
The Logtalk Handbook
Release v3.34.0

Paulo Moura

Jan 07, 2020

CONTENTS:

1 User Manual 1
1.1 Declarative object-oriented programming . 1
1.2 Main features . 2

1.2.1 Integration of logic and object-oriented programming 2
1.2.2 Integration of event-driven and object-oriented programming 2
1.2.3 Support for component-based programming . 3
1.2.4 Support for both prototype and class-based systems 3
1.2.5 Support for multiple object hierarchies . 3
1.2.6 Separation between interface and implementation . 3
1.2.7 Private, protected and public inheritance . 3
1.2.8 Private, protected and public object predicates . 4
1.2.9 Parametric objects . 4
1.2.10 High level multi-threading programming support . 4
1.2.11 Smooth learning curve . 4
1.2.12 Compatibility with most Prolog systems and the ISO standard 4
1.2.13 Performance . 4
1.2.14 Logtalk scope . 5

1.3 Nomenclature . 5
1.3.1 Smalltalk nomenclature . 6
1.3.2 C++ nomenclature . 7
1.3.3 Java nomenclature . 8

1.4 Messages . 9
1.4.1 Operators used in message sending . 9
1.4.2 Sending a message to an object . 10
1.4.3 Delegating a message to an object . 10
1.4.4 Sending a message to self . 10
1.4.5 Broadcasting . 10
1.4.6 Calling imported and inherited predicates . 11
1.4.7 Message sending and event generation . 11
1.4.8 Message sending performance . 12

1.5 Objects . 12
1.5.1 Objects, prototypes, classes, and instances . 12
1.5.2 Defining a new object . 13
1.5.3 Parametric objects . 15
1.5.4 Finding defined objects . 16
1.5.5 Creating a new object in runtime . 17
1.5.6 Abolishing an existing object . 17
1.5.7 Object directives . 17
1.5.8 Object relationships . 19
1.5.9 Object properties . 20

i

1.5.10 Built-in objects . 22
1.6 Protocols . 23

1.6.1 Defining a new protocol . 23
1.6.2 Finding defined protocols . 23
1.6.3 Creating a new protocol in runtime . 24
1.6.4 Abolishing an existing protocol . 24
1.6.5 Protocol directives . 24
1.6.6 Protocol relationships . 25
1.6.7 Protocol properties . 25
1.6.8 Implementing protocols . 26
1.6.9 Built-in protocols . 27

1.7 Categories . 27
1.7.1 Defining a new category . 28
1.7.2 Hot patching . 30
1.7.3 Finding defined categories . 30
1.7.4 Creating a new category in runtime . 30
1.7.5 Abolishing an existing category . 31
1.7.6 Category directives . 31
1.7.7 Category relationships . 32
1.7.8 Category properties . 33
1.7.9 Importing categories . 34
1.7.10 Calling category predicates . 35
1.7.11 Parametric categories . 36
1.7.12 Built-in categories . 36

1.8 Predicates . 36
1.8.1 Reserved predicate names . 36
1.8.2 Declaring predicates . 37
1.8.3 Defining predicates . 45
1.8.4 Definite clause grammar rules . 48
1.8.5 Built-in methods . 51
1.8.6 Predicate properties . 54
1.8.7 Finding declared predicates . 56
1.8.8 Calling Prolog predicates . 56
1.8.9 Defining Prolog multifile predicates . 60
1.8.10 Asserting and retracting Prolog predicates . 60

1.9 Inheritance . 61
1.9.1 Protocol inheritance . 62
1.9.2 Implementation inheritance . 62
1.9.3 Public, protected, and private inheritance . 65
1.9.4 Composition versus multiple inheritance . 66

1.10 Event-driven programming . 67
1.10.1 Definitions . 67
1.10.2 Event generation . 68
1.10.3 Communicating events to monitors . 68
1.10.4 Performance concerns . 69
1.10.5 Monitor semantics . 69
1.10.6 Activation order of monitors . 69
1.10.7 Event handling . 69

1.11 Multi-threading programming . 72
1.11.1 Enabling multi-threading support . 72
1.11.2 Enabling objects to make multi-threading calls . 72
1.11.3 Multi-threading built-in predicates . 72
1.11.4 One-way asynchronous calls . 75
1.11.5 Asynchronous calls and synchronized predicates . 75

ii

1.11.6 Synchronizing threads through notifications . 76
1.11.7 Threaded engines . 76
1.11.8 Multi-threading performance . 78

1.12 Error handling . 78
1.12.1 Generating errors . 79
1.12.2 Type-checking . 79
1.12.3 Compiler warnings and errors . 80
1.12.4 Runtime errors . 82

1.13 Reflection . 83
1.13.1 Structural reflection . 83
1.13.2 Behavioral reflection . 84

1.14 Writing and running applications . 84
1.14.1 Writing applications . 84
1.14.2 Compiling and running applications . 86

1.15 Printing messages and asking questions . 95
1.15.1 Printing messages . 96
1.15.2 Message tokenization . 97
1.15.3 Meta-messages . 98
1.15.4 Intercepting messages . 98
1.15.5 Asking questions . 99
1.15.6 Intercepting questions . 100

1.16 Term and goal expansion . 100
1.16.1 Defining expansions . 100
1.16.2 Expanding grammar rules . 102
1.16.3 Hook objects . 102
1.16.4 Bypassing expansions . 104
1.16.5 Combining multiple expansions . 104
1.16.6 Using Prolog defined expansions . 104

1.17 Documenting . 104
1.17.1 Documenting directives . 105
1.17.2 Processing and viewing documenting files . 107
1.17.3 Inline formatting in comments text . 107
1.17.4 Diagrams . 108

1.18 Debugging . 108
1.18.1 Compiling source files in debug mode . 108
1.18.2 Procedure box model . 109
1.18.3 Defining spy points . 110
1.18.4 Tracing program execution . 111
1.18.5 Debugging using spy points . 112
1.18.6 Debugging commands . 113
1.18.7 Context-switching calls . 114
1.18.8 Debugging messages . 115
1.18.9 Using the term-expansion mechanism for debugging 116
1.18.10 Ports profiling . 117
1.18.11 Debug and trace events . 117

1.19 Performance . 117
1.19.1 Source code compilation modes . 117
1.19.2 Local predicate calls . 117
1.19.3 Calls to imported or inherited predicates . 118
1.19.4 Calls to module predicates . 118
1.19.5 Messages . 118
1.19.6 Automatic expansion of built-in meta-predicates . 118
1.19.7 Inlining . 119
1.19.8 Generated code simplification and optimizations . 119

iii

1.19.9 Size of the generated code . 119
1.19.10 Debug mode overhead . 119
1.19.11 Other considerations . 120

1.20 Installing Logtalk . 120
1.20.1 Hardware and software requirements . 120
1.20.2 Logtalk installers . 121
1.20.3 Source distribution . 121
1.20.4 Distribution overview . 121

1.21 Prolog integration and migration . 125
1.21.1 Source files with both Prolog code and Logtalk code 125
1.21.2 Encapsulating plain Prolog code in objects . 125
1.21.3 Converting Prolog modules into objects . 126
1.21.4 Compiling Prolog modules as objects . 127
1.21.5 Dealing with proprietary Prolog directives and predicates 129
1.21.6 Calling Prolog module predicates . 130

2 Reference Manual 133
2.1 Grammar . 133

2.1.1 Entities . 133
2.1.2 Object definition . 133
2.1.3 Category definition . 134
2.1.4 Protocol definition . 135
2.1.5 Entity relations . 135
2.1.6 Entity identifiers . 140
2.1.7 Source file names . 142
2.1.8 Terms . 142
2.1.9 Directives . 143
2.1.10 Clauses and goals . 153
2.1.11 Lambda expressions . 154
2.1.12 Entity properties . 154
2.1.13 Predicate properties . 158
2.1.14 Compiler flags . 159

2.2 Control constructs . 159
2.2.1 Message sending . 159
2.2.2 Message delegation . 161
2.2.3 Calling imported and inherited predicates . 163
2.2.4 Calling external predicates . 164
2.2.5 Context switching calls . 165

2.3 Directives . 167
2.3.1 Source file directives . 167
2.3.2 Conditional compilation directives . 171
2.3.3 Entity directives . 174
2.3.4 Predicate directives . 185

2.4 Built-in predicates . 200
2.4.1 Enumerating objects, categories and protocols . 200
2.4.2 Enumerating objects, categories and protocols properties 203
2.4.3 Creating new objects, categories and protocols . 205
2.4.4 Abolishing objects, categories and protocols . 210
2.4.5 Objects, categories, and protocols relations . 212
2.4.6 Event handling . 220
2.4.7 Multi-threading . 223
2.4.8 Multi-threading engines . 231
2.4.9 Compiling and loading source files . 238
2.4.10 Flags . 250

iv

2.5 Built-in methods . 253
2.5.1 Execution context . 253
2.5.2 Reflection . 258
2.5.3 Database . 261
2.5.4 Meta-calls . 268
2.5.5 Error handling . 271
2.5.6 All solutions . 281
2.5.7 Event handling . 286
2.5.8 Message forwarding . 287
2.5.9 Definite clause grammar rules . 288
2.5.10 Term and goal expansion . 293
2.5.11 Coinduction hooks . 296
2.5.12 Message printing . 297
2.5.13 Question asking . 302

3 Tutorial 305
3.1 List predicates . 305

3.1.1 Defining a list object . 305
3.1.2 Defining a list protocol . 306
3.1.3 Summary . 308

3.2 Dynamic object attributes . 308
3.2.1 Defining a category . 308
3.2.2 Importing the category . 309
3.2.3 Summary . 310

3.3 A reflective class-based system . 310
3.3.1 Defining the base classes . 310
3.3.2 Summary . 311

3.4 Profiling programs . 311
3.4.1 Messages as events . 312
3.4.2 Profilers as monitors . 312
3.4.3 Summary . 313

4 FAQ 315
4.1 General . 315

4.1.1 Why are all versions of Logtalk numbered 2.x or 3.x? 315
4.1.2 Why do I need a Prolog compiler to use Logtalk? . 315
4.1.3 Is the Logtalk implementation based on Prolog modules? 315
4.1.4 Does the Logtalk implementation use term-expansion? 316

4.2 Compatibility . 316
4.2.1 What are the backend Prolog compiler requirements to run Logtalk? 316
4.2.2 Can I use constraint-based packages with Logtalk? . 316
4.2.3 Can I use Logtalk objects and Prolog modules at the same time? 316

4.3 Installation . 316
4.3.1 The integration scripts/shortcuts are not working! . 316
4.3.2 I get errors when starting up Logtalk after upgrading to the latest version! 317

4.4 Portability . 317
4.4.1 Are my Logtalk applications portable across Prolog compilers? 317
4.4.2 Are my Logtalk applications portable across operating systems? 317

