, see
the pack_protocol API documentation.

Listing multiple versions allows the pack specification to be updated
(by updating its registry) without forcing existing users into
installing (or updating to) the latest version of the pack.

Pack dependencies

Pack dependencies on other packs can be specified using a list of
Registry::Pack Operator Version terms where Operator is a
standard term comparison operator:

	Registry::Pack @>= Version - the pack requires a dependency with
version equal or above the specified one. For example,
logtalk @>= 3:36:0 means that the pack requires Logtalk 3.36.0 or
later version.

	Registry::Pack @=< Version - the pack requires a dependency with
version up to the specified one. For example,
common::bits @=< 2:1 means that the pack requires a
common::bits pack up to 2.1. This includes all previous versions
and also all patches for version 2.1 (e.g. 2.1.7, 2.1.8, …) but not
version 2.2 or newer.

	Registry::Pack @< Version - the pack requires a dependency with
version older than the specified one. For example,
common::bits @< 3 means that the pack requires a common::bits
2.x or older version.

	Registry::Pack @> Version - the pack requires a dependency with
version newer than the specified one. For example,
common::bits @> 2:4 means that the pack requires a
common::bits 2.5 or newer version.

	Registry::Pack == Version - the pack requires a dependency with a
specific version. For example, common::bits == 2:1 means that the
pack requires a common::bits pack version 2.1.x (thus, from
version 2.1.0 to the latest patch for version 2.1).

	Registry::Pack \== Version - the pack requires a dependency with
any version other than then the one specified. For example,
common::bits \== 2.1 means that the pack requires a
common::bits pack version other than any 2.1.x version.

To specify range dependencies by using two consecutive elements with
the lower bound followed by the upper bound. For example,
common::bits @>= 2, common::bits @< 3 means all common::bits 2.x
versions but not older or newer major versions.

It’s also possible to specify alternative dependencies using the
(;)/2 operator. For example,
(common::bits == 1:9; common::bits @>= 2:3) means either
common::bits 1.9.x versions or 2.3.x and later versions.
Alternatives should be listed in decreasing order of preference.

When a pack also depends on a Logtalk or backend version, the name
logtalk or the backend identifier atom can be used in place of
Registry::Pack (see below for the table of backend specifiers). For
example, logtalk @>= 3.36.0.

When a pack also depends on an operating-system version (e.g. a pack
containing shared libraries with executable code), the
os(Name,Machine) compound term can also be used in place of
Registry::Pack. For example, os('Darwin',x86_64) @>= '23.0.0'.
Note that, in this case, the release is an atom. The operating-system
data (name, machine, and release) is queried using the corresponding
os library predicates (see the library documentation for details).

Pack portability

Ideally, packs are fully portable and can be used with all Logtalk
supported Prolog backends. This can be declared by using the atom
all in the last argument of the version/6 predicate (see example
above).

When a pack can only be used with a subset of the Prolog backends, the
last argument of the version/6 predicate is a list of backend
identifiers (atoms):

	B-Prolog: b

	Ciao Prolog: ciao

	CxProlog: cx

	ECLiPSe: eclipse

	GNU Prolog: gnu

	JIProlog: ji

	LVM: lvm

	Quintus Prolog: quintus

	SICStus Prolog: sicstus

	SWI-Prolog: swi

	Tau Prolog: tau

	Trealla Prolog: trealla

	XSB: xsb

	YAP: yap

Pack development

To simplify pack development and testing, define a local registry and
add to it a pack specification with the development version available
from a local directory. For example:

version(
 0:11:0,
 beta,
 'file:///home/jdoe/work/my_awesome_library',
 none,
 [],
 all
).

If the directory is a git repo, the tool will clone it when installing
the pack. Otherwise, the files in the directory are copied to the pack
installation directory. This allows the pack to be installed, updated,
and uninstalled without consequences for the pack source files.

Packs that are expected to be fully portable should always be checked by
loading them with the portability flag set to warning.

To check your packs specifications, use the packs::lint/0-2
predicates after adding the registry that provides the packs.

Pack handling

Packs must be available from a defined registry. To list all packs that
are available for installation, use the packs::available/0
predicate:

| ?- packs::available.

To list all installed packs, call the packs::installed/0 predicate:

| ?- packs::installed.

To list only the installed packs from a specific registry, call instead
the packs::installed/1 predicate. For example:

| ?- packs::installed(talkshow).

To know more about a specific pack, use the packs::describe/1-2
predicates. For example:

| ?- packs::describe(bar).

The packs::describe/2 predicate can be used when two or more
registries provide packs with the same name. For example:

| ?- packs::describe(reg, bar).

To install the latest version of a pack, we can use the
packs::install/1-4 predicates. In the most simple case, when a pack
name is unique among registries, we can use the packs::install/1
predicate. For example:

| ?- packs::install(bar).

Any pack dependencies are also checked and installed or updated if
necessary. Other install predicates are available to disambiguate
between registries and to install a specific pack version.

Packs becomes available for loading immediately after successful
installation (no restarting of the Logtalk session is required). For
example, after the pack bar is installed, you can load it at the
top-level by typing:

| ?- {bar(loader)}.

or load it from a loader file using the goal
logtalk_load(bar(loader)).

After updating the defined registries, outdated packs can be listed
using the packs::outdated/0 predicate. You can update all outdated
packs by calling the packs::update/0 predicate or update a single
pack using the packs::update/1-2 predicates. For example:

| ?- packs::update(bar).

By default, updating a pack fails if it would break any dependent pack
(the force(true) option, described below, can be used to force
updating in this case).

The tool provides versions of the pack install, update, and uninstall
predicates that accept a list of options:

	verbose(Boolean) (default is false)

	clean(Boolean) (default is false)

	update(Boolean) (default is false)

	force(Boolean) (default is false)

	compatible(Boolean) (default is true)

	checksum(Boolean) (default is true)

	checksig(Boolean) (default is false)

	git(Atom) (extra command-line options; default is '')

	curl(Atom) (extra command-line options; default is '')

	gpg(Atom) (extra command-line options; default is '')

	tar(Atom) (extra command-line options; default is '')

Note that, by default, only compatible packs can be installed. To
install a pack that is incompatible with the current Logtalk version,
backend version, or operating-system version, use the install/4 or
update/3 predicates with the option compatible(false).

When a pack may be already installed, you can use the update(true)
option to ensure that the installation will by updated to the specified
version:

| ?- packs::install(reg, bar, 1:1:2, [update(true)]).

When using a checksig(true) option to check a pack signature, is
strongly advised that you also use the verbose(true) option. For
example:

| ?- packs::install(reg, bar, 1:1:2, [verbose(true), checksig(true)]).

Note that the public key used to sign the pack archive must be already
present in your local system.

Downloading pack archives may require passing extra command-line options
to curl for authentication. A common solution is to use a personal
access token. The details depend on the server software. An example when
using GitHub:

| ?- packs::install(reg, bar, 1:1:2, [curl('--header "Authorization: token foo42"')]).

Another example when using GitLab:

| ?- packs::install(reg, bar, 1:1:2, [curl('--header "PRIVATE-TOKEN: foo42"')]).

Pack archives may be encrypted, requiring passing the decryption
passphrase when installing or updating a pack. For example:

| ?- packs::install(reg, bar, 1:1:2, [tar('--passphrase test123')]).

In this case, you should be careful to not leak your passphrase in e.g.
the query history.

To uninstall a pack that you no longer need, use the
packs::uninstall/1-2 predicates. By default, only packs with no
dependent packs can be uninstalled. You can print or get a list of the
packs that depend on a given pack by using the packs::dependents/1-3
predicates. For example:

| ?- packs::dependents(reg, bar, Dependents).

See the tool API documentation on the
packs object for other useful predicates.

Pack documentation

The path to the pack README.md file is printed when the pack is
installed or updated. It can also be retrieved at any time by using the
readme/2 predicate. For example:

| ?- packs::readme(lflat, Path).

Additional documentation may also be available from the pack home page,
which can be printed by using the describe/1-2 predicates. For
example:

| ?- packs::describe(lflat).

% Registry: ...
% Pack: lflat
% Description: L-FLAT - Logtalk Formal Language and Automata Toolkit
% License: MIT
% Home: https://github.com/l-flat/lflat
% Versions:
...

The pack API documentation can be generated using the lgtdoc tool
library and directory predicates (depending on the pack source files
organization). For example:

| ?- {lflat(loader)},
 {lgtdoc(loader)},
 logtalk::expand_library_path(lflat, Path),
 lgtdoc::rdirectory(Path).
...

This query creates a xml_docs directory in the current directory.
The XML documentation files can then be converted into a final format,
e.g. HTML, using one of the lgtdoc tool provided scripts. For
example:

$ cd xml_docs
$ lgt2html

For more details and alternatives, see the lgtdoc tool
documentation.

It is also possible to add API documentation and diagrams for all the
installed packs to the Logtalk distribution API documentation and
diagrams by calling the update_html_docs and update_svg_diagrams
scripts with the -i option. See the scripts documentation for more
details.

Pinning registries and packs

Registries and packs can be pinned after installation to prevent
accidental updating or deleting, e.g. when using the batch update/0
predicate. This is useful when your application requires a specific
version or for security considerations (see below). For example, if we
want the bar pack to stay at its current installed version:

| ?- packs::pin(bar).
yes

After, any attempt to update or uninstall the pack will fail with an
error message:

| ?- packs::update(bar).
! Cannot update pinned pack: bar
no

| ?- packs::uninstall(bar).
! Cannot uninstall pinned pack: bar
no

To enable the pack to be updated ou uninstalled, the pack must first be
unpinned. Alternatively, the force(true) option can be used. Note
that if you force update a pinned pack, the new version will be
unpinned.

It’s also possible to pin (or unpin) all defined registries or installed
packs at once by using the pin/0 (or unpin/0) predicates. But
note that registries added after or packs installed after will not be
automatically pinned.

Testing packs

Logtalk packs (as most Logtalk libraries, tools, and examples) are
expected to have a tester.lgt or tester.logtalk tests driver
file at the root of their directory, which can be used for both
automated and manual testing. For example, after installing the foo
pack:

| ?- {foo(tester)}.

To test all installed packs, you can use the logtalk_tester
automation script from the installed packs directory, which you can
query using the goal:

| ?- packs::prefix(Directory).

Note that running the packs tests, like simply loading the pack, can
result in calling arbitrary code, which can potentially harm your
system. Always take into account the security considerations discussed
below.

Security considerations

New pack registries should be examined before being added, specially if
public and from a previously unknown source. The same precautions should
be taken when adding or updating a pack. Note that a registry can always
index third-party packs.

Pack checksums are checked by default. But pack signatures are only
checked if requested as packs are often unsigned. Care should be taken
when adding public keys for pack signers to your local system. Detached
signature files are assumed and expected to share the name of the
archive and use a .asc extension. When the checksig(true) option
is used, the signature file is automatically downloaded using a URL
constructed from the pack archive URL.

Registry and pack spec files plus the registry loader file are compiled
by term-expanding them so that only expected terms are actually loaded
and only expected logtalk_load/2 goals with expected relative file
paths are allowed. Predicates defining URLs are discarded if the URLs
are neither https:// nor file:// URLs or if they contain
non-allowed characters (currently, only alpha-numeric ASCII characters
plus the ASCII /, ., -, and _ characters are accepted).
But note that this tool makes no attempt to audit pack source files
themselves.

Registries and packs can always be pinned so that they are not
accidentally updated to a version that you may not had the chance to
audit.

Best practices

	Make available a new pack registry as a git repo. This simplifies
updating the registry and rolling back to a previous version.

	Use registry and pack names that are valid unquoted atoms, thus
simplifying usage. Use descriptive names with underscores if
necessary to link words.

	Name the registry and pack specification objects after their names
with a _registry or _pack suffix. Save the objects in files
named after the objects.

	Create new pack versions from git tags.

	If the sources of a pack are available from a git repo, consider
using signed commits and signed tags for increased security.

	When a new pack version breaks backwards compatibility, list both the
old and the new versions on the pack specification file.

	Pin registries and packs when specific versions are critical for your
work so that you can still easily batch update the remaining packs
and registries.

	Include the $LOGTALKPACKS directory (or the default
~/logtalk_packs directory) on your regular backups.

Installing Prolog packs

This tool can also be used to install Prolog packs that don’t use
Logtalk. After installing a pl_pack Prolog pack from a pl_reg
registry, it can be found in the $LOGTALKPACKS/packs/pl_reg/pl_pack
directory. When the LOGTALKPACKS environment variable is not
defined, the pack directory is by default
~/logtalk_packs/packs/pl_reg/pl_pack.

Different Prolog systems provide different solutions for locating Prolog
code. For example, several Prolog systems adopted the Quintus Prolog
file_search_path/2 hook predicate. For these systems, a solution
could be to add a fact to this predicate for each installed Prolog pack.
For example, assuming a pl_pack Prolog pack:

:- multifile(file_search_path/2).
:- dynamic(file_search_path/2).

file_search_path(library, '$LOGTALKPACKS/packs/pl_pack').

If the Prolog system also supports reading an initialization file at
startup, the above definition could be added there.

Known issues

Using the verbose(true) option on Windows systems may not provide
the shell commands output depending on the backend.

On Windows systems, the reset, delete, and uninstall predicates may fail
to delete all affected folders and files due to a operating-system bug.
Depending on the backend, this bug may cause some of the tests to fail.
For details on this bug, see:

https://github.com/microsoft/terminal/issues/309

The workaround is to use the Windows File Explorer to delete the
left-over folders and files.

When using Ciao Prolog 1.20.0, a workaround is used for this system
non-standard support for multifile predicates.

When using GNU Prolog 1.5.0 as the backend on Windows, you may get an
error on directory_files/2 calls. For details and a workaround, see:

https://github.com/didoudiaz/gprolog/issues/4

This issue is fixed in the GNU Prolog 1.5.1 version.

Using SICStus Prolog as the backend on Windows doesn’t currently work in
version 4.7.0 and earlier versions. The underlying issues are fixed in
the SICStus Prolog 4.7.1 version.

XSB have an odd bug (likely in its parser) when reading files that may
cause a pack installed version to be reported as the end_of_file
atom.

Some tests fail on Windows when using ECLiPSe or XSB due to file path
representation issues.

ports_profiler

This tool counts and reports the number of times each port in the
procedure box model is traversed during the execution of queries. It
can also report the number of times each clause (or grammar rule) is
used. It is inspired by the ECLiPSe port_profiler tool.

The procedure box model is the same used in the debugger tool. This is
an extended version of the original Byrd’s four port model. Besides the
standard call, exit, fail, and redo ports, Logtalk also
defines two post-unification ports, fact and rule, and an
exception port. This tool can also distinguishes between
deterministic exits (reported in the exit column in the profiling
result tables) and exits that leave choice-points (reported in the
*exit column).

API documentation

This tool API documentation is available at:

../../docs/library_index.html#ports-profiler

For sample queries, please see the SCRIPT.txt file in the tool
directory.

Loading

| ?- logtalk_load(ports_profiler(loader)).

Note that this tool cannot be loaded at the same time as other tools
(e.g. the debugger) that also provide a debug handler, which must be
unique in a running session.

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(ports_profiler(tester)).

Compiling source files for port profiling

To compile source files for port profiling, simply compile them in debug
mode and with the source_data flag turned on. For example:

| ?- logtalk_load(my_source_file, [debug(on), source_data(on)]).

Alternatively, you can also simply turn on the debug and
source_data flags globally before compiling your source files:

| ?- set_logtalk_flag(debug, on), set_logtalk_flag(source_data, on).

Be aware, however, that loader files (e.g. library loader files) may
override default flag values and thus loaded files may not be compiled
in debug mode. In this case, you will need to modify the loader files
themselves.

Generating profiling data

After loading this tool and compiling the source files that you want to
profile in debug mode, simply call the goals to be profiled.

Printing profiling data reports

After calling the goals that you want to profile, you can print a table
with all profile data by typing:

| ?- ports_profiler::data.

To print a table with data for a single entity, use the query:

| ?- ports_profiler::data(Entity).

To print a table with data for a single entity predicate, use the query:

| ?- ports_profiler::data(Entity, Predicate).

In this case, the second argument must be either a predicate indicator,
Name/Arity, or a non-terminal indicator, Name//Arity.

The profiling data can be reset using the query:

| ?- ports_profiler::reset.

To reset only the data about a specific entity, use the query:

| ?- ports_profiler::reset(Entity).

To illustrate the tool output, consider the family example in the
Logtalk distribution:

| ?- {ports_profiler(loader)}.
...
yes

| ?- set_logtalk_flag(debug, on).
yes

| ?- logtalk_load(family(loader)).
...
yes

| ?- addams::sister(Sister, Sibling).
Sister = wednesday,
Sibling = pubert ;
Sister = wednesday,
Sibling = pugsley ;
Sister = wednesday,
Sibling = pubert ;
Sister = wednesday,
Sibling = pugsley ;
no

?- ports_profiler::data.
Entity Predicate Fact Rule Call Exit *Exit Fail Redo Error
--
addams female/1 2 0 1 1 1 0 1 0
addams parent/2 8 0 4 3 5 1 5 0
relations sister/2 0 1 1 0 4 1 4 0
--
yes

?- ports_profiler::data(addams).
Predicate Fact Rule Call Exit *Exit Fail Redo Error

female/1 2 0 1 1 1 0 1 0
parent/2 8 0 4 3 5 1 5 0

yes

?- ports_profiler::data(addams, parent/2).
Clause Count

 1 1
 2 1
 3 2
 4 1
 5 1
 6 2

yes

Interpreting profiling data

Some useful information that can be inferred from the profiling data
include:

	which predicates are called more often (from the call port)

	unexpected failures (from the fail port)

	unwanted non-determinism (from the *exit port)

	performance issues due to backtracking (from the *exit and
redo ports)

	predicates acting like a generator of possible solutions (from the
*exit and redo ports)

	inefficient indexing of predicate clauses (from the fact,
rule, and call ports)

	clauses that are never used or seldom used

The profiling data should be analyzed taking into account the expected
behavior for the profiled predicates.

Profiling Prolog modules

This tool can also be applied to Prolog modules that Logtalk is able to
compile as objects. For example, if the Prolog module file is named
module.pl, try:

| ?- logtalk_load(module, [debug(on), source_data(on)]).

Due to the lack of standardization of module systems and the abundance
of proprietary extensions, this solution is not expected to work for all
cases.

Profiling plain Prolog code

This tool can also be applied to plain Prolog code. For example, if the
Prolog file is named code.pl, simply define an object including its
code and declaring as public any predicates that you want to use as
messages to the object. For example:

:- object(code).

 :- public(foo/2).
 :- include('code.pl').

:- end_object.

Save the object to an e.g. code.lgt file in the same directory as
the Prolog file and then load it in debug mode:

| ?- logtalk_load(code, [debug(on), source_data(on)]).

In alternative, use the object_wrapper_hook provided by the
hook_objects library:

| ?- logtalk_load(hook_objects(loader)).
...

| ?- logtalk_load(
 code,
 [hook(object_wrapper_hook), debug(on),
 source_data(on), context_switching_calls(allow)]
).

In this second alternative, you can then use the (<<)/2 context
switch control construct to call the wrapped predicates. E.g.

| ?- code<<foo(X, Y).

With either wrapping solution, pay special attention to any compilation
warnings that may signal issues that could prevent the plain Prolog code
of working as-is when wrapped by an object. Often any required changes
are straight-forward (e.g. adding use_module/2 directives for called
module library predicates).

Known issues

Determinism information is currently not available when using Quintus
Prolog as the backend compiler.

profiler

This tool contains simple wrappers for selected Prolog profiler tools.

Loading

This tool can be loaded using the query:

?- logtalk_load(profiler(loader)).

For sample queries, please see the SCRIPT.txt file in the tool
directory.

Testing

To test this tool, load the tester.lgt file:

| ?- logtalk_load(profiler(tester)).

Supported backend Prolog compilers

Currently, this tool supports the profilers provided with SICStus Prolog
4, SWI-Prolog, and YAP. The tool includes two files:

	
yap_profiler.lgt

simple wrapper for the YAP count profiler

	
sicstus_profiler.lgt

simple wrapper for the SICStus Prolog 4 profiler

Logtalk also supports the YAP tick profiler (using the latest YAP
development version) and the SWI-Prolog XPCE profiler. When using the
XPCE profiler, you can avoid profiling the Logtalk compiler (which is
invoked e.g. when you use the (::)/2 message-sending operator at the
top-level interpreter) by compiling your code with the optimize flag
turned on:

?- set_logtalk_flag(optimize, on).
true.

?- use_module(library(statistics)).
true.

?- profile(... :: ...).
...

Given that prolog_statistics:profile/1 is a meta-predicate, Logtalk
will compile its argument before calling it thanks to the
goal_expansion/2 hook predicate definitions in the adapter file.
Without this hook definition, you would need to use instead (to avoid
profiling the compiler itself):

?- logtalk << (prolog_statistics:profile(... :: ...)).
...

In either case, Don’t forget, however, to load the prolog_statistics
module before using or compiling calls to the profile/1 to allow
the Logtalk compiler to access its meta-predicate template.

The profiler support attempts to conceal internal Logtalk
compiler/runtime predicates and the generated entity predicates that
implement predicate inheritance. Calls to internal compiler and runtime
predicates have functors starting with $lgt_. Calls to predicates
with functors such as _def, _dcl, or _super, used to
implement inheritance, may still be listed in a few cases. Note that the
time and the number of calls/redos of concealed predicates is added to
the caller predicates.

Compiling source code for profiling

In order to get user-level object and predicate names instead of
compiler generated internal names when using the SWI-Prolog and YAP
profilers, you must set code_prefix flag to a character other than
the default $ before compiling your source code. For example:

?- set_logtalk_flag(code_prefix, '.').

See also the settings-sample.lgt file for automating the necessary
setup at Logtalk startup.

tutor

This tool adds explanations and suggestions to selected compiler warning
and error messages. It’s specially useful for new users not yet familiar
with the compiler and runtime warning and error messages.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#tutor

Loading

This tool can be loaded using the query:

| ?- logtalk_load(tutor(loader)).

Usage

Simply load the tool at startup (e.g. from a settings file). As an
example, with this tool loaded, instead of terse compiler warnings such
as:

* No matching clause for goal: baz(a)
* while compiling object main_include_compiler_warning
* in file logtalk/examples/errors/include_compiler_warning.lgt between lines 37-38
*
* Duplicated clause: b(one)
* first found at or above line 45
* while compiling object main_include_compiler_warning
* in file logtalk/examples/errors/include_compiler_warning.lgt at or above line 48

the user will get:

* No matching clause for goal: baz(a)
* while compiling object main_include_compiler_warning
* in file logtalk/examples/errors/include_compiler_warning.lgt between lines 37-38
* Calls to locally defined predicates without a clause with a matching head
* fail. Typo in a predicate argument? Predicate definition incomplete?
*
* Duplicated clause: b(one)
* first found at or above line 45
* while compiling object main_include_compiler_warning
* in file logtalk/examples/errors/include_compiler_warning.lgt at or above line 48
* Duplicated clauses are usually a source code editing error and can
* result in spurious choice-points, degrading performance. Delete or
* correct the duplicated clause to fix this warning.

wrapper

This is a prototype tool to help port a plain Prolog application to
Logtalk. It can also be used to enable applying other Logtalk developer
tools, such as the documenting and diagramming tools, to plain Prolog
code.

The tool takes a directory of Prolog files or a list of Prolog files,
loads and wraps the code in each file using an object wrapper, and
advises on missing directives to be added to those objects by using the
compiler lint checker and the reflection API. The user can then either
save the generated wrapper objects or copy and paste the printed advice
into the Prolog files (updating them to Logtalk files by adding the
object opening and closing directives to the Prolog files). The wrapper
objects use include/1 directives to include the Prolog files and can
be loaded for testing and for use with other tools. The wrapped Prolog
files are not modified and thus require only read permission.

API documentation

This tool API documentation is available at:

../../docs/library_index.html#wrapper

Loading

This tool can be loaded using the query:

| ?- logtalk_load(wrapper(loader)).

Workflows

The typical porting workflow is simply:

| ?- wrapper::rdirectory(root_directory_of_prolog_code).
...
| ?- wrapper::save.
...

See the next section on how to customize the API calls for more flexible
processing.

Customization

The tool can be customized by extending the wrapper object. A common
scenario is when wrapping plain Prolog code just to take advantage, for
example, of the documenting tool or for generating cross-referencing
diagrams. In this case, we can workaround any compiler errors by
specializing the inherited definitions for the term_expansion/2 and
goal_expansion/2 predicates and then load the wrapper objects for
further processing by using the include_wrapped_files(false) option
described below.

The API predicates also accept a set of options for customization:

	
prolog_extensions(Extensions)

list of file name extensions used to recognize Prolog source files
(default is ['.pl', '.pro', '.prolog'])

	
logtalk_extension(Extension)

Logtalk file name extension to be used for the generated wrapper
files (default is '.lgt')

	
exclude_files(Files)

list of Prolog source files to exclude (default is [])

	
exclude_directories(Files)

list of sub-directories to exclude (default is [])

	
include_wrapped_files(Boolean)

generate include/1 directives for the wrapped Prolog source
files (default is true)

The use, by default, of include/1 directives to wrap the code in
Prolog source files facilitates running in parallel the Logtalk port and
the original Prolog code. This is specially useful when the Prolog code
being ported lacks a comprehensive set of tests that could be adapted to
verify the Logtalk port. The generated Logtalk files can also take
advantage of uses/2 directives, including predicate aliases and
predicate shorthands to minimize the changes to the original Prolog code
and help verify if replacement calls to Logtalk library predicates
provide the same semantics as the original calls.

Current limitations

	The tool cannot deal with syntax errors in the Prolog files. These
errors usually occur when using a backend Prolog system different
from the one used to compile the original plain Prolog code. A common
cause of syntax errors are operator definitions. These can often be
solved by defining those operators for the Prolog backend used to run
Logtalk and this tool. An alternative is to preload the Prolog files
where those operators are declared. Preloading the plain Prolog
application can also help in wrapping it by ensuring that its
dependencies are also loaded.

	The tool assumes that all files to be wrapped have different names
(even if found in different directories). If that is not the case,
the name conflicts must be manually solved before using the tool.

	There isn’t yet any support for dealing with meta-predicates and
advise on missing meta-predicate directives.

Libraries

The documentation of each library can also be found in the library
directory in the NOTES.md file.

	Overview
	Library documentation

	Loading libraries

	Testing libraries

	Credits

	Other notes

	arbitrary
	API documentation

	Loading

	Testing

	Pre-defined types

	Usage

	Defining new generators and shrinkers

	Scoped generators and shrinkers

	Reproducing sequences of arbitrary terms

	Default size of generated terms

	Known issues

	assignvars
	API documentation

	Loading

	Testing

	base64
	API documentation

	Loading

	Testing

	Encoding

	Decoding

	basic_types
	API documentation

	Loading

	Testing

	coroutining
	API documentation

	Loading

	Testing

	Usage

	cbor
	Representation

	Encoding

	Decoding

	API documentation

	Loading

	Testing

	core
	API documentation

	Loading

	Testing

	csv
	API documentation

	Loading

	Testing

	Usage

	dates
	API documentation

	Loading

	dependents
	API documentation

	Loading

	dictionaries
	API documentation

	Loading

	Testing

	Usage

	Credits

	dif
	API documentation

	Loading

	Testing

	Usage

	edcg
	API documentation

	Loading

	Testing

	Usage

	Introduction

	Syntax

	Declaration of Predicates

	Declaration of Accumulators

	Declaration of Passed Arguments

	Additional documentation

	events
	API documentation

	Loading

	expand_library_alias_paths
	API documentation

	Loading

	Usage

	expecteds
	API documentation

	Loading

	Testing

	Usage

	See also

	format
	API documentation

	Loading

	Testing

	Usage

	Portability

	gensym
	API documentation

	Loading

	Testing

	Usage

	genint
	API documentation

	Loading

	Testing

	Usage

	git
	API documentation

	Loading

	Testing

	Usage

	grammars
	API documentation

	Loading

	Testing

	Usage

	heaps
	API documentation

	Loading

	Testing

	Credits

	hierarchies
	API documentation

	Loading

	Testing

	hook_flows
	API documentation

	Loading

	Testing

	Usage

	hook_objects
	API documentation

	Loading

	Testing

	Usage

	html
	API documentation

	Loading

	Testing

	Generating a HTML document

	Generating a HTML fragment

	Working with callbacks to generate content

	Working with custom elements

	ids
	API documentation

	Loading

	Testing

	Usage

	intervals
	API documentation

	Loading

	Testing

	java
	API documentation

	Loading

	Testing

	Usage

	Known issues

	json
	API documentation

	Loading

	Testing

	Representation

	Encoding

	Decoding

	Known issues

	listing
	API documentation

	Loading

	Testing

	Usage

	logging
	API documentation

	Loading

	loops
	API documentation

	Loading

	Testing

	Usage

	meta
	API documentation

	Loading

	Testing

	Usage

	meta_compiler
	API documentation

	Loading

	Testing

	Usage

	mutations
	API documentation

	Loading

	Testing

	Usage

	nested_dictionaries
	API documentation

	Loading

	Testing

	Usage

	Curly term representation

	optionals
	API documentation

	Loading

	Testing

	Usage

	See also

	options
	API documentation

	Loading

	Testing

	Usage

	os
	API documentation

	Loading

	Testing

	Known issues

	queues
	API documentation

	Loading

	Testing

	Usage

	random
	API documentation

	Loading

	Testing

	Usage

	reader
	API documentation

	Loading

	Testing

	recorded_database
	API documentation

	Loading

	Testing

	Usage

	Known issues

	redis
	API documentation

	Loading

	Testing

	Credits

	Known issues

	sets
	API documentation

	Loading

	Testing

	Usage

	Credits

	statistics
	API documentation

	Loading

	Testing

	term_io
	API documentation

	Loading

	Testing

	timeout
	API documentation

	Loading

	Testing

	Known issues

	tsv
	API documentation

	Loading

	Testing

	Usage

	types
	API documentation

	Loading

	Testing

	Type-checking

	Defining new types

	Examples

	unicode_data
	Authors

	License

	Website

	Description

	Requirements

	Usage

	Known issues

	Acknowledgements

	Files and API Summary

	ulid
	API documentation

	Loading

	Testing

	Generating ULIDs

	Type-checking ULIDs

	union_find
	API documentation

	Loading

	Testing

	Usage

	uuid
	API documentation

	Loading

	Testing

	Generating version 1 UUIDs

	Generating version 4 UUIDs

	Generating the null UUID

	zippers
	API documentation

	Loading

	Testing

Overview

This folder contains libraries of useful objects, categories, and
protocols. Specific notes about individual libraries can be found in the
corresponding library directory NOTES.md files.