4.5 Programming . 317
4.5.1 Should I use prototypes or classes in my application? 318
4.5.2 Can I use both classes and prototypes in the same application? 318
4.5.3 Can I mix classes and prototypes in the same hierarchy? 318
4.5.4 Can I use a protocol or a category with both prototypes and classes? 318
4.5.5 What support is provided in Logtalk for defining and using components? 318

v

4.5.6 What support is provided in Logtalk for reflective programming? 318
4.6 Troubleshooting . 318

4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates do
not work! . 319

4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when brows-
ing XML documenting files! . 319

4.6.3 Compiling a source file results in errors or warnings but the Logtalk compiler reports
a successful compilation with zero errors and zero warnings! 319

4.7 Usability . 319
4.7.1 Is there a shortcut for compiling and loading source files? 319
4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive? 320
4.7.3 Are there shortcuts for the make functionality? . 320

4.8 Deployment . 320
4.8.1 Can I create standalone applications with Logtalk? 320

4.9 Performance . 320
4.9.1 Is Logtalk implemented as a meta-interpreter? . 320
4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code? Static

code? . 321
4.9.3 How about message-sending performance? Does Logtalk use static binding or dy-

namic binding? . 321
4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance? . . . 321
4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog modules? 321

4.10 Licensing . 321
4.10.1 What’s the Logtalk distribution license? . 322
4.10.2 Can Logtalk be used in commercial applications? . 322
4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler? 322

4.11 Support . 322
4.11.1 Are there professional consulting, training and supporting services? 322

5 Glossary 323

Bibliography 329

Index 333

vi

CHAPTER

ONE

USER MANUAL

1.1 Declarative object-oriented programming

Logtalk is a declarative object-oriented logic programming language. This means that Logtalk shares key
concepts with other object-oriented programming languages but abstracts and reinterprets these concepts in
the context of declarative logic programming.

The key concepts in declarative object-oriented programming are encapsulation and reuse patterns. Notably,
the concept of mutable state, which is an imperative concept, is not a significant concept in declarative object-
oriented programming. Declarative object-oriented programming concepts can be materialized in both logic
and functional languages. In this section, we focus only in declarative object-oriented logic programming.

The first critical generalization of object-oriented programming concepts is the concept of object itself. What
an object encapsulates depends on the base programming paradigm where we apply object-oriented pro-
gramming concepts. When these concepts are applied to an imperative language, where mutable state and
destructive assignment are central, objects naturally encapsulate and abstract mutable state, providing dis-
ciplined access and modification. When these concepts are applied to a declarative logic language such as
Prolog, objects naturally encapsulate predicates. Therefore, an object can be seen as a theory, expressed by a
set of related predicates. Theories are usually static and thus Logtalk objects are static by default. This con-
trasts with imperative object-oriented languages where usually classes are static and objects are dynamic.
This view of an object as a set of predicates also forgo a distinction between data and procedures that is
central to imperative object-oriented languages but moot in declarative, homoiconic logic languages.

The second critical generalization concerns the relation between objects and other entities such as protocols
(interfaces) and ancestor objects. The idea is that entity relations define reuse patterns and the roles played
by the participating entities. A common reuse pattern is inheritance. In this case, an entity inherits, and
thus reuses, resources from an ancestor entity. In a reuse pattern, each participating entity plays a specific
role. The same entity, however, can play multiple roles depending on its relations with other entities. For
example, an object can play the role of a class for its instances, the role of a subclass for its superclasses, and
the role of an instance for its metaclass. Another common reuse pattern is protocol implementation. In this
case, an object implementing a protocol reuses its predicate declarations by providing an implementation for
those predicates and exposing those predicates to its clients. An essential consequence of this generalization
is that protocols, objects, and categories are first-class entities while e.g. class, instance, metaclass, subclass,
superclass are just roles that an object can play. Moreover, a language can provide multiple reuse patterns
instead of selecting a set of patterns and supporting this set as a design choice that excludes other reuse
patterns. For example, most imperative object-oriented languages are either class-based or prototype-based.
In contrast, Logtalk naturally supports both classes and prototypes by providing the corresponding reuse
patterns using objects as first-class entities capable of playing multiple roles.

1

The Logtalk Handbook, Release v3.34.0

1.2 Main features

Several years ago, I decided that the best way to learn object-oriented programming was to build my own
object-oriented language. Prolog being always my favorite language, I chose to extend it with object-oriented
capabilities. Strong motivation also come from my frustration with Prolog shortcomings for writing large ap-
plications. Eventually this work has led to the Logtalk programming language as its know today. The first
system to use the name Logtalk appeared in February 1995. At that time, Logtalk was mainly an experiment
in computational reflection with a rudimentary runtime and no compiler. Based on feedback by users and
on the author subsequent work, the name was retained and Logtalk as created as a full programming lan-
guage focusing on using object-oriented concepts for code encapsulation and reuse. Development started
on January 1998 with the first public alpha version released in July 1998. The first stable release (2.0) was
published in February 1999. Development of the third generation of Logtalk started in 2012 with the first
public alpha version in August 2012 and the first stable release (3.0.0) in January 2015.

Logtalk provides the following features:

1.2.1 Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On
one hand, the object orientation allows us to work with the same set of entities in the successive
phases of application development, giving us a way of organizing and encapsulating the knowl-
edge of each entity within a given domain. On the other hand, logic programming allows us
to represent, in a declarative way, the knowledge we have of each entity. Together, these two
advantages allow us to minimize the distance between an application and its problem domain,
turning the writing and maintenance of programming easier and more productive.

From a pragmatic perspective, Logtalk objects provide Prolog with the possibility of defining
several namespaces, instead of the traditional Prolog single database, addressing some of the
needs of large software projects.

1.2.2 Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which
takes place at each moment is a result of the observation of occurring events. This integration
complements object-oriented programming, in which each computing is initiated by the explicit
sending of a message to an object. The user dynamically defines what events are to be observed
and establishes monitors for these events. This is specially useful when representing relation-
ships between objects that imply constraints in the state of participating objects [Rumbaugh87],
[Rumbaugh88], [Fornarino_et_al_89], [Razek92]. Other common uses are reflective applica-
tions like code debugging or profiling [Maes87]. Predicates can be implicitly called when a spied
event occurs, allowing programming solutions which minimize object coupling. In addition,
events provide support for behavioral reflection and can be used to implement the concepts of
pointcut and advice found on Aspect-Oriented Programming.

2 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.2.3 Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without
any code duplication and irrespective of object hierarchies. A category is a first-class encapsula-
tion entity, at the same level as objects and protocols, which can be used as a component when
building new objects. Thus, objects may be defined through composition of categories, which act
as fine-grained units of code reuse. Categories may also extend existing objects. Categories can
be used to implement mixins and aspects. Categories allows for code reuse between non-related
objects, independent of hierarchy relations, in the same vein as protocols allow for interface
reuse.

1.2.4 Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are either class-based or
prototype-based [Lieberman86], with a strong predominance of class-based languages. Logtalk
provides support for both hierarchy types. That is, we can have both prototype and class hi-
erarchies in the same application. Prototypes solve a problem of class-based systems where we
sometimes have to define a class that will have only one instance in order to reuse a piece of code.
Classes solves a dual problem in prototype based systems where it is not possible to encapsulate
some code to be reused by other objects but not by the encapsulating object. Stand-alone objects,
that is, objects that do not belong to any hierarchy, are a convenient solution to encapsulate code
that will be reused by several unrelated objects.

1.2.5 Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg83], Objective-C [Cox86] and Java [Joy_et_al_00] define
a single hierarchy rooted in a class usually named Object. This makes it easy to ensure that
all objects share a common behavior but also tends to result in lengthy hierarchies where it is
difficult to express objects which represent exceptions to default behavior. In Logtalk we can
have multiple, independent, object hierarchies. Some of them can be prototype-based while
others can be class-based. Furthermore, stand-alone objects provide a simple way to encapsulate
utility predicates that do not need or fit in an object hierarchy.

1.2.6 Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any modern programming
language. Logtalk provides support for separating interface from implementation in a flexible
way: predicate directives can be contained in an object, a category or a protocol (first-order
entities in Logtalk) or can be spread in both objects, categories and protocols.

1.2.7 Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a similar way to C++
[Stroustrup86], enabling us to restrict the scope of inherited, imported or implemented pred-
icates (by default inheritance is public).

1.2. Main features 3

The Logtalk Handbook, Release v3.34.0

1.2.8 Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in
a way similar to C++ [Stroustrup86]. Private predicates can only be called from the container
object. Protected predicates can be called by the container object or by the container descendants.
Public predicates can be called from any object.

1.2.9 Parametric objects

Object names can be compound terms (instead of atoms), providing a way to parameterize ob-
ject predicates. Parametric objects are implemented in a similar way to L&O [McCabe92], OL(P)
[Fromherz93] or SICStus Objects [SICStus95] (however, access to parameter values is done via
a built-in method instead of making the parameters scope global over the whole object). Para-
metric objects allows us to treat any predicate clause as defining an instantiation of a parametric
object. Thus, a parametric object allows us to encapsulate and associate any number of predicates
with a compound term.

1.2.10 High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected back-
end Prolog compilers, allowing objects to support both synchronous and asynchronous messages.
Logtalk allows programmers to take advantage of modern multi-processor and multi-core com-
puters without bothering with the details of creating and destroying threads, implement thread
communication, or synchronizing threads.

1.2.11 Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an
incremental learning and use of most of its features.

1.2.12 Compatibility with most Prolog systems and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilers and, in
particular, with the ISO Prolog standard [ISO95]. It runs in almost any computer system with a
modern Prolog compiler.

1.2.13 Performance

The current Logtalk implementation works as a trans-compiler: Logtalk source files are first com-
piled to Prolog source files, which are then compiled by the chosen Prolog compiler. Therefore,
Logtalk performance necessarily depends on the backend Prolog compiler. The Logtalk compiler
preserves the programmers choices when writing efficient code that takes advantage of tail re-
cursion and first-argument indexing.

As an object-oriented language, Logtalk can use both static binding and dynamic binding for
matching messages and methods. Furthermore, Logtalk entities (objects, protocols, and cate-
gories) are independently compiled, allowing for a very flexible programming development. En-
tities can be edited, compiled, and loaded at runtime, without necessarily implying recompilation
of all related entities.

4 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

When dynamic binding is used, the Logtalk runtime engine implements caching of message
lookups (including messages to self and super calls), ensuring a performance level close to what
could be achieved when using static binding.

For more detailed information on performance, see its dedicated section.

1.2.14 Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred areas of application but also ex-
tends them with those areas where object-oriented features provide an advantage compared to plain Prolog.
Among these areas we have:

Logic and object-oriented programming teaching and researching Logtalk smooth learning curve, com-
bined with support for both prototype and class-based programming, protocols, components or aspects
via category-based composition, and other advanced object-oriented features allow a smooth intro-
duction to object-oriented programming to people with a background in Prolog programming. The
distribution of Logtalk source code using an open-source license provides a framework for people to
learn and then modify to try out new ideas on object-oriented programming research. In addition, the
Logtalk distribution includes plenty of programming examples that can be used in the classroom for
teaching logic and object-oriented programming concepts.

Structured knowledge representations and knowledge-based systems Logtalk objects, coupled with
event-driven programming features, enable easy implementation of frame-like systems and similar
structured knowledge representations.

Blackboard systems, agent-based systems, and systems with complex object relationships Logtalk
support for event-driven programming can provide a basis for the dynamic and reactive nature of
blackboard type applications.

Highly portable applications Logtalk is compatible with most modern Prolog systems that support official
and de facto standards. Used as a way to provide Prolog with namespaces, it avoids the porting
problems of most Prolog module systems. Platform, operating system, or compiler specific code can be
isolated from the rest of the code by encapsulating it in objects with well-defined interfaces.

Alternative to a Prolog module system Logtalk can be used as an alternative to a Prolog compiler module
system. Most Prolog applications that use modules can be converted into Logtalk applications, improv-
ing portability across Prolog systems and taking advantage of the stronger encapsulation and reuse
framework provided by Logtalk object-oriented features.

Integration with other programming languages Logtalk support for most key object-oriented features
helps users integrating Prolog with object-oriented languages like C++, Java, or Smalltalk by facil-
itating a high-level mapping between the two languages.

1.3 Nomenclature

Depending on your Object-oriented Programming background (or lack of it), you may find Logtalk nomen-
clature either familiar or at odds with the terms used in other languages. In addition, being a superset
of Prolog, terms such as predicate and method are often used interchangeably. Logtalk inherits most of its
nomenclature from Smalltalk, arguably (and somehow sadly) not the most popular OOP language nowa-
days. In this section, we map nomenclatures from popular OOP languages such as Smalltalk, C++, and
Java to the Logtalk nomenclature. The Logtalk distribution includes several examples of how to implement
common concepts found in other languages, complementing the information in this section.

1.3. Nomenclature 5

The Logtalk Handbook, Release v3.34.0

1.3.1 Smalltalk nomenclature

The Logtalk name originates from a combination of the Prolog and Smalltalk names. Smalltalk had a signif-
icant influence in the design of Logtalk and thus inherits some of its ideas and nomenclature. The following
list relates the most commonly used Smalltalk terms with their Logtalk counterparts.

abstract class Similar to Smalltalk, an abstract class is just a class not meant to be instantiated by not
understanding a message to create instances.

assignment statement Logtalk, as a superset of Prolog, uses logic variables and unification and thus provides
no equivalent to the Smalltalk assignment statement.

block Logtalk supports lambda expressions and meta-predicates, which can be used to provide similar func-
tionality to Smalltalk blocks.

class In Logtalk, class is a just a role that an object can play. This is similar to Smalltalk where classes are
also objects.

class method Class methods in Logtalk are simply instance methods declared and defined in the class meta-
class.

class variable Logtalk objects, which can play the roles of class and instance, encapsulate predicates, not
state. Class variables, which in Smalltalk are really shared instance variables, can be emulated in a
class by defining a predicate locally instead of defining it in the class instances.

inheritance While Smalltalk only supports single inheritance, Logtalk supports single inheritance, multiple
inheritance, and multiple instantiation.

instance While in Smalltalk every object is an instance of same class, objects in Logtalk can play different
roles, including the role of a prototype where the concepts of instance and class don’t apply. Moreover,
instances can be either created dynamically or defined statically.

instance method Instance methods in Logtalk are simply predicates declared and defined in a class and
thus inherited by the class instances.

instance variable Logtalk being a declarative language, objects encapsulate a set of predicates instead of
encapsulating state. But different objects may provide different definitions of the same predicates.
Mutable internal state as in Smalltalk can be emulated by using dynamic predicates.

message Similar to Smalltalk, a message is a request for an operation, which is interpreted in Logtalk as a
logic query, asking for the construction of a proof that something is true.

message selector Logtalk uses the predicate template (i.e. the predicate callable term with all its arguments
unbound) as message selector. The actual type of the message arguments is not considered. Like
Smalltalk, Logtalk uses single dispatch on the message receiver.

metaclass Metaclasses are optional in Logtalk (except for a root class) and can be shared by several classes.
When metaclasses are used, infinite regression is simply avoided by making a class an instance of itself.

method Same as in Smalltalk, a method is the actual code (i.e. predicate definition) that is run to answer a
message. Logtalk uses the words method and predicate interchangeably.

method categories There is no support in Logtalk for partitioning the methods of an object in different
categories. The Logtalk concept of category (a first-class entity) was, however, partially inspired by
Smalltalk method categories.

object Unlike Smalltalk, where everything is an object, Logtalk language constructs includes both terms (as
in Prolog representing e.g. numbers and structures) and three first-class entities: objects, protocols,
and categories.

pool variables* Logtalk, as a superset of Prolog, uses predicates with no distinction between variables and
methods. Categories can be used to share a set of predicate definitions between any number of objects.

6 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

protocol In Smalltalk, an object protocol is the set of messages it understands. The same concept applies in
Logtalk. But Logtalk also supports protocols as first-class entities where a protocol can be implemented
by multiple objects and an object can implement multiple protocols.

self Logtalk uses the same definition of self found in Smalltalk: the object that received the message being
processed. Note, however, that self is not a keyword in Logtalk but implicit in the ::/1 message to self
control construct.

subclass Same definition in Logtalk.

super As in Smalltalk, the idea of super is to allow calling an inherited predicate (that is usually being
redefined). Note, however, that super is not a keyword in Logtalk, which provides instead a ^^/1
super call control construct.

superclass Same definition in Logtalk. But while in Smalltalk a class can only have a single superclass,
Logtalk support for multiple inheritance allows a class to have multiple superclasses.

1.3.2 C++ nomenclature

There are several C++ glossaries available on the Internet. The list that follows relates the most commonly
used C++ terms with their Logtalk equivalents.

abstract class Logtalk uses an operational definition of abstract class: any class that does not inherit a
method for creating new instances can be considered an abstract class. Moreover, Logtalk supports
interfaces/protocols, which are often a better way to provide the functionality of C++ abstract classes.

base class Logtalk uses the term superclass with the same meaning.

data member Logtalk uses predicates for representing both behavior and data.

constructor function There are no special methods for creating new objects in Logtalk. Instead, Logtalk
provides a built-in predicate, create_object/4, which can be used as a building block to define more
sophisticated object creation predicates.

derived class Logtalk uses the term subclass with the same meaning.

destructor function There are no special methods for deleting new objects in Logtalk. Instead, Logtalk
provides a built-in predicate, abolish_object/1, which is often used to define more sophisticated object
deletion predicates.

friend function Not supported in Logtalk. Nevertheless, see the User Manual section on meta-predicates.

instance In Logtalk, an instance can be either created dynamically at runtime or defined statically in a
source file in the same way as classes.

member Logtalk uses the term predicate.

member function Logtalk uses predicates for representing both behavior and data.

namespace Logtalk does not support multiple identifier namespaces. All Logtalk entity identifiers share the
same namespace (Logtalk entities are objects, categories, and protocols).

nested class Logtalk does not support nested classes.

static member Logtalk does not support a static keyword. But the equivalent to static members can be
declared in a class metaclass.

template Logtalk supports parametric objects, which allows you to get the similar functionality of templates
at runtime.

this Logtalk uses the built-in context method self/1 for retrieving the current instance. Logtalk also provides
a this/1 method but for returning the class containing the method being executed. Why the name
clashes? Well, the notion of self was inherited from Smalltalk, which predates C++.

1.3. Nomenclature 7

The Logtalk Handbook, Release v3.34.0

virtual member function There is no virtual keyword in Logtalk. Any inherited or imported predicate can
be redefined (either overridden or specialized). Logtalk can use static binding or dynamic binding for
locating both method declarations and method definitions. Moreover, methods that are declared but
not defined simply fail when called (as per closed-world assumption).

1.3.3 Java nomenclature

There are several Java glossaries available on the Internet. The list that follows relates the most commonly
used Java terms with their Logtalk equivalents.

abstract class Logtalk uses an operational definition of abstract class: any class that does not inherit a
method for creating new instances is an abstract class. I.e. there is no abstract keyword in Logtalk.

abstract method In Logtalk, you may simply declare a method (predicate) in a class without defining it,
leaving its definition to some descendant subclass.

assertion There is no assertion keyword in Logtalk. Assertions are supported using Logtalk compilation
hooks and developer tools.

extends There is no extends keyword in Logtalk. Class inheritance is indicated using specialization relations.
Moreover, the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface Logtalk uses the term protocol with similar meaning. But note that Logtalk objects and categories
declared as implementing a protocol are not required to provide definitions for the declared predicates
(closed-world assumption).

callback method Logtalk supports event-driven programming, the most common usage context of callback
methods.

class method Class methods may be implemented in Logtalk by using a metaclass for the class and defin-
ing the class methods in the metaclass. I.e. class methods are simply instance methods of the class
metaclass.

class variable True class variables may be implemented in Logtalk by using a metaclass for the class and
defining the class variables in the class. I.e. class variables are simply instance variables of the class
metaclass. Shared instance variables may be implemented by using the built-in database methods
(which can be used to implement variable assignment) to access and updated a single occurrence of
the variable stored in the class (there is no static keyword in Logtalk).

constructor There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides
a built-in predicate, create_object/4, which is often used to define more sophisticated object creation
predicates.

final There is no final keyword in Logtalk. Predicates can always be redeclared and redefined in subclasses
(and instances!).

inner class Inner classes are not supported in Logtalk.

instance In Logtalk, an instance can be either created dynamically at runtime or defined statically in a
source file in the same way as classes.

method Logtalk uses the term predicate interchangeably with the term method.

method call Logtalk usually uses the expression message sending for method calls, true to its Smalltalk
heritage.

method signature Logtalk selects the method/predicate to execute in order to answer a method call based
only on the method name and number of arguments. Logtalk (and Prolog) are not typed languages in
the same sense as Java.