A plain Prolog version of the Unicode 6.2 standard is also included in
the unicode_data folder. See its README.md file for details.

A parallel_logtalk_processes_setup.pl Prolog file is also provided
with sample code for selected backend Prolog compilers for initializing
Logtalk processes such that each process uses a unique scratch directory
therefore allowing parallel process execution (e.g. for usage at
continuous integration servers). Starting with Logtalk 3.48.0, this
setup is only required in general when running with the clean flag
turned off. See the comments in the file itself for usage instructions.

Library documentation

Specific notes about each library can be found in the corresponding
NOTES.md files. HTML documentation for each library API can be found
on the docs directory (open the ../docs/index.html file with
your web browser). The documentation for these libraries can be
regenerated using the shell scripts ../scripts/update_html_docs.sh
and ../scripts/update_svg_diagrams.sh.

Loading libraries

All the individual libraries can be loaded using the
<library name>(loader) notation as argument for the compiling and
loading predicates. For example:

| ?- logtalk_load(random(loader)).

There is also a file named all_loader.lgt that will load all
libraries. Simply type the goal:

| ?- logtalk_load(library(all_loader)).

As a general rule, always use the corresponding loader file to load a
library. Most library entities are part of small hierarchies or depend
on other libraries and thus cannot be loaded and compiled separately
(e.g. the list object implements the listp protocol and is part
of a basic types hierarchy). Using the loader files takes care of all
dependencies and also ensures compilation in optimized mode.

Testing libraries

Most of the libraries include unit tests in their directory, together
with a tester.lgt file for running them. For example, to run the
tests for the random library, we can use the goal:

| ?- logtalk_load(random(tester)).

To run all libraries tests, we can use the logtalk_tester automation
script from the library directory at the root of the Logtalk
distribution. For example, assuming the Logtalk user directory is
~/logtalk and that we want to run the tests using ECLiPSe as the
backend Prolog compiler:

$ cd ~/logtalk/library
$ logtalk_tester -p eclipse

Credits

Some code in this library is based on public domain Prolog code, in
particular, code adopted from the Edinburgh Prolog library. The
definition of predicate reverse/2 in object list is from Richard
O’Keefe and can be found in its book “The Craft of Prolog”.

Some elements of this library are inspired by Richard O’Keefe library
proposal available at:

http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

Some libraries, or part of libraries, are either ports of Prolog system
libraries or inspired by Prolog system libraries. See the individual
library notes for details. See also the NOTICE.txt file at the root
of the Logtalk distribution for copyright information on third-party
source code.

Other notes

Some files contained in this directory represent work in progress and
are not loaded by default by any loader utility file.

arbitrary

The arbitrary library defines an arbitrary category providing
predicates for generating random values for selected types to the
type object, complementing its type checking predicates. Both the
object and the category predicates can be extended by the user with
definitions for new types by defining clauses for multifile predicates.
This library is notably used in the QuickCheck implementation by the
lgtunit tool. See also the documentation of the mutations
library for related functionality.

API documentation

Open the
../../docs/library_index.html#arbitrary
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(arbitrary(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(arbitrary(tester)).

Several of provided tests are generic and verify correct behavior of all
pre-defined and loaded user-defined generators and shrinkers for all
ground types.

Pre-defined types

This library defines random generators for most common Logtalk and
Prolog types. See the API
documentation for a listing
of all the pre-defined types.

Usage

The arbitrary category complements the type object and thus its
predicates are accessed via this object. For example:

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -816
yes

Defining new generators and shrinkers

To define a generator of arbitrary values for a type, define a clause
for the arbitrary::arbitrary/1 multifile predicate specifying the
type and a clause for the arbitrary::arbitrary/2 multifile predicate
generating an arbitrary term of the specified type. As a simple example,
assume that we want to define an “odd integer type”. We start by
defining both the type checker and the arbitrary generator:

:- multifile(type::type/1).
type::type(odd).

:- multifile(type::check/2).
type::check(odd, Term) :-
 (var(Term) ->
 throw(instantiation_error)
 ; integer(Term),
 Term mod 2 =:= 1 ->
 true
 ; throw(type_error(odd, Term))
).

:- multifile(arbitrary::arbitrary/1).
arbitrary::arbitrary(odd).

:- multifile(arbitrary::arbitrary/2).
arbitrary::arbitrary(odd, Arbitrary) :-
 type::arbitrary(integer, Arbitrary0),
 (Arbitrary0 mod 2 =:= 1 ->
 Arbitrary = Arbitrary0
 ; Arbitrary is Arbitrary0 + 1
).

The arbitrary library also provides meta-types that can simplify
the definition of new generators. For example, the odd type above
can also be defined using the constrain/2 meta-type to only generate
values that satisfy a closure:

arbitrary::arbitrary(odd, Arbitrary) :-
 arbitrary(constrain(integer, [Arbitrary]>>(Arbitrary mod 2 =:= 1)), Arbitrary).

Another example is using the transform/2 meta-type to transform
generated values for a base type using a closure. Assuming that we want
to generate sorted list of random integers, we can write:

arbitrary::arbitrary(sorted_integer_list, Arbitrary) :-
 arbitrary(transform(list(integer), sort), Arbitrary).

We can also define a clause for the arbitrary::shrinker/1 multifile
predicate to declare a new shrinker and a arbitrary::shrink/3
multifile predicate for shrinking arbitrary values for QuickCheck usage:

:- multifile(arbitrary::shrinker/1).
arbitrary::shrinker(odd).

:- multifile(arbitrary::shrink/3).
arbitrary::shrink(odd, Large, Small) :-
 integer(Large),
 (Large < -1 ->
 Small is Large + 2
 ; Large > 1,
 Small is Large - 2
).

Definitions for the shrink/3 predicate should either succeed or fail
but never throw an exception. The shrink_sequence/3 predicate can be
used to help testing that shrinking a value results in a finite sequence
of values.

It is also possible to define edge cases for a given type for use with
QuickCheck implementations. For example:

:- multifile(arbitrary::edge_case/2).
arbitrary::edge_case(odd, 1).
arbitrary::edge_case(odd, -1).

Edge cases are tried before resorting to generating arbitrary values for
a type.

A more complex example is generating arbitrary values for a recursive
type. A simple example of a recursive type is a binary tree. Assuming
that we are working with a binary tree holding integers where each node
is represented by a node(Left, Right) compound term, we can define a
node(Depth) type where Depth is the maximum depth of the tree.
This argument allows us to prevent excessively deep trees:

:- category(binary_tree).

 :- multifile(type::type/1).
 type::type(node(_)).

 :- multifile(type::check/2).
 type::check(node(_), Term) :-
 (check(Term) ->
 true
 ; var(Term) ->
 throw(instantiation_error)
 ; throw(type_error(node(_), Term))
).

 check(Term) :-
 (integer(Term) ->
 true
 ; compound(Term),
 Term = node(Left, Right),
 check(Left),
 check(Right)
).

 :- multifile(arbitrary::arbitrary/1).
 arbitrary::arbitrary(node(_)).

 :- multifile(arbitrary::arbitrary/2).
 arbitrary::arbitrary(node(Depth), Arbitrary) :-
 (Depth > 1 ->
 NewDepth is Depth - 1,
 type::arbitrary(
 types_frequency([
 integer - 1,
 compound(
 node,
 [
 types([node(NewDepth), integer]),
 types([node(NewDepth), integer])
]
) - 3
]),
 Arbitrary
)
 ; type::arbitrary(
 integer, Arbitrary)
).

:- end_category.

In this second example, we use some of the pre-defined types provided by
the library. The types_frequency(Pairs) type supports generating
random terms for a type in the Type-Frequency pairs list where the
type ie randomly chosen after the types relative frequency. The
compound(Name, Types) type supports generating compound term with a
given name and random arguments after the given types:

| ?- type::arbitrary(node(4), Arbitrary).
Arbitrary = 907
yes

| ?- type::arbitrary(node(4), Arbitrary).
Arbitrary = node(node(node(522, 509), node(83, 453)), node(454, -197))
yes

| ?- type::arbitrary(node(4), Arbitrary).
Arbitrary = node(node(-875, -866), -254)
yes

| ?- type::arbitrary(node(4), Arbitrary).
Arbitrary = node(-133, -831)
yes

The source code of these examples can be found in the test_files
directory. Other examples of arbitrary term generators can be found in
the implementation of the optionals and expecteds libraries.

Scoped generators and shrinkers

Declaring a new generator and possibly a shrinker for a custom type
rises the possibility of a conflict with third-party defined generators
and shrinkers. An alternative is to use the (::)/2 meta-type to
define scoped generators and shrinkers. For example:

:- object(scoped).

 % the same predicate is used for both generating and validating
 :- public(custom/1).
 custom(Term) :-
 (var(Term) ->
 % assume predicate used as a generator
 random::random(Term)
 ; % assume predicate used as a validator
 float(Term)
).

 % a predicate with the same name is used for shrinking
 :- public(custom/2).
 custom(Larger, Small) :-
 Small is Larger / 2.

:- end_object.

Some sample calls:

| ?- type::arbitrary(scoped::custom, Arbitrary).
Arbitrary = 0.5788130906607927
yes

| ?- type::valid(scoped::custom, foo).
no

| ?- type::check(scoped::custom, _).
ERROR: type_error(instantiation_error)

| ?- type::check(scoped::custom, foo).
ERROR: type_error(scoped::custom, foo)

| ?- type::shrink(scoped::custom, 0.42, Smaller).
Smaller = 0.21
yes

The source code of this example can be found in the test_files
directory.

Reproducing sequences of arbitrary terms

The arbitrary category provides access to the pseudo-random
generator it uses via the get_seed/1 and set_seed/1. This allows
sequences of arbitrary values to be reproduced. For example:

| ?- type::get_seed(Seed).
Seed = seed(3172, 9814, 20125)
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -816
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -113
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = 446

| ?- type::set_seed(seed(3172, 9814, 20125)).
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -816
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = -113
yes

| ?- type::arbitrary(integer, Arbitrary).
Arbitrary = 446
yes

The seed should be regarded as an opaque term and handled using the
get_seed/1 and set_seed/1 predicates. These predicates are
notably used in the QuickCheck implementation provided by the
lgtunit tool.

Default size of generated terms

The library uses the value 42 for the default size of generated terms
for types where size is meaningful and implicit. To override this
default value, define a clause for the arbitrary::max_size/1
multifile predicate. The new default size must be a positive integer.
For example:

:- multifile(arbitrary::max_size/1).
arbitrary::max_size(7).

When multiple definitions exist, the first valid one found is used. When
no definition is valid, the default value of 42 is used.

Known issues

Some Prolog systems either don’t support the null character or provide
buggy results when calling char_code/2 with a code of zero. When
that’s the case, the null character is excluded when generating
arbitrary characters or character codes.

Generating arbitrary Unicode characters (instead of Unicode codepoints)
is inherently problematic as the process first generates codepoints and
then tries to use the standard char_code/2 to convert them to
characters. But, depending on the backend Prolog system and its internal
(if any) Unicode normalization, it may not be possible to convert a
codepoint to a single character.

assignvars

The assignvarsp protocol declares the predicates used for logical
assignment of Prolog terms developed by Nobukuni Kino.

The assignvars object provides a declarative implementation of the
assignvarsp protocol. It can be used with any backend Prolog
compiler.

The nd_assignvars object provides a non-declarative but faster
implementation of the assignvarsp protocol. It can be used with the
following backend Prolog compilers: B-Prolog, CxProlog, ECLiPSe, GNU
Prolog, SICStus Prolog, SWI-Prolog, and YAP.

For more information on assignvars, please consult the URL:

https://web.archive.org/web/20160818050049/http://www.kprolog.com/en/logical_assignment/

The representation of assignable terms should be regarded as an opaque
term and only accessed using the library predicates.

API documentation

Open the
../../docs/library_index.html#assignvars
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(assignvars(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(assignvars(tester)).

base64

The base64 library provides predicates for parsing and generating
data in the Base64 and Base64URL formats as per the specification found
at:

https://www.rfc-editor.org/rfc/rfc4648

API documentation

Open the
../../docs/library_index.html#base64
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(base64(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(base64(tester)).

Encoding

Encoding a list of bytes in Base64 format is accomplished by the
base64::generate/2 predicate. For example:

| ?- atom_codes('Hello world!', Bytes),
 base64::generate(atom(Base64), Bytes).
Base64 = 'SGVsbG8gd29ybGQh'
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

| ?- atom_codes('Hello world!', Bytes),
 base64::generate(codes(Base64), Bytes).
Base64 = [83,71,86,115,98,71,56,103,100,50,57,121,98,71,81,104]
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

The Base64 result can also be represented using a list of chars, written
to a file or to a stream. See the API documentation for details.

For safe encoding of URLs, use instead the Base64URL format. For
example:

| ?- base64url::generate(atom(Base64URL), 'https://logtalk.org').
Base64URL == 'aHR0cHM6Ly9sb2d0YWxrLm9yZw'
yes

The Base64URL can also be represented using a list of chars or a list of
codes. The input URL should be in the same format.

Decoding

Decoding of Base64 data is accomplished using the base64::parse/2
predicate. For example:

| ?- base64::parse(atom('SGVsbG8gd29ybGQh'), Bytes),
 atom_codes(Atom, Bytes).
Atom = 'Hello world!'
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

| ?- base64::parse(chars(['S','G','V',s,b,'G','8',g,d,'2','9',y,b,'G','Q',h]), Bytes),
 atom_codes(Atom, Bytes).
Atom = 'Hello world!'
Bytes = [72,101,108,108,111,32,119,111,114,108,100,33]
yes

The base64::parse/2 predicate accepts other input source such as a
file or a stream. See the API documentation for details.

For decoding of URLs in the Base64URL format, use the
base64url::parse/2 predicate. For example:

| ?- base64url::parse(atom('aHR0cHM6Ly9sb2d0YWxrLm9yZw'), URL).
URL == 'https://logtalk.org'
yes

The base64url::parse/2 predicate also accepts a list of chars or a
list of codes as input. See the API documentation for details.

basic_types

The basic_types library is a virtual library that loads only basic
types from the types library:

	comparingp

	termp, term

	atomic, atom, number, float, integer

	compound, listp, list

	type

API documentation

Open the
../../docs/library_index.html#types
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(basic_types(loader)).

Testing

To test this library predicates, load the tester.lgt file for the
types library:

| ?- logtalk_load(types(tester)).

coroutining

The coroutining object provides a portable abstraction over how
common coroutining predicates are made available by the supported
backend Prolog systems (ECLiPSe, LVM, SICStus Prolog, SWI-Prolog,
Trealla Prolog, and YAP) that provide them. Partial support for XSB is
provided (the predicate frozen/2 is not available and calls to it
fail).

Calls to the library predicates are inlined when compiled with the
optimize flag turned on. In this case, there is no overhead compared
with calling the abstracted predicates directly.

See also the dif library.

API documentation

Open the
../../docs/library_index.html#coroutining
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(coroutining(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(coroutining(tester)).

Usage

Load this library from your application loader file. To call the
coroutining predicates using implicit message sending, add the following
directive to any object or category calling the predicates (adjust the
list to the predicates actually called):

:- uses(coroutining, [
 dif/2, dif/1, freeze/2, frozen/2, when/2
]).

cbor

The cbor library implements predicates for importing and exporting
data in the Concise Binary Object Representation (CBOR) format:

	https://www.rfc-editor.org/rfc/rfc8949.html

	http://cbor.io/

This library is a work-in-progress. Currently it requires a backend
supporting unbounded integer arithmetic.

Representation

	Maps are represented using curly-bracketed terms, {Pairs}, where
each pair uses the representation Key-Value.

	Arrays are represented using lists.

	Byte strings uses bytes(List) compound terms.

	Text strings can be represented as atoms, chars(List), or
codes(List). The default when decoding is to use atoms when using
the cbor object. To decode text strings into lists of chars or
code, use the cbor/1 with the parameter bound to chars or
codes. For example:

| ?- cbor::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = hello
yes

| ?- cbor(atom)::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = hello
yes

| ?- cbor(chars)::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = chars([h,e,l,l,o])
yes

| ?- cbor(codes)::parse([0x65,0x68,0x65,0x6c,0x6c,0x6f], Term).
Term = codes([104,101,108,108,111])
yes

	Tagged data uses tag(Tag, Data) compound terms.

	Simple values can be represented using simple(Simple) compound
terms.

	The CBOR elements false, true, null, and undefined
are represented by, respectively, the @false, @true,
@null, and @undefined compound terms.

	The compound terms @infinity, @negative_infinity, and
@not_a_number are used to represent the corresponding CBOR
elements.

	Only some backends distinguish between positive zero and negative
zero. The compound terms @zero and @negative_zero can be used
as an alternative for encoding. The decoder, however, produces the
0.0 and -0.0 floats.

Encoding

Encoding is accomplished using the generate/2 predicate. For
example:

| ?- cbor::generate([a,{b-c}], Encoding).
Encoding = [0x9f,0x61,0x61,0xbf,0x61,0x62,0x61,0x63,0xff,0xff]
yes

The encoding of arrays and maps uses indefinite-length encoding. All
floats are currently encoded using decimal fractions. Encoding
indicators and big floats are not currently supported.

Decoding

Decoding is accomplished using the parse/2 predicate. For example:

| ?- cbor::parse([0x9f,0x61,0x61,0xbf,0x61,0x62,0x61,0x63,0xff,0xff], Term).
Term = [a,{b-c}]
yes

API documentation

Open the
../../docs/library_index.html#cbor
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(cbor(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(cbor(tester)).

core

This library consists of built-in entities.

API documentation

See this Handbook “Objects”, “Protocols”, and “Categories” sections.

Loading

All entities in this library are automatically loaded at Logtalk startup.

Testing

Tests for this library can be found in the tests/logtalk/entities directory.

csv

The csv library provides predicates for reading and writing CSV
files and streams:

https://www.rfc-editor.org/rfc/rfc4180.txt

The main object, csv/3, is a parametric object allowing passing
options for the handling of the header of the file, the fields
separator, and the handling of double-quoted fields. The cvs object
extends the csv/3 parametric object using default option values.

The library also include predicates to guess the separator and guess the
number of columns in a given CSV file.

Files and streams can be read into a list of rows (with each row being
represented by a list of fields) or asserted using a user-defined
dynamic predicate. Reading can be done by first loading the whole file
(using the read_file/2-3 predicates) into memory or line by line
(using the read_file_by_line/2-3 predicates). Reading line by line
is usually the best option for parsing large CSV files.

Data can be saved to a CSV file or stream by providing the object and
predicate for accessing the data plus the name of the destination file
or the stream handle or alias.

API documentation

Open the
../../docs/library_index.html#csv
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(csv(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(csv(tester)).

Usage

The csv(Header, Separator, IgnoreQuotes) parametric object allows
passing the following options:

	Header: possible values are missing, skip, and keep.

	Separator: possible values are comma, tab, semicolon,
and colon.

	IgnoreQuotes: possible values are true to ignore double
quotes surrounding field data and false to preserve the double
quotes.

The csv object uses the default values keep, comma, and
false.

When writing CSV files or streams, set the quoted fields option to
false to write all non-numeric fields double-quoted (i.e. escaped).

The library objects can also be used to guess the separator used in a
CSV file if necessary. For example:

| ?- csv::guess_separator('test_files/crlf_ending.csv', Separator).
Is this the proper reading of a line of this file (y/n)? [aaa,bb,ccc]
|> y.

Separator = comma ?

This information can then be used to read the CSV file returning a list
of rows:

| ?- csv(keep, comma, true)::read_file('test_files/crlf_ending.csv', Rows).

Rows = [[aaa,bbb,ccc],[zzz,yyy,xxx]] ?

Alternatively, The CSV data can be saved using a public and dynamic
object predicate (that must be previously declared). For example:

| ?- assertz(p(_,_,_)), retractall(p(_,_,_)).
yes

| ?- csv(keep, comma, true)::read_file('test_files/crlf_ending.csv', user, p/3).
yes

| ?- p(A,B,C).

A = aaa
B = bbb
C = ccc ? ;

A = zzz
B = yyy
C = xxx

Given a predicate representing a table, the predicate data can be
written to a file or stream. For example:

| ?- csv(keep, comma, true)::write_file('output.csv', user, p/3).
yes

leaving the content just as the original file thanks to the use of
true for the IgnoreQuotes option:

aaa,bbb,ccc
zzz,yyy,xxx

Otherwise:

| ?- csv(keep, comma, false)::write_file('output.csv', user, p/3).
yes

results in the following file content:

"aaa","bbb","ccc"
"zzz","yyy","xxx"

The guess_arity/2 method, to identify the arity, i. e. the number of
fields or columns per record in a given CSV file, for example:

| ?- csv(keep, comma, false)::guess_arity('test_files/crlf_ending.csv', Arity).
Is this the proper reading of a line of this file (y/n)? [aaa,bbb,ccc]
|> y.

Arity = 3

dates

The date object implements some useful calendar date predicates.

The time object implements some useful time predicates.

Please note that the functionality of these objects depends on the
chosen Prolog support for accessing the operating system time and date.

API documentation

Open the
../../docs/library_index.html#dates
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(dates(loader)).

dependents

The observer and subject categories implement the Smalltalk
dependents handling mechanism. This mechanism can be used as an
alternative to Logtalk system-wide support for event-driven programming.

API documentation

Open the
../../docs/library_index.html#dependents
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(dependents(loader)).

dictionaries

This library provides a dictionary (also know as associative array, map,
or symbol table) protocol and binary tree, AVL tree, and Red–Black tree
implementations. The different representations of a dictionary should be
regarded as opaque terms and only accessed using the library predicates.

API documentation

Open the
../../docs/library_index.html#dictionaries
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(dictionaries(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(dictionaries(tester)).

Usage

First, select the dictionary implementation that you want to use. For
cases where the number of elements is relatively small and performance
is not critical, bintree can be a good choice. For other cases,
avltree or rbtree are likely better choices. If you want to
compare the performance of the implementations, either define an object
alias or use a uses/2 directive so that you can switch between
implementations by simply changing the alias definition or the first
argument of the directive. Note that you can switch between
implementations at runtime without code changes by using a parameter
variable in the first argument of a uses/2 directive.

Dictionary keys should preferable be ground terms. If the keys contain
variables, the user must ensure that any instantiation of those
variables when calling this library predicates will not affect the key
ordering.

To create a new dictionary, you can use the new/1 predicate. For
example:

| ?- avltree::new(Dictionary).
Dictionary = ...
yes

You can also create a new dictionary from a list of key-value pairs by
using the as_dictionary/2 predicate. For example:

| ?- avltree::as_dictionary([a-1,c-3,b-2], Dictionary).
Dictionary = ...
yes

Several predicates are provided for inserting key-value pairs, lookup
key-value pairs updating the value associated with a key, and deleting
key-value pairs. For example:

| ?- avltree::(
 new(Dictionary0),
 insert(Dictionary0, a, 1, Dictionary1),
 update(Dictionary1, a, 2, Dictionary2),
 lookup(a, Value, Dictionary2)
).
Dictionary0 = ...,
Dictionary1 = ...,
Dictionary2 = ...,
Value = 2
yes

For details on these and other provided predicates, consult the library
API documentation.

Credits

The AVL tree implementation is an adaptation to Logtalk of the assoc
SWI-Prolog library authored by R.A.O’Keefe, L.Damas, V.S.Costa, Glenn
Burgess, Jiri Spitz, and Jan Wielemaker. Additional predicates authored
by Paulo Moura.

The Red–Black tree implementation is an adaptation to Logtalk of the
rbtrees Prolog library authored by Vitor Santos Costa.

dif

The dif object provides a portable abstraction over how the
dif/2 predicate is made available by the supported backend Prolog
systems that implement it (B-Prolog, ECLiPSe, LVM, SICStus Prolog,
SWI-Prolog, Trealla Prolog, XSB, and YAP).

Calls to the library predicates are inlined when compiled with the
optimize flag turned on. In this case, there is no overhead compared
with calling the abstracted predicate directly.

See also the coroutining library.

API documentation

Open the
../../docs/library_index.html#dif
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(dif(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(dif(tester)).

Usage

Load this library from your application loader file. To call the
dif/1-2 predicates using implicit message sending, add the following
directive to any object or category calling the predicates:

:- uses(dif, [
 dif/2, dif/1
]).

edcg

This library provides a Logtalk port of the Peter Van Roy’s extended DCG
implementation. For full documentation on EDCGs, see:

https://www.info.ucl.ac.be/~pvr/edcg.html

This Logtalk version defines a hook object, edcg. Source files
defining EDCGs must be compiled using the compiler option
hook(edcg):

| ?- logtalk_load(source, [hook(edcg)]).

Alternatively, the following directive can be added at the beginning of
the source file containing the EDCGs:

:- set_logtalk_flag(hook, edcg).

The hook object automatically adds the EDCGs -->> infix operator
scoped to the source file.

This port has simplified by copying and then modifying Michael
Hendricks’s edcg repo at:

https://github.com/mndrix/edcg

A notable difference is that Michael’s version declares Peter’s original
predicates for declaring accumulators and predicates using the hidden
arguments as multifile predicates. But this is risky as two independent
EDCGs may use e.g. the same accumulator names and introduce conflicts.
The Logtalk version uses instead the edcg hook object internal state
to temporarily save those predicates in order to parse the corresponding
EDCGs.

API documentation

Open the
../../docs/library_index.html#edcg
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(edcg(loader)).

Testing

To test this library predicates, load the tester.lgt file of the
edcgs example:

| ?- logtalk_load(edcgs(tester)).

Usage

Follows the usage documentation written by Michael Hendricks (with a
contribution from Peter Ludemann), used here with permission, with the
necessary changes for the Logtalk port.

% declare accumulators
acc_info(adder, X, In, Out, integer::plus(X,In,Out)).

% declare predicates using these hidden arguments
pred_info(len,0,[adder,dcg]).
pred_info(increment,0,[adder]).

increment -->>
 % add one to the accumulator
 [1]:adder.

len(Xs,N) :-
 len(0,N,Xs,[]).

len -->>
 % 'dcg' accumulator has an element
 [_],
 !,
 % increment the 'adder' accumulator
 increment,
 len.
len -->>
 [].

Introduction

DCG notation gives us a single, hidden accumulator. Extended DCG
notation (implemented by this library) lets predicates have arbitrarily
many hidden accumulators. As demonstrated by the synopsis above, those
accumulators can be implemented with arbitrary goals (like
integer::plus/3).

Benefits of this library:

	avoid tedium and errors from manually threading accumulators through
your predicates

	add or remove accumulators with a single declaration

	change accumulator implementation with a single declaration (ex,
switching from ordsets to rbtrees)

Syntax

Extended DCG syntax is very similar to DCG notation. An EDCG is created
with clauses whose neck is the -->> operator. The following syntax
is supported inside an EDCG clause:

	{Goal} - don’t expand any hidden arguments of Goal

	Goal - expand all hidden arguments of Goal that are also in the
head. Those hidden arguments not in the head are given default
values.

	Goal:L - If Goal has no hidden arguments then force the
expansion of all arguments in L in the order given. If Goal
has hidden arguments then expand all of them, using the contents of
L to override the expansion. L is either a term of the form
Acc, Acc(Left,Right), Pass, Pass(Value), or a list of
such terms. When present, the arguments Left, Right, and
Value override the default values of arguments not in the head.