8 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

package There is no concept of packages in Logtalk. All Logtalk entities (objects, protocols, categories)
share a single namespace. But Logtalk does support a concept of library that allows grouping of
entities whose source files share a common prefix.

reflection Logtalk features a white box API supporting structural reflection about entity contents, a black
box API supporting behavioral reflection about object protocols, and an events API for reasoning about
messages exchanged at runtime.

static There is no static keyword in Logtalk. See the entries on class methods and class variables.

super Instead of a super keyword, Logtalk provides a super operator and control construct, ^^/1, for
calling overridden methods.

synchronized Logtalk supports multi-threading programming in selected Prolog compilers, including a syn-
chronized/1 predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates
using per-predicate or per-predicate-set mutexes.

this Logtalk uses the built-in context method self/1 for retrieving the current instance. Logtalk also provides
a this/1 method but for returning the class containing the predicate clause being executed. Why the
name clashes? Well, the notion of self was inherited from Smalltalk, which predates Java.

1.4 Messages

Messages allows us to call object predicates. Logtalk uses the same nomenclature found in other object-
oriented programming languages such as Smalltalk. Therefore, the terms predicate and method are often
used interchangeably when referring to predicates defined inside objects and categories. A message must
always match a predicate within the scope of the sender object.

Note that message sending is only the same as calling an object’s predicate if the object does not inherit
(or import) predicate definitions from other objects (or categories). Otherwise, the predicate definition that
will be executed may depend on the relations between the object and with its imported categories and its
ancestor objects (if any). See the Inheritance section for details.

When a message corresponds to a meta-predicate, the meta-arguments will be called in the context of the
object (or category) sending the message.

1.4.1 Operators used in message sending

Logtalk declares the following operators for the message sending control constructs:

:- op(600, xfy, ::).
:- op(600, fy, ::).
:- op(600, fy, ^^).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded)
until the end of the Prolog session (this is the usual behavior of most Prolog compilers). Note that these
operator definitions are compatible with the predefined operators in the Prolog ISO standard.

1.4. Messages 9

The Logtalk Handbook, Release v3.34.0

1.4.2 Sending a message to an object

Sending a message to an object is accomplished by using the ::/2 control construct:

..., Object::Message, ...

The message must match a public predicate declared for the receiving object. The message may also corre-
spond to a protected or private predicate if the sender matches the predicate scope container. If the predicate
is declared but not defined, the message simply fails (as per the closed-world assumption).

1.4.3 Delegating a message to an object

It is also possible to send a message to an object while preserving the original sender by using the []/1
delegation control construct:

..., [Object::Message],

This control construct can only be used within objects and categories (at the interpreter top-level, the sender
is always the pseudo-object user so using this control construct would be equivalent to use the ::/2 message
sending control construct).

1.4.4 Sending a message to self

While defining a predicate, we sometimes need to send a message to self, i.e., to the same object that has
received the original message. This is done in Logtalk through the ::/1 control construct:

..., ::Message,

The message must match either a public or protected predicate declared for the receiving object or a private
predicate within the scope of the sender otherwise an error will be thrown. If the message is sent from inside
a category or if we are using private inheritance, then the message may also match a private predicate. Again,
if the predicate is declared but not defined, the message simply fails (as per the closed-world assumption).

1.4.5 Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This
can be achieved by using the message sending method described above. However, for convenience, Logtalk
implements an extended syntax for message sending that may improve program readability in some cases.
This extended syntax uses the (,)/2, (;)/2, and (->)/2 control constructs. For example, if we wish to send
several messages to the same object, we can write:

| ?- Object::(Message1, Message2, ...).

This is semantically equivalent to:

| ?- Object::Message1, Object::Message2,

This extended syntax may also be used with the ::/1 message sending control construct.

10 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.4.6 Calling imported and inherited predicates

When redefining a predicate, sometimes we need to call the inherited definition in the new code. This
functionality, introduced by the Smalltalk language through the super primitive, is available in Logtalk using
the ^^/1 control construct:

..., ^^Predicate,

Most of the time we will use this control construct by instantiating the pattern:

Predicate :-
..., % do something
^^Predicate, % call inherited definition
... . % do something more

This control construct is generalized in Logtalk where it may be used to call any imported or inherited
predicate definition. This control construct may be used within objects and categories. When combined with
static binding, this control construct allows imported and inherited predicates to be called with the same
performance of local predicates. As with the message sending control constructs, the ^^/1 call simply fails
when the predicate is declared but not defined (as per the closed-world assumption).

1.4.7 Message sending and event generation

Every message sent using the ::/2 control construct generates two events, one before and one after the
message execution. Messages that are sent using the ::/1 (message to self) control construct or the ^^/1
super mechanism described above do not generate any events. The rationale behind this distinction is that
messages to self and super calls are only used internally in the definition of methods or to execute additional
messages with the same target object (represented by self). In other words, events are only generated when
using an object’s public interface; they cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

Predicate :-
...,
% get self reference
self(Self),
% send a message to self using ::/2
Self::Message,
... .

If we also need the sender of the message to be other than the object containing the predicate definition, we
can write:

Predicate :-
...,
% send a message to self using ::/2
% sender will be the pseudo-object user
self(Self),
{Self::Message},
... .

When events are not used, is possible to turn off event generation globally or on a per entity basis by using
the events compiler flag (see the Event-driven programming section for more details).

1.4. Messages 11

The Logtalk Handbook, Release v3.34.0

1.4.8 Message sending performance

For a detailed discussion on message sending performance, see the Performance section.

1.5 Objects

The main goal of Logtalk objects is the encapsulation and reuse of predicates. Instead of a single database
containing all your code, Logtalk objects provide separated namespaces or databases allowing the partition-
ing of code in more manageable parts. Logtalk is a declarative programming language and does not aim to
bring some sort of new dynamic state change concept to Logic Programming or Prolog.

Logtalk, defines two built-in objects, user and logtalk, which are described at the end of this section.

1.5.1 Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk
uses the term object in a broad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and
instance always designate an object. Different names are used to emphasize the role played by an object in a
particular context. I.e. we use a term other than object when we want to make the relationship with other
objects explicit. For example, an object with an instantiation relation with other object plays the role of an
instance, while the instantiated object plays the role of a class; an object with a specialization relation with
other object plays the role of a subclass, while the specialized object plays the role of a superclass; an object
with an extension relation with other object plays the role of a prototype, the same for the extended object.
A stand-alone object, i.e. an object with no relations with other objects, is always interpreted as a prototype.
In Logtalk, entity relations essentially define patterns of code reuse. An entity is compiled accordingly to the
roles it plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-
based. You may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs,
use parametric objects, and take advantage of protocols and categories (think components).

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they
share common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually
represent concrete objects in the application domain. When linking prototypes using extension relations,
Logtalk uses the term prototype hierarchies although most authors prefer to use the term hierarchy only with
class generalization/specialization relations. In the context of logic programming, prototypes are often the
ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes provide an ideal
structuring solution when you want to express hierarchies of abstractions or work with many similar objects.
Classes are used indirectly through instantiation. Contrary to most object-oriented programming languages,
instances can be created both dynamically at runtime or defined in a source file like other objects.

12 Chapter 1. User Manual

https://logtalk.org/library/user_0.html#user-0
https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

1.5.2 Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the object. By default, all Logtalk source files use
the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source files
(generated by the Logtalk compiler) have, by default, a _lgt suffix and a .pl extension. Again, this can be
set to match the needs of a particular Prolog compiler in the corresponding adapter file. For instance, we
may define an object named vehicle and save it in a vehicle.lgt source file which will be compiled to a
vehicle_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects,
categories, and protocols share the same name space: we cannot have an object with the same name as a
protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: object/1-5
and end_object/0. The most simple object will be one that is self-contained, not depending on any other
Logtalk entity:

:- object(Object).
...

:- end_object.

If an object implements one or more protocols then the opening directive will be:

:- object(Object,
implements([Protocol1, Protocol2, ...])).
...

:- end_object.

An object can import one or more categories:

:- object(Object,
imports([Category1, Category2, ...])).
...

:- end_object.

If an object both implements protocols and imports categories then we will write:

:- object(Object,
implements([Protocol1, Protocol2, ...]),
imports([Category1, Category2, ...])).
...

:- end_object.

In object-oriented programming objects are usually organized in hierarchies that enable interface and code
sharing by inheritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:- object(Prototype,
extends(Parent)).
...

:- end_object.

We can also have class-based hierarchies by defining instantiation and specialization relations between ob-
jects. To define an object as a class instance we will write:

1.5. Objects 13

The Logtalk Handbook, Release v3.34.0

:- object(Object,
instantiates(Class)).
...

:- end_object.

A class may specialize another class, its superclass:

:- object(Class,
specializes(Superclass)).
...

:- end_object.

If we are defining a reflexive system where every class is also an instance, we will probably be using the
following pattern:

:- object(Class,
instantiates(Metaclass),
specializes(Superclass)).
...

:- end_object.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be
prototype-based (defined by extending other objects) or class-based (with instantiation and specialization
relations). An object may also implement one or more protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation, or specialization relations with other
objects) always plays the role of a prototype, that is, a self-describing object. If we want to use classes and
instances, then we will need to specify at least one instantiation or specialization relation. The best way to
do this is to define a set of objects that provide the basis of a reflective system [Cointe87], [Moura94]. For
example:

% default root of the inheritance graph
% predicates common to all objects

:- object(object,
instantiates(class)).
...

:- end_object.

% default metaclass for all classes
% predicates common to all instantiable classes

:- object(class,
instantiates(class),
specializes(abstract_class)).
...

:- end_object.

% default metaclass for all abstract classes
% predicates common to all classes

:- object(abstract_class,
instantiates(class),
specializes(object)).
...

(continues on next page)

14 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

:- end_object.

Note that with these instantiation and specialization relations, object, class, and abstract_class are, at
the same time, classes and instances of some class. In addition, each object inherits its own predicates and
the predicates of the other two objects without any inheritance loop problems.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making
an object an instance of itself, i.e. by making a class its own metaclass. For example:

:- object(class,
instantiates(class)).
...

:- end_object.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange mes-
sages between all objects). We cannot however mix the two types of hierarchies by, e.g., specializing an
object that extends another object in this current Logtalk version.

Logtalk also supports public, protected, and private inheritance. See the inheritance section for details.

1.5.3 Parametric objects

Parametric objects have a compound term as identifier where all the arguments of the compound term are
variables. These variables, the object parameters, can be instantiated when sending or as a consequence of
sending a message to the object, thus acting as object parameters. The object predicates can then be coded
to depend on those parameters, which are logical variables shared by all object predicates. When an object
state is set at object creation and never changed, parameters provide a better solution than using the object’s
database via asserts. Parametric objects can also be used to associate a set of predicates to terms that share
a common functor and arity.

In order to give access to an object parameter, Logtalk provides a parameter/2 built-in local method:

:- object(foo(_Bar, _Baz, ...)).

...
bar(Bar) :-

parameter(1, Bar).

baz :-
parameter(2, Baz),
baz(Baz),
... .

An alternative solution is to use the built-in local method this/1. For example:

:- object(foo(_Bar, _Baz, ...)).

...
baz :-

this(Name(_, Baz, ...)),
baz(Baz),
... .

Both solutions are equally efficient as calls to the methods this/1 and parameter/2 are usually compiled
inline into a clause head unification. The drawback of this second solution is that we must check all calls

1.5. Objects 15

The Logtalk Handbook, Release v3.34.0

of this/1 if we change the object name. Note that we can’t use these method with the message sending
operators (::/2, ::/1, or ^^/1).

A third alternative to access object parameters is to use parameter variables. Although parameter variables
introduce a concept of entity global variables, their unique syntax, _ParameterName_, avoids conflicts and
makes them easily recognizable. For example:

:- object(foo(_Bar_, _Baz_, ...)).

...
bar(_Bar_).

baz :-
baz(_Baz_),
... .

Note that using parameter variables doesn’t change the fact that entity parameters are logical variables.
Parameter variables simplify code maintenance by allowing parameters to be added, reordered, or removed
without having to specify or update parameter indexes.

When storing a parametric object in its own source file, the convention is to name the file after the object,
with the object arity appended. For instance, when defining an object named sort(Type), we may save it in
a sort_1.lgt text file. This way it is easy to avoid file name clashes when saving Logtalk entities that have
the same functor but different arity.

Compound terms with the same functor and with the same number of arguments as a parametric object
identifier may act as proxies to a parametric object. Proxies may be stored on the database as Prolog facts and
be used to represent different instantiations of a parametric object identifier. Logtalk provides a convenient
notation for accessing proxies represented as Prolog facts when sending a message:

..., {Proxy}::Message, ...

In this context, the proxy argument is proved as a plain Prolog goal. If successful, the message is sent to
the corresponding parametric object. Typically, the proof allows retrieving of parameter instantiations. This
construct can either be used with a proxy argument that is sufficiently instantiated in order to unify with a
single Prolog fact or with a proxy argument that unifies with several facts on backtracking.

1.5.4 Finding defined objects

We can find, by backtracking, all defined objects by calling the current_object/1 built-in predicate with a
unbound argument:

| ?- current_object(Object).
Object = logtalk ;
Object = user ;
...

This predicate can also be used to test if an object is defined by calling it with a valid object identifier (an
atom or a compound term).

16 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.5.5 Creating a new object in runtime

An object can be dynamically created at runtime by using the create_object/4 built-in predicate:

| ?- create_object(Object, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new object (a Prolog atom or compound
term, which must not match any existing entity name). The remaining three arguments correspond to the
relations described in the opening object directive and to the object code contents (directives and clauses).

For example, the call:

| ?- create_object(
foo,
[extends(bar)],
[public(foo/1)],
[foo(1), foo(2)]

).

is equivalent to compiling and loading the object:

:- object(foo,
extends(bar)).

:- dynamic.

:- public(foo/1).
foo(1).
foo(2).

:- end_object.

If we need to create a lot of (dynamic) objects at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate to make new objects. This predicate may provide
automatic object name generation, name checking, and accept object initialization options.

1.5.6 Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/1 built-in predicate:

| ?- abolish_object(Object).

The argument must be an identifier of a defined dynamic object, otherwise an error will be thrown.

1.5.7 Object directives

Object directives are used to set initialization goals, define object properties, to document an object depen-
dencies on other Logtalk entities, and to load the contents of files into an object.

1.5. Objects 17

The Logtalk Handbook, Release v3.34.0

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded to memory with the
initialization/1 directive:

:- initialization(Goal).

The argument can be any valid Prolog or Logtalk goal, including a message to other object. For example:

:- object(foo).

:- initialization(init).
:- private(init/0).

init :-
... .

...

:- end_object.

Or:

:- object(assembler).

:- initialization(control::start).
...

:- end_object.

The initialization goal can also be a message to self in order to call an inherited or imported predicate. For
example, assuming that we have a monitor category defining a reset/0 predicate:

:- object(profiler,
imports(monitor)).

:- initialization(::reset).
...

:- end_object.

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes
the object that contains the directive. Also note that by initialization we do not necessarily mean setting an
object dynamic state.

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution
of a program is always dynamic. An object defined in a file can be either dynamic or static. Dynamic objects
are declared by using the dynamic/0 directive in the object source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic objects when these
need to be abolished during program execution. In addition, note that we can declare and define dynamic
predicates within a static object.

18 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Object documentation

An object can be documented with arbitrary user-defined information by using the info/1 directive:

:- info(List).

See the Documenting section for details.

Loading files into an object

The include/1 directive can be used to load the contents of a file into an object. A typical usage scenario is to
load a plain Prolog file into an object thus providing a simple way to encapsulate its contents. For example,
assume a cities.pl file defining facts for a city/4 predicate. We could define a wrapper for this database
by writing:

:- object(cities).

:- public(city/4).

:- include(dbs('cities.pl')).

:- end_object.

The include/1 directive can also be used when creating an object dynamically. For example:

| ?- create_object(cities, [], [public(city/4), include(dbs('cities.pl'))], []).

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive include short-
ening long object names, working consistently with specific parameterizations of parametric objects, and
simplifying experimenting with different object implementations of the same protocol when using explicit
message sending.

1.5.8 Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the possible relation-
ships that an object may have with other entities.

The instantiates_class/2-3 built-in predicates can be used to query all instantiation relations:

| ?- instantiates_class(Instance, Class).

or, if we also want to know the instantiation scope:

| ?- instantiates_class(Instance, Class, Scope).

Specialization relations can be found by using the specializes_class/2-3 built-in predicates:

| ?- specializes_class(Class, Superclass).

or, if we also want to know the specialization scope:

1.5. Objects 19

The Logtalk Handbook, Release v3.34.0

| ?- specializes_class(Class, Superclass, Scope).

For prototypes, we can query extension relations using with the extends_object/2-3 built-in predicates:

| ?- extends_object(Object, Parent).

or, if we also want to know the extension scope:

| ?- extends_object(Object, Parent, Scope).

In order to find which objects import which categories we can use the imports_category/2-3 built-in predi-
cates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

To find which objects implements which protocols we can use the implements_protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

| ?- implements_protocol(Object, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Object, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the current_object/1 built-in predicate to
ensure that the entity returned is an object and not a category.

To find which objects are explicitly complemented by categories we can use the complements_object/2 built-in
predicate:

| ?- complements_object(Category, Object).

Note that more than one category may explicitly complement a single object and a single category can
complement several objects.

1.5.9 Object properties

We can find the properties of defined objects by calling the built-in predicate object_property/2:

| ?- object_property(Object, Property).

The following object properties are supported:

static The object is static

dynamic The object is dynamic (and thus can be abolished in runtime by calling the abolish_object/1 built-in
predicate)

built_in The object is a built-in object (and thus always available)

threaded The object supports/makes multi-threading calls

file(Path) Absolute path of the source file defining the object (if applicable)

20 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

file(Basename, Directory) Basename and directory of the source file defining the object (if applicable)

lines(BeginLine, EndLine) Source file begin and end lines of the object definition (if applicable)

context_switching_calls The object supports context switching calls (i.e. can be used with the <</2
debugging control construct)

dynamic_declarations The object supports dynamic declarations of predicates

events Messages sent from the object generate events

source_data Source data available for the object

complements(Permission) The object supports complementing categories with the specified permission
(allow or restrict)

complements The object supports complementing categories

public(Predicates) List of public predicates declared by the object

protected(Predicates) List of protected predicates declared by the object

private(Predicates) List of private predicates declared by the object

declares(Predicate, Properties) List of properties for a predicate declared by the object

defines(Predicate, Properties) List of properties for a predicate defined by the object

includes(Predicate, Entity, Properties) List of properties for an object multifile predicate
that are defined in the specified entity (the properties include number_of_clauses(Number),
number_of_rules(Number), and line_count(Line) with Line being the begin line of the multifile
predicate clause)

provides(Predicate, Entity, Properties) List of properties for other entity multifile predicate that are
defined in the object (the properties include number_of_clauses(Number), number_of_rules(Number),
and line_count(Line) with Line being the begin line of the multifile predicate clause)

alias(Predicate, Properties) List of properties for a predicate alias declared by the object (the properties
include for(Original), from(Entity), non_terminal(NonTerminal), and line_count(Line) with Line
being the begin line of the alias directive)

calls(Call, Properties) List of properties for predicate calls made by the object (Call is either a predicate
indicator or a control construct such as ::/1-2 or ^^/1 with a predicate indicator as argument; note
that Call may not be ground in case of a call to a control construct where its argument is only know
at runtime; the properties include caller(Caller), alias(Alias), and line_count(Line) with both
Caller and Alias being predicate indicators and Line being the begin line of the predicate clause or
directive making the call)

updates(Predicate, Properties) List of properties for dynamic predicate updates (and also access using
the clause/2 predicate) made by the object (Predicate is either a predicate indicator or a control
construct such as ::/1-2 or :/2 with a predicate indicator as argument; note that Predicate may
not be ground in case of a control construct argument only know at runtime; the properties include
updater(Updater), alias(Alias), and line_count(Line) with Updater being a (possibly multifile)
predicate indicator, Alias being a predicate indicator, and Line being the begin line of the predicate
clause or directive updating the predicate)

number_of_clauses(Number) Total number of predicate clauses defined in the object at compilation time
(includes both user-defined clauses and auxiliary clauses generated by the compiler or by the expansion
hooks but does not include clauses for multifile predicates defined for other entities or clauses for the
object own multifile predicates contributed by other entities)

number_of_rules(Number) Total number of predicate rules defined in the object at compilation time (in-
cludes both user-defined rules and auxiliary rules generated by the compiler or by the expansion hooks

1.5. Objects 21

The Logtalk Handbook, Release v3.34.0

but does not include rules for multifile predicates defined for other entities or rules for the object own
multifile predicates contributed by other entities)

number_of_user_clauses(Number) Total number of user-defined predicate clauses defined in the object at
compilation time (does not include clauses for multifile predicates defined for other entities or clauses
for the object own multifile predicates contributed by other entities)

number_of_user_rules(Number) Total number of user-defined predicate rules defined in the object at com-
pilation time (does not include rules for multifile predicates defined for other entities or rules for the
object own multifile predicates contributed by other entities)

debugging The object is compiled in debug mode

module The object resulted from the compilation of a Prolog module

When a predicate is called from an initialization/1 directive, the argument of the caller/1 property is
:-/1.

Some of the properties such as line numbers are only available when the object is defined in a source file
compiled with the source_data flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.5.10 Built-in objects

Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

The built-in user pseudo-object virtually contains all user predicate definitions not encapsulated in a Logtalk
entity (or a Prolog module for backends supporting a module system). These predicates are assumed to
be implicitly declared public. Messages sent from this pseudo-object, which includes messages sent from
the top-level interpreter, generate events when the default value of the events flag is set to allow. Defining
complementing categories for this pseudo-object is not supported.