	List:Acc - Accumulate a list of terms in the accumulator Acc

	List - Accumulate a list of terms in the accumulator dcg

	X/Acc - Unify X with the left term for the accumulator
Acc

	Acc/X - Unify X with the right term for the accumulator
Acc

	X/Acc/Y - Unify X with the left and Y with the right term
for the accumulator Acc

	insert(X,Y):Acc - Insert the arguments X and Y into the
chain implementing the accumulator Acc. This is useful when the
value of the accumulator changes radically because X and Y
may be the arguments of an arbitrary relation

	insert(X,Y) - Insert the arguments X and Y into the chain
implementing the accumulator dcg. This inserts the difference
list X-Y into the accumulated list

Declaration of Predicates

Predicates are declared with facts of the following form:

pred_info(Name, Arity, List).

The predicate Name/Arity has the hidden parameters given in
List. The parameters are added in the order given by List and
their names must be atoms.

Declaration of Accumulators

Accumulators are declared with facts in one of two forms. The short form
is:

acc_info(Acc, Term, Left, Right, Joiner).

The long form is:

acc_info(Acc, Term, Left, Right, Joiner, LStart, RStart).

In most cases the short form gives sufficient information. It declares
the accumulator Acc, which must be an atom, along with the
accumulating function, Joiner, and its arguments Term, the term
to be accumulated, and Left & Right, the variables used in
chaining.

The long form of acc_info is useful in more complex programs. It
contains two additional arguments, LStart and RStart, that are
used to give default starting values for an accumulator occurring in a
body goal that does not occur in the head. The starting values are given
to the unused accumulator to ensure that it will execute correctly even
though its value is not used. Care is needed to give correct values for
LStart and RStart. For DCG-like list accumulation both may
remain unbound.

Two conventions are used for the two variables used in chaining
depending on which direction the accumulation is done. For forward
accumulation, Left is the input and Right is the output. For
reverse accumulation, Right is the input and Left is the output.

Declaration of Passed Arguments

Passed arguments are conceptually the same as accumulators with =/2
as the joiner function. Passed arguments are declared as facts in one of
two forms. The short form is:

pass_info(Pass).

The long form is:

pass_info(Pass, PStart).

In most cases the short form is sufficient. It declares a passed
argument Pass, that must be an atom. The long form also contains the
starting value PStart that is used to give a default value for a
passed argument in a body goal that does not occur in the head. Most of
the time this situation does not occur.

Additional documentation

Peter Van Roy’s page: Declarative Programming with
State [https://www.info.ucl.ac.be/~pvr/edcg.html]

Technical Report UCB/CSD-90-583 Extended DCG Notation: A Tool for
Applicative Programming in
Prolog [https://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/5471.html]
by Peter Van Roy

	The Tech Report’s PDF is
here [https://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/CSD-90-583.pdf]

A short Wikipedia
article [https://en.wikipedia.org/wiki/Definite_clause_grammar#Extensions]
on DCGs and extensions.

events

The objects event_registry, before_event_registry, and
after_event_registry implement convenient predicates for registering
before and after events.

The code makes use of the monitoring built-in protocol, which
declares the two basic event handler predicates (before/3 and
after/3). You will need to refer to this protocol in your objects if
you want to use the super control structure (^^/1) with these
predicates.

The monitor object implements more sophisticated event handling
predicates.

API documentation

Open the
../../docs/library_index.html#events
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt loader
file:

| ?- logtalk_load(events(loader)).

expand_library_alias_paths

This library provides provides a hook object,
expand_library_alias_paths, for expanding library alias paths in
logtalk_library_path/2 facts in source files. It is mainly used when
embedding Logtalk and Logtalk applications.

API documentation

Open the
../../docs/library_index.html#expand-library-alias-paths
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(expand_library_alias_paths(loader)).

Usage

Use the hook/1 option when compiling a source file:

| ?- logtalk_load(my_source_file, [hook(expand_library_alias_paths)]).
...

Alternatively, assuming it is the only hook object you are using, you
can set it as thew default hook object:

| ?- set_logtalk_flag(hook, expand_library_alias_paths).
...

expecteds

This library provides an implementation of expected terms with an API
that is inspired by the optional library and C++ standardization
proposals for an Expected<T> type. An expected term is an opaque
compound term that either contains an expected value or an error
informing why the expected value is not present. Expected terms provide
an alternative to generating an exception (or a failure) when something
unexpected happens when asking for a value. This allows e.g. separating
the code that constructs expected terms from the code that processes
them, which is then free to deal if necessary and at its convenience
with any unexpected events.

API documentation

Open the
../../docs/library_index.html#expecteds
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(expecteds(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(expecteds(tester)).

Usage

The expected object provides constructors for expected terms. For
example:

| ?- expected::of_expected(1, Expected).
...

The created expected terms can then be passed as parameters to the
expected/1 parametric object. For example:

| ?- expected::of_expected(1, Expected), expected(Expected)::or_else(Value, 0).
Expected = expected(1),
Value = 1
yes

| ?- expected::of_unexpected(-1, Expected), expected(Expected)::or_else(Value, 0).
Expected = unexpected(-1),
Value = 0
yes

The either object provides types and predicates for extended
type-checking and predicates for handling lists of expected terms.

See also

The optionals library.

format

The format object provides a portable abstraction over how the de
facto standard format/2-3 predicates are made available by the
supported backend Prolog systems. Some system provide these predicates
as built-in predicates while others make them available using a library
that must be explicitly loaded.

Calls to the library predicates are inlined when compiled with the
optimize flag turned on for most of the backends. When that’s the
case, there is no overhead compared with calling the abstracted
predicates directly.

This library provides linter checks for calls to the format/2-3
predicates. Given the differences between implementation of these
predicates among Prolog systems, the linter checks focus on detecting
common errors such as missing arguments and too many arguments. The
linter warnings are printed when the suspicious_calls flag is set to
warning (its usual default).

API documentation

Open the
../../docs/library_index.html#format
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(format(loader)).

Testing

Minimal tests for this library predicates can be run by loading the
tester.lgt file:

| ?- logtalk_load(format(tester)).

Detailed tests for the format/2-3 predicates are available in the
tests/prolog/predicates directory as part of the Prolog standards
conformance test suite. Use those tests to confirm the portability of
the format specifiers that you want to use.

Usage

Load this library from your application loader file. To call the
format/2-3 predicates using implicit message sending, add the
following directive to any object or category calling the predicates:

:- uses(format, [
 format/2, format/3
]).

Portability

Some Prolog systems provide only a subset of the expected format
specifiers. Notably, table related format specifiers are only fully
supported by a few systems. See the section below on testing.

Only some of the supported Prolog backends provide implementations of
the format/2-3 predicates that allow using not only an atom or a
list of character codes for the format string (as de facto standard) but
also using a list of characters. These currently include ECLiPSe, GNU
Prolog, LVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, and YAP.
Therefore, when wide portability is sought, atoms must be used for the
format specifier argument as they bypass any dependency on the
double_quotes standard Prolog flag. Some systems, like Tau Prolog,
only accept a list of characters for the format string. In this case,
this library will convert the atom format string before calling these
systems native implementations.

gensym

The gensym library implements predicates for generating unique
atoms. The public predicates are declared synchronized to prevent race
conditions when using a backend Prolog compiler with multi-threading
support.

API documentation

Open the
../../docs/library_index.html#gensym
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(gensym(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(gensym(tester)).

Usage

The gensym_core category implements the library predicates. This
category is imported by the default gensym object to provide
application global generators. To make the generators local and thus
minimize the potential for generator name clashes, the category can be
imported by one of more application objects. Use protected or private
import to restrict the scope of the library predicates. For example:

:- object(foo,
 imports(private::gensym_core)).

 bar :-
 ^^gensym(p, S),
 ...

:- end_object.

genint

The genint library implements predicates for generating positive
integers in increasing order. The public predicates are declared
synchronized to prevent race conditions when using a backend Prolog
compiler with multi-threading support.

API documentation

Open the
../../docs/library_index.html#genint
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(genint(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(genint(tester)).

Usage

The genint_core category implements the library predicates. This
category is imported by the default genint object to provide
application global named counters. To make the counters local and thus
minimize the potential for counter name clashes, the category can be
imported by one of more application objects. Use protected or private
import to restrict the scope of the library predicates.

git

This library provides access to a git project current branch and latest
commit data (e.g. commit hash). Support for using this library on
Windows operating-systems is experimental and may or may not work
depending on the used Prolog backend.

API documentation

Open the
../../docs/library_index.html#git
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(git(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(git(tester)).

Usage

All predicates take as first argument a directory, which should be
either a git repository directory or a sub-directory of a git repository
directory. The main predicate is commit_log/3. It provides access to
the git log command when called with the
--oneline -n 1 --pretty=format: options. By passing as second
argument the desired format, it returns an atom with the formatted
output. For example:

| ?- git::commit_log('/Users/pmoura/logtalk3', '%h%n%B', Output),
 write(Output), nl.

eccaa1a2a
Update SVG diagrams

Output = 'eccaa1a2a\nUpdate SVG diagrams\n'
yes

See e.g. the official documentation on git log pretty formats for
details:

https://git-scm.com/docs/pretty-formats

Convenient predicates are also provided for common used formats such as
the commit author and the commit hash. For example:

| ?- git::commit_author('/Users/pmoura/Documents/Logtalk/logtalk3', Author).

Author = 'Paulo Moura'
yes

| ?- git::commit_hash('/Users/pmoura/Documents/Logtalk/logtalk3', Hash).

Hash = eccaa1a2a9495fef441915bbace84e0a4b0394a2
yes

It’s also possible to get the name of the current local branch. For
example:

| ?- git::branch('/Users/pmoura/Documents/Logtalk/logtalk3', Branch).

Branch = master
yes

grammars

This library provides Definite Clause Grammars (DCGs) for common parsing
tasks. The DCGs support parsing both lists of characters (aka chars) and
lists of character codes (aka codes).

Currently, four groups of DCGs are available, each defined in its own
file:

	blanks (blank_grammars.lgt)

	numbers (number_grammars.lgt)

	sequences (sequence_grammars.lgt)

	IP addresses (ip_grammars.lgt; depends on
number_grammars.lgt)

API documentation

Open the
../../docs/library_index.html#grammars
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(grammars(loader)).

Testing

Minimal tests for this library predicates can be run by loading the
tester.lgt file:

| ?- logtalk_load(grammars(tester)).

Usage

The library uses (when necessary) parametric objects where the single
parameter can be either chars or codes. The parameter must be
bound when using the DCGs. For example, when using implicit message
sending:

:- uses(blank_grammars(chars), [
 white_spaces//0, new_lines//0
]).

heaps

This library implements minimum and maximum heaps.

API documentation

Open the
../../docs/library_index.html#heaps
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(heaps(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(heaps(tester)).

Credits

Original code by Richard O’’Keefe. Adapted to Logtalk by Paulo Moura and
Victor Lagerkvist.

hierarchies

This library provides categories implementing reflection predicates over
class and prototype hierarchies. These categories can be imported by any
object that requires reasoning about hierarchies.

API documentation

Open the
../../docs/library_index.html#hierarchies
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(hierarchies(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(hierarchies(tester)).

hook_flows

Hook objects (i.e. objects that define term- and goal-expansion rules)
can be combined to define expansion workflows. While in some cases the
expansions are independent and thus can be applied in any order, in
other cases a specific order is required. The hook_pipeline and
hook_set parametric objects in this library implement the two most
common scenarios of combining multiple hook objects for the expansion of
source files. These parametric hook objects can be combined to define
workflows of any complexity (e.g. a pipeline where one of the steps is
set with an element that is a pipeline). These two basic hook flows can
also used as examples of how to construct your own custom expansion
workflows.

API documentation

Open the
../../docs/library_index.html#hook-flows
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(hook_flows(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(hook_flows(tester)).

Usage

Pre-processing a source file with a hook object can be accomplished by
either compiling the source file using the option hook(HookObject)
or by adding to the top of the file the directive:

:- set_logtalk_flag(hook, HookObject).

Note that set_logtalk_flag/2 directives are local to a source file.

The hook_pipeline(Pipeline) is a parametric object where the
parameter is a list of hook objects, interpreted as a pre-processing
pipeline: the results of a hook object are passed to the next hook
object. This parametric object is used when the expansions must be
applied in a specific order. It also allows overriding the default
compiler semantics where term-expansion rules are tried in sequence only
until one of them succeeds.

The hook_set(Set) is a parametric object where the parameter is a
list of hook objects, interpreted as a set of hook objects. For
term-expansion, hooks in the set are tried until one of them succeeds.
For goal-expansion, as the compiler expands a goal until a fixed-point
is reached, all the hooks objects in the set that are applicable at any
point will be used. This parametric object is used when applying
multiple independent expansions.

When using a backend Prolog compiler that supports modules, it’s also
possible to use as parameter a list of hook modules as long as their
names do not coincide with the names of loaded objects.

hook_objects

This library provides a set of convenient hook objects for defining
custom expansion workflows (using e.g. the hook_flows library) and
for debugging. They are usable and useful as-is but should also be
regarded as term- and goal-expansion examples that you can learn from,
clone, and change to fit your application requirements.

API documentation

Open the
../../docs/library_index.html#hook-objects
link in a web browser.

Loading

To load all hook objects in this library, load the loader.lgt file:

| ?- logtalk_load(hook_objects(loader)).

To load a specific hook object, e.g. the backend_adapter_hook
object:

| ?- logtalk_load(hook_objects(backend_adapter_hook)).

Testing

To test this library hook objects, load the tester.lgt file:

| ?- logtalk_load(hook_objects(tester)).

Usage

The provided hook objects cover different expansion scenarios as
follows.

Using the Prolog backend adapter file expansion rules

Useful when defining a custom expansion workflow. This can be
accomplished by loading the backend_adapter_hook.lgt file, which
defines a backend_adapter_hook hook object that can be used as a
workflow step.

Restoring the default compiler expansion workflow

In this case, load the default_workflow_hook.lgt file, which defines
a default_workflow_hook hook object, and use the following goal
to set the default hook object:

| ?- set_logtalk_flag(hook, default_workflow_hook).

Preventing applying any (other) user-defined expansion rules

When compiling a source file, we sometimes want to prevent applying
expansion rules. This can be accomplished by simply loading the
identity_hook.lgt file, which defines the identity_hook hook
object, whose expansion rules simply succeed without changing the terms
and goals, and setting it as the file specific hook object writing as
the first term in the file the directive:

:- set_logtalk_flag(hook, identity_hook).

Note that the compiler will always convert any grammar rules defined in
the file into clauses. Although this conversion can also be performed as
an expansion, grammar rules are part of the Logtalk language. If you to
preserve the grammar rules, use the hook objects described below to
write them to a stream.

Expanding grammar rules into clauses independently of the compiler

Load the grammar_rules_hook.lgt and use the term-expansion rules in
the grammar_rules_hook object. For example:

| ?- grammar_rules_hook::term_expansion((a --> [b],c), Clause).

Clause = (a([b|T], C) :- c(T, C))
yes

Using the expansion rules defined in a Prolog module

Load the prolog_module_hook.lgt, which defines the parametric hook
object prolog_module_hook(Module). To use this hook object, you need
to instantiate the parameter to the name of the module. For example:

:- set_logtalk_flag(hook, prolog_module_hook(user)).

Wrap the contents of a plain Prolog file as an object

Load the object_wrapper_hook.lgt, which defines the
object_wrapper_hook/0-2 hook objects. Use them to wrap the contents
of a plain Prolog file as an object named after the file (optionally
implementing a protocol) or an object with the given name and object
relations. Can be used to apply Logtalk developer tools to plain Prolog
code or when porting Prolog application to Logtalk. For example:

| ?- logtalk_load('plain.pl', [hook(object_wrapper_hook)]).
...

| ?- current_object(plain).
yes

Or:

| ?- logtalk_load('world_1.pl', [hook(object_wrapper_hook(some_protocol))]).
...

| ?- current_object(world_1).
yes

| ?- implements_protocol(world_1, Protocol).
Protocol = some_protocol
yes

Or:

| ?- logtalk_load('foo.pl', [hook(object_wrapper_hook(bar,[imports(some_category))]).
...

| ?- current_object(bar).
yes

| ?- imports_category(bar, Category).
Category = some_category
yes

The object_wrapper_hook object sets the context_switching_calls
flag to allow for the generated object. This enables calling the
predicates using the (<<)/2 context-switching control construct. But
it’s usually better to define a protocol for the predicates being
encapsulated and use instead the object_wrapper_hook/1-2 objects.

Outputting term-expansion results to a stream or a file

Load the write_to_stream_hook.lgt file and using the
write_to_stream_hook(Stream) or
write_to_stream_hook(Stream, Options) hook objects. Alternatively,
you can load the write_to_file_hook.lgt file and use the
write_to_file_hook(File) or write_to_file_hook(File, Options)
hook objects. The terms are not modified and thus these hook objects may
be used at any point in an expansion workflow. The terms are written
followed by a period and a new line.

For example, assume that we want to expand all terms in a input.pl
source file, writing the resulting terms to a output.pl file, using
the expansion rules defined in a expansions hook object. Taking
advantage of the hook_flows library hook_pipeline/1 object, we
can write:

| ?- logtalk_compile(
 'input.pl',
 [hook(hook_pipeline([
 expansions,
 write_to_file_hook('output.pl')
]))]
).

Printing entity predicate goals before or after calling them

This is helpful for quick debugging. Load the print_goal_hook.lgt
file and use the print_goal_hook hook object. For example, we can
set this hook object as the default hook:

| ?- set_logtalk_flag(hook, print_goal_hook).

Then, edit the entity source code to print selected goals:

foo :-
 - bar, % print goal before calling it
 + baz, % print goal after calling it
 * quux. % print goal before and after calling it

Suppressing goals

The suppress_goal_hook.lgt file provides the suppress_goal_hook
hook object that supports suppressing a goal in a clause body by
prefixing it using the -- operator. We can set this hook object as
the default hook using the goal:

| ?- set_logtalk_flag(hook, suppress_goal_hook).

If the expansion is only to be used in a single file, use instead the
source file directive:

:- set_logtalk_flag(hook, suppress_goal_hook).

Then, edit entity predicates to suppress goals. For example:

foo :-
 bar,
 -- baz,
 quux.

The suppressed goals are replaced by calls to true/0.

html

This library provides predicates for generating HTML content using
either HTML 5 or XHTML 1.1 formats from a term representation. The
library performs minimal validation, checking only that all elements are
valid. No attempt is made to generate nicely indented output.

Normal elements are represented using a compound term with one argument
(the element content) or two arguments (the element attributes
represented by a list of Key=Value or Key-Value pairs and the
element content). The element content can be another element or a list
of elements. For example:

ol([type-a], [li(foo), li(bar), li(baz)])

The two exceptions are the pre or code elements whose content is
never interpreted as an element or a list of elements. For example, the
fragment:

pre([foo,bar,baz])

is translated to:

<pre>
[foo,bar,baz]
</pre>

Void elements are represented using a compound term with one argument,
the (possibly empty) list of attributes represented by a list of
Key=Value or Key-Value pairs. For example:

hr([class-separator])

Atomic arguments of the compound terms are interpreted as element
content. Non atomic element content can be represented as a quoted atom
or by using the pre or code elements as explained above.

This library is a work in progress.

API documentation

Open the
../../docs/library_index.html#html
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(html(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(html(tester)).

Generating a HTML document

HTML documents can be generated from a compound term representation and
written to a file or a stream. For example, assuming we want to generate
a HTML 5 file:

| ?- html5::generate(
 file('hello.html'),
 html([lang=en], [head(title('Hello world!')), body(p('Bye!'))])
).

When the second argument is a html/1 or html/2 compound term, a
doctype is automatically written. If we prefer instead e.g. a XHTML
1.1 document, we use the xhtml11 object:

| ?- xhtml11::generate(
 file('hello.html'),
 html([lang=en], [head(title('Hello world!')), body(p('Bye!'))])
).

Generating a HTML fragment

It’s also possible to generate just a fragment of a (X)HTML document by
using a list of compound terms or a compound term for an element other
then html. For example:

| ?- current_output(Stream),
 html5::generate(stream(Stream), ul([li(foo), li(bar), li(baz)])).

foo

bar

baz

Stream = ...

Working with callbacks to generate content

Often we need to programmatically generate HTML content from queries. In
other cases, we may have fixed content that we don’t want to keep
repeating (e.g. a navigation bar). The library supports a (::)/2
pseudo-element that sends a message to an object to retrieve content. As
an example, assume the following predicate definition in user:

content(strong('Hello world!')).

This predicate can then be called from the HTML term representation. For
example:

| ?- current_output(Stream),
 html5::generate(stream(Stream), span(user::content)).

Hello world!

Stream = ...

Note that the callback always takes the form Object::Closure where
Closure is extended with a single argument (to be bound to the
generated content). More complex callbacks are possible by using lambda
expressions.

Working with custom elements

The html5 and xhtml11 objects recognize the same set of standard
HTML 5 normal and void elements and generate an error for non-standard
elements. If you need to generate HTML content containing custom
elements, define a new object that extends one of the library objects.
For example:

:- object(html5custom,
 extends(html5)).

 normal_element(foo, inline).
 normal_element(bar, block).
 normal_element(Name, Display) :-
 ^^normal_element(Name, Display).

:- end_object.

ids

This library generates random identifiers given the number of bytes of
randomness. The identifiers are Base64 encoded. By default, 20 bytes
(160 bits) are used.

The generation of random identifiers uses the /dev/urandom random
number generator when available. This includes macOS, Linux, *BSD, and
other POSIX operating-systems. On Windows, a pseudo-random generator is
used but randomized using the current wall time.

Identifiers can be generated as atoms, lists of characters, or lists of
character codes.

See also the uuid and ulid libraries.

API documentation

Open the
../../docs/library_index.html#ids
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(ids(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(ids(tester)).

Usage

To generate an identifier using the default 160 bits of randomness:

| ?- ids::generate(Identifier).
Identifier = '2gpMzqAFXBO5mYFIPX1qMkHxgGE='
yes

To generate an identifier represented by an atom using 240 bits (30
bytes) of randomness:

| ?- ids(atom, 30)::generate(Identifier).
Identifier = 'ie/jYcLsqo8ZguCOF1ZNPFDRvJ03Ww5Qa9e0FxRB'
yes

To generate an identifier represented by a list of characters using 64
bits (8 bytes) of randomness:

| ?- ids(chars, 8)::generate(Identifier).
Identifier = ['5','0','8','V',d,'S',c,y,n,o,'A',=]
yes

To generate an identifier represented by a list of character codes using
64 bits (8 bytes) of randomness:

| ?- ids(codes, 8)::generate(Identifier).
Identifier = [111,81,86,55,99,79,70,77,65,74,103,61]
yes

intervals

This library provides an intervalp protocol and an interval
object that implement basic temporal interval relations protocol (based
on the James F. Allen Interval Algebra work).

API documentation

Open the
../../docs/library_index.html#intervals
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(intervals(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(intervals(tester)).

java

The library Java entities define a minimal abstraction for calling Java
from Logtalk. This abstraction makes use of Logtalk parametric objects
and allows creating Java object, accessing Java class fields, and
calling Java class and object methods using syntax closer to Logtalk. It
also gives access to some Java utility predicates.

This abstraction was developed primarily to work with LVM (with its
jni plug-in installed) or the JPL library bundled with SWI-Prolog
and YAP. However, it’s expected to be implementable with alternative
Java interfaces found in other backend Prolog compilers. Currently, a
preliminary implementation is also available for JIProlog.

The main idea in this abstraction layer is to use parametric objects
where the first parameter holds the Java reference (usually to a class
or object) and an optional second parameter holds the return value.
Together with a forward message handler, this allows the use of Java
messages with the same functor and number of arguments as found in the
relevant JavaDocs.

API documentation

Open the
../../docs/library_index.html#java
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(java(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(java(tester)).

Usage

The two main objects in this library are
java(Reference, ReturnValue) and java(Reference). Use the latter
if you want to ignore the return value or when calling a void Java
method.

The java object implements utility predicates. For some backend Java
interfaces such as JPL (available in LVM, SWI-Prolog, and YAP) there is
also a java_hook hook object for removing any overhead when using
this library abstraction.

For usage examples and additional tests, see the clustering,
document_converter, jpl, and neo4j examples.

Known issues

When running Java GUI examples on the macOS Terminal application, you
may get a Java error saying that the AWT cannot be started. In
alternative, try to run the example from within the SWI-Prolog macOS
application instead of using the shell integration script. This issue is
due to a macOS Java issue that’s orthogonal to both Prolog backends and
Logtalk.

json

The json library provides predicates for parsing and generating data
in the JSON format based on the specification and standard found at:

	https://www.rfc-editor.org/rfc/rfc8259

	https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

It includes parametric objects whose parameters allow selecting the
representation for parsed JSON objects (curly or list), JSON
text strings (atom, chars, or codes) and JSON pairs
(dash, equal, or colon).

API documentation

Open the
../../docs/library_index.html#json
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(json(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(json(tester)).

Some of the sample JSON test files are based on examples published at:

https://www.json.org/

Representation

The following choices of syntax has been made to represent JSON elements
as terms:

	By default, JSON objects are represented using curly-bracketed terms,
{Pairs}, where each pair uses the representation Key-Value
(see below for alternative representations).

	Arrays are represented using lists.

	Text strings can be represented as atoms, chars(List), or
codes(List). The default when decoding is to use atoms when using
the json object. To decode text strings into lists of chars or
codes, use the json/1 with the parameter bound to chars or
codes. For example:

| ?- json::parse(codes([34,104,101,108,108,111,34]), Term).
Term = hello
yes

| ?- json(atom)::parse(codes([34,104,101,108,108,111,34]), Term).
Term = hello
yes

| ?- json(chars)::parse(codes([34,104,101,108,108,111,34]), Term).
Term = chars([h,e,l,l,o])
yes

| ?- json(codes)::parse(codes([34,104,101,108,108,111,34]), Term).
Term = codes([104,101,108,108,111])
yes

	The JSON values false, true and null are represented by,
respectively, the @false, @true and @null compound terms.

The following table exemplifies the term equivalents of JSON elements
using default representations for objects, pairs, and strings:

	JSON

	term

	[1,2]

	[1,2]

	true

	@true

	false

	@false

	null

	@null

	-1

	-1

	[1.2345]

	[1.2345]

	[]

	[]

	[2147483647]

	[2147483647]

	[0]

	[0]

	[1234567890123456789]

	[1234567890123456789]

	[false]

	[@false]

	[-2147483648]

	[-2147483648]

	{“a”:null,”foo”:”bar”}

	{a-@null, foo-bar}

	[2.225073858507201e-308]

	[2.225073858507201e-308]

	[0,1]

	[0,1]

	[2.2250738585072014e-308]

	[2.2250738585072014e-308]

	[1.7976931348623157e+308]

	[1.7976931348623157e+308]

	[0.0]

	[0.0]

	[4294967295]

	[4294967295]

	[-1234567890123456789]

	[-1234567890123456789]

	[“foo”]

	[foo]

	[1]

	[1]

	[null]

	[@null]

	[-1.2345]

	[-1.2345]

	[5.0e-324]

	[5.0e-324]

	[-1]

	[-1]

	[true]

	[@true]

	[9223372036854775807]

	[9223372036854775807]

For JSON objects that are two possible term representations:

	JSON object

	term (curly)

	{“a”:1, “b”:2, “c”:3}

	{a-1, b-2, c-3}

	{}

	{}

and:

	JSON object

	term (list)

	{“a”:1, “b”:2, “c”:3}

	json([a-1, b-2, c-3])

	{}

	json([])

For JSON pairs that are three possible representations:

	JSON object

	term (dash)

	{“a”:1, “b”:2, “c”:3}

	{a-1, b-2, c-3}

and:

	JSON object

	term (equal)

	{“a”:1, “b”:2, “c”:3}

	{a=1, b=2, c=3}

and:

	JSON object

	term (colon)

	{“a”:1, “b”:2, “c”:3}

	{a:1, b:2, c:3}

By default, the curly-term representation and the dash pair
representation are used. The json/3 parametric object allows
selecting the desired representation choices. For example:

| ?- json(curly,dash,atom)::parse(atom('{"a":1, "b":2, "c":3}'), JSON).
JSON = {a-1, b-2, c-3}
yes

| ?- json(list,equal,atom)::parse(atom('{"a":1, "b":2, "c":3}'), JSON).
JSON = json([a=1, b=2, c=3])
yes

| ?- json(curly,colon,atom)::parse(atom('{"a":1, "b":2, "c":3}'), JSON).
JSON = {a:1, b:2, c:3}
yes

Encoding

Encoding is accomplished using the generate/2 predicate. For
example:

| ?- json::generate(codes(Encoding), [a,{b-c}]).
Encoding = [91,34,97,34,44,123,34,98,34,58,34,99,34,125,93]
yes

Alternatively:

| ?- json::generate(chars(Encoding), [a,{b-c}]).
Encoding = ['[','"',a,'"',',','{','"',b,'"',:,'"',c,'"','}',']']
Yes

| ?- json::generate(atom(Encoding), [a,{b-c}]).
Encoding = '["a",{"b":"c"}]'
Yes

Notice that generate/2 takes, as second argument, a Prolog term that
corresponds to the JSON Syntax in Prolog and produces the corresponding
JSON output in the format specified in the first argument:
(codes(Variable), stream(Stream), file(File),
chars(Variable) or atom(Variable)).