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk
(compiler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-object
user virtually contains all user predicate definitions defined in the module where Logtalk was loaded.

The built-in object logtalk

The built-in logtalk object provides message printing predicates, question asking predicates, debug and trace
event predicates, predicates for accessing the internal database of loaded files and their properties, and also a
set of low-level utility predicates normally used when defining hook objects. Consult its API documentation
for details.

22 Chapter 1. User Manual

https://logtalk.org/library/user_0.html#user-0
https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

1.6 Protocols

Protocols enable the separation between interface and implementation: several objects can implement the
same protocol and an object can implement several protocols. Protocols may contain only predicate dec-
larations. In some languages the term interface is used with similar meaning. Logtalk allows predicate
declarations of any scope within protocols, contrary to some languages that only allow public declarations.

Logtalk defines three built-in protocols, monitoring, expanding, and forwarding, which are described at the
end of this section.

1.6.1 Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the protocol. By default, all Logtalk source files
use the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source
files (generated by the Logtalk compiler) have, by default, a _lgt suffix and a .pl extension. Again, this can
be set to match the needs of a particular Prolog compiler in the corresponding adapter file. For example,
we may define a protocol named listp and save it in a listp.lgt source file that will be compiled to a
listp_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate Prolog files
may include a directory hash).

Protocol names must be atoms. Objects, categories and protocols share the same namespace: we cannot
have a protocol with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives: protocol/1-2 and
end_protocol/0. The most simple protocol will be one that is self-contained, not depending on any other
Logtalk entity:

:- protocol(Protocol).
...

:- end_protocol.

If a protocol extends one or more protocols, then the opening directive will be:

:- protocol(Protocol,
extends([Protocol1, Protocol2, ...])).
...

:- end_protocol.

In order to maximize protocol reuse, all predicates specified in a protocol should relate to the same function-
ality. Therefore, the only recommended use of protocol extension is when you need both a minimal protocol
and an extended version of the same protocol with additional, convenient predicates.

1.6.2 Finding defined protocols

We can find, by backtracking, all defined protocols by using the current_protocol/1 built-in predicate with a
unbound argument:

| ?- current_protocol(Protocol).

This predicate can also be used to test if a protocol is defined by calling it with a valid protocol identifier (an
atom).

1.6. Protocols 23

https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/expanding_0.html#expanding-0
https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.34.0

1.6.3 Creating a new protocol in runtime

We can create a new (dynamic) protocol at runtime by calling the Logtalk built-in predicate cre-
ate_protocol/3:

| ?- create_protocol(Protocol, Relations, Directives).

The first argument should be either a variable or the name of the new protocol (a Prolog atom, which must
not match an existing entity name). The remaining two arguments correspond to the relations described in
the opening protocol directive and to the protocol directives.

For instance, the call:

| ?- create_protocol(ppp, [extends(qqq)], [public([foo/1, bar/1])]).

is equivalent to compiling and loading the protocol:

:- protocol(ppp,
extends(qqq)).

:- dynamic.

:- public([foo/1, bar/1]).

:- end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.6.4 Abolishing an existing protocol

Dynamic protocols can be abolished using the abolish_protocol/1 built-in predicate:

| ?- abolish_protocol(Protocol).

The argument must be an identifier of a defined dynamic protocol, otherwise an error will be thrown.

1.6.5 Protocol directives

Protocol directives are used to define protocol properties and documentation.

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during
the execution of a program is always dynamic. A protocol defined in a file can be either dynamic or static.
Dynamic protocols are declared by using the dynamic/0 directive in the protocol source code:

:- dynamic.

The directive must precede any predicate directives. Please be aware that using dynamic code results in a
performance hit when compared to static code. We should only use dynamic protocols when these need to
be abolished during program execution.

24 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using the info/1 directive:

:- info(List).

See the Documenting section for details.

Loading files into a protocol

The include/1 directive can be used to load the contents of a file into a protocol. See the Objects section for
an example of using this directive.

1.6.6 Protocol relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a protocol have with other entities.

The extends_protocol/2-3 built-in predicates return all pairs of protocols so that the first one extends the
second:

| ?- extends_protocol(Protocol1, Protocol2).

or, if we also want to know the extension scope:

| ?- extends_protocol(Protocol1, Protocol2, Scope).

To find which objects or categories implement which protocols we can call the implements_protocol/2-3
built-in predicates:

| ?- implements_protocol(ObjectOrCategory, Protocol).

or, if we also want to know the implementation scope:

| ?- implements_protocol(ObjectOrCategory, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/1
or current_category/1 built-in predicates to identify the kind of entity returned.

1.6.7 Protocol properties

We can find the properties of defined protocols by calling the protocol_property/2 built-in predicate:

| ?- protocol_property(Protocol, Property).

A protocol may have the property static, dynamic, or built_in. Dynamic protocols can be abolished in
runtime by calling the abolish_protocol/1 built-in predicate. Depending on the backend Prolog compiler, a
protocol may have additional properties related to the source file where it is defined.

The following protocol properties are supported:

static The protocol is static

dynamic The protocol is dynamic (and thus can be abolished in runtime by calling the abolish_category/1
built-in predicate)

1.6. Protocols 25

The Logtalk Handbook, Release v3.34.0

built_in The protocol is a built-in protocol (and thus always available)

source_data Source data available for the protocol

file(Path) Absolute path of the source file defining the protocol (if applicable)

file(Basename, Directory) Basename and directory of the source file defining the protocol (if applicable)

lines(BeginLine, EndLine) Source file begin and end lines of the protocol definition (if applicable)

public(Predicates) List of public predicates declared by the protocol

protected(Predicates) List of protected predicates declared by the protocol

private(Predicates) List of private predicates declared by the protocol

declares(Predicate, Properties) List of properties for a predicate declared by the protocol

alias(Predicate, Properties) List of properties for a predicate alias declared by the protocol (the proper-
ties include for(Original), from(Entity), non_terminal(NonTerminal), and line_count(Line) with
Line being the begin line of the alias directive)

Some of the properties such as line numbers are only available when the protocol is defined in a source file
compiled with the source_data flag turned on.

1.6.8 Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:- object(Object,
implements(Protocol)).
...

:- end_object.

or, in the case of a category:

:- category(Object,
implements(Protocol)).
...

:- end_category.

To make all public predicates declared via an implemented protocol protected or to make all public and
protected predicates private we prefix the protocol’s name with the corresponding keyword. For instance:

:- object(Object,
implements(private::Protocol)).
...

:- end_object.

or:

:- object(Object,
implements(protected::Protocol)).
...

:- end_object.

Omitting the scope keyword is equivalent to writing:

26 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

:- object(Object,
implements(public::Protocol)).
...

:- end_object.

The same rules applies to protocols implemented by categories.

1.6.9 Built-in protocols

Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

The built-in expanding protocol declares the term_expansion/2 and goal_expansion/2 predicates. See the
description of the hook compiler flag for more details.

The built-in protocol monitoring

The built-in monitoring protocol declares the before/3 and after/3 public event handler predicates. See the
Event-driven programming section for more details.

The built-in protocol forwarding

The built-in forwarding protocol declares the forward/1 user-defined message forwarding handler, which is
automatically called (if defined) by the runtime for any message that the receiving object does not under-
stand. See also the []/1 control construct.

1.7 Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories
provide a way to encapsulate a set of related predicate declarations and definitions that do not represent a
complete object and that only make sense when composed with other predicates. Categories may also be
used to break a complex object in functional units. A category can be imported by several objects (without
code duplication), including objects participating in prototype or class-based hierarchies. This concept of cat-
egories shares some ideas with Smalltalk-80 functional categories [Goldberg83], Flavors mix-ins [Moon86]
(without necessarily implying multi-inheritance), and Objective-C categories [Cox86]. Categories may also
complement existing objects, thus providing a hot patching mechanism inspired by the Objective-C categories
functionality.

Logtalk defines a built-in category, core_messages, which is described at the end of this section.

1.7. Categories 27

https://logtalk.org/library/expanding_0.html#expanding-0
https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/forwarding_0.html#forwarding-0
https://logtalk.org/library/core_messages_0.html#core-messages-0

The Logtalk Handbook, Release v3.34.0

1.7.1 Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source
files may contain one or more objects, categories, or protocols. If you prefer to define each entity in its own
source file, it is recommended that the file be named after the category. By default, all Logtalk source files
use the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source
files (generated by the Logtalk compiler) have, by default, a _lgt suffix and a .pl extension. Again, this can
be set to match the needs of a particular Prolog compiler in the corresponding adapter file. For example, we
may define a category named documenting and save it in a documenting.lgt source file that will be compiled
to a documenting_lgt.pl Prolog file (depending on the backend compiler, the names of the intermediate
Prolog files may include a directory hash).

Category names can be atoms or compound terms (when defining parametric categories). Objects, cate-
gories, and protocols share the same name space: we cannot have a category with the same name as an
object or a protocol.

Category code (directives and predicates) is textually encapsulated by using two Logtalk directives:
category/1-4 and end_category/0. The most simple category will be one that is self-contained, not depending
on any other Logtalk entity:

:- category(Category).
...

:- end_category.

If a category implements one or more protocols then the opening directive will be:

:- category(Category,
implements([Protocol1, Protocol2, ...])).
...

:- end_category.

A category may be defined as a composition of other categories by writing:

:- category(Category,
extends([Category1, Category2, ...])).
...

:- end_category.

This feature should only be used when extending a category without breaking its functional cohesion (for
example, when a modified version of a category is needed for importing on several unrelated objects).
The preferred way of composing several categories is by importing them into an object. When a category
overrides a predicate defined in an extended category, the overridden definition can still be called by using
the ^^/1 control construct.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates.
This restriction applies because a category can be imported by several objects and because we cannot use
the database handling built-in methods with categories (messages can only be sent to objects). However,
categories may contain declarations for dynamic predicates and they can contain predicates which handle
dynamic predicates. For example:

:- category(attributes).

:- public(attribute/2).
:- public(set_attribute/2).
:- public(del_attribute/2).

:- private(attribute_/2).

(continues on next page)

28 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

:- dynamic(attribute_/2).

attribute(Attribute, Value) :-
% called in the context of "self"
::attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "self"
::retractall(attribute_(Attribute, _)),
% assert new clause in "self"
::assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-
% retract clause in "self"
::retract(attribute_(Attribute, Value)).

:- end_category.

Each object importing this category will have its own attribute_/2 private, dynamic predicate. The predi-
cates attribute/2, set_attribute/2, and del_attribute/2 always access and modify the dynamic predicate
contained in the object receiving the corresponding messages (i.e. self). But it’s also possible to define pred-
icates that handle dynamic predicates in the context of this instead of self. For example:

:- category(attributes).

:- public(attribute/2).
:- public(set_attribute/2).
:- public(del_attribute/2).

:- private(attribute_/2).
:- dynamic(attribute_/2).

attribute(Attribute, Value) :-
% call in the context of "this"
attribute_(Attribute, Value).

set_attribute(Attribute, Value) :-
% retract old clauses in "this"
retractall(attribute_(Attribute, _)),
% asserts clause in "this"
assertz(attribute_(Attribute, Value)).

del_attribute(Attribute, Value) :-
% retract clause in "this"
retract(attribute_(Attribute, Value)).

:- end_category.

When defining a category that declares and handles dynamic predicates, working in the context of this ties
those dynamic predicates to the object importing the category while working in the context of self allows
each object inheriting from the object that imports the category to have its own set of clauses for those
dynamic predicates.

1.7. Categories 29

The Logtalk Handbook, Release v3.34.0

1.7.2 Hot patching

A category may also explicitly complement one or more existing objects, thus providing hot patching func-
tionality inspired by Objective-C categories:

:- category(Category,
complements([Object1, Object2,])).
...

:- end_category.

This allows us to add missing directives (e.g. to define aliases for complemented object predicates), re-
place broken predicate definitions, add new predicates, and add protocols and categories to existing objects
without requiring access or modifications to their source code. Common scenarios are adding logging or
debugging predicates to a set of objects. Complemented objects need to be compiled with the complements
compiler flag set allow (to allow both patching and adding functionality) or restrict (to allow only adding
new functionality). A complementing category takes preference over a previously loaded complementing
category for the same object thus allowing patching a previous patch if necessary.

Note that super calls from predicates defined in complementing categories lookup inherited definitions as
if the calls were made from the complemented object instead of the category ancestors. This allows more
comprehensive object patching. But it also means that, if you want to patch an object so that it imports a
category that extends another category and uses super calls to access the extended category predicates, you
will need to define a (possibly empty) complementing category that extends the category that you want to
add.

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category
is that it disables the use of static binding optimizations for messages sent to the complemented object as it
can always be later patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local
callers of the replaced predicate will still call the non-patched version of the predicate. This is a conse-
quence of the lack of a portable solution at the backend Prolog compiler level for destructively replacing static
predicates.

1.7.3 Finding defined categories

We can find, by backtracking, all defined categories by using the current_category/1 built-in predicate with a
unbound argument:

| ?- current_category(Category).

This predicate can also be used to test if a category is defined by calling it with a valid category identifier
(an atom or a compound term).

1.7.4 Creating a new category in runtime

A category can be dynamically created at runtime by using the create_category/4 built-in predicate:

| ?- create_category(Category, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new category (a Prolog atom, which
must not match with an existing entity name). The remaining three arguments correspond to the relations
described in the opening category directive and to the category code contents (directives and clauses).

For example, the call:

30 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

| ?- create_category(
ccc,
[implements(ppp)],
[private(bar/1)],
[(foo(X):-bar(X)), bar(1), bar(2)]

).

is equivalent to compiling and loading the category:

:- category(ccc,
implements(ppp)).

:- dynamic.

:- private(bar/1).

foo(X) :-
bar(X).

bar(1).
bar(2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then is best to define a metaclass or a prototype
with a predicate that will call this built-in predicate in order to provide more sophisticated behavior.

1.7.5 Abolishing an existing category

Dynamic categories can be abolished using the abolish_category/1 built-in predicate:

| ?- abolish_category(Category).

The argument must be an identifier of a defined dynamic category, otherwise an error will be thrown.

1.7.6 Category directives

Category directives are used to define category properties, to document a category dependencies on other
Logtalk entities, and to load the contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or dynamic. A category created during
the execution of a program is always dynamic. A category defined in a file can be either dynamic or static.
Dynamic categories are declared by using the dynamic/0 directive in the category source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code
results in a performance hit when compared to static code. We should only use dynamic categories when
these need to be abolished during program execution.

1.7. Categories 31

The Logtalk Handbook, Release v3.34.0

Category documentation

A category can be documented with arbitrary user-defined information by using the info/1 directive:

:- info(List).

See the Documenting section for details.

Loading files into a category

The include/1 directive can be used to load the contents of a file into a category. See the Objects section for
an example of using this directive.

Declaring object aliases

The uses/1 directive can be used to declare object aliases. The typical uses of this directive is to shorten
long object names and to simplify experimenting with different object implementations of the same protocol
when using explicit message sending.

1.7.7 Category relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible rela-
tionships that a category can have with other entities.

The built-in predicates implements_protocol/2-3 and conforms_to_protocol/2-3 allows us to find which cate-
gories implements which protocols:

| ?- implements_protocol(Category, Protocol, Scope).

or, if we also want to consider inherited protocols:

| ?- conforms_to_protocol(Category, Protocol, Scope).

Note that, if we use a unbound first argument, we will need to use the current_category/1 built-in predicate
to ensure that the returned entity is a category and not an object.

To find which objects import which categories we can use the imports_category/2-3 built-in predicates:

| ?- imports_category(Object, Category).

or, if we also want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

Note that a category may be imported by several objects.

To find which categories extend other categories we can use the extends_category/2-3 built-in predicates:

| ?- extends_category(Category1, Category2).

or, if we also want to know the extension scope:

| ?- extends_category(Category1, Category2, Scope).

32 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can use the complements_object/2 built-in
predicate:

| ?- complements_object(Category, Object).

Note that a category may explicitly complement several objects.

1.7.8 Category properties

We can find the properties of defined categories by calling the built-in predicate category_property/2:

| ?- category_property(Category, Property).

The following category properties are supported:

static The category is static

dynamic The category is dynamic (and thus can be abolished in runtime by calling the abolish_category/1
built-in predicate)

built_in The category is a built-in category (and thus always available)

file(Path) Absolute path of the source file defining the category (if applicable)

file(Basename, Directory) Basename and directory of the source file defining the category (if applicable)

lines(BeginLine, EndLine) Source file begin and end lines of the category definition (if applicable)

events Messages sent from the category generate events

source_data Source data available for the category

public(Predicates) List of public predicates declared by the category

protected(Predicates) List of protected predicates declared by the category

private(Predicates) List of private predicates declared by the category

declares(Predicate, Properties) List of properties for a predicate declared by the category

defines(Predicate, Properties) List of properties for a predicate defined by the category

includes(Predicate, Entity, Properties) List of properties for an object multifile predicate
that are defined in the specified entity (the properties include number_of_clauses(Number),
number_of_rules(Number), and line_count(Line) with Line being the begin line of the multifile
predicate clause)

provides(Predicate, Entity, Properties) List of properties for other entity multifile predicate that are de-
fined in the category (the properties include number_of_clauses(Number), number_of_rules(Number),
and line_count(Line) with Line being the begin line of the multifile predicate clause)

alias(Predicate, Properties) List of properties for a predicate alias declared by the category (the proper-
ties include for(Original), from(Entity), non_terminal(NonTerminal), and line_count(Line) with
Line being the begin line of the alias directive)

calls(Call, Properties) List of properties for predicate calls made by the category (Call is either a pred-
icate indicator or a control construct such as ::/1-2 or ^^/1 with a predicate indicator as argument;
note that Call may not be ground in case of a call to a control construct where its argument is only
know at runtime; the properties include caller(Caller), alias(Alias), and line_count(Line) with
both Caller and Alias being predicate indicators and Line being the begin line of the predicate clause
or directive making the call)

1.7. Categories 33

The Logtalk Handbook, Release v3.34.0

updates(Predicate, Properties) List of properties for dynamic predicate updates (and also access using
the clause/2 predicate) made by the object (Predicate is either a predicate indicator or a control
construct such as ::/1-2 or :/2 with a predicate indicator as argument; note that Predicate may
not be ground in case of a control construct argument only know at runtime; the properties include
updater(Updater), alias(Alias), and line_count(Line) with Updater being a (possibly multifile)
predicate indicator, Alias being a predicate indicator, and Line being the begin line of the predicate
clause or directive updating the predicate)

number_of_clauses(Number) Total number of predicate clauses defined in the category (includes both user-
defined clauses and auxiliary clauses generated by the compiler or by the expansion hooks but does
not include clauses for multifile predicates defined for other entities or clauses for the category own
multifile predicates contributed by other entities)

number_of_rules(Number) Total number of predicate rules defined in the category (includes both user-
defined rules and auxiliary rules generated by the compiler or by the expansion hooks but does not
include rules for multifile predicates defined for other entities or rules for the category own multifile
predicates contributed by other entities)

number_of_user_clauses(Number) Total number of user-defined predicate clauses defined in the category
(does not include clauses for multifile predicates defined for other entities or clauses for the category
own multifile predicates contributed by other entities)

number_of_user_rules(Number) Total number of user-defined predicate rules defined in the category (does
not include rules for multifile predicates defined for other entities or rules for the category own multifile
predicates contributed by other entities)

Some properties such as line numbers are only available when the category is defined in a source file com-
piled with the source_data flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the ob-
ject for both multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile
predicates contributed by other entities.

1.7.9 Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories.
The syntax is very simple:

:- object(Object,
imports([Category1, Category2, ...])).
...

:- end_object.

To make all public predicates imported via a category protected or to make all public and protected predicates
private we prefix the category’s name with the corresponding keyword:

:- object(Object,
imports(private::Category)).
...

:- end_object.

or:

:- object(Object,
imports(protected::Category)).
...

:- end_object.

34 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Omitting the scope keyword is equivalent to writing:

:- object(Object,
imports(public::Category)).
...

:- end_object.

1.7.10 Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call.
Consider the following category:

:- category(output).

:- public(out/1).

out(X) :-
write(X), nl.

:- end_category.

The predicate out/1 can be called from within an object importing the category by simply sending a message
to self. For example:

:- object(worker,
imports(output)).

...
do(Task) :-

execute(Task, Result),
::out(Result).

...

:- end_object.

This is the recommended way of calling a category predicate that can be specialized/overridden in a descen-
dant object as the predicate definition lookup will start from self.

A direct call the predicate definition found in an imported category can be made using the ^^/1 control
construct. For example:

:- object(worker,
imports(output)).

...
do(Task) :-

execute(Task, Result),
^^out(Result).

...

:- end_object.

This alternative should only be used when the user knows a priori that the category predicates will not
be specialized or redefined by descendant objects of the object importing the category. Its advantage is
that, when the optimize flag is turned on, the Logtalk compiler will try to optimize the calls by using static
binding. When dynamic binding is used due to e.g. the lack of sufficient information at compilation time, the

1.7. Categories 35

The Logtalk Handbook, Release v3.34.0

performance is similar to calling the category predicate using a message to self (in both cases a predicate
lookup caching mechanism is used).