Decoding

Decoding is accomplished using the parse/2 predicate. For example,
to decode a given json file:

| ?- json::parse(file('simple/roundtrip_array_obj_array.json'), Term).
Term = [{a-[b]}]
yes

The parse/2 predicate first argument must indicate the input source
(codes(Codes), stream(Stream), line(Stream), file(Path),
chars(Chars) or atom(Atom)) containing a JSON payload to be
decoded into the Prolog term in the second argument.

Known issues

Some tests, notably parse_simple_valid_files and
roundtrip_hexadecimals, fail on backends such as ECLiPSe and GNU
Prolog that don’t support Unicode.

listing

This library provides support for listing object dynamic predicate
clauses. The predicates must (also) be declared using a scope directive
to make them visible to the listing predicates.

API documentation

Open the
../../docs/library_index.html#listing
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(listing(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(listing(tester)).

Usage

This library provides a listing category that can be imported by any
number of objects. The main predicates are declared public. If you want
to restrict their scope, use protected or private import. For example:

:- object(data_store,
 imports(private::listing)).

 debug :-
 ^^listing(data/4).
 ...

:- end_object.

The listing category provides a bare bones portray_clause/1
predicate implementation. As this predicate is called (by the
listing/0-1 predicates) using the (::)/1 control construct, the
object importing the category can easily override the inherited
definition with its own or with a call to the backend system native
implementation of the predicate. For example, assuming a backend that
provides portray_clause/1 as a built-in predicate, we can write:

:- object(thing,
 imports(listing)).

 :- uses(user, [portray_clause/1]).
 ...

:- end_object.

The main predicate, listing/1, accepts as argument a predicate
indicator, a non-terminal indicator, or a clause head template (to list
only clauses with a matching head).

This library is often useful as a debugging helper. For example,
assuming that the we want to list dynamic predicate clauses for an
object data compiled (or created) with the complements flag set
to allow, we can hot patch it to add the listing category:

| ?- create_category(patch, [extends(listing),complements(data)], [], []).
yes

| ?- data::listing.
...

Another example:

| ?- create_category(
 patch,
 [extends(listing),complements(data)],
 [public(debug/1)],
 [(debug(Key) :- ::listing(p(Key,Datum)))]
).
yes

| ?- data::debug(k42).
...

Note that the semantic of complementing categories require that we use
the (::)/2 control construct instead of the (^^)/2 control
construct as a super call would be interpreted as made from the
complemented object.

logging

This library provides support for logging events to files.

API documentation

Open the
../../docs/library_index.html#logging
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(logging(loader)).

loops

This library provides implementations of several kinds of loops typical
of imperative languages.

API documentation

Open the
../../docs/library_index.html#loops
link in a web browser.

Loading

To load the main entities in this library, load the loader.lgt file:

| ?- logtalk_load(loops(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(loops(tester)).

Usage

See e.g. the searching example.

meta

This library provides implementations of common meta-predicates. The
meta object implements common meta-predicates like map/3 and
fold_left/4.

See also the meta_compiler library, which provides optimized
compilation of meta-predicate calls.

API documentation

Open the
../../docs/library_index.html#meta
link in a web browser.

Loading

To load the main entities in this library, load the loader.lgt file:

| ?- logtalk_load(meta(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(meta(tester)).

Usage

See e.g. the metapredicates example and unit tests.

meta_compiler

This library supports implementations optimized compilation of
meta-calls for the predicates defined in the meta library.

API documentation

Open the
../../docs/library_index.html#meta-compiler
link in a web browser.

Loading

To load the main entities in this library, load the loader.lgt file:

| ?- logtalk_load(meta_compiler(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(meta_compiler(tester)).

Usage

If meta_compiler is the only hook object you are using, you can set
it as the default hook object (but note that the optimizations are only
applied to entities compiled with the optimize flag turned on):

| ?- set_logtalk_flag(hook, meta_compiler).
...

Otherwise, use the hook(meta_compiler) and optimize(on) complier
options when compiling and loading the code that you want to optimize.
For example:

| ?- logtalk_load(my_source_file, [hook(meta_compiler), optimize(on)]).
...

See also the metapredicates_compiled example and unit tests.

mutations

Experimental library. Should not be used in production code. Details can
be changed without advance notice.

The mutations library provides support for generating random
mutations of selected types. The library defines default mutation
algorithms for the following basic types:

	atom

	integer

	float

	compound

	list

The user can add additional mutation algorithms for these or other types
by defining objects or categories providing clauses for the
mutation/3 predicate and expanding the entity source files using the
mutations_store object as the hook object.

This library is expected to eventually be used to support mutation-based
fuzz testing.

By default, loading this library loads a set of default mutation
algorithms. These can be overriden by defining alternative mutations and
a custom loader file.

API documentation

Open the
../../docs/library_index.html#mutations
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(mutations(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(mutations(tester)).

Usage

The mutations category complements the type object and thus its
predicates are accessed via this object. For example:

| ?- type::mutation(integer, 123, M).
M = 1293
yes

| type::mutation(integer, 123, M).
M = 5123
yes

| type::mutation(integer, 123, M).
M = -123
yes

| type::mutation(integer, 123, M).
M = 23
yes

When there are multiple mutation algorithms for a given type, the
predicate type::mutation/3 choses one of them randomly. We can query
the number of mutation algorithms available per type using the
mutations_store::counter/2 predicate:

| ?- mutations_store::counter(Type, Count).
Type = atom,
Count = 6 ;
Type = integer,
Count = 7 ;
...

Loading this library also loads the arbitrary library, which
provides get_seed/1 and set_seed/1 predicates that can be used
to control the pseudo-random number generator.

nested_dictionaries

This library provides nested dictionary implementations based on private
extensions to the dictionaries library objects. The representations
of a nested dictionary should be regarded as opaque terms and only
accessed using the library predicates.

This library is experimental, a work in progress, and future versions
can introduce incompatible changes.

API documentation

Open the
../../docs/library_index.html#nested-dictionaries
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(nested_dictionaries(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(nested_dictionaries(tester)).

Usage

First, select the nested dictionary implementation that you want to use.
For cases where the number of elements is relatively small and
performance is not critical, nbintree can be a good choice. For
other cases, navltree or nrbtree are likely better choices. If
you want to compare the performance of the implementations, either
define an object alias or use a uses/2 directive so that you can
switch between implementations by simply changing the alias definition
or the first argument of the directive. Note that you can switch between
implementations at runtime without code changes by using a parameter
variable in the first argument of a uses/2 directive.

To create an empty nested dictionary, you can use the new/1
predicate. For example:

| ?- navltree::new(Dictionary).
Dictionary = ...
yes

You can also create a new nested dictionary from a curly bracketed term
representation (see below) by using the predicate
as_nested_dictionary/2. For example:

| ?- navltree::as_nested_dictionary(
 {a-1, b-{c-3, d-{e-7,f-8}}},
 Dictionary
).

Dictionary = ...
yes

Several predicates are provided to insert, lookup, update, and delete
key-value pairs given a list of keys interpreted as an access path to
a nested dictionary. For example:

| ?- navltree::as_nested_dictionary(
 {a-1, b-{c-3, d-{e-7,f-8}}},
 Dictionary
),
 navltree::lookup_in([b,d,f], Value, Dictionary).

Dictionary = ...
Value = 8
yes

For details on these and other provided predicates, consult the library
API documentation.

Curly term representation

To simplify importing and exporting data into a nested dictionary, the
library provides as_nested_dictionary/2 and as_curly_bracketed/2
predicates that work with a curly term representation. This format is
based on the JSON data interchange format.

A dictionary is represented by the {Pairs} term where Pairs is a
conjunction of Key-Value or Key:Value pairs and Value can be
a nested dictionary or lists of pairs. An empty dictionary is
represented using the {} term.

optionals

This library provides an implementation of optional terms with an API
modeled after the Java 8 Optional class (originally due to requests
by users working in Logtalk/Java hybrid applications). An optional term
is an opaque compound term that may or may not hold a value. Optional
terms avoid forcing the user to define a representation for the absence
of a value by providing an API with predicates that depend on the
presence or absence of a value. Optional terms also allow separating the
code that constructs optional terms from the code that processes them,
which is then free to deal if necessary and at its convenience with any
case where the values hold by optional terms are not present.

API documentation

Open the
../../docs/library_index.html#optionals
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(optionals(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(optionals(tester)).

Usage

The optional object provides constructors for optional terms. For
example:

| ?- optional::of(1, Optional).
...

The created optional terms can then be passed as parameters to the
optional/1 parametric object. For example:

| ?- optional::of(1, Optional), optional(Optional)::or_else(Term, 0).
Optional = optional(1),
Term = 1
yes

| ?- optional::empty(Optional), optional(Optional)::or_else(Term, 0).
Optional = empty,
Term = 0
yes

The maybe object provides types and predicates for type-checking of
the term hold by optional terms. It also provides some predicates for
handling lists of optional terms.

See also

The expecteds library.

options

This library provides useful predicates for managing developer tool and
application options.

API documentation

Open the
../../docs/library_index.html#options
file in a web browser.

Loading

To load all entities in this library, load the loader.lgt utility
file:

| ?- logtalk_load(options(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(options(tester)).

Usage

The options category is usually imported by the root object of the
developer tool or application. The importing object should define the
default_option/1 predicate and, if option type-checking is required,
the valid_option/1 predicate must be defined for each option. This
library requires options to be represented by compound terms where the
functor is the option name (e.g. trim(true) or (box(0,2))). The
option/2-3 can be used to get or test an option given a list of
options. When an option appears multiple times in a list, the
option/2-3 predicates get or test the first (leftmost) occurrence.

The library also supports a user-defined fix_option/2 predicate. An
usage example is when an option value can be a relative file path that
should be expanded before used. Another usage example would be
converting from a user-friendly option to a form more suitable for
internal processing. When a call to the fix_option/2 predicate
fails, the option is used as-is.

A simple example:

:- object(foo,
 imports(options)).

 :- uses(type, [
 valid/2
]).

 :- public(p/0).
 p :-
 % use default options
 p([]).

 :- public(p/1).
 p(UserOptions) :-
 ^^check_options(UserOptions),
 % construct the full set of options from
 % the user options and the default options
 ^^merge_options(UserOptions, Options),
 ...
 % query an option
 ^^option(baz(Boolean), Options),
 q(Boolean),
 ...

 default_option(baz(true)).
 ...

 valid_option(baz(Boolean)) :-
 valid(boolean, Boolean).
 ...

:- end_object.

Note that you can use protected or private import of the options
category if you don’t want to add its public predicates to the object
protocol.

os

This library entities define a portable operating-system interface for
the supported backend Prolog compilers.

The os_types category defines some useful operating-system types for
type-checking when using with the type library object.

API documentation

Open the
../../docs/library_index.html#os
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(os(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(os(tester)).

Known issues

Some predicates may only be supported by a subset of backend Prolog
compilers on a subset of operating-systems. They should be used with
care and fully tested in your application domain as some backend Prolog
compilers have buggy and inconsistent interfaces, specially across
operating-systems. See the remarks section in the os object
documentation for details.

queues

This library implements queues. The queue representation should be
regarded as an opaque term and only accessed using the library
predicates.

API documentation

Open the
../../docs/library_index.html#queues
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(queues(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(queues(tester)).

Usage

To create a new queue, use the new/1 predicate:

| ?- queue::new(Queue).
Queue = ...
yes

Elements can be added to either the end of the queue or the front of the
queue using, respectively, the join/3 and join_all/3 predicates
or the jump/3 and jump_all/3. For example:

| ?- queue::(new(Queue0), join_all([1,2,3], Queue0, Queue1)).
Queue0 = ...,
Queue1 = ...
yes

We can query the head of the queue or remove the head of the queue
using, respectively, the head/2 and serve/3 predicates. For
example:

| ?- queue::(new(Queue0), join(1, Queue0, Queue1), head(Queue1, Head)).
Queue0 = ...,
Queue1 = ...,
Head = 1
yes

For details on these and other provided predicates, consult the library
API documentation.

random

This library provides portable random number generators and an
abstraction over native backend Prolog compiler random number generator
if available.

API documentation

Open the
../../docs/library_index.html#random
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(random(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(random(tester)).

Usage

The random object implements portable random number generator and
supports multiple random number generators, using different seeds, by
defining derived objects. For example:

:- object(my_random_generator_1,
 extends(random)).

 :- initialization(::reset_seed).

:- end_object.

The fast_random object also implements a portable random number
generator but does not support deriving multiple random number
generators, which makes it a bit faster than the random object.

The random and fast_random objects manage the random number
generator seed using internal dynamic state. The predicates that update
the seed are declared as synchronized (when running on Prolog backends
that support threads). Still, care must be taken when using these
objects from multi-threaded applications as there is not portable
solution to protect seed updates from signals and prevent inconsistent
state when threads are canceled.

The random and fast_random objects always initialize the random
generator seed to the same value, thus providing a pseudo random number
generator. The randomize/1 predicate can be used to initialize the
seed with a random value. The argument should be a large positive
integer. In alternative, when using a small integer argument, discard
the first dozen random values.

The backend_random object abstracts the native backend Prolog
compiler random number generator for the basic random/1,
get_seed/1, and set_seed/1 predicates providing a portable
implementation for the remaining predicates. This makes the object
stateless, which can allow reliable use from multiple threads. Consult
the backend Prolog compiler documentation for details on its random
number generator properties. Note that several of the supported backend
Prolog systems, notably B-Prolog, CxProlog, ECLiPSe, JIProlog, and
Quintus Prolog, do not provide implementations for both the
get_seed/1 and set_seed/1 predicates and calling these
predicates simply succeed without performing any action.

reader

The reader object provides portable predicates for reading text file
and text stream contents to lists of terms, characters, or character
codes and for reading binary files to lists of bytes. The text file API
is loosely based on the SWI-Prolog readutil module.

API documentation

Open the
../../docs/library_index.html#reader
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(reader(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(reader(tester)).

recorded_database

The recorded_database library aims to help port Prolog code using
the legacy recorded database. Ported applications should still consider
migrating to more standard solutions to handle dynamic data that must
survive backtracking.

API documentation

Open the
../../docs/library_index.html#recorded_database
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(recorded_database(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(recorded_database(tester)).

Usage

The recorded_database_core category implements the library
predicates. This category is imported by the default
recorded_database object to provide application global database. To
make the database local and thus minimize potential record clashes, the
category can be imported by one of more application objects. Use
protected or private import to restrict the scope of the library
predicates. For example:

:- object(foo,
 imports(private::recorded_database_core)).

 bar :-
 ^^recorda(key, value(1)),
 ...

:- end_object.

Known issues

Currently, references are non-negative integers. They still must be
regarded as opaque terms and subject to change without notice. But using
integers can result in integer overflows when running on backends with
bounded integers in applications performing a large number of database
updates.

redis

Redis client library. Supports GNU Prolog, LVM, SICStus Prolog,
SWI-Prolog, and XSB. Support for Ciao Prolog and ECLiPSe is also
included but requires fixes for issues in these systems.

For general information on Redis, including a list of the available
commands, visit:

https://redis.io

API documentation

Open the
../../docs/library_index.html#redis
link in a web browser.

Loading

To load this library, load the loader.lgt file:

| ?- logtalk_load(redis(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(redis(tester)).

The tests assume a localhost Redis server running on the default port
(6379) if the REDIS_HOST and REDIS_PORT environment variables
are not defined. If the server is not detected, the tests are skipped.

The unit tests were originally written by Sean Charles for his GNU
Prolog Redis client library:

https://github.com/emacstheviking/gnuprolog-redisclient

The Logtalk version is a straight-forward port of the original tests
using the test/1 dialect of lgtunit.

Credits

This library is inspired by the Sean Charles GNU Prolog Redis client
library.

Known issues

Recent version of macOS seem to disable the mapping of localhost to
127.0.0.1. This issue may prevent running this library unit tests
and the redis::connect/1 from working. This can be fixed either by
editing the
/etc/hosts file or by using in alternative the predicateredis::connect/3with’127.0.0.1’`
as first argument.

sets

This library provides a set protocol and two implementations of this
protocol using ordered lists, one of them a parametric object that
takes the type of the set elements as a parameter. Although representing
sets as ordered lists is a common representation, is best practice to
regard sets as opaque terms and only access them using the library
predicates.

API documentation

Open the
../../docs/library_index.html#sets
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(sets(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(sets(tester)).

Usage

First, select a set implementation. Use the set(Type) object if you
want to type-check the set elements. Otherwise, use the set object.

To create a new set, you can use the new/1 predicate. For example:

| ?- set::new(Set).
Set = []
yes

You can also create a new set with all unique elements from a list of
terms by using the as_set/2 predicate. For example:

| ?- set::as_set([1,3,2,1,2], Set).
Set = [1, 2, 3]
yes

Predicates are provided for the most common set operations. For example:

| ?- set::(
 as_set([1,3,2,1,2], Set1),
 as_set([7,4,2,5,1], Set2),
 intersection(Set1, Set2, Intersection),
 symdiff(Set1, Set2, Difference)
).
Set1 = [1, 2, 3],
Set2 = [1, 2, 4, 5, 7],
Intersection = [1, 2],
Difference = [3, 4, 5, 7]
yes

When working with a custom type of set elements, the corresponding
object must implement the comparingp protocol. For example:

:- object(rainbow_colors,
 implements(comparingp)).

 order(red, 1).
 order(orange, 2).
 order(yellow, 3).
 order(green, 4).
 order(blue, 5).
 order(indigo, 6).
 order(violet, 7).

 Color1 < Color2 :-
 order(Color1, N1),
 order(Color2, N2),
 {N1 < N2}.

 Color1 =< Color2 :-
 order(Color1, N1),
 order(Color2, N2),
 {N1 =< N2}.

 ...

:- end_object.

We can then use this object with the set/1 parametric object. For
example:

| ?- set(rainbow_colors)::as_set([blue, yellow, violet], Set).
Set = [yellow, blue, violet]
yes

For details on these and other provided predicates, consult the library
API documentation.

Credits

Some predicates adapted from code authored by Richard O’Keefe.

statistics

The entities in this group define some useful predicates for descriptive
statistics. Data is represented as a list of numbers (integers or
floats). Use the object sample of your data represents a sample. Use
the object population if your data represents a population.

API documentation

Open the
../../docs/library_index.html#statistics
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(statistics(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(statistics(tester)).

term_io

This library implements predicates for reading/writing terms from/to
atoms, chars (lists of characters), and codes (lists of character
codes). These predicates are implemented using a single temporary file
created when the library is loaded. This temporary file is unique per
Logtalk process. The predicates can be safely used in multi-threaded
applications.

API documentation

Open the
../../docs/library_index.html#term-io
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(term_io(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(term_io(tester)).

timeout

The timeout object provides a portable abstraction over calling a
goal deterministically with a time limit as made available in some form
by some of the supported backend Prolog systems (B-Prolog, ECLiPSe, LVM,
SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, and YAP).

For better performance, compile calls to this library meta-predicates
with the optimize flag turned on so that the meta-arguments, i.e.
the goals that you are timing, are also compiled.

API documentation

Open the
../../docs/library_index.html#timeout
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(timeout(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(timeout(tester)).

Known issues

Two tests are currently skipped when using the SWI-Prolog backend as
they cannot be interrupted and generate the expected timeout exceptions
due to tests being run from an initialization/1 directive goal that,
in the SWI-Prolog, implementation of this directive, ignores signals.
The test goals do generate the expected timeout exception when not
called from an initialization/1 directive.

tsv

The tsv library provides predicates for reading and writing TSV
files and streams:

https://www.iana.org/assignments/media-types/text/tab-separated-values

The main object, tsv/1, is a parametric object allowing passing a
single option for the handling of the header of the file (keep or
skip). The tvs object extends the tsv/1 parametric object
using the default keep option value.

Files and streams can be read into a list of rows (with each row being
represented by a list of fields) or asserted using a user-defined
dynamic predicate. Reading can be done by first loading the whole file
(using the read_file/2-3 predicates) into memory or line by line
(using the read_file_by_line/2-3 predicates). Reading line by line
is usually the best option for parsing large TSV files.

Data can be saved to a TSV file or stream by providing the object and
predicate for accessing the data plus the name of the destination file
or the stream handle or alias.

API documentation

Open the
../../docs/library_index.html#tsv
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(tsv(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(tsv(tester)).

Usage

A TSV file can be read as a list of rows:

| ?- tsv::read_file('test_files/data.tsv', Rows).

Rows = [['Name','Age','Address'], ['Paul',23,'1115 W Franklin'], ['Bessy the Cow',5,'Big Farm Way'], ['Zeke,45,'W Main St']]
yes

Alternatively, The TSV data can be saved using a public and dynamic
object predicate (that must be previously declared). For example:

| ?- assertz(p(_,_,_)), retractall(p(_,_,_)).
yes

| ?- tsv(skip)::read_file('test_files/data.tsv', user, p/3).
yes

| ?- p(A,B,C).

A = 'Paul', B = 23, C = '1115 W Franklin' ? ;
...

Given a predicate representing a table, the predicate data can be
written to a file or stream. For example:

| ?- tsv::write_file('output.tsv', user, p/3).
yes

types

This library implements predicates over standard Prolog term types and
also terms representing common data structures such as lists and pairs.

It also includes a user-extensible type object defining type
checking predicates over common Logtalk and Prolog term types. The types
define a hierarchy with the Prolog type term at the root (i.e.
type-checking a predicate argument of type term trivially succeeds).
Some types are only meaningful for backend Prolog systems supporting
non-universal features (e.g. cyclic or char(CharSet) with a
Unicode character set). See the API documentation for a full list of the
types defined by default.

API documentation

Open the
../../docs/library_index.html#types
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(types(loader)).

In case your code only requires the most basic types, you can load in
alternative the file:

| ?- logtalk_load(basic_types(loader)).

See the notes on the basic_types virtual library for details.

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(types(tester)).

Type-checking

This library type object can be used to type-check common Logtalk
and Prolog term types (see the object documentation for a listing of all
the pre-defined types). The valid/2 predicate succeeds or fails if a
term is of a given type. For example:

| ?- type::valid(positive_integer, 42).
yes

| ?- type::valid(positive_integer, -13).
no

The check/2 and check/3 predicates throw an exception if a term
is not of a given type. For example:

| ?- catch(type::check(integer, abc), Error, true).
Error = type_error(integer, abc)
yes

If we require a standard error/2 exception term, the check/3
predicate takes a context argument. For example:

| ?- catch(type::check(integer, abc, foo/3), Error, true).
Error = error(type_error(integer, abc), foo/3)
yes

Typically, the context is provided by calling the built-in context/1
method.

Defining new types

To define a custom type, define clauses for the multifile predicates
type::type/1 (to declare the type) and type::check/2 (to
type-check values). For example:

:- multifile(type::type/1).
type::type(age).

:- multifile(type::check/2).
type::check(age, Term) :-
 type::check(between(non_negative_integer, 0, 150), Term).

Be careful to ensure that new type definitions don’t introduce spurious
choice-points for these predicates. The unit tests of the types
library perform this check for pre-defined and loaded user-defined
ground types.

When defining a meta-type (i.e. a type with arguments that are also
types), add also a clause for the type::meta_type/3 multifile
predicate. For example:

:- multifile(type::meta_type/3).
type::meta_type(tuple(Type1, Type2, Type3), [Type1, Type2, Type3], []).

This predicate is called when checking if a type is a defined type. For
meta-types, that check must extend to the sub-types.

Examples

See e.g. the os library implementation of custom types for files and
directories. Or the expecteds and optionals libraries custom
types. See also the my_types programming example.

unicode_data

VivoMind Prolog Unicode Resources

Authors

Arun Majumdar @ VivoMind LLC

Paulo Moura @ VivoMind LLC

License

Creative Commons CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication:

https://creativecommons.org/publicdomain/zero/1.0/

We do appreciate acknowledgement if you use these resources, however,
and we also welcome contributions to improve them.

Website

The latest release of the VivoMind Prolog Unicode Resources is available
at the URL:

https://github.com/VivoMind

At this address you can also find additional information about the
VivoMind Prolog Unicode Resources and submit your bug reports and
contributions.

Description

The VivoMind Prolog Unicode Resources are a set of files resulting from
the conversion of most (but not all) official UCD 6.1 files and updated
for the few changes in the 6.2 standard. The original files can be
downloaded from:

http://www.unicode.org

The conversion of the UCD files resulted in a large number of Prolog
tables and also a set of auxiliary predicates (described below) for
accessing these tables. Other than the obvious conversion in the
provided predicate names, no attempt was made to convert the identifiers
used for properties and other data.

Requirements

Most of the auxiliary predicates assume that the de facto Prolog
standard predicate between/3 is available. Unicode code point values
are represented using the ISO Prolog standard notation for hexadecimal
integers. In addition, the ISO Prolog standard directives include/1
and ensure_loaded/1 are used in some of the files to load auxiliary
files.

Usage

Most applications only require some of the tables present in these
resources. Most of these tables define properties for ranges of code
points and not for single code points but the provided auxiliary
predicates allow access for a single code point. When increased
performance is required, consider using the existing tables and
auxiliary predicates to generated derived tables more fit for your
specific application.

Known issues

In the file unicode_unihan_variant.pl, when there’s more than one
variant for a code point, only the first one (as listed in the original
UCD file) is returned.

The include/1 and ensure_loaded/1 directives are specified in
the ISO Prolog standard published in 1995. But some Prolog compilers
either don’t implement one or both directives or have flawed
implementations. Thus, you may need to change how some of the files are
loaded depending on the chosen Prolog compiler. Using conditional
compilation directives would help in some cases but it would also rise
portability issues on their own.

Acknowledgements

We thank Richard O’Keefe for helpful suggestions to improve the
usability of these resources.

Files and API Summary

The Prolog file names are derived from the original file names by
prefixing them with the unicode_ string, converting to lower case,
and replacing the camel case spelling with underscores. There are,
however, two exceptions: the files and directories holding the code
point categories and names.

There’s also an utility file, unicode_data.pl, that can be used to
load all the files in these resources. Is mostly used to test
portability of the code across Prolog compilers. Also included is a
Logtalk version of this file, unicode_data.lgt, that uses Logtalk’s
own implementation of the include/1 directive and the
logtak_load/1 predicate to load all files. This file can be used to
workaround Prolog systems with buggy or missing implementations of the
ensure_loaded/1 and include/1 directives.

An overview of the original file names and the code point properties can
be found at:

http://www.unicode.org/reports/tr44/#Directory_Structure

http://www.unicode.org/reports/tr44/#Property_Definitions

unicode_arabic_shaping.pl

	Provides:
unicode_arabic_shaping/4

	Dependencies:
(none)

unicode_bidi_mirroring.pl

	Provides:
unicode_bidi_mirroring/2

	Dependencies:
(none)

unicode_blocks.pl

	Provides:
unicode_block/2-3

	Dependencies:
(none)

unicode_case_folding.pl

	Provides:
unicode_case_folding/3

	Dependencies:
(none)

unicode_categories.pl

	Provides:
unicode_category/2

	Dependencies:
files in the unicode_categories directory

unicode_cjk_radicals.pl

	Provides:
unicode_cjk_radical/3

	Dependencies:
(none)

unicode_composition_exclusions.pl

	Provides:
unicode_composition_exclusion/1

	Dependencies:
(none)

unicode_core_properties.pl

	Provides:
unicode_math/1-2
unicode_alphabetic/1-2
unicode_range_alphabetic/2
unicode_lowercase/1-2
unicode_uppercase/1-2
unicode_cased/1-2
unicode_case_ignorable/1-2
unicode_changes_when_lowercased/1-2
unicode_changes_when_uppercased/1-2
unicode_changes_when_titlecased/1-2
unicode_changes_when_casefolded/1-2
unicode_changes_when_casemapped/1-2
unicode_id_start/1-2
unicode_id_continue/1-2
unicode_xid_start/1-2
unicode_xid_continue/1-2
unicode_default_ignorable/1-2
unicode_grapheme_extend/1-2
unicode_grapheme_base/1-2
unicode_grapheme_link/1-2

	Dependencies:
files in the unicode_core_properties directory

unicode_decomposition_type.pl

	Provides:
unicode_canonical/1-2
unicode_compat/1-2
unicode_font/1-2
unicode_nobreak/1-2
unicode_initial/1-2
unicode_medial/1-2
unicode_final/1-2
unicode_isolated/1-2
unicode_circle/1-2
unicode_super/1-2
unicode_sub/1-2
unicode_vertical/1-2
unicode_wide/1-2
unicode_narrow/1-2
unicode_small/1-2
unicode_square/1-2
unicode_fraction/1-2

	Dependencies:
files in the unicode_decomposition_type directory

unicode_derived_age.pl

	Provides:
unicode_age/2-3

	Dependencies:
(none)

unicode_derived_bidi_class.pl

	Provides: unicode_bidi_class/2-3

	Dependencies: (none)

unicode_derived_combining_class.pl

	Provides:
unicode_combining_class/2-3

	Dependencies:
(none)

unicode_derived_core_properties.pl

	Provides:
unicode_core_property/2-3

	Dependencies:
(none)

unicode_derived_decomposition_type.pl

	Provides:
unicode_decomposition_type/2-3

	Dependencies:
(none)

unicode_derived_east_asian_width.pl

	Provides:
unicode_east_asian_width/2-3

	Dependencies:
(none)

unicode_derived_joining_group.pl

	Provides:
unicode_joining_group/2-3

	Dependencies:
(none)

unicode_derived_joining_type.pl

	Provides:
unicode_joining_type/2-3

	Dependencies:
(none)

unicode_derived_line_break.pl

	Provides:
unicode_line_break/2-3

	Dependencies:
(none)

unicode_derived_normalization_props.pl

	Provides:
unicode_fc_nfkc/2
unicode_nfkc_cf/2
unicode_full_composition_exclusion/1-2
unicode_nfd_qc_no/1-2
unicode_nfc_qc_no/1-2
unicode_nfc_qc_maybe/1-2
unicode_nfkd_qc_no/1-2
unicode_nfkc_qc_no/1-2
unicode_nfkc_qc_maybe/1-2
unicode_expands_on_nfd/1-2
unicode_expands_on_nfc/1-2
unicode_expands_on_nfkd/1-2
unicode_expands_on_nfkc/1-2
unicode_changes_when_nfkc_casefolded/1-2

	Dependencies:
files in the unicode_derived_normalization_props directory

unicode_derived_numeric_type.pl

	Provides:
unicode_numeric_type/2-3

	Dependencies:
(none)

unicode_derived_numeric_values.pl

	Provides:
unicode_numerical_value/3

	Dependencies:
(none)

unicode_hangul_syllable_type.pl

	Provides:
unicode_hangul_syllable_type/2-3

	Dependencies:
(none)

unicode_indic_matra_category.pl

	Provides:
unicode_indic_matra_category/2-3

	Dependencies:
(none)

unicode_indic_syllabic_category.pl

	Provides:
unicode_indic_syllabic_category/2-3

	Dependencies:
(none)

unicode_jamo.pl

	Provides:
unicode_jamo/2

	Dependencies:
(none)

unicode_name_aliases.pl

	Provides:
unicode_name_alias/3

	Dependencies:
(none)

unicode_names.pl

	Provides:
unicode_name/2

	Dependencies:
files in the unicode_names directory

unicode_prop_list.pl

	Provides:
unicode_white_space/1-2
unicode_bidi_control/1-2
unicode_join_control/1-2
unicode_dash/1-2
unicode_hyphen/1-2
unicode_quotation_mark/1-2
unicode_terminal_punctuation/1-2
unicode_other_math/1-2
unicode_hex_digit/1-2
unicode_ascii_hex_digit/1-2
unicode_other_alphabetic/1-2
unicode_ideographic/1-2
unicode_diacritic/1-2
unicode_extender/1-2
unicode_other_lowercase/1-2
unicode_other_uppercase/1-2
unicode_noncharacter_code_point/1-2
unicode_other_grapheme_extend/1-2
unicode_ids_binary_operator/1-2
unicode_ids_trinary_operator/1-2
unicode_radical/1-2
unicode_unified_ideograph/1-2
unicode_other_default_ignorable/1-2
unicode_deprecated/1-2
unicode_soft_dotted/1-2
unicode_logical_order_exception/1-2
unicode_other_id_start/1-2
unicode_other_id_continue/1-2
unicode_sterm/1-2
unicode_variation_selector/1-2
unicode_pattern_white_space/1-2
unicode_pattern_syntax/1-2

	Dependencies:
files in the unicode_prop_list directory

unicode_range_scripts.pl

	Provides:
unicode_range_script/3
unicode_script/2

	Dependencies:
(none)

unicode_script_extensions.pl

	Provides:
unicode_script_extension/2-3

	Dependencies:
unicode_scripts.pl

unicode_scripts.pl

	Provides:
unicode_script/6
unicode_script_category/3

	Dependencies:
(none)

unicode_special_casing.pl

	Provides:
unicode_special_casing/5

	Dependencies:
(none)

unicode_unihan_variants.pl

	Provides:
unicode_unihan_variant/2-3

	Dependencies:
(none)

unicode_version.pl

	Provides:
unicode_version/3

	Dependencies:
(none)

ulid

This library implements a Universally Unique Lexicographically Sortable
Identifier (ULID) generator.

https://github.com/ulid/spec

Note that most backends provide time stamps with lower granularity than
required (i.e. seconds but not milliseconds). Also note that, per spec,
within the same millisecond, monotonic sort order is not guaranteed.

The generation of ULIDs uses the /dev/urandom random number
generator when available. This includes macOS, Linux, *BSD, and other
POSIX operating-systems. On Windows, a pseudo-random generator is used
but randomized using the current wall time.

ULIDs can be generated as atoms, lists of characters, or lists of
character codes.

See also the ids and uuid libraries.

API documentation

Open the
../../docs/library_index.html#ulid
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(ulid(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(ulid(tester)).

Generating ULIDs

By default, ULIDs are generated as atoms. For example:

| ?- ulid::generate(ULID).
ULID = '01H0J31SYQXHJZWPRAKHQ6YVYH'
yes

To generate a ULID using a list of characters representation, use
instead the ulid/1 parametric object:

| ?- ulid(chars)::generate(ULID).
ULID = ['0','1','H','0','J','3','2','Y','V','5','V','S','P','K','5','P','4','5','G','G','0','9','8','8','M','2']
yes

Similar to get a ULID using a list of character codes representation:

| ?- ulid(codes)::generate(ULID).
ULID = [48,49,72,48,74,51,52,66,54,48,55,57,54,49,67,82,70,65,67,51,67,67,86,82,48,66]
yes

It’s also possible to generate ULIDs from a given timestamp, i.e. the
number of milliseconds since the Unix epoch (00:00:00 UTC on January 1,
1970), using the generate/2 predicate. The timestamp must be an
integer. For example, assuming a backend Prolog system providing a
time_stamp/1 predicate returning the Unix epoch in milliseconds:

| ?- time_stamp(Milliseconds), ulid(atom)::generate(Seconds, ULID).
Seconds = 1684245175344, ULID = '01H0JDBQ1GAWJF35C44Y5S97DX'
yes

You can also use timestamp discrete components using the generate/8
predicate. For example:

| ?- ulid(atom)::generate(2023, 5, 17, 16, 23, 38, 591, ULID).
ULID = '01H0N8CDAZK75C5H3BJSGS4VCQ'
yes

To extract the timestamp from a given ULID, use the timestamp/2 and
timestamp/8 predicates. For example:

| ?- ulid(atom)::timestamp('01H0JDBQ1GAWJF35C44Y5S97DX', Milliseconds).
Milliseconds = 1684245175344
yes

| ?- ulid(atom)::timestamp('01H0N8CDAZK75C5H3BJSGS4VCQ', Year, Month, Day, Hours, Minutes, Seconds, Milliseconds).
Year = 2023, Month = 5, Day = 17, Hours = 16, Minutes = 23, Seconds = 38, Milliseconds = 591
yes

Type-checking ULIDs

This library also defines a ulid(Representation) type for
type-checking ULIDs. For example, with an atom containing invalid
characters:

| ?- type::check(ulid(atom), '01BX5ZIKBKALTAV9OEVGEMMVRY').
uncaught exception: domain_error(ulid,'01BX5ZIKBKALTAV9OEVGEMMVRY')

union_find

This library implements a union-find data structure. This structure
tracks a set of elements partitioned into a number of disjoint
(non-overlapping) subsets. It provides fast operations to add new sets,
to merge existing sets, and to determine whether elements are in the
same set. This implementation of the union-find algorithm provides the
following features:

	Path compression: Path compression flattens the structure of the tree
by making every node point to the root whenever a find predicate is
used on it.

	Union by rank: Union predicates always attach the shorter tree to the
root of the taller tree. Thus, the resulting tree is no taller than
the originals unless they were of equal height, in which case the
resulting tree is taller by one node.

For a general and extended discussion on this data structure, see e.g.

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

API documentation

Open the
../../docs/library_index.html#union-find
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(union_find(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(union_find(tester)).

Usage

An usage example is Kruskal’s algorithm, a minimum-spanning-tree
algorithm which finds an edge of the least possible weight that connects
any two trees in the forest. It is a greedy algorithm in graph theory as
it finds a minimum spanning tree for a connected weighted graph adding
increasing cost arcs at each step.

:- object(kruskal).

 :- public(kruskal/2).

 :- uses(union_find, [
 new/2, find/4, union/4
]).

 kruskal(g(Vertices-Edges), g(Vertices-Tree)) :-
 new(Vertices, UnionFind),
 keysort(Edges, Sorted),
 kruskal(UnionFind, Sorted, Tree).

 kruskal(_, [], []).
 kruskal(UnionFind0, [Edge| Edges], [Edge| Tree]) :-
 Edge = _-(Vertex1, Vertex2),
 find(UnionFind0, Vertex1, Root1, UnionFind1),
 find(UnionFind1, Vertex2, Root2, UnionFind2),
 Root1 \== Root2,
 !,
 union(UnionFind2, Vertex1, Vertex2, UnionFind3),
 kruskal(UnionFind3, Edges, Tree).
 kruskal(UnionFind, [_| Edges], Tree) :-
 kruskal(UnionFind, Edges, Tree).

:- end_object.

Sample query:

| ?- kruskal::kruskal(g([a,b,c,d,e,f,g]-[7-(a,b), 5-(a,d), 8-(b,c), 7-(b,e), 9-(b,d), 5-(c,e), 15-(d,e), 6-(d,f), 8-(e,f), 9-(e,g), 11-(f,g)]), Tree).

Tree = g([a,b,c,d,e,f,g]-[5-(a,d),5-(c,e),6-(d,f),7-(a,b),7-(b,e),9-(e,g)])
yes

uuid

This library implements a Universally unique identifier (UUID)
generator. Currently only version 1 and version 4 UUIDs are supported.
For reference material, see e.g.

https://en.wikipedia.org/wiki/Universally_unique_identifier

Some backends provide time stamps with low granularity (e.g. seconds but
not milliseconds or nanoseconds). To compensate, the generation of
version 1 UUIDs uses 14 random bits for the clock sequence.

The generation of version 4 UUIDs uses the /dev/urandom random
number generator when available. This includes macOS, Linux, *BSD, and
other POSIX operating-systems. On Windows, a pseudo-random generator is
used but randomized using the current wall time.

UUIDs can be generated as atoms, lists of characters, or lists of
character codes.

See also the ids and ulid libraries.

API documentation

Open the
../../docs/library_index.html#uuid
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(uuid(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(uuid(tester)).

Generating version 1 UUIDs

By default, version 1 UUIDs are generated as atoms. For example:

| ?- uuid::uuid_v1([0xf2,0xd1,0x90,0x94,0xdc,0x4b], UUID).
UUID = '00a66fc0-82cf-11eb-bc83-f2d19094dc4b'
yes

To generate a UUID using a list of characters representation, use
instead the uuid/1 parametric object:

| ?- uuid(chars)::uuid_v1([0xf2,0xd1,0x90,0x94,0xdc,0x4b], UUID).
UUID = ['0','0',d,e,'9','0',c,'0',-,'8','2',c,f,-,'1','1',e,b,-,
 a,'9','8','5',-,f,'2',d,'1','9','0','9','4',d,c,'4',b]
yes

Similar to get a UUID using a list of character codes representation:

| ?- uuid(codes)::uuid_v1([0xf2,0xd1,0x90,0x94,0xdc,0x4b], UUID).
UUID = [48,48,52,99,99,54,99,48,45,56,50,99,102,45,49,49,101,98,45,
 98,57,102,52,45,102,50,100,49,57,48,57,52,100,99,52,98]
yes

Generating version 4 UUIDs

By default, version 4 UUIDs are generated as atoms. For example:

| ?- uuid::uuid_v4(UUID).
UUID = '1c652782-69c5-4252-88c8-09e576a44db5'
yes

To generate a UUID using a list of characters representation, use
instead the uuid/1 parametric object:

| ?- uuid(chars)::uuid_v4(UUID).
UUID = [d,'3',d,'3','3','5','1','3',-,'8','1',e,c,-,'4',d,'2','6',-,
 '9',f,'2','2',-,e,d,'9','5',e,'0','0',e,'1','5','7','0']
yes

Similar to get a UUID using a list of character codes representation:

| ?- uuid(codes)::uuid_v4(UUID).
UUID = [102,97,52,54,57,98,100,50,45,51,57,54,51,45,52,97,100,55,45,
 98,50,50,55,45,101,100,52,99,56,55,99,54,53,55,102,98]
yes

Generating the null UUID

A predicate is also provided that returns the null UUID:

| ?- uuid::uuid_null(UUID).
UUID = '00000000-0000-0000-0000-000000000000'
yes

zippers

This library implements zippers over lists.

API documentation

Open the
../../docs/library_index.html#zippers
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(zippers(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(zippers(tester)).

Ports

The documentation of each port can also be found in the port directory in the NOTES.md file.

	fcube
	API documentation

	Loading

	Testing

	metagol
	API documentation

	Loading

	Testing

	toychr
	API documentation

	Loading

	Testing

fcube

This folder contains a Logtalk port of FCube: An Efficient Prover for
Intuitionistic Propositional Logic available from:

https://www.vidal-rosset.net/fCube/

The port includes portability changes (notably, operator names) plus
changes to use an ordered representation for sets. Also some code
formatting changes for Logtalk coding guidelines.

The port tests are adapted from the examples available from the web page
above.

To load this port and for sample queries, please see the SCRIPT.txt
file.

For more information about FCube, see the following paper:

@InProceedings{10.1007/978-3-642-16242-8_21,
 author="Ferrari, Mauro and Fiorentini, Camillo and Fiorino, Guido",
 editor="Ferm{\"u}ller, Christian G. and Voronkov, Andrei",
 title="fCube: An Efficient Prover for Intuitionistic Propositional Logic",
 booktitle="Logic for Programming, Artificial Intelligence, and Reasoning",
 year="2010",
 publisher="Springer Berlin Heidelberg",
 address="Berlin, Heidelberg",
 pages="294--301",
 isbn="978-3-642-16242-8"
}

For sample queries, please see the SCRIPT.txt file.

API documentation

Open the
../../docs/library_index.html#fcube
link in a web browser.

Loading

To load all entities in this port, load the loader.lgt file:

| ?- logtalk_load(fcube(loader)).

Testing

To test this port predicates, load the tester.lgt file:

| ?- logtalk_load(fcube(tester)).

metagol

This folder contains a Logtalk port of metagol, an inductive logic
programming (ILP) system based on meta-interpretive learning available
from:

https://github.com/metagol/metagol

See the original code git repo for details and bibliography on Metagol
and ILP.

The port allows any number of datasets to be loaded simultaneously with
per-dataset learning options. A dataset is simply wrapped in an object
that extends and is expanded by the metagol object as illustrated by
the ported examples.

Both the original code and the port requires the coroutining when/2
predicate, which is only available in some backend Prolog systems. The
port currently supports ECLiPSe, LVM, SICStus Prolog, SWI-Prolog, and
YAP. It can be used on both POSIX and Windows operating-systems.

The examples are ported from the original Metagol distribution. Some of
the examples are taken from the following paper (with the original
Prolog examples source code files made available by MystikNinja):

@article{DBLP:journals/jair/EvansG18,
 author = {Richard Evans and Edward Grefenstette},
 title = {Learning Explanatory Rules from Noisy Data},
 journal = {J. Artif. Intell. Res.},
 volume = {61},
 pages = {1--64},
 year = {2018},
 url = {https://doi.org/10.1613/jair.5714},
 doi = {10.1613/jair.5714},
 timestamp = {Mon, 21 Jan 2019 15:01:17 +0100},
 biburl = {https://dblp.org/rec/bib/journals/jair/EvansG18},
 bibsource = {dblp computer science bibliography, https://dblp.org}
}

The paper can be downloaded at

https://arxiv.org/pdf/1711.04574.pdf

For sample queries, please see the SCRIPT.txt file.

API documentation

Open the
../../docs/library_index.html#metagol
link in a web browser.

Loading

To load all entities in this port, load the loader.lgt file:

| ?- logtalk_load(metagol(loader)).

Testing

To test this port predicates, load the tester.lgt file:

| ?- logtalk_load(metagol(tester)).

There are three lengthy tests that only run when the tests are being run
manually instead of automatically.

toychr

This folder contains a Logtalk port of ToyCHR, a reference
implementation of Constraint Handling Rules (CHR) available from:

https://www.comp.nus.edu.sg/~gregory/toychr/

The port is work in progress and includes significant modifications to
the original code:

	Instead of compiling .chr files, it uses the term-expansion
mechanism, by defining toychrdb as a hook object, to support
writing rules inside objects and categories. As a consequence, the
original chr_compile/1 is not available.

	The port is portable and should run on all supported backends.

The port also includes examples ported from the SWI-Prolog CHR package
examples and documentation. These examples are ported using the same
license of the original code (BSD-2-Clause).

For sample queries, please see the SCRIPT.txt file.

API documentation

Open the
../../docs/library_index.html#toychr
link in a web browser.

Loading

To load all entities in this port, load the loader.lgt file:

| ?- logtalk_load(toychr(loader)).

Testing

To test this port predicates, load the tester.lgt file:

| ?- logtalk_load(toychr(tester)).

Contributions

The documentation of contribution can also be found in the contribution
directory in the NOTES.md file.

	flags
	API documentation

	Loading

	Testing

	iso8601
	API documentation

	Loading

	Testing

	pddl_parser
	API documentation

	Loading

	Testing

	verdi_neruda

	xml_parser
	API documentation

	Loading

	Testing

	Known issues

flags

Flags was developed at Katholieke Universiteit Leuven

SPDX-FileCopyrightText: 2010 Katholieke Universiteit Leuven
SPDX-License-Identifier: Artistic-2.0

Contributions to this file:

Author: Theofrastos Mantadelis

Suggestions: Paulo Moura

Version: 1

Date: 27/11/2010

API documentation

Open the
../../docs/library_index.html#flags
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

?- logtalk_load(flags(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(flags(tester)).

iso8601

ISO 8601 (and European civil calendar) compliant library of date and
time (clock) related predicates. That is, an ISO 8601 handler.

Author: Daniel L. Dudley Created: 2004-02-18

Modified: 2014-09-26 (to use the library “os” object to get the current
date)

API documentation

Open the
../../docs/library_index.html#iso8601
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(iso8601(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(iso8601(tester)).

pddl_parser

PDDL 3.0 parser

Release 1.0

Copyright (c) 2011 Robert Sasak. All Rights Reserved. This is free
software. You can redistribute it and/or modify it under the terms of
the “Artistic License 2.0” as published by The Perl Foundation. Consult
the “LICENSE.txt” file for details.

This PDDL 3.0 file parser converts PDDL files to Logtalk/Prolog friendly
syntax. For example:

PDDL Prolog
(on ?x ?y) on(?x, ?y)

Syntax sugar: op(200, fy, ?).

For whole example check the “pddl.lgt” file for usage and example
output.

API documentation

Open the
../../docs/library_index.html#pddl_parser
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

?- logtalk_load(pddl_parser(loader)).

Testing

The provided unit tests are based on a collection of problem set files
from International Planning Competition 2008. In order to run all unit
tests from the parser’s directory type:

?- logtalk_load(tester).

Or from any directory by typing:

?- logtalk_load(pddl_parser(tester)).

Some of the unit tests fail in some Prolog compilers due to limitations
to the maximum arity of a term.

verdi_neruda

Verdi Neruda - Meta-interpreter collection for Prolog.

Release 1.0

Copyright (c) 2010 Victor Lagerkvist. All Rights Reserved. Verdi Neruda
is free software. You can redistribute it and/or modify it under the
terms of the simplified BSD license.

CONTENTS

	License

	About

	Verdi Neruda web site

	Installation and running

	Examples

	Authors

	LICENSE

Copyright 2010 Victor Lagerkvist. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation
are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of the copyright
holders.

	ABOUT

Verdi Neruda is a meta-interpreter collection for Prolog. Or, to be more
precise, for a Prolog like language. Or, to be pedantically precise to
the point that you are annoying people, it’s not really a
meta-interpreter collection at all since the interpreters themselves
aren’t interpreting the language that they are written in. Let’s just
say that it is a collection of interpreters for a logic programming
language very much like pure Prolog with negation as finite failure.

Verdi Neruda is written entirely in Logtalk and compatible with most
major Prolog systems. The name is sadly not a subtle wordplay or an
acronym, but was generated by a computer with the help of a soundex
algorithm. The purpose of the interpreter suite was to compare top-down
methods to bottom-up methods and how resolution tree search rules
affected performance and completeness. In the top-down family we find
such interpreters as the long-time standing champion depth-first, its
slow but orderly brother breadth-first and the youngster iterative
deepening. A best-first framework can be found a stone throw away. With
it it’s possible to define interpreters that use greedy best-first
search as well as A* search.

In the bottom-up camp we find an interpreter that uses a semi naive
fixpoint construction. Since bottom-up interpreters by their very nature
are not goal oriented a transformation technique called magic
transformation is used on logic programs before any inferences are made.
This technique allows the interpreter to only generate the facts that a
top-down interpreter would have used on the same logic program.

A shell akin to a Prolog top loop is also included. It has commands both
for proving goals with an interpreter of choice and for benchmarking
logical inferences. If Verdi Neruda is run with a Prolog system that
supports statistics/2 it’s possible to obtain statistics such as
CPU-time as well.

	VERDI NERUDA WEB SITE

Visit the Verdi Neruda GitHub www-page at:

https://github.com/Joelbyte/verdi-neruda

	INSTALLATION AND RUNNING

Verdi Neruda requires Logtalk 2.40.0 or a later version.

To use the snapshot of Verdi Neruda bundled with Logtalk:

	Start Logtalk.

	Type {verdi_neruda(loader)}. (Including .).

To use the latest version of Verdi Neruda, fetch the latest source code,
either as an archive or from the git repository, extract it to a
directory of your choice, and:

	Start Logtalk from that directory.

	Type {loader}. (Including .). If everything went according to
the plan you should be greeted by the welcoming message. If you
replace the bundled version with the new one, you can use in
alternative the steps above.

	EXAMPLES

Follow the previous instructions to get everything up and running. First
we’re going to run some predefined programs in the included databases.
Begin by typing databases. from the shell - this should print a list
of the currently loaded databases. The demo database demodb should
be included in the list. Next type listing(demodb). to print the
contents of the database. The output should look something like:

append([],A,A) if
 true.
append([A|B],C,[A|D]) if
 append(B,C,D).
.
.
.

Which means that the append/3 program is loaded and ready for
action. Next we need to decide which interpreter to use. Fortunately the
shell does not leave much to the imagination - as might be expected, the
interpreters. command prints the currently loaded interpreters. The
list should look like:

dfs_interpreter
bfs_interpreter
iddfs_interpreter(A)
bup_interpreter
a_star_interpreter(A)

The variables means that the interpreters are parametric objects and
that additional information is needed in order to run them. The
iddfs-interpreter needs to know the increment and the A*-interpreter
needs to know what weight should be used when calculating the cost of
nodes. To start with let’s use the dfs-interpreter and do something
exciting, namely appending two lists!

prove(dfs_interpreter, append([a,b], [c,d], Xs), demodb).

The prove command takes three arguments. The first is a interpreter, the
second the goal that shall be proved and the last the database that the
clauses are derived from.

To accomplish the same thing with the iddfs-interpreter with an
increment of 1 we need only type

prove(iddfs_interpreter(1), append([a,b], [c,d], Xs), demodb).

The shell also has support for counting logical inferences. To compare
the dfs- and iddfs-interpreter with the append program we could write:

benchmark(dfs_interpreter, append([a,b,c,d],[e,f], Xs), demodb). ->
dfs_interpreter inferences: 5

benchmark(iddfs_interpreter(1), append([a,b,c,d],[e,f], Xs), demodb).
-> iddfs_interpreter(1) inferences: 15

For more information regarding the built in shell commands consult the
‘help.’ command.

	AUTHORS

The bulk of Verdi Neruda was written by Victor Lagerkvist during his
bachelor thesis at Linköping university in the spring of 2010. Paulo
Moura also helped a great deal during the later stages of development,
especially with regards to compatibility between various Prolog systems.

xml_parser

This folder contains a Logtalk version of John Fletcher’s Prolog XML
parser:

https://binding-time.co.uk/index.php/Parsing_XML_with_Prolog

For a detailed description of this XML parser, please see the comments
in the xml.lgt source file or convert the automatically generated
documentation to HTML or PDF. For sample queries, please see the
SCRIPT.txt file.

See the copyright and license information on the contributed files for
usage and distributions conditions.

API documentation

Open the
../../docs/library_index.html#xml_parser
link in a web browser.

Loading

To load all entities in this library, load the loader.lgt file:

| ?- logtalk_load(xml_parser(loader)).

Testing

To test this library predicates, load the tester.lgt file:

| ?- logtalk_load(xml_parser(tester)).

Known issues

When using GNU Prolog as the backend compiler, you may need to to use a
larger default global stack size (see the GNU Prolog documentation on
the environment variable GLOBALSZ).

Glossary

	abstract class
	A class that cannot be instantiated by sending it a message.
Usually used to contain common predicates that are inherited by other
classes.

	abstract method
	A method implementing an algorithm whose step corresponds
to calls to methods defined in the descendants of the object (or
category) containing it.

	adapter file
	A Prolog source file defining a minimal abstraction layer between the
Logtalk compiler/runtime and a specific backend Prolog compiler.

	ancestor
	A class or a parent prototype that contributes (via
inheritance) to the definition of an object. For class-based hierarchies,
the ancestors of an instance are its class(es) and all the superclasses
of its class(es). For prototype-based hierarchies, the ancestors of
a prototype are its parent(s) and the ancestors of its parent(s).

	backend Prolog compiler
	The Prolog compiler that is used to host and run Logtalk and that is
called for compiling the intermediate Prolog code generated by the
Logtalk compiler when compiling source files.

	built-in method
	A predefined method that can be called from within any object
or category. I.e. built-in methods are built-in object and
category predicates. Built-in methods cannot be redefined.

	built-in predicate
	A predefined predicate that can be called from anywhere. Built-in
predicates can be redefined within objects and
categories.

	category
	A set of predicates directives and
clauses that can be (virtually) imported by any object. Categories
support composing objects using fine-grained units of code reuse
and also hot patching of existing objects. A category
should be functionally-cohesive, defining a single functionality.

	class
	An object that specializes another object, interpreted as its
superclass. A class define the common predicates of a set of objects
that instantiates it. An object can also be interpreted as a class
when it instantiates itself.

	closed-world assumption
	The assumption that what cannot be proved true is false. Therefore,
sending a message corresponding to a declared but not defined
predicate, or calling a declared predicate with no clauses, fails.
But messages or calls to undeclared predicates generate an error.

	closure
	A callable term (i.e. an atom or a compound term) passed to a
meta-predicate call where it is extended with additional
arguments to form a goal called by the meta-predicate.

	coinductive predicate
	A predicate whose calls are proved using greatest fixed point
semantics. Coinductive predicates allows reasoning about
infinite rational entities such as cyclic terms and ω-automata.

	complementing category
	A category used for hot patching an existing object (or a
set of objects).

	component
	A unique atom or compound term template identifying a library, tool,
application, or application sub-system. Component names are notably
used by the message printing and question asking mechanisms. Compound
terms are used instead of atoms when parameterization is required.

	directive
	A source file term that affects the interpretation of source code.
Directives use the (:-)/1 prefix operator as functor.

	discontiguous predicate
	A predicate whose clauses are not contiguous in a source file.
I.e. a predicate whose clauses are mixed with clauses for other
predicates.

	doclet file
	A source file whose main purpose is to generate documentation
for e.g. a library or an application.

	doclet object
	An object specifying the steps necessary to (re)generate the API
documentation for a project. See the doclet
and lgtdoc tools for details.

	dynamic binding
	Runtime lookup of a predicate declaration and
predicate definition to verify the validity of a
message (or a super call) and find the
predicate definition that will be used to answer the message (or the
super call). Also known as late binding. See also static binding.

	dynamic entity
	See entity.

	dynamic predicate
	A predicate whose clauses can be dynamically added or retracted at
runtime.

	early binding
	See static binding.

	encapsulation
	The hiding of an object implementation. This promotes software reuse
by isolating the object clients from its implementation details.
Encapsulation is enforced in Logtalk by using
predicate scope directives.

	entity
	Generic name for Logtalk compilation units: objects,
categories, and protocols.
Entities share a single namespace (i.e. entity
identifiers must be unique) and can be static (the
default) or dynamic. Static entities are defined in source files.
Dynamic entities can also be defined in source files but are usually
created and abolished at runtime using the language built-in predicates.

	entity directive
	A directive that affects how Logtalk entities are
used or compiled.

	event
	The sending of a message to an object. An event can be
expressed as an ordered tuple: (Event, Object, Message, Sender).
Logtalk distinguish between the sending of a message — before
event — and the return of control to the sender — after event.

	expansion workflow
	A sequence of term-expansion or goal-expansion steps where each step is
usually defined using a hook object or a combination of hook
objects.

	grammar rule
	An alternative notation for predicates used to parse or generate
sentences on some language. This notation hides the arguments used to
pass the sequences of tokens being processed, thus simplifying the
representation of grammars. Grammar rules are represented using as
functor the infix operator (-->)/2 instead of the (:-)/2
operator used with predicate clauses.

	grammar rule non-terminal
	A syntactic category of words or phrases. A non-terminal is
identified by its non-terminal indicator, i.e. by its name and
number of arguments using the notation Name//Arity.

	grammar rule terminal
	A word or basic symbol of a language.

	hook object
	An object, implementing the expanding built-in
protocol, defining term- and goal-expansion predicates, used in the
compilation of Logtalk or Prolog source files. A hook object can be
specified using the hook flag. It can also
be specified using a set_logtalk_flag/2 directive in
the source files to be expanded.

	hook predicate
	A predicate, usually declared multifile,
that allows the user to customize another predicate or provide
alternative definitions for a default predicate definition.

	hot patching
	The act of fixing entity directives and
predicates or adding new entity directives and predicates to loaded
entities in a running application without requiring
access to the entities source code or restarting the application.
Achieved using complementing categories.

	identity
	Property of an entity that distinguishes it from every other entity.
The identifier of an entity is its functor (i.e. its name and arity),
which must be unique. Object and category identifiers can be
atoms or compound terms. Protocol identities must be atoms. All Logtalk
entities (objects, protocols, and categories) share the same namespace.

	inheritance
	An entity inherits predicates directives
and clauses from related entities. In the particular case of objects,
when an object extends other object, we have prototype-based inheritance.
When an object specializes or instantiates another object, we have
class-based inheritance. See also public inheritance,
protected inheritance, and private inheritance.

	instance
	An object that instantiates one another object, interpreted as
its class. An object may instantiate multiple objects (also
known as multiple instantiation).

	instantiation
	The process of creating a new class instance. In Logtalk,
this does not necessarily imply dynamic creation of an object at runtime;
an instance may also be defined as a static object in a source file.

	interface
	See protocol.

	lambda expression
	A compound term that can be used in place of a goal or closure
meta-argument and that abstracts a predicate definition by
listing its variables and a callable term that implements the
definition. Lambda expressions help avoiding the need of naming and
defining auxiliary predicates.

	lambda free variable
	A variable that is global to a lambda expression. All
used global variables must be explicitly listed in a lambda
expression for well-defined semantics.

	lambda parameter
	A term (usually a variable or a non-ground compound term) that is
local to a lambda expression. All lambda parameters must
be explicitly enumerated in a lambda expression for well-defined
semantics.

	late binding
	See dynamic binding.

	library
	A directory containing source files. See also library alias
and library notation.

	library alias
	An atom that can be used as an alias for a library full
path. Library aliases and their corresponding paths can be defined
using the logtalk_library_path/2 predicate. See
also library notation.

	library notation
	A compound term where the name is a library alias and the
single argument is a source file relative path. Use of
library notation simplifies compiling and loading source files and
can make an application easily relocatable by defining an alias for
the root directory of the application files.

	loader file
	A source file whose main purpose is to load a set of
source files (possibly with specific compiler flags) and any
library dependencies.

	local predicate
	A predicate that is defined in an object (or in a category)
but that is not listed in a
scope directive. These predicates
behave like private predicates but are invisible to the reflection
built-in methods. Local predicates are
usually auxiliary predicates and only relevant to the entity where
they are defined.

	message
	A query sent to an object. In logical terms, a message can be seen as
a request for proof construction using an object database and the
databases of related entities.

	message lookup
	Sending a message to an object requires a lookup for the
predicate declaration, to check if the message is within the
scope of the sender, and a lookup for the predicate definition
that is going to be called to answer the message. Message lookup can
occur at compile time or at runtime.

	message to self
	A message sent to the object that received the original message under
processing. Messages to self require dynamic binding as the
value of self is only know at runtime.

	meta-argument
	A predicate argument that is called as a goal, used as a closure
to construct a goal that will be called, or that is handled in a
way that requires awareness of the predicate calling context.

	meta-interpreter
	A program capable of running other programs written in the same
language.

	meta-predicate
	A predicate with one or more meta-arguments.
For example, call/1-N and findall/3 are
built-in meta-predicates.

	meta-variable
	A variable in a meta-argument position that is expected to be
unified with a goal or a closure at runtime.

	metaclass
	The class of a class, when interpreted as an instance.
Metaclass instances are themselves classes. Metaclasses are optional,
except for the root class, and can be shared by several classes.

	method
	The predicate definition used to answer a message sent
to an object. Logtalk supports both static binding and
dynamic binding to find which method to run to answer a message.

	module
	A Prolog entity characterized by an identity and a set of
predicates directives and clauses.
Prolog modules are usually static although some Prolog systems
allow the creation of dynamic modules at runtime. Prolog modules
can be seen as prototypes.

	monitor
	Any object, implementing the monitoring
built-in protocol, that is notified by the runtime when a spied event
occurs. The spied events can be set by the monitor
itself or by any other object.

	multifile predicate
	A predicate whose clauses can be defined in multiple
entities and source files.
The object or category holding the directive without an entity
prefix qualifying the predicate holds the multifile predicate
primary declaration, which consists of both a
scope directive and a
multifile/1 directive for the predicate.

	naked meta-variable
	A meta-variable used as the body of a predicate clause or
grammar rule or used in a cut-transparent argument of a control
construct. The “naked” designation highlights that the meta-variable
is not wrapped by call/1 or phrase//1 goals.

	object
	An entity characterized by an identity and a set of
predicates directives and clauses.
Logtalk objects can be either static or dynamic. Logtalk objects
can play the role of classes, instances, or prototypes. The
role or roles an object plays are a function of its relations
with other objects.

	object database
	The set of predicates locally defined inside an object.

	parameter
	An argument of a parametric object or a parametric category identifier.
Parameters are logical variables implicitly shared by all the entity
predicate clauses.

	parameter variable
	A variable used as parameter in a parametric object or a parametric
category using the syntax _ParameterName_. Parameter variables
are logical variables shared by all entity terms. Occurrences of
parameter variables in entity directives
and clauses are implicitly unified with the corresponding entity
parameters.

	parametric category
	See parametric entity.

	parametric entity
	An object or category whose identifier
is a compound term possibly containing free variables that can be used
to parameterize the entity predicates. Parameters are logical variables
implicitly shared by all the entity clauses. Note that the identifier
of a parametric entity is its functor, irrespective of the possible
values of its arguments (e.g. foo(bar) and foo(baz) are
different parameterizations of the same parametric entity, foo/1).

	parametric object
	See parametric entity.

	parametric object proxy
	A compound term (usually represented as a plain Prolog fact) with
the same name and number of arguments as the identifier of a parametric
object.

	parent
	A prototype that is extended by another prototype.

	polymorphism
	Different objects (and categories) can provide different implementations
of the same predicate. The predicate declaration can be inherited from a
common ancestor, also known as subtype polymorphism. Logtalk implements
single dispatch on the receiver of a message, which can be described as
single-argument polymorphism. As message lookup only uses the
predicate functor, multiple predicate implementations for different types
of arguments are possible, also known as ad hoc polymorphism.
Parametric objects and categories enable
implementation of parametric polymorphism by using one of more
parameters to pass object identifiers that can be used to parameterize
generic predicate definitions.

	predicate
	Predicates describe what is true about the application domain. A
predicate is identified by its predicate indicator, i.e. by its
name and number of arguments using the notation Name/Arity.
When predicates defined in objects or
categories they are also referred to as
methods.

	predicate alias
	An alternative functor (Name/Arity) for a predicate. Predicate
aliases can be defined for any inherited predicate using the
alias/2 directive and for predicates listed in
uses/2 and use_module/2 directives.
Predicate aliases can be used to solve inheritance conflicts and
to improve code clarity by using alternative names that are more
meaningful in the calling context.

	predicate calling context
	The object or category from within a predicate is called (either
directly or using a control construct such as a message sending
control construct).

	predicate declaration
	A predicate declaration is composed by a set of
predicates directives, which must
include ar least a scope directive.

	predicate definition
	The set of clauses for a predicate, contained in an object or category.
Predicate definitions can be overriden or specialized in descendant
entities.

	predicate definition context
	The object or category that contains the definition (i.e. clauses)
for a predicate.

	predicate directive
	A directive that specifies a predicate property that affects how
predicates are called or compiled.

	predicate execution context
	The implicit arguments (including sender, self,
and this) required for the correct execution of a
predicate call.

	predicate scope container
	The object that inherits a predicate declaration from an
imported category or an implemented protocol.

	predicate scope directive
	A directive that declares a predicate by specifying its visibility
as public, protected, or private.

	predicate shorthand
	A predicate alias that defines a call template, possibly using
a different name, with a reduced number of arguments by hard-coding
the value of the omitted arguments in the original call template.
Predicate shorthands can be defined using uses/2
and use_module/2 directives. They can be used to
simplify predicate calls and to ensure consistent call patterns
when some of the arguments always use the same fixed values in the
calling context.

	primary predicate declaration
	See multifile predicate.

	private inheritance
	All public and protected predicates are inherited as private
predicates. See also public inheritance and
protected inheritance.

	private predicate
	A predicate that can only be called from the object that contains
its scope directive.

	profiler
	A program that collects data about other program performance.

	protected inheritance
	All public predicates are inherited as protected. No scope change
for protected or private predicates. See also public inheritance
and private inheritance.

	protected predicate
	A predicate that can only be called from the object containing its
scope directive or from an object
that inherits the predicate.

	protocol
	An entity that contains
predicate declarations. A predicate
is declared using a scope directive.
It may be further specified by additional predicate directives.
Protocols support the separation between interface and implementation,
can be implemented by both objects and categories, and can be extended
by other protocols. A protocol should be functionally-cohesive,
specifying a single functionality. Also known as interface.

	prototype
	A self-describing object that may extend or be extended by other
objects. An object with no instantiation or specialization relations
with other objects is always interpreted as a prototype.

	public inheritance
	All inherited predicates maintain their declared scope. See also
protected inheritance and private inheritance.

	public predicate
	A predicate that can be called from any object.

	scratch directory
	The directory used to save the intermediate Prolog files generated by
the compiler when compiling source files.

	self
	The object that received the message under processing.

	sender
	An object that sends a message to other object. When a message
is sent from within a category, the sender is the object
importing the category.

	settings file
	A source file, compiled and loaded automatically by default at
Logtalk startup, mainly defining default values for compiler flags that
override the defaults found on the backend Prolog compiler
adapter files.

	singleton method
	A method defined in an instance itself. Singleton
methods are supported in Logtalk and can also be found in other
object-oriented programming languages.

	source file
	A text file defining Logtalk and/or Prolog code. Multiple Logtalk
entities may be defined in a single source file. Plain Prolog code
may be intermixed with Logtalk entity definitions. Depending on the
used backend Prolog compiler, the text encoding may be
specified using an encoding/1 directive as the
first term in the first line in the file.

	source file directive
	A directive that affects how a source file is compiled.

	specialization
	A class is specialized by defining a new class that inherit its
predicates and possibly add new ones.

	static binding
	Compile time lookup of a predicate declaration and
predicate definition when compiling a message sending
call (or a super call). Dynamic binding is used whenever static
binding is not possible (e.g. due to the predicate being dynamic or due
to lack of enough information at compilation time). Also known as early
binding. See also dynamic binding.

	static entity
	See entity.

	steadfastness
	A predicate definition is steadfast when it still generates only
correct answers when called with unexpected arguments (notably,
bound output arguments). Typically, a predicate may not be steadfast
when output argument unifications can occur before a cut in a predicate
clause body.

	subclass
	A class that is a specialization, direct or indirectly, of
another class. A class may have multiple subclasses.

	super call
	Call of an inherited (or imported) predicate definition. Mainly
used when redefining an inherited (or imported) predicate to call the
overridden definition while making additional calls. Super calls preserve
self and may require dynamic binding if the predicate is
dynamic.

	superclass
	A class from which another class is a specialization
(directly or indirectly via another class). A class may have
multiple superclasses.

	synchronized predicate
	A synchronized predicate is protected by a mutex ensuring that, in
a multi-threaded application, it can only be called by a single
thread at a time.

	template method
	See abstract method.

	tester file
	A source file whose main purpose is to load and a run a set of
unit tests.

	this
	The object that contains the predicate clause under execution. When
the predicate clause is contained in a category, this is a
reference to the object importing the category for which the
predicate clause is being executed.

	threaded engine
	A computing thread running a goal whose solutions can be lazily and
concurrently computed and retrieved. A threaded engine also supports
a term queue that allows passing arbitrary terms to the engine. This
queue can be used to pass e.g. data and new goals to the engine.

	top-level interpreter shorthand
	Aliases for frequently used built-in predicates such as
logtalk_load/1 and logtalk_make/1.
These shorthands are not part of the Logtalk language and must
only be used at the top-level interpreter.

	visible predicate
	A predicate that is within scope, a locally defined predicate, a
built-in method, a Logtalk built-in predicate, or a Prolog
built-in predicate.

Bibliography

[Alexiev93]
Mutable Object State for Object-Oriented Logic Programming: A Survey
Alexiev, V.
Technical Report TR 93-15, Department of Computing Science,
University of Alberta, Canada

[Belli_et_al_92]
Object-oriented programming in Prolog: rationale and a case study
Belli, F., Jack, O., Naish, L.
Technical Report 92/2, Department of Electrical and Electronics
Engineering, University of Paderborn, Germany
URL: https://lee-naish.github.io/papers/oolp/index.html

[Block89]
An Extended Frame Language
Block, F. P., Chan, N. C.
Proceedings OOPLSLA 89(10):151-157, ACM

[Bobrow_et_al_88]
Common Lisp Object System Specification
Bobrow, D. G., Michiel, L. G., Gabriel, R. P., Keene, S. E.,
Kiczales, G., Moon, D. A.
ACM SIGPLAN Notices(23)

[Bratko90]
Prolog Programming for Artificial Intelligence
Bratko, I.
Addison Wesley, 2º edition, 1990

[Champaux92]
A comparative Study of Object-Oriented Analysis Methods
Champaux, D., Faure, P.
Journal of Object-Oriented Programming, Vol. 5, N.1, 1992

[Clocksin87]
Programming in Prolog
Clocksin, W.F., Mellish, C.S.
Springer-Verlag, New York, 1987

[Cointe87]
Metaclasses are First Class: the ObjVlisp Model
Cointe, P.
Proceedings OOPLSLA 87(10):156-167, ACM

[Cordes91]
The Literate Programming Paradigm
Cordes, D., Brown, M.
IEEE Computer, June 1991:52-61

[Covington94]
ISO Prolog: A Summary of the Draft Proposed Standard
Covington, M. A.
URL: ftp://ai.uga.edu/pub/prolog.standard/

[Cox86]
Object-Oriented Programming: An Evolutionary Approach
Cox, Brad J.
Addison-Wesley Publishing Company, Don Mills, Ontario

[Davison89]
Polka: A Parlog Object oriented language
Davison, A.
Ph.D. Thesis, Imperial College, London, 1989

[Davison92]
A survey of logic programming-based object oriented languages
Davison, A.
Tech Report 92/3, Dept. of Computer Science, University of Melbourne,
Australia
URL: https://catalogue.nla.gov.au/Record/772526

[Davison93]
The deductive and object oriented features of BeBOP
Davison, A.
Tech Report 93/6, Dept. of Computer Science, University of Melbourne,
Australia
URL: https://catalogue.nla.gov.au/Record/1273317

[Delzanno97]
Logic and Object-Oriented Programming in Linear Logic
Delzanno, G.
Ph.D. Thesis, University of Pisa, Italy
URL: https://opac.bncf.firenze.sbn.it/bncf-prod/resource?uri=BVE0136144

[Dony90]
Exception Handling and Object-Oriented Programming: Towards a
Synthesis
Dony, C.
Proceedings OOPLSLA 90:322-330, ACM

[Fornarino_et_al_89]
An Original Object-Oriented Approach for Relation Management
Fornarino, M., Pinna, A.-M.,Trousse, B.
Proceedings of the 4th Portuguese Conference on Artificial
Intelligence
Lecture Notes in Artificial Intelligence, Springer-Verlag (390):13-26

[Fromherz93]
OL(P): Object Layer for Prolog
Fromherz, M.
URL: ftp://parcftp.xerox.com/ftp/pub/ol/

[Fukunaga86]
An Experience with a Prolog-based Object-Oriented Language
Fukunaga, K., Hirose, S.
Proceedings OOPLSLA 86, 21(11):224-231, ACM

[Goldberg83]
Smalltalk-80 The language and its implementation
Goldberg, A., Robson, D.
Addison-Wesley Series in Computer Science

[Joy_et_al_00]
The Java Language Specification, Second Edition
Joy, B., Steele, G., Gosling, J., Bracha, G.
Addison-Wesley, 2000

[ISO95]
ISO/IEC DIS 13211-1 - Programming Language Prolog Part 1: General
Core
Joint Technical Committee ISO/IEC JTC 1
URL: https://www.iso.org/standard/21413.html

[Knuth84]
Literate Programming
Knuth, D. E.
Computer Journal, May 84, 27(2):97-111

[Lieberman86]
Using Prototypical Objects to Implement Shared Behaviour in Object
Oriented Systems
Lieberman, H.
Proceedings OOPLSLA 86:189-214, ACM

[Maes87]
Concepts and Experiments in Computational Reflection
Maes, P.
Proceedings OOPLSLA 87, ACM

[McCabe92]
Logic and Objects
McCabe, F. G.
Prentice Hall Series in Computer Science

[Moon86]
Object-Oriented Programming in Flavors
Moon, D.
Proceedings OOPLSLA 86:1-8, ACM

[Moss94]
Prolog++ The Power of Object-Oriented and Logic Programming
Moss, C.
Addison-Wesley International Series in Logic Programming, 1994

[Moura94]
Logtalk: Programação Orientada para Objectos em Prolog
Moura, P., Costa, E.
2ª Conferência e Exposição Portuguesa de Tecnologia Orientada por
Objectos
3i Consultores, Lisboa

[Moura99]
Porting Prolog: Notes on porting a Prolog program to 22 Prolog
compilers or the relevance of the ISO Prolog standard
Moura, P.
ALP Newsletter, Vol. 12/2, May 1999

[Moura00]
Logtalk 2.6 Documentation
Moura, P.
Technical Report DMI 2000/1
University of Beira Interior, Portugal

[Razek92]
Combining Objects and Relations
Razek, G.
Comunications of the ACM, 27(12):66-70

[Rumbaugh87]
Relations as Semantic Constructs in an Object-Oriented Language
Rumbaugh, J.
Proceedings OOPLSLA 87:466-481, ACM

[Rumbaugh88]
Controlling Propagation of Operations using Attributes on Relations
Rumbaugh, J.
Proceedings OOPLSLA 88:285-296, ACM

[Schachte95]
Efficient Object-Oriented Programming in Prolog
Schachte, P., Saab, G.
Logic Programming: Formal Methods and Pratical Applications
Studies in Computer Science and Artificial Intelligence, 11
Elsevier Science B.V. North-Holland, Amsterdam, 1995

[SICStus95]
SICStus Prolog Manual
SICStus
URL: https://sicstus.sics.se

[Shan_et_al_93]
Is Multiple Inheritance Essential to OOP? (Panel)
Shan, Y., Cargill, T., Cox, B., Cook, W., Loomis, M., Snyder, A.
Proceedings OOPLSLA 93:360-363

[Stefik_et_al_86]
Integrating Acess-Oriented Programming into a Multiparadigm
Environment
Stefik, M. J., Bobrow, D. G. , Kahn, K. M.
IEEE Software, January 1986:10-18

[Stroustrup86]
The C++ Programming Language
Stroustrup, B.
Addison-Wesley Series in Computer Science

[Taenzer89]
Problems in Object-Oriented Software Reuse
Taenzer, D., Ganti, M., Podar, S.
Proceedings of ECOOP 89
British Computer Society Workshop Series, Cambridge University Press

[Tanzer95]
Remarks on Object-Oriented Modeling of Associations
Tanzer, C.
Journal of Object-Oriented Programming, February 1995, SIGS
Publications

[Tanenbaum87]
Operating Systems - Design and Implementation
Tanenbaum, A.
Prentice-Hall Software Series, 1987

[Welsch89]
Reasoning Objects with Dynamic Knowledge Bases
Welsch, C., Barth, G.
Proceedings of the 4th Portuguese Conference on Artificial
Intelligence(390):257-268
Lecture Notes in Artificial Intelligence, Springer-Verlag, 1989

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

Symbols

 	
 	
 !/0

 	Built-in method

 	
 (::)/1

 	Control construct

 	
 (::)/2

 	Control construct

 	
 (<<)/2

 	Control construct

 	
 (@)/1

 	Control construct

 	
 	
 (\+)/1

 	Built-in method

 	
 (^^)/1

 	Control construct

 	
 []/1

 	Control construct

 	
 {}/1

 	Control construct

A

 	
 	
 abolish/1

 	Built-in method

 	
 abolish_category/1

 	Built-in predicate

 	
 abolish_events/5

 	Built-in predicate

 	
 abolish_object/1

 	Built-in predicate

 	
 abolish_protocol/1

 	Built-in predicate

 	abstract class

 	abstract method

 	adapter file

 	
 after/3

 	Built-in method

 	
 	
 alias/2

 	Directive

 	
 always_true_or_false_goals

 	Flag

 	ancestor

 	
 arithmetic_expressions

 	Flag

 	
 ask_question/5

 	Built-in method

 	
 asserta/1

 	Built-in method

 	
 assertz/1

 	Built-in method

B

 	
 	backend Prolog compiler

 	
 bagof/3

 	Built-in method

 	
 before/3

 	Built-in method

 	begin_of_file

 	behavioral reflection

 	black-box view

 	
 Built-in method

 	!/0

 	(\+)/1

 	abolish/1

 	after/3

 	ask_question/5

 	asserta/1

 	assertz/1

 	bagof/3

 	before/3

 	call//1-N

 	call/1-N

 	catch/3

 	clause/2

 	coinductive_success_hook/1-2

 	context/1

 	current_op/3

 	current_predicate/1

 	domain_error/2

 	eos//0

 	evaluation_error/1

 	existence_error/2

 	expand_goal/2

 	expand_term/2

 	fail/0

 	false/0

 	findall/3

 	findall/4

 	forall/2

 	forward/1

 	goal_expansion/2

 	ignore/1

 	instantiation_error/0

 	message_hook/4

 	message_prefix_stream/4

 	message_tokens//2

 	once/1

 	parameter/2

 	permission_error/3

 	phrase//1

 	phrase/2

 	phrase/3

 	predicate_property/2

 	print_message/3

 	print_message_token/4

 	print_message_tokens/3

 	question_hook/6

 	question_prompt_stream/4

 	repeat/0

 	representation_error/1

 	resource_error/1

 	retract/1

 	retractall/1

 	self/1

 	sender/1

 	setof/3

 	syntax_error/1

 	system_error/0

 	term_expansion/2

 	this/1

 	throw/1

 	true/0

 	type_error/2

 	ununinstantiation_error/1

 	
 	built-in method

 	
 Built-in predicate

 	abolish_category/1

 	abolish_events/5

 	abolish_object/1

 	abolish_protocol/1

 	category_property/2

 	complements_object/2

 	conforms_to_protocol/2-3

 	create_category/4

 	create_logtalk_flag/3

 	create_object/4

 	create_protocol/3

 	current_category/1

 	current_event/5

 	current_logtalk_flag/2

 	current_object/1

 	current_protocol/1

 	define_events/5

 	extends_category/2-3

 	extends_object/2-3

 	extends_protocol/2-3

 	implements_protocol/2-3

 	imports_category/2-3

 	instantiates_class/2-3

 	logtalk_compile/1

 	logtalk_compile/2

 	logtalk_library_path/2

 	logtalk_linter_hook/7

 	logtalk_load/1

 	logtalk_load/2

 	logtalk_load_context/2

 	logtalk_make/0

 	logtalk_make/1

 	logtalk_make_target_action/1

 	object_property/2

 	protocol_property/2

 	set_logtalk_flag/2

 	specializes_class/2-3

 	threaded/1

 	threaded_call/1-2

 	threaded_cancel/1

 	threaded_engine/1

 	threaded_engine_create/3

 	threaded_engine_destroy/1

 	threaded_engine_fetch/1

 	threaded_engine_next/2

 	threaded_engine_next_reified/2

 	threaded_engine_post/2

 	threaded_engine_self/1

 	threaded_engine_yield/1

 	threaded_exit/1-2

 	threaded_ignore/1

 	threaded_notify/1

 	threaded_once/1-2

 	threaded_peek/1-2

 	threaded_wait/1

 	built-in predicate

 	
 built_in/0

 	Directive

C

 	
 	
 call//1-N

 	Built-in method

 	
 call/1-N

 	Built-in method

 	
 catch/3

 	Built-in method

 	
 catchall_catch

 	Flag

 	category

 	
 category/1-4

 	Directive

 	
 category_property/2

 	Built-in predicate

 	class

 	
 clause/2

 	Built-in method

 	
 clean

 	Flag

 	closed-world assumption

 	closure

 	
 code_prefix

 	Flag

 	
 coinduction

 	Flag

 	coinductive predicate

 	
 coinductive/1

 	Directive

 	
 coinductive_success_hook/1-2

 	Built-in method

 	complementing category

 	
 complements

 	Flag

 	
 complements_object/2

 	Built-in predicate

 	component

 	
 conditionals

 	Flag

 	
 	
 conforms_to_protocol/2-3

 	Built-in predicate

 	
 context/1

 	Built-in method

 	
 context_switching_calls

 	Flag

 	
 Control construct

 	(::)/1

 	(::)/2

 	(<<)/2

 	(@)/1

 	(^^)/1

 	[]/1

 	{}/1

 	
 create_category/4

 	Built-in predicate

 	
 create_logtalk_flag/3

 	Built-in predicate

 	
 create_object/4

 	Built-in predicate

 	
 create_protocol/3

 	Built-in predicate

 	
 current_category/1

 	Built-in predicate

 	
 current_event/5

 	Built-in predicate

 	
 current_logtalk_flag/2

 	Built-in predicate

 	
 current_object/1

 	Built-in predicate

 	
 current_op/3

 	Built-in method

 	
 current_predicate/1

 	Built-in method

 	
 current_protocol/1

 	Built-in predicate

D

 	
 	
 debug

 	Flag

 	
 define_events/5

 	Built-in predicate

 	
 deprecated

 	Flag

 	
 Directive

 	alias/2

 	built_in/0

 	category/1-4

 	coinductive/1

 	discontiguous/1

 	dynamic/0

 	dynamic/1

 	elif/1

 	else/0

 	encoding/1

 	end_category/0

 	end_object/0

 	end_protocol/0

 	endif/0

 	if/1

 	include/1

 	info/1

 	info/2

 	initialization/1

 	meta_non_terminal/1

 	meta_predicate/1

 	mode/2

 	multifile/1

 	object/1-5

 	op/3

 	private/1

 	protected/1

 	protocol/1-2

 	public/1

 	set_logtalk_flag/2

 	synchronized/1

 	threaded/0

 	use_module/1

 	use_module/2

 	uses/1

 	uses/2

 	
 	directive

 	discontiguous predicate

 	
 discontiguous/1

 	Directive

 	
 disjunctions

 	Flag

 	doclet file

 	doclet object

 	
 domain_error/2

 	Built-in method

 	
 duplicated_clauses

 	Flag

 	
 duplicated_directives

 	Flag

 	dynamic binding

 	dynamic entity

 	dynamic predicate

 	
 dynamic/0

 	Directive

 	
 dynamic/1

 	Directive

 	
 dynamic_declarations

 	Flag

E

 	
 	early binding

 	
 elif/1

 	Directive

 	
 else/0

 	Directive

 	encapsulation

 	
 encoding/1

 	Directive

 	
 encoding_directive

 	Flag

 	
 end_category/0

 	Directive

 	
 end_object/0

 	Directive

 	end_of_file

 	
 end_protocol/0

 	Directive

 	
 endif/0

 	Directive

 	
 engines

 	Flag

 	
 	entity

 	entity directive

 	
 eos//0

 	Built-in method

 	
 evaluation_error/1

 	Built-in method

 	event

 	
 events

 	Flag

 	
 existence_error/2

 	Built-in method

 	
 expand_goal/2

 	Built-in method

 	
 expand_term/2

 	Built-in method

 	expansion workflow

 	
 extends_category/2-3

 	Built-in predicate

 	
 extends_object/2-3

 	Built-in predicate

 	
 extends_protocol/2-3

 	Built-in predicate

F

 	
 	
 fail/0

 	Built-in method

 	
 false/0

 	Built-in method

 	
 findall/3

 	Built-in method

 	
 findall/4

 	Built-in method

 	
 Flag

 	always_true_or_false_goals

 	arithmetic_expressions

 	catchall_catch

 	clean

 	code_prefix

 	coinduction

 	complements

 	conditionals

 	context_switching_calls

 	debug

 	deprecated

 	disjunctions

 	duplicated_clauses

 	duplicated_directives

 	dynamic_declarations

 	encoding_directive

 	engines

 	events

 	grammar_rules

 	hook

 	lambda_variables

 	missing_directives

 	modules

 	naming

 	optimize

 	portability

 	prolog_compatible_version

 	prolog_compiler

 	prolog_dialect

 	prolog_loader

 	prolog_version

 	redefined_built_ins

 	redefined_operators

 	relative_to

 	reload

 	report

 	scratch_directory

 	settings_file

 	singleton_variables

 	source_data

 	steadfastness

 	suspicious_calls

 	tabling

 	tail_recursive

 	threads

 	trivial_goal_fails

 	undefined_predicates

 	underscore_variables

 	unicode

 	unknown_entities

 	unknown_predicates

 	version_data

 	
 	
 forall/2

 	Built-in method

 	
 forward/1

 	Built-in method

G

 	
 	
 goal_expansion/2

 	Built-in method

 	grammar rule

 	
 	grammar rule non-terminal

 	grammar rule terminal

 	
 grammar_rules

 	Flag

H

 	
 	
 hook

 	Flag

 	
 	hook object

 	hook predicate

 	hot patching

I

 	
 	identity

 	
 if/1

 	Directive

 	
 ignore/1

 	Built-in method

 	
 implements_protocol/2-3

 	Built-in predicate

 	
 imports_category/2-3

 	Built-in predicate

 	
 include/1

 	Directive

 	
 info/1

 	Directive

 	
 	
 info/2

 	Directive

 	inheritance

 	
 initialization/1

 	Directive

 	instance

 	
 instantiates_class/2-3

 	Built-in predicate

 	instantiation

 	
 instantiation_error/0

 	Built-in method

 	interface

L

 	
 	lambda expression

 	lambda free variable

 	lambda parameter

 	
 lambda_variables

 	Flag

 	late binding

 	library

 	library alias

 	library notation

 	loader file

 	local predicate

 	
 logtalk_compile/1

 	Built-in predicate

 	
 logtalk_compile/2

 	Built-in predicate

 	
 	
 logtalk_library_path/2

 	Built-in predicate

 	
 logtalk_linter_hook/7

 	Built-in predicate

 	
 logtalk_load/1

 	Built-in predicate

 	
 logtalk_load/2

 	Built-in predicate

 	
 logtalk_load_context/2

 	Built-in predicate

 	
 logtalk_make/0

 	Built-in predicate

 	
 logtalk_make/1

 	Built-in predicate

 	
 logtalk_make_target_action/1

 	Built-in predicate

M

 	
 	message

 	message lookup

 	message to self

 	
 message_hook/4

 	Built-in method

 	
 message_prefix_stream/4

 	Built-in method

 	
 message_tokens//2

 	Built-in method

 	meta-argument

 	meta-interpreter

 	meta-predicate

 	meta-variable

 	
 meta_non_terminal/1

 	Directive

 	
 	
 meta_predicate/1

 	Directive

 	metaclass

 	method

 	
 missing_directives

 	Flag

 	
 mode/2

 	Directive

 	module

 	
 modules

 	Flag

 	monitor

 	multifile predicate

 	
 multifile/1

 	Directive

N

 	
 	naked meta-variable

 	
 	
 naming

 	Flag

O

 	
 	object

 	object database

 	
 object/1-5

 	Directive

 	
 object_property/2

 	Built-in predicate

 	
 	
 once/1

 	Built-in method

 	
 op/3

 	Directive

 	
 optimize

 	Flag

P

 	
 	parameter

 	parameter variable

 	
 parameter/2

 	Built-in method

 	parametric category

 	parametric entity

 	parametric object

 	parametric object proxy

 	parent

 	
 permission_error/3

 	Built-in method

 	
 phrase//1

 	Built-in method

 	
 phrase/2

 	Built-in method

 	
 phrase/3

 	Built-in method

 	polymorphism

 	
 portability

 	Flag

 	predicate

 	predicate alias

 	predicate calling context

 	predicate declaration

 	predicate definition

 	predicate definition context

 	predicate directive

 	predicate execution context

 	predicate scope container

 	predicate scope directive

 	predicate shorthand

 	
 predicate_property/2

 	Built-in method

 	primary predicate declaration

 	
 	
 print_message/3

 	Built-in method

 	
 print_message_token/4

 	Built-in method

 	
 print_message_tokens/3

 	Built-in method

 	private inheritance

 	private predicate

 	
 private/1

 	Directive

 	profiler

 	
 prolog_compatible_version

 	Flag

 	
 prolog_compiler

 	Flag

 	
 prolog_dialect

 	Flag

 	
 prolog_loader

 	Flag

 	
 prolog_version

 	Flag

 	protected inheritance

 	protected predicate

 	
 protected/1

 	Directive

 	protocol

 	
 protocol/1-2

 	Directive

 	
 protocol_property/2

 	Built-in predicate

 	prototype

 	public inheritance

 	public predicate

 	
 public/1

 	Directive

Q

 	
 	
 question_hook/6

 	Built-in method

 	
 	
 question_prompt_stream/4

 	Built-in method

R

 	
 	
 redefined_built_ins

 	Flag

 	
 redefined_operators

 	Flag

 	reflection

 	
 relative_to

 	Flag

 	
 reload

 	Flag

 	
 repeat/0

 	Built-in method

 	
 	
 report

 	Flag

 	
 representation_error/1

 	Built-in method

 	
 resource_error/1

 	Built-in method

 	
 retract/1

 	Built-in method

 	
 retractall/1

 	Built-in method

S

 	
 	scratch directory

 	
 scratch_directory

 	Flag

 	self

 	
 self/1

 	Built-in method

 	sender

 	
 sender/1

 	Built-in method

 	
 set_logtalk_flag/2

 	Built-in predicate

 	Directive

 	
 setof/3

 	Built-in method

 	settings file

 	
 settings_file

 	Flag

 	singleton method

 	
 singleton_variables

 	Flag

 	source file

 	source file directive

 	
 	
 source_data

 	Flag

 	specialization

 	
 specializes_class/2-3

 	Built-in predicate

 	static binding

 	static entity

 	steadfastness

 	Flag

 	structural reflection

 	subclass

 	super call

 	superclass

 	
 suspicious_calls

 	Flag

 	synchronized predicate

 	
 synchronized/1

 	Directive

 	
 syntax_error/1

 	Built-in method

 	
 system_error/0

 	Built-in method

T

 	
 	
 tabling

 	Flag

 	
 tail_recursive

 	Flag

 	template method

 	
 term_expansion/2

 	Built-in method

 	tester file

 	this

 	
 this/1

 	Built-in method

 	threaded engine

 	
 threaded/0

 	Directive

 	
 threaded/1

 	Built-in predicate

 	
 threaded_call/1-2

 	Built-in predicate

 	
 threaded_cancel/1

 	Built-in predicate

 	
 threaded_engine/1

 	Built-in predicate

 	
 threaded_engine_create/3

 	Built-in predicate

 	
 threaded_engine_destroy/1

 	Built-in predicate

 	
 threaded_engine_fetch/1

 	Built-in predicate

 	
 threaded_engine_next/2

 	Built-in predicate

 	
 threaded_engine_next_reified/2

 	Built-in predicate

 	
 	
 threaded_engine_post/2

 	Built-in predicate

 	
 threaded_engine_self/1

 	Built-in predicate

 	
 threaded_engine_yield/1

 	Built-in predicate

 	
 threaded_exit/1-2

 	Built-in predicate

 	
 threaded_ignore/1

 	Built-in predicate

 	
 threaded_notify/1

 	Built-in predicate

 	
 threaded_once/1-2

 	Built-in predicate

 	
 threaded_peek/1-2

 	Built-in predicate

 	
 threaded_wait/1

 	Built-in predicate

 	
 threads

 	Flag

 	
 throw/1

 	Built-in method

 	top-level interpreter shorthand

 	transparent-box view

 	
 trivial_goal_fails

 	Flag

 	
 true/0

 	Built-in method

 	
 type_error/2

 	Built-in method

U

 	
 	
 undefined_predicates

 	Flag

 	
 underscore_variables

 	Flag

 	
 unicode

 	Flag

 	
 unknown_entities

 	Flag

 	
 unknown_predicates

 	Flag

 	
 	
 ununinstantiation_error/1

 	Built-in method

 	
 use_module/1

 	Directive

 	
 use_module/2

 	Directive

 	
 uses/1

 	Directive

 	
 uses/2

 	Directive

V

 	
 	
 version_data

 	Flag

 	
 	visible predicate

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

Symbols

 	
 	
 !/0

 	Built-in method

 	
 (::)/1

 	Control construct

 	
 (::)/2

 	Control construct

 	
 (<<)/2

 	Control construct

 	
 (@)/1

 	Control construct

 	
 	
 (\+)/1

 	Built-in method

 	
 (^^)/1

 	Control construct

 	
 []/1

 	Control construct

 	
 {}/1

 	Control construct

A

 	
 	
 abolish/1

 	Built-in method

 	
 abolish_category/1

 	Built-in predicate

 	
 abolish_events/5

 	Built-in predicate

 	
 abolish_object/1

 	Built-in predicate

 	
 abolish_protocol/1

 	Built-in predicate

 	abstract class

 	abstract method

 	adapter file

 	
 after/3

 	Built-in method

 	
 	
 alias/2

 	Directive

 	
 always_true_or_false_goals

 	Flag

 	ancestor

 	
 arithmetic_expressions

 	Flag

 	
 ask_question/5

 	Built-in method

 	
 asserta/1

 	Built-in method

 	
 assertz/1

 	Built-in method

B

 	
 	backend Prolog compiler

 	
 bagof/3

 	Built-in method

 	
 before/3

 	Built-in method

 	begin_of_file

 	behavioral reflection

 	black-box view

 	
 Built-in method

 	!/0

 	(\+)/1

 	abolish/1

 	after/3

 	ask_question/5

 	asserta/1

 	assertz/1

 	bagof/3

 	before/3

 	call//1-N

 	call/1-N

 	catch/3

 	clause/2

 	coinductive_success_hook/1-2

 	context/1

 	current_op/3

 	current_predicate/1

 	domain_error/2

 	eos//0

 	evaluation_error/1

 	existence_error/2

 	expand_goal/2

 	expand_term/2

 	fail/0

 	false/0

 	findall/3

 	findall/4

 	forall/2

 	forward/1

 	goal_expansion/2

 	ignore/1

 	instantiation_error/0

 	message_hook/4

 	message_prefix_stream/4

 	message_tokens//2

 	once/1

 	parameter/2

 	permission_error/3

 	phrase//1

 	phrase/2

 	phrase/3

 	predicate_property/2

 	print_message/3

 	print_message_token/4

 	print_message_tokens/3

 	question_hook/6

 	question_prompt_stream/4

 	repeat/0

 	representation_error/1

 	resource_error/1

 	retract/1

 	retractall/1

 	self/1

 	sender/1

 	setof/3

 	syntax_error/1

 	system_error/0

 	term_expansion/2

 	this/1

 	throw/1

 	true/0

 	type_error/2

 	ununinstantiation_error/1

 	
 	built-in method

 	
 Built-in predicate

 	abolish_category/1

 	abolish_events/5

 	abolish_object/1

 	abolish_protocol/1

 	category_property/2

 	complements_object/2

 	conforms_to_protocol/2-3

 	create_category/4

 	create_logtalk_flag/3

 	create_object/4

 	create_protocol/3

 	current_category/1

 	current_event/5

 	current_logtalk_flag/2

 	current_object/1

 	current_protocol/1

 	define_events/5

 	extends_category/2-3

 	extends_object/2-3

 	extends_protocol/2-3

 	implements_protocol/2-3

 	imports_category/2-3

 	instantiates_class/2-3

 	logtalk_compile/1

 	logtalk_compile/2

 	logtalk_library_path/2

 	logtalk_linter_hook/7

 	logtalk_load/1

 	logtalk_load/2

 	logtalk_load_context/2

 	logtalk_make/0

 	logtalk_make/1

 	logtalk_make_target_action/1

 	object_property/2

 	protocol_property/2

 	set_logtalk_flag/2

 	specializes_class/2-3

 	threaded/1

 	threaded_call/1-2

 	threaded_cancel/1

 	threaded_engine/1

 	threaded_engine_create/3

 	threaded_engine_destroy/1

 	threaded_engine_fetch/1

 	threaded_engine_next/2

 	threaded_engine_next_reified/2

 	threaded_engine_post/2

 	threaded_engine_self/1

 	threaded_engine_yield/1

 	threaded_exit/1-2

 	threaded_ignore/1

 	threaded_notify/1

 	threaded_once/1-2

 	threaded_peek/1-2

 	threaded_wait/1

 	built-in predicate

 	
 built_in/0

 	Directive

C

 	
 	
 call//1-N

 	Built-in method

 	
 call/1-N

 	Built-in method

 	
 catch/3

 	Built-in method

 	
 catchall_catch

 	Flag

 	category

 	
 category/1-4

 	Directive

 	
 category_property/2

 	Built-in predicate

 	class

 	
 clause/2

 	Built-in method

 	
 clean

 	Flag

 	closed-world assumption

 	closure

 	
 code_prefix

 	Flag

 	
 coinduction

 	Flag

 	coinductive predicate

 	
 coinductive/1

 	Directive

 	
 coinductive_success_hook/1-2

 	Built-in method

 	complementing category

 	
 complements

 	Flag

 	
 complements_object/2

 	Built-in predicate

 	component

 	
 conditionals

 	Flag

 	
 	
 conforms_to_protocol/2-3

 	Built-in predicate

 	
 context/1

 	Built-in method

 	
 context_switching_calls

 	Flag

 	
 Control construct

 	(::)/1

 	(::)/2

 	(<<)/2

 	(@)/1

 	(^^)/1

 	[]/1

 	{}/1

 	
 create_category/4

 	Built-in predicate

 	
 create_logtalk_flag/3

 	Built-in predicate

 	
 create_object/4

 	Built-in predicate

 	
 create_protocol/3

 	Built-in predicate

 	
 current_category/1

 	Built-in predicate

 	
 current_event/5

 	Built-in predicate

 	
 current_logtalk_flag/2

 	Built-in predicate

 	
 current_object/1

 	Built-in predicate

 	
 current_op/3

 	Built-in method

 	
 current_predicate/1

 	Built-in method

 	
 current_protocol/1

 	Built-in predicate

D

 	
 	
 debug

 	Flag

 	
 define_events/5

 	Built-in predicate

 	
 deprecated

 	Flag

 	
 Directive

 	alias/2

 	built_in/0

 	category/1-4

 	coinductive/1

 	discontiguous/1

 	dynamic/0

 	dynamic/1

 	elif/1

 	else/0

 	encoding/1

 	end_category/0

 	end_object/0

 	end_protocol/0

 	endif/0

 	if/1

 	include/1

 	info/1

 	info/2

 	initialization/1

 	meta_non_terminal/1

 	meta_predicate/1

 	mode/2

 	multifile/1

 	object/1-5

 	op/3

 	private/1

 	protected/1

 	protocol/1-2

 	public/1

 	set_logtalk_flag/2

 	synchronized/1

 	threaded/0

 	use_module/1

 	use_module/2

 	uses/1

 	uses/2

 	
 	directive

 	discontiguous predicate

 	
 discontiguous/1

 	Directive

 	
 disjunctions

 	Flag

 	doclet file

 	doclet object

 	
 domain_error/2

 	Built-in method

 	
 duplicated_clauses

 	Flag

 	
 duplicated_directives

 	Flag

 	dynamic binding

 	dynamic entity

 	dynamic predicate

 	
 dynamic/0

 	Directive

 	
 dynamic/1

 	Directive

 	
 dynamic_declarations

 	Flag

E

 	
 	early binding

 	
 elif/1

 	Directive

 	
 else/0

 	Directive

 	encapsulation

 	
 encoding/1

 	Directive

 	
 encoding_directive

 	Flag

 	
 end_category/0

 	Directive

 	
 end_object/0

 	Directive

 	end_of_file

 	
 end_protocol/0

 	Directive

 	
 endif/0

 	Directive

 	
 engines

 	Flag

 	
 	entity

 	entity directive

 	
 eos//0

 	Built-in method

 	
 evaluation_error/1

 	Built-in method

 	event

 	
 events

 	Flag

 	
 existence_error/2

 	Built-in method

 	
 expand_goal/2

 	Built-in method

 	
 expand_term/2

 	Built-in method

 	expansion workflow

 	
 extends_category/2-3

 	Built-in predicate

 	
 extends_object/2-3

 	Built-in predicate

 	
 extends_protocol/2-3

 	Built-in predicate

F

 	
 	
 fail/0

 	Built-in method

 	
 false/0

 	Built-in method

 	
 findall/3

 	Built-in method

 	
 findall/4

 	Built-in method

 	
 Flag

 	always_true_or_false_goals

 	arithmetic_expressions

 	catchall_catch

 	clean

 	code_prefix

 	coinduction

 	complements

 	conditionals

 	context_switching_calls

 	debug

 	deprecated

 	disjunctions

 	duplicated_clauses

 	duplicated_directives

 	dynamic_declarations

 	encoding_directive

 	engines

 	events

 	grammar_rules

 	hook

 	lambda_variables

 	missing_directives

 	modules

 	naming

 	optimize

 	portability

 	prolog_compatible_version

 	prolog_compiler

 	prolog_dialect

 	prolog_loader

 	prolog_version

 	redefined_built_ins

 	redefined_operators

 	relative_to

 	reload

 	report

 	scratch_directory

 	settings_file

 	singleton_variables

 	source_data

 	steadfastness

 	suspicious_calls

 	tabling

 	tail_recursive

 	threads

 	trivial_goal_fails

 	undefined_predicates

 	underscore_variables

 	unicode

 	unknown_entities

 	unknown_predicates

 	version_data

 	
 	
 forall/2

 	Built-in method

 	
 forward/1

 	Built-in method

G

 	
 	
 goal_expansion/2

 	Built-in method

 	grammar rule

 	
 	grammar rule non-terminal

 	grammar rule terminal

 	
 grammar_rules

 	Flag

H

 	
 	
 hook

 	Flag

 	
 	hook object

 	hook predicate

 	hot patching

I

 	
 	identity

 	
 if/1

 	Directive

 	
 ignore/1

 	Built-in method

 	
 implements_protocol/2-3

 	Built-in predicate

 	
 imports_category/2-3

 	Built-in predicate

 	
 include/1

 	Directive

 	
 info/1

 	Directive

 	
 	
 info/2

 	Directive

 	inheritance

 	
 initialization/1

 	Directive

 	instance

 	
 instantiates_class/2-3

 	Built-in predicate

 	instantiation

 	
 instantiation_error/0

 	Built-in method

 	interface

L

 	
 	lambda expression

 	lambda free variable

 	lambda parameter

 	
 lambda_variables

 	Flag

 	late binding

 	library

 	library alias

 	library notation

 	loader file

 	local predicate

 	
 logtalk_compile/1

 	Built-in predicate

 	
 logtalk_compile/2

 	Built-in predicate

 	
 	
 logtalk_library_path/2

 	Built-in predicate

 	
 logtalk_linter_hook/7

 	Built-in predicate

 	
 logtalk_load/1

 	Built-in predicate

 	
 logtalk_load/2

 	Built-in predicate

 	
 logtalk_load_context/2

 	Built-in predicate

 	
 logtalk_make/0

 	Built-in predicate

 	
 logtalk_make/1

 	Built-in predicate

 	
 logtalk_make_target_action/1

 	Built-in predicate

M

 	
 	message

 	message lookup

 	message to self

 	
 message_hook/4

 	Built-in method

 	
 message_prefix_stream/4

 	Built-in method

 	
 message_tokens//2

 	Built-in method

 	meta-argument

 	meta-interpreter

 	meta-predicate

 	meta-variable

 	
 meta_non_terminal/1

 	Directive

 	
 	
 meta_predicate/1

 	Directive

 	metaclass

 	method

 	
 missing_directives

 	Flag

 	
 mode/2

 	Directive

 	module

 	
 modules

 	Flag

 	monitor

 	multifile predicate

 	
 multifile/1

 	Directive

N

 	
 	naked meta-variable

 	
 	
 naming

 	Flag

O

 	
 	object

 	object database

 	
 object/1-5

 	Directive

 	
 object_property/2

 	Built-in predicate

 	
 	
 once/1

 	Built-in method

 	
 op/3

 	Directive

 	
 optimize

 	Flag

P

 	
 	parameter

 	parameter variable

 	
 parameter/2

 	Built-in method

 	parametric category

 	parametric entity

 	parametric object

 	parametric object proxy

 	parent

 	
 permission_error/3

 	Built-in method

 	
 phrase//1

 	Built-in method

 	
 phrase/2

 	Built-in method

 	
 phrase/3

 	Built-in method

 	polymorphism

 	
 portability

 	Flag

 	predicate

 	predicate alias

 	predicate calling context

 	predicate declaration

 	predicate definition

 	predicate definition context

 	predicate directive

 	predicate execution context

 	predicate scope container

 	predicate scope directive

 	predicate shorthand

 	
 predicate_property/2

 	Built-in method

 	primary predicate declaration

 	
 	
 print_message/3

 	Built-in method

 	
 print_message_token/4

 	Built-in method

 	
 print_message_tokens/3

 	Built-in method

 	private inheritance

 	private predicate

 	
 private/1

 	Directive

 	profiler

 	
 prolog_compatible_version

 	Flag

 	
 prolog_compiler

 	Flag

 	
 prolog_dialect

 	Flag

 	
 prolog_loader

 	Flag

 	
 prolog_version

 	Flag

 	protected inheritance

 	protected predicate

 	
 protected/1

 	Directive

 	protocol

 	
 protocol/1-2

 	Directive

 	
 protocol_property/2

 	Built-in predicate

 	prototype

 	public inheritance

 	public predicate

 	
 public/1

 	Directive

Q

 	
 	
 question_hook/6

 	Built-in method

 	
 	
 question_prompt_stream/4

 	Built-in method

R

 	
 	
 redefined_built_ins

 	Flag

 	
 redefined_operators

 	Flag

 	reflection

 	
 relative_to

 	Flag

 	
 reload

 	Flag

 	
 repeat/0

 	Built-in method

 	
 	
 report

 	Flag

 	
 representation_error/1

 	Built-in method

 	
 resource_error/1

 	Built-in method

 	
 retract/1

 	Built-in method

 	
 retractall/1

 	Built-in method

S

 	
 	scratch directory

 	
 scratch_directory

 	Flag

 	self

 	
 self/1

 	Built-in method

 	sender

 	
 sender/1

 	Built-in method

 	
 set_logtalk_flag/2

 	Built-in predicate

 	Directive

 	
 setof/3

 	Built-in method

 	settings file

 	
 settings_file

 	Flag

 	singleton method

 	
 singleton_variables

 	Flag

 	source file

 	source file directive

 	
 	
 source_data

 	Flag

 	specialization

 	
 specializes_class/2-3

 	Built-in predicate

 	static binding

 	static entity

 	steadfastness

 	Flag

 	structural reflection

 	subclass

 	super call

 	superclass

 	
 suspicious_calls

 	Flag

 	synchronized predicate

 	
 synchronized/1

 	Directive

 	
 syntax_error/1

 	Built-in method

 	
 system_error/0

 	Built-in method

T

 	
 	
 tabling

 	Flag

 	
 tail_recursive

 	Flag

 	template method

 	
 term_expansion/2

 	Built-in method

 	tester file

 	this

 	
 this/1

 	Built-in method

 	threaded engine

 	
 threaded/0

 	Directive

 	
 threaded/1

 	Built-in predicate

 	
 threaded_call/1-2

 	Built-in predicate

 	
 threaded_cancel/1

 	Built-in predicate

 	
 threaded_engine/1

 	Built-in predicate

 	
 threaded_engine_create/3

 	Built-in predicate

 	
 threaded_engine_destroy/1

 	Built-in predicate

 	
 threaded_engine_fetch/1

 	Built-in predicate

 	
 threaded_engine_next/2

 	Built-in predicate

 	
 threaded_engine_next_reified/2

 	Built-in predicate

 	
 	
 threaded_engine_post/2

 	Built-in predicate

 	
 threaded_engine_self/1

 	Built-in predicate

 	
 threaded_engine_yield/1

 	Built-in predicate

 	
 threaded_exit/1-2

 	Built-in predicate

 	
 threaded_ignore/1

 	Built-in predicate

 	
 threaded_notify/1

 	Built-in predicate

 	
 threaded_once/1-2

 	Built-in predicate

 	
 threaded_peek/1-2

 	Built-in predicate

 	
 threaded_wait/1

 	Built-in predicate

 	
 threads

 	Flag

 	
 throw/1

 	Built-in method

 	top-level interpreter shorthand

 	transparent-box view

 	
 trivial_goal_fails

 	Flag

 	
 true/0

 	Built-in method

 	
 type_error/2

 	Built-in method

U

 	
 	
 undefined_predicates

 	Flag

 	
 underscore_variables

 	Flag

 	
 unicode

 	Flag

 	
 unknown_entities

 	Flag

 	
 unknown_predicates

 	Flag

 	
 	
 ununinstantiation_error/1

 	Built-in method

 	
 use_module/1

 	Directive

 	
 use_module/2

 	Directive

 	
 uses/1

 	Directive

 	
 uses/2

 	Directive

V

 	
 	
 version_data

 	Flag

 	
 	visible predicate

The Logtalk Handbook

Contents

	User Manual
	Declarative object-oriented programming

	Main features
	Integration of logic and object-oriented programming

	Integration of event-driven and object-oriented programming

	Support for component-based programming

	Support for both prototype and class-based systems

	Support for multiple object hierarchies

	Separation between interface and implementation

	Private, protected and public inheritance

	Private, protected and public object predicates

	Parametric objects

	High level multi-threading programming support

	Smooth learning curve

	Compatibility with most Prolog systems and the ISO standard

	Performance

	Logtalk scope

	Nomenclature
	Prolog nomenclature

	Smalltalk nomenclature

	C++ nomenclature

	Java nomenclature

	Python nomenclature

	Messages
	Operators used in message sending

	Sending a message to an object

	Delegating a message to an object

	Sending a message to self

	Broadcasting

	Calling imported and inherited predicates

	Message sending and event generation

	Sending a message from a module

	Message sending performance

	Objects
	Objects, prototypes, classes, and instances

	Defining a new object

	Parametric objects

	Finding defined objects

	Creating a new object in runtime

	Abolishing an existing object

	Object directives

	Object relationships

	Object properties

	Built-in objects

	Protocols
	Defining a new protocol

	Finding defined protocols

	Creating a new protocol in runtime

	Abolishing an existing protocol

	Protocol directives

	Protocol relationships

	Protocol properties

	Implementing protocols

	Built-in protocols

	Categories
	Defining a new category

	Hot patching

	Finding defined categories

	Creating a new category in runtime

	Abolishing an existing category

	Category directives

	Category relationships

	Category properties

	Importing categories

	Calling category predicates

	Parametric categories

	Built-in categories

	Predicates
	Reserved predicate names

	Declaring predicates

	Defining predicates

	Definite clause grammar rules

	Built-in methods

	Predicate properties

	Finding declared predicates

	Calling Prolog predicates

	Defining Prolog multifile predicates

	Asserting and retracting Prolog predicates

	Inheritance
	Protocol inheritance

	Implementation inheritance

	Public, protected, and private inheritance

	Multiple inheritance

	Composition versus multiple inheritance

	Event-driven programming
	Definitions

	Event generation

	Communicating events to monitors

	Performance concerns

	Monitor semantics

	Activation order of monitors

	Event handling

	Multi-threading programming
	Enabling multi-threading support

	Enabling objects to make multi-threading calls

	Multi-threading built-in predicates

	One-way asynchronous calls

	Asynchronous calls and synchronized predicates

	Synchronizing threads through notifications

	Threaded engines

	Multi-threading performance

	Error handling
	Raising Exceptions

	Type-checking

	Expected terms

	Compiler warnings and errors

	Runtime errors

	Reflection
	Structural reflection

	Behavioral reflection

	Writing and running applications
	Starting Logtalk

	Running parallel Logtalk processes

	Source files

	Multi-pass compiler

	Compiling and loading your applications

	Compiler errors, warnings, and comments

	Loader files

	Libraries of source files

	Settings files

	Compiler linter

	Compiler flags

	Reloading source files

	Batch processing

	Optimizing performance

	Portable applications

	Conditional compilation

	Avoiding common errors

	Coding style guidelines

	Printing messages and asking questions
	Printing messages

	Message tokenization

	Meta-messages

	Intercepting messages

	Asking questions

	Intercepting questions

	Term and goal expansion
	Defining expansions

	Expanding grammar rules

	Bypassing expansions

	Hook objects

	Virtual source file terms and loading context

	Default compiler expansion workflow

	User defined expansion workflows

	Using Prolog defined expansions

	Debugging expansions

	Documenting
	Documenting directives

	Processing and viewing documenting files

	Inline formatting in comments text

	Diagrams

	Debugging
	Compiling source files in debug mode

	Procedure box model

	Defining spy points

	Tracing program execution

	Debugging using spy points

	Debugging commands

	Customizing term writing

	Context-switching calls

	Debugging messages

	Using the term-expansion mechanism for debugging

	Ports profiling

	Debug and trace events

	Performance
	Source code compilation modes

	Local predicate calls

	Calls to imported or inherited predicates

	Calls to module predicates

	Messages

	Automatic expansion of built-in meta-predicates

	Inlining

	Generated code simplification and optimizations

	Size of the generated code

	Debug mode overhead

	Other considerations

	Installing Logtalk
	Hardware and software requirements

	Logtalk installers

	Source distribution

	Distribution overview

	Prolog integration and migration
	Source files with both Prolog code and Logtalk code

	Encapsulating plain Prolog code in objects

	Converting Prolog modules into objects

	Compiling Prolog modules as objects

	Dealing with proprietary Prolog directives and predicates

	Calling Prolog module predicates

	Loading converted Prolog applications

	Reference Manual
	Grammar
	Entities

	Object definition

	Category definition

	Protocol definition

	Entity relations

	Entity identifiers

	Source files

	Source file names

	Terms

	Directives

	Clauses and goals

	Lambda expressions

	Entity properties

	Predicate properties

	Compiler flags

	Control constructs
	Message sending

	Message delegation

	Calling imported and inherited predicates

	Calling predicates in this

	Calling external predicates

	Context switching calls

	Directives
	Source file directives

	Conditional compilation directives

	Entity directives

	Predicate directives

	Built-in predicates
	Enumerating objects, categories and protocols

	Enumerating objects, categories and protocols properties

	Creating new objects, categories and protocols

	Abolishing objects, categories and protocols

	Objects, categories, and protocols relations

	Event handling

	Multi-threading

	Multi-threading engines

	Compiling and loading source files

	Flags

	Linter

	Built-in methods
	Logic and control

	Execution context

	Reflection

	Database

	Meta-calls

	Error handling

	All solutions

	Event handling

	Message forwarding

	Definite clause grammar rules

	Term and goal expansion

	Coinduction hooks

	Message printing

	Question asking

	Tutorial
	List predicates
	Defining a list object

	Defining a list protocol

	Summary

	Dynamic object attributes
	Defining a category

	Importing the category

	Summary

	A reflective class-based system
	Defining the base classes

	Summary

	Profiling programs
	Messages as events

	Profilers as monitors

	Summary

	FAQ
	General
	Why are all versions of Logtalk numbered 2.x or 3.x?

	Why do I need a Prolog compiler to use Logtalk?

	Is the Logtalk implementation based on Prolog modules?

	Does the Logtalk implementation use term-expansion?

	Compatibility
	What are the backend Prolog compiler requirements to run Logtalk?

	Can I use constraint-based packages with Logtalk?

	Can I use Logtalk objects and Prolog modules at the same time?

	Installation
	The integration scripts/shortcuts are not working!

	I get errors when starting up Logtalk after upgrading to the latest version!

	Portability
	Are my Logtalk applications portable across Prolog compilers?

	Are my Logtalk applications portable across operating systems?

	Programming
	Should I use prototypes or classes in my application?

	Can I use both classes and prototypes in the same application?

	Can I mix classes and prototypes in the same hierarchy?

	Can I use a protocol or a category with both prototypes and classes?

	What support is provided in Logtalk for defining and using components?

	What support is provided in Logtalk for reflective programming?

	Troubleshooting
	Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

	Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!

	Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

	Usability
	Is there a shortcut for compiling and loading source files?

	Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

	Are there shortcuts for the make functionality?

	Deployment
	Can I create standalone applications with Logtalk?

	Performance
	Is Logtalk implemented as a meta-interpreter?

	What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

	How about message-sending performance? Does Logtalk use static binding or dynamic binding?

	Which Prolog-dependent factors are most crucial for good Logtalk performance?

	How does Logtalk performance compare with plain Prolog and with Prolog modules?

	Licensing
	What’s the Logtalk distribution license?

	Can Logtalk be used in commercial applications?

	What’s the final license for a combination of Logtalk with a Prolog compiler?

	Support
	Are there professional consulting, training and supporting services?

	Developer Tools
	Overview
	Loading the developer tools

	Tools documentation

	Tools common flags

	Tools requirements

	asdf

	assertions
	API documentation

	Loading

	Testing

	Adding assertions to your source code

	Automatically adding file and line context information to assertions

	Suppressing assertion calls from source code

	Redirecting assertion failure messages

	Converting assertion failures into errors

	code_metrics
	API documentation

	Loading

	Testing

	Available metrics

	Coupling metrics

	Halstead metric

	UPN metric

	Cyclomatic complexity metric

	Usage

	Excluding code from analysis

	Defining new metrics

	Third-party tools

	Applying metrics to Prolog modules

	Applying metrics to plain Prolog code

	dead_code_scanner
	API documentation

	Loading

	Testing

	Usage

	Excluding code from analysis

	Integration with the make tool

	Caveats

	Scanning Prolog modules

	Scanning plain Prolog files

	debug_messages
	API documentation

	Loading

	Testing

	Usage

	debugger
	API documentation

	Loading

	Testing

	Usage

	Alternative debugger tools

	Known issues

	diagrams
	Requirements

	API documentation

	Loading

	Testing

	Supported diagrams

	Graph elements

	Supported graph languages

	Customization

	Linking diagrams

	Creating diagrams for Prolog module applications

	Creating diagrams for plain Prolog files

	Other notes

	doclet
	API documentation

	Loading

	Automating running doclets

	Integration with the make tool

	help
	API documentation

	Loading

	Testing

	Supported operating-systems

	Usage

	Experimental features

	Known issues

	issue_creator
	Requirements

	Loading

	Usage

	Known issues

	lgtdoc
	API documentation

	Loading

	Testing

	Documenting source code

	Generating documentation

	Documentation linter checks

	lgtunit
	Main files

	API documentation

	Loading

	Testing

	Writing and running tests

	Automating running tests

	Parametric test objects

	Test dialects

	User-defined test dialects

	QuickCheck

	Skipping tests

	Checking test goal results

	Testing local predicates

	Testing non-deterministic predicates

	Testing generators

	Testing input/output predicates

	Suppressing tested predicates output

	Tests with timeout limits

	Setup and cleanup goals

	Test annotations

	Test execution times and memory usage

	Working with test data files

	Flaky tests

	Mocking

	Debugging messages in tests

	Debugging failed tests

	Code coverage

	Utility predicates

	Exporting test results in xUnit XML format

	Exporting test results in the TAP output format

	Generating Allure reports

	Exporting code coverage results in XML format

	Automatically creating bug reports at issue trackers

	Minimizing test results output

	Known issues

	linter
	Main linter checks

	Help on linter warnings

	Extending the linter

	Linting Prolog modules

	Linting plain Prolog files

	make
	API documentation

	packs
	Requirements

	API documentation

	Loading

	Testing

	Usage

	Registries and packs storage

	Virtual environments

	Registry specification

	Registry handling

	Registry development

	Pack specification

	Pack URLs and Single Sign-On

	Multiple pack versions

	Pack dependencies

	Pack portability

	Pack development

	Pack handling

	Pack documentation

	Pinning registries and packs

	Testing packs

	Security considerations

	Best practices

	Installing Prolog packs

	Known issues

	ports_profiler
	API documentation

	Loading

	Testing

	Compiling source files for port profiling

	Generating profiling data

	Printing profiling data reports

	Interpreting profiling data

	Profiling Prolog modules

	Profiling plain Prolog code

	Known issues

	profiler
	Loading

	Testing

	Supported backend Prolog compilers

	Compiling source code for profiling

	tutor
	API documentation

	Loading

	Usage

	wrapper
	API documentation

	Loading

	Workflows

	Customization

	Current limitations

	Libraries
	Overview
	Library documentation

	Loading libraries

	Testing libraries

	Credits

	Other notes

	arbitrary
	API documentation

	Loading

	Testing

	Pre-defined types

	Usage

	Defining new generators and shrinkers

	Scoped generators and shrinkers

	Reproducing sequences of arbitrary terms

	Default size of generated terms

	Known issues

	assignvars
	API documentation

	Loading

	Testing

	base64
	API documentation

	Loading

	Testing

	Encoding

	Decoding

	basic_types
	API documentation

	Loading

	Testing

	coroutining
	API documentation

	Loading

	Testing

	Usage

	cbor
	Representation

	Encoding

	Decoding

	API documentation

	Loading

	Testing

	core
	API documentation

	Loading

	Testing

	csv
	API documentation

	Loading

	Testing

	Usage

	dates
	API documentation

	Loading

	dependents
	API documentation

	Loading

	dictionaries
	API documentation

	Loading

	Testing

	Usage

	Credits

	dif
	API documentation

	Loading

	Testing

	Usage

	edcg
	API documentation

	Loading

	Testing

	Usage

	Introduction

	Syntax

	Declaration of Predicates

	Declaration of Accumulators

	Declaration of Passed Arguments

	Additional documentation

	events
	API documentation

	Loading

	expand_library_alias_paths
	API documentation

	Loading

	Usage

	expecteds
	API documentation

	Loading

	Testing

	Usage

	See also

	format
	API documentation

	Loading

	Testing

	Usage

	Portability

	gensym
	API documentation

	Loading

	Testing

	Usage

	genint
	API documentation

	Loading

	Testing

	Usage

	git
	API documentation

	Loading

	Testing

	Usage

	grammars
	API documentation

	Loading

	Testing

	Usage

	heaps
	API documentation

	Loading

	Testing

	Credits

	hierarchies
	API documentation

	Loading

	Testing

	hook_flows
	API documentation

	Loading

	Testing

	Usage

	hook_objects
	API documentation

	Loading

	Testing

	Usage

	html
	API documentation

	Loading

	Testing

	Generating a HTML document

	Generating a HTML fragment

	Working with callbacks to generate content

	Working with custom elements

	ids
	API documentation

	Loading

	Testing

	Usage

	intervals
	API documentation

	Loading

	Testing

	java
	API documentation

	Loading

	Testing

	Usage

	Known issues

	json
	API documentation

	Loading

	Testing

	Representation

	Encoding

	Decoding

	Known issues

	listing
	API documentation

	Loading

	Testing

	Usage

	logging
	API documentation

	Loading

	loops
	API documentation

	Loading

	Testing

	Usage

	meta
	API documentation

	Loading

	Testing

	Usage

	meta_compiler
	API documentation

	Loading

	Testing

	Usage

	mutations
	API documentation

	Loading

	Testing

	Usage

	nested_dictionaries
	API documentation

	Loading

	Testing

	Usage

	Curly term representation

	optionals
	API documentation

	Loading

	Testing

	Usage

	See also

	options
	API documentation

	Loading

	Testing

	Usage

	os
	API documentation

	Loading

	Testing

	Known issues

	queues
	API documentation

	Loading

	Testing

	Usage

	random
	API documentation

	Loading

	Testing

	Usage

	reader
	API documentation

	Loading

	Testing

	recorded_database
	API documentation

	Loading

	Testing

	Usage

	Known issues

	redis
	API documentation

	Loading

	Testing

	Credits

	Known issues

	sets
	API documentation

	Loading

	Testing

	Usage

	Credits

	statistics
	API documentation

	Loading

	Testing

	term_io
	API documentation

	Loading

	Testing

	timeout
	API documentation

	Loading

	Testing

	Known issues

	tsv
	API documentation

	Loading

	Testing

	Usage

	types
	API documentation

	Loading

	Testing

	Type-checking

	Defining new types

	Examples

	unicode_data
	Authors

	License

	Website

	Description

	Requirements

	Usage

	Known issues

	Acknowledgements

	Files and API Summary

	ulid
	API documentation

	Loading

	Testing

	Generating ULIDs

	Type-checking ULIDs

	union_find
	API documentation

	Loading

	Testing

	Usage

	uuid
	API documentation

	Loading

	Testing

	Generating version 1 UUIDs

	Generating version 4 UUIDs

	Generating the null UUID

	zippers
	API documentation

	Loading

	Testing

	Glossary

	Bibliography

 Table of Contents

 		
 The Logtalk Handbook

		
 User Manual
 		
 Declarative object-oriented programming

		
 Main features
 		
 Integration of logic and object-oriented programming

		
 Integration of event-driven and object-oriented programming

		
 Support for component-based programming

		
 Support for both prototype and class-based systems

		
 Support for multiple object hierarchies

		
 Separation between interface and implementation

		
 Private, protected and public inheritance

		
 Private, protected and public object predicates

		
 Parametric objects

		
 High level multi-threading programming support

		
 Smooth learning curve

		
 Compatibility with most Prolog systems and the ISO standard

		
 Performance

		
 Logtalk scope

		
 Nomenclature
 		
 Prolog nomenclature

		
 Smalltalk nomenclature

		
 C++ nomenclature

		
 Java nomenclature

		
 Python nomenclature

		
 Messages
 		
 Operators used in message sending

		
 Sending a message to an object

		
 Delegating a message to an object

		
 Sending a message to self

		
 Broadcasting

		
 Calling imported and inherited predicates

		
 Message sending and event generation

		
 Sending a message from a module

		
 Message sending performance

		
 Objects
 		
 Objects, prototypes, classes, and instances

		
 Defining a new object

		
 Parametric objects

		
 Finding defined objects

		
 Creating a new object in runtime

		
 Abolishing an existing object

		
 Object directives

		
 Object relationships

		
 Object properties

		
 Built-in objects

		
 Protocols
 		
 Defining a new protocol

		
 Finding defined protocols

		
 Creating a new protocol in runtime

		
 Abolishing an existing protocol

		
 Protocol directives

		
 Protocol relationships

		
 Protocol properties

		
 Implementing protocols

		
 Built-in protocols

		
 Categories
 		
 Defining a new category

		
 Hot patching

		
 Finding defined categories

		
 Creating a new category in runtime

		
 Abolishing an existing category

		
 Category directives

		
 Category relationships

		
 Category properties

		
 Importing categories

		
 Calling category predicates

		
 Parametric categories

		
 Built-in categories

		
 Predicates
 		
 Reserved predicate names

		
 Declaring predicates

		
 Defining predicates

		
 Definite clause grammar rules

		
 Built-in methods

		
 Predicate properties

		
 Finding declared predicates

		
 Calling Prolog predicates

		
 Defining Prolog multifile predicates

		
 Asserting and retracting Prolog predicates

		
 Inheritance
 		
 Protocol inheritance

		
 Implementation inheritance

		
 Public, protected, and private inheritance

		
 Multiple inheritance

		
 Composition versus multiple inheritance

		
 Event-driven programming
 		
 Definitions

		
 Event generation

		
 Communicating events to monitors

		
 Performance concerns

		
 Monitor semantics

		
 Activation order of monitors

		
 Event handling

		
 Multi-threading programming
 		
 Enabling multi-threading support

		
 Enabling objects to make multi-threading calls

		
 Multi-threading built-in predicates

		
 One-way asynchronous calls

		
 Asynchronous calls and synchronized predicates

		
 Synchronizing threads through notifications

		
 Threaded engines

		
 Multi-threading performance

		
 Error handling
 		
 Raising Exceptions

		
 Type-checking

		
 Expected terms

		
 Compiler warnings and errors

		
 Runtime errors

		
 Reflection
 		
 Structural reflection

		
 Behavioral reflection

		
 Writing and running applications
 		
 Starting Logtalk

		
 Running parallel Logtalk processes

		
 Source files

		
 Multi-pass compiler

		
 Compiling and loading your applications

		
 Compiler errors, warnings, and comments

		
 Loader files

		
 Libraries of source files

		
 Settings files

		
 Compiler linter

		
 Compiler flags

		
 Reloading source files

		
 Batch processing

		
 Optimizing performance

		
 Portable applications

		
 Conditional compilation

		
 Avoiding common errors

		
 Coding style guidelines

		
 Printing messages and asking questions
 		
 Printing messages

		
 Message tokenization

		
 Meta-messages

		
 Intercepting messages

		
 Asking questions

		
 Intercepting questions

		
 Term and goal expansion
 		
 Defining expansions

		
 Expanding grammar rules

		
 Bypassing expansions

		
 Hook objects

		
 Virtual source file terms and loading context

		
 Default compiler expansion workflow

		
 User defined expansion workflows

		
 Using Prolog defined expansions

		
 Debugging expansions

		
 Documenting
 		
 Documenting directives

		
 Processing and viewing documenting files

		
 Inline formatting in comments text

		
 Diagrams

		
 Debugging
 		
 Compiling source files in debug mode

		
 Procedure box model

		
 Defining spy points

		
 Tracing program execution

		
 Debugging using spy points

		
 Debugging commands

		
 Customizing term writing

		
 Context-switching calls

		
 Debugging messages

		
 Using the term-expansion mechanism for debugging

		
 Ports profiling

		
 Debug and trace events

		
 Performance
 		
 Source code compilation modes

		
 Local predicate calls

		
 Calls to imported or inherited predicates

		
 Calls to module predicates

		
 Messages

		
 Automatic expansion of built-in meta-predicates

		
 Inlining

		
 Generated code simplification and optimizations

		
 Size of the generated code

		
 Debug mode overhead

		
 Other considerations

		
 Installing Logtalk
 		
 Hardware and software requirements

		
 Logtalk installers

		
 Source distribution

		
 Distribution overview

		
 Prolog integration and migration
 		
 Source files with both Prolog code and Logtalk code

		
 Encapsulating plain Prolog code in objects

		
 Converting Prolog modules into objects

		
 Compiling Prolog modules as objects

		
 Dealing with proprietary Prolog directives and predicates

		
 Calling Prolog module predicates

		
 Loading converted Prolog applications

		
 Reference Manual
 		
 Grammar
 		
 Entities

		
 Object definition

		
 Category definition

		
 Protocol definition

		
 Entity relations

		
 Entity identifiers

		
 Source files

		
 Source file names

		
 Terms

		
 Directives

		
 Clauses and goals

		
 Lambda expressions

		
 Entity properties

		
 Predicate properties

		
 Compiler flags

		
 Control constructs
 		
 Message sending

		
 Message delegation

		
 Calling imported and inherited predicates

		
 Calling predicates in this

		
 Calling external predicates

		
 Context switching calls

		
 Directives
 		
 Source file directives

		
 Conditional compilation directives

		
 Entity directives

		
 Predicate directives

		
 Built-in predicates
 		
 Enumerating objects, categories and protocols

		
 Enumerating objects, categories and protocols properties

		
 Creating new objects, categories and protocols

		
 Abolishing objects, categories and protocols

		
 Objects, categories, and protocols relations

		
 Event handling

		
 Multi-threading

		
 Multi-threading engines

		
 Compiling and loading source files

		
 Flags

		
 Linter

		
 Built-in methods
 		
 Logic and control

		
 Execution context

		
 Reflection

		
 Database

		
 Meta-calls

		
 Error handling

		
 All solutions

		
 Event handling

		
 Message forwarding

		
 Definite clause grammar rules

		
 Term and goal expansion

		
 Coinduction hooks

		
 Message printing

		
 Question asking

		
 Tutorial
 		
 List predicates
 		
 Defining a list object

		
 Defining a list protocol

		
 Summary

		
 Dynamic object attributes
 		
 Defining a category

		
 Importing the category

		
 Summary

		
 A reflective class-based system
 		
 Defining the base classes

		
 Summary

		
 Profiling programs
 		
 Messages as events

		
 Profilers as monitors

		
 Summary

		
 FAQ
 		
 General
 		
 Why are all versions of Logtalk numbered 2.x or 3.x?

		
 Why do I need a Prolog compiler to use Logtalk?

		
 Is the Logtalk implementation based on Prolog modules?

		
 Does the Logtalk implementation use term-expansion?

		
 Compatibility
 		
 What are the backend Prolog compiler requirements to run Logtalk?

		
 Can I use constraint-based packages with Logtalk?

		
 Can I use Logtalk objects and Prolog modules at the same time?

		
 Installation
 		
 The integration scripts/shortcuts are not working!

		
 I get errors when starting up Logtalk after upgrading to the latest version!

		
 Portability
 		
 Are my Logtalk applications portable across Prolog compilers?

		
 Are my Logtalk applications portable across operating systems?

		
 Programming
 		
 Should I use prototypes or classes in my application?

		
 Can I use both classes and prototypes in the same application?

		
 Can I mix classes and prototypes in the same hierarchy?

		
 Can I use a protocol or a category with both prototypes and classes?

		
 What support is provided in Logtalk for defining and using components?

		
 What support is provided in Logtalk for reflective programming?

		
 Troubleshooting
 		
 Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

		
 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!

		
 Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

		
 Usability
 		
 Is there a shortcut for compiling and loading source files?

		
 Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

		
 Are there shortcuts for the make functionality?

		
 Deployment
 		
 Can I create standalone applications with Logtalk?

		
 Performance
 		
 Is Logtalk implemented as a meta-interpreter?

		
 What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

		
 How about message-sending performance? Does Logtalk use static binding or dynamic binding?

		
 Which Prolog-dependent factors are most crucial for good Logtalk performance?

		
 How does Logtalk performance compare with plain Prolog and with Prolog modules?

		
 Licensing
 		
 Whatâ€™s the Logtalk distribution license?

		
 Can Logtalk be used in commercial applications?

		
 Whatâ€™s the final license for a combination of Logtalk with a Prolog compiler?

		
 Support
 		
 Are there professional consulting, training and supporting services?

		
 Developer Tools
 		
 Overview
 		
 Loading the developer tools

		
 Tools documentation

		
 Tools common flags

		
 Tools requirements

		
 asdf

		
 assertions
 		
 API documentation

		
 Loading

		
 Testing

		
 Adding assertions to your source code

		
 Automatically adding file and line context information to assertions

		
 Suppressing assertion calls from source code

		
 Redirecting assertion failure messages

		
 Converting assertion failures into errors

		
 code_metrics
 		
 API documentation

		
 Loading

		
 Testing

		
 Available metrics

		
 Coupling metrics

		
 Halstead metric

		
 UPN metric

		
 Cyclomatic complexity metric

		
 Usage

		
 Excluding code from analysis

		
 Defining new metrics

		
 Third-party tools

		
 Applying metrics to Prolog modules

		
 Applying metrics to plain Prolog code

		
 dead_code_scanner
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Excluding code from analysis

		
 Integration with the make tool

		
 Caveats

		
 Scanning Prolog modules

		
 Scanning plain Prolog files

		
 debug_messages
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 debugger
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Alternative debugger tools

		
 Known issues

		
 diagrams
 		
 Requirements

		
 API documentation

		
 Loading

		
 Testing

		
 Supported diagrams

		
 Graph elements

		
 Supported graph languages

		
 Customization

		
 Linking diagrams

		
 Creating diagrams for Prolog module applications

		
 Creating diagrams for plain Prolog files

		
 Other notes

		
 doclet
 		
 API documentation

		
 Loading

		
 Automating running doclets

		
 Integration with the make tool

		
 help
 		
 API documentation

		
 Loading

		
 Testing

		
 Supported operating-systems

		
 Usage

		
 Experimental features

		
 Known issues

		
 issue_creator
 		
 Requirements

		
 Loading

		
 Usage

		
 Known issues

		
 lgtdoc
 		
 API documentation

		
 Loading

		
 Testing

		
 Documenting source code

		
 Generating documentation

		
 Documentation linter checks

		
 lgtunit
 		
 Main files

		
 API documentation

		
 Loading

		
 Testing

		
 Writing and running tests

		
 Automating running tests

		
 Parametric test objects

		
 Test dialects

		
 User-defined test dialects

		
 QuickCheck

		
 Skipping tests

		
 Checking test goal results

		
 Testing local predicates

		
 Testing non-deterministic predicates

		
 Testing generators

		
 Testing input/output predicates

		
 Suppressing tested predicates output

		
 Tests with timeout limits

		
 Setup and cleanup goals

		
 Test annotations

		
 Test execution times and memory usage

		
 Working with test data files

		
 Flaky tests

		
 Mocking

		
 Debugging messages in tests

		
 Debugging failed tests

		
 Code coverage

		
 Utility predicates

		
 Exporting test results in xUnit XML format

		
 Exporting test results in the TAP output format

		
 Generating Allure reports

		
 Exporting code coverage results in XML format

		
 Automatically creating bug reports at issue trackers

		
 Minimizing test results output

		
 Known issues

		
 linter
 		
 Main linter checks

		
 Help on linter warnings

		
 Extending the linter

		
 Linting Prolog modules

		
 Linting plain Prolog files

		
 make
 		
 API documentation

		
 packs
 		
 Requirements

		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Registries and packs storage

		
 Virtual environments

		
 Registry specification

		
 Registry handling

		
 Registry development

		
 Pack specification

		
 Pack URLs and Single Sign-On

		
 Multiple pack versions

		
 Pack dependencies

		
 Pack portability

		
 Pack development

		
 Pack handling

		
 Pack documentation

		
 Pinning registries and packs

		
 Testing packs

		
 Security considerations

		
 Best practices

		
 Installing Prolog packs

		
 Known issues

		
 ports_profiler
 		
 API documentation

		
 Loading

		
 Testing

		
 Compiling source files for port profiling

		
 Generating profiling data

		
 Printing profiling data reports

		
 Interpreting profiling data

		
 Profiling Prolog modules

		
 Profiling plain Prolog code

		
 Known issues

		
 profiler
 		
 Loading

		
 Testing

		
 Supported backend Prolog compilers

		
 Compiling source code for profiling

		
 tutor
 		
 API documentation

		
 Loading

		
 Usage

		
 wrapper
 		
 API documentation

		
 Loading

		
 Workflows

		
 Customization

		
 Current limitations

		
 Libraries
 		
 Overview
 		
 Library documentation

		
 Loading libraries

		
 Testing libraries

		
 Credits

		
 Other notes

		
 arbitrary
 		
 API documentation

		
 Loading

		
 Testing

		
 Pre-defined types

		
 Usage

		
 Defining new generators and shrinkers

		
 Scoped generators and shrinkers

		
 Reproducing sequences of arbitrary terms

		
 Default size of generated terms

		
 Known issues

		
 assignvars
 		
 API documentation

		
 Loading

		
 Testing

		
 base64
 		
 API documentation

		
 Loading

		
 Testing

		
 Encoding

		
 Decoding

		
 basic_types
 		
 API documentation

		
 Loading

		
 Testing

		
 coroutining
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 cbor
 		
 Representation

		
 Encoding

		
 Decoding

		
 API documentation

		
 Loading

		
 Testing

		
 core
 		
 API documentation

		
 Loading

		
 Testing

		
 csv
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 dates
 		
 API documentation

		
 Loading

		
 dependents
 		
 API documentation

		
 Loading

		
 dictionaries
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Credits

		
 dif
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 edcg
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Introduction

		
 Syntax

		
 Declaration of Predicates

		
 Declaration of Accumulators

		
 Declaration of Passed Arguments

		
 Additional documentation

		
 events
 		
 API documentation

		
 Loading

		
 expand_library_alias_paths
 		
 API documentation

		
 Loading

		
 Usage

		
 expecteds
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 See also

		
 format
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Portability

		
 gensym
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 genint
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 git
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 grammars
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 heaps
 		
 API documentation

		
 Loading

		
 Testing

		
 Credits

		
 hierarchies
 		
 API documentation

		
 Loading

		
 Testing

		
 hook_flows
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 hook_objects
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 html
 		
 API documentation

		
 Loading

		
 Testing

		
 Generating a HTML document

		
 Generating a HTML fragment

		
 Working with callbacks to generate content

		
 Working with custom elements

		
 ids
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 intervals
 		
 API documentation

		
 Loading

		
 Testing

		
 java
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Known issues

		
 json
 		
 API documentation

		
 Loading

		
 Testing

		
 Representation

		
 Encoding

		
 Decoding

		
 Known issues

		
 listing
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 logging
 		
 API documentation

		
 Loading

		
 loops
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 meta
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 meta_compiler
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 mutations
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 nested_dictionaries
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Curly term representation

		
 optionals
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 See also

		
 options
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 os
 		
 API documentation

		
 Loading

		
 Testing

		
 Known issues

		
 queues
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 random
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 reader
 		
 API documentation

		
 Loading

		
 Testing

		
 recorded_database
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Known issues

		
 redis
 		
 API documentation

		
 Loading

		
 Testing

		
 Credits

		
 Known issues

		
 sets
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 Credits

		
 statistics
 		
 API documentation

		
 Loading

		
 Testing

		
 term_io
 		
 API documentation

		
 Loading

		
 Testing

		
 timeout
 		
 API documentation

		
 Loading

		
 Testing

		
 Known issues

		
 tsv
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 types
 		
 API documentation

		
 Loading

		
 Testing

		
 Type-checking

		
 Defining new types

		
 Examples

		
 unicode_data
 		
 Authors

		
 License

		
 Website

		
 Description

		
 Requirements

		
 Usage

		
 Known issues

		
 Acknowledgements

		
 Files and API Summary

		
 ulid
 		
 API documentation

		
 Loading

		
 Testing

		
 Generating ULIDs

		
 Type-checking ULIDs

		
 union_find
 		
 API documentation

		
 Loading

		
 Testing

		
 Usage

		
 uuid
 		
 API documentation

		
 Loading

		
 Testing

		
 Generating version 1 UUIDs

		
 Generating version 4 UUIDs

		
 Generating the null UUID

		
 zippers
 		
 API documentation

		
 Loading

		
 Testing

		
 Ports
 		
 fcube
 		
 API documentation

		
 Loading

		
 Testing

		
 metagol
 		
 API documentation

		
 Loading

		
 Testing

		
 toychr
 		
 API documentation

		
 Loading

		
 Testing

		
 Contributions
 		
 flags
 		
 API documentation

		
 Loading

		
 Testing

		
 iso8601
 		
 API documentation

		
 Loading

		
 Testing

		
 pddl_parser
 		
 API documentation

		
 Loading

		
 Testing

		
 verdi_neruda

		
 xml_parser
 		
 API documentation

		
 Loading

		
 Testing

		
 Known issues

		
 Glossary

		
 Bibliography

		
 Index