1.7.11 Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term
as the category identifier where all the arguments of the compound term are variables. These variables,
the category parameters, can be accessed by calling the parameter/2 or this/1 built-in local methods in the
category predicate clauses or by using parameter variables. Category parameter values can be defined by the
importing objects. For example:

:- object(speech(Season, Event),
imports([dress(Season), speech(Event)])).
...

:- end_object.

Note that access to category parameters is only possible from within the category. In particular, calls to the
this/1 built-in local method from category predicates always access the importing object identifier (and thus
object parameters, not category parameters).

1.7.12 Built-in categories

Logtalk defines a built-in category that is always available for any application.

The built-in category core_messages

The built-in core_messages category provides default translations for all compiler and runtime printed mes-
sages such as warnings and errors. It does not define any public predicates.

1.8 Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain
predicate directives. From the point-of-view of a traditional imperative object-oriented language, predicates
allows both object state and object behavior to be represented. Mutable object state can be represented using
dynamic object predicates but should only be used when strictly necessary as it breaks declarative semantics.

1.8.1 Reserved predicate names

For practical and performance reasons, some predicate names have a fixed interpretation. These predicates
are declared in the built-protocols. They are: goal_expansion/2 and term_expansion/2, declared in the ex-
panding protocol; before/3 and after/3, declared in the monitoring protocol; and forward/1, declared in the
forwarding protocol. By default, the compiler prints a warning when a definition for one of these predicates
is found but the reference to the corresponding built-in protocol is missing.

36 Chapter 1. User Manual

https://logtalk.org/library/core_messages_0.html#core-messages-0
https://logtalk.org/library/expanding_0.html#expanding-0
https://logtalk.org/library/expanding_0.html#expanding-0
https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.34.0

1.8.2 Declaring predicates

Logtalk provides a clear distinction between declaring a predicate and defining a predicate and thus clear
closed-world assumption semantics. Messages or calls for declared but undefined predicates fail. Messages or
calls for unknown (i.e. non declared) predicates throw an error. Note that this is a fundamental requirement
for supporting protocols: we must be able to declare a predicate without necessarily defining it.

All object (or category) predicates that we want to access from other objects (or categories) must be explicitly
declared. A predicate declaration must contain, at least, a scope directive. Other directives may be used to
document the predicate or to ensure proper compilation of the predicate clauses.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can
be public, protected, private, or local. Public predicates can be called from any object. Protected predicates
can only be called from the container object or from a container descendant. Private predicates can only
be called from the container object. Predicates are local when they are not declared in a scope directive.
Local predicates, like private predicates, can only be called from the container object (or category) but
they are invisible to the reflection built-in methods (current_predicate/1 and predicate_property/2) and to the
message error handling mechanisms (i.e. sending a message corresponding to a local predicate results in a
predicate_declaration existence error instead of a scope error).

The scope declarations are made using the directives public/1, protected/1, and private/1. For example:

:- public(init/1).

:- protected(valid_init_option/1).

:- private(process_init_options/1).

If a predicate does not have a (local or inherited) scope declaration, it is assumed that the predicate is
local. Note that we do not need to write scope declarations for all defined predicates. One exception is
local dynamic predicates: declaring them as private predicates may allow the Logtalk compiler to generate
optimized code for asserting and retracting clauses.

Note that a predicate scope directive doesn’t specify where a predicate is, or can be, defined. For example,
a private predicate can only be called from an object holding its scope directive. But it can be defined in
descendant objects. A typical example is an object playing the role of a class defining a private (possibly
dynamic) predicate for its descendant instances. Only the class can call (and possibly assert/retract clauses
for) the predicate but its clauses can be found/defined in the instances themselves.

Scope directives may also be used to declare grammar rule non-terminals and operators. For example:

:- public(url//1).

:- public(op(800, fx, tag)).

1.8. Predicates 37

The Logtalk Handbook, Release v3.34.0

Mode directive

Often predicates can only be called using specific argument patterns. The valid arguments and instantiation
modes of those arguments can be documented by using the mode/2 directive. For example:

:- mode(member(?term, ?list), zero_or_more).

The first directive argument describes a valid calling mode. The minimum information will be the instanti-
ation mode of each argument. The first four possible values are described in [ISO95]). The remaining two
can also be found in use in some Prolog systems.

+ Argument must be instantiated (but not necessarily ground).

- Argument should be a free (non-instantiated) variable (when bound, the call will unify the returned term
with the given term).

? Argument can either be instantiated or free.

@ Argument will not be further instantiated (modified).

++ Argument must be ground.

-- Argument must be unbound. Used mainly when returning an opaque term.

These six mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to
include type information for each argument like in the example above. Some possible type values are: event,
object, category, protocol, callable, term, nonvar, var, atomic, atom, number, integer, float, compound,
and list. The first four are Logtalk specific. The remaining are common Prolog types. We can also use our
own types that can be either atoms or ground compound terms.

The second directive argument documents the number of proofs, but not necessarily distinct solutions, for
the specified mode. As an example, the member(X, [1,1,1,1]) goal have only one distinct solution but four
proofs for that solution. Note that different modes for the same predicate often have different determinism.
The possible values are:

zero Predicate always fails.

one Predicate always succeeds once.

zero_or_one Predicate either fails or succeeds.

zero_or_more Predicate has zero or more proofs.

one_or_more Predicate has one or more proofs.

one_or_error Predicate either succeeds once or throws an error (see below).

error Predicate will throw an error.

Mode declarations can also be used to document that some call modes will throw an error. For instance,
regarding the arg/3 and open/3 ISO Prolog built-in predicates, we may write:

:- mode(arg(-, -, +), error).
:- mode(open(@, @, --), one_or_error).

Note that most predicates have more than one valid mode implying several mode directives. For example,
to document the possible use modes of the atom_concat/3 ISO built-in predicate we would write:

:- mode(atom_concat(?atom, ?atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, -atom), zero_or_one).

Some old Prolog compilers supported some sort of mode directives to improve performance. To the best of
my knowledge, there is no modern Prolog compiler supporting this kind of directive for that purpose. The

38 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

current Logtalk version simply parses this directive for collecting its information for use in the reflection API
(assuming the source_data flag is turned on). In any case, the use of mode directives is a good starting point
for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals or interpreted as closures that will be used
for constructing goals. To ensure that these goals will be executed in the correct context (i.e. in the calling
context, not in the meta-predicate definition context) we need to use the meta_predicate/1 directive. For
example:

:- meta_predicate(findall(*, 0, *)).
:- meta_predicate(map(2, *, *)).

The meta-predicate mode arguments in this directive have the following meaning:

0 Meta-argument that will be called as a goal.

N Meta-argument that will be a closure used to construct a call by extending it with N arguments. The value
of N must be a positive integer.

:: Argument that is context-aware but that will not be used as a goal or a closure.

^ Goal that may be existentially quantified (Vars^Goal).

* Normal argument.

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to
deal with proprietary built-in meta-predicates and meta-directives:

/ Predicate indicator (Name/Arity), list of predicate indicators, or conjunction of predicate indicators.

// Non-terminal indicator (Name//Arity), list of predicate indicators, or conjunction of predicate indicators.

[0] List of goals.

[N] List of closures.

[/] List of predicate indicators.

[//] List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures has first introduced on
Quintus Prolog for providing information for predicate cross-reference tools.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described meta-predicate, even if the meta-predicate declaration is inherited
from another entity, to ensure proper compilation of meta-arguments.

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the
predicate discontiguous by using the discontiguous/1 directive:

:- discontiguous(foo/1).

This is a directive that we should avoid using: it makes your code harder to read and it is not supported by
some Prolog compilers.

1.8. Predicates 39

The Logtalk Handbook, Release v3.34.0

As each Logtalk entity is compiled independently of other entities, this directive must be included in every
object or category that contains a definition for the described predicate (even if the predicate declaration is
inherited from other entity).

Dynamic directive

An object predicate can be static or dynamic. By default, all object predicates are static. To declare a dynamic
predicate we use the dynamic/1 directive:

:- dynamic(foo/1).

This directive may also be used to declare dynamic grammar rule non-terminals. As each Logtalk entity is
compiled independently from other entities, this directive must be included in every object that contains
a definition for the described predicate (even if the predicate declaration is inherited from other object
or imported from a category). If we omit the dynamic declaration then the predicate definition will be
compiled static. In the case of dynamic objects, static predicates cannot be redefined using the database
built-in methods (despite being internally compiled to dynamic code).

Dynamic predicates can be used to represent persistent mutable object state. Note that static objects may
declare and define dynamic predicates.

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/3 directive:

:- op(Priority, Specifier, Operator).

Operators are local to the object (or category) where they are declared. This means that, if you declare a
public predicate as an operator, you cannot use operator notation when sending to an object (where the
predicate is visible) the respective message (as this would imply visibility of the operator declaration in the
context of the sender of the message). If you want to declare global operators and, at the same time, use
them inside an entity, just write the corresponding directives at the top of your source file, before the entity
opening directive.

Note that operators can also be declared using a scope directive. Only these operators are visible to the
current_op/3 reflection method.

When the same operators are used on several entities within the same source file, the corresponding direc-
tives must either be repeated in each entity or appear before any entity that uses them. But in the later case,
this results in a global scope for the operators. If you prefer the operators to be local to the source file, just
undefine them at the end of the file. For example:

% before any entity that uses the operator
:- op(400, xfx, results).

...

% after all entities that used the operator
:- op(0, xfx, results).

40 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose
due to all the necessary message sending goals. Consider the following example:

foo :-
...,
findall(X, list::member(X, L), A),
list::append(A, B, C),
list::select(Y, C, R),
...

Logtalk provides a directive, uses/2, which allows us to simplify the code above. The usage template for this
directive is:

:- uses(Object, [
Name1/Arity1, Name2/Arity2, ...

]).

Rewriting the code above using this directive results in a simplified and more readable predicate definition:

:- uses(list, [
append/3, member/2, select/3

]).

foo :-
...,
findall(X, member(X, L), A),
append(A, B, C),
select(Y, C, R),
...

Logtalk also supports an extended version of this directive that allows the declaration of predicate aliases
using the notation Predicate as Alias (or the alternative notation Predicate::Alias). For example:

:- uses(btrees, [new/1 as new_btree/1]).
:- uses(queues, [new/1 as new_queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/2 direc-
tives or just for giving new names to the predicates that will be more meaningful on their using context.

The uses/2 directive allows simpler predicate definitions as long as there are no conflicts between the predi-
cates declared in the directive and the predicates defined in the object (or category) containing the directive.
A predicate (or its alias if defined) cannot be listed in more than one uses/2 directive. In addition, a uses/2
directive cannot list a predicate (or its alias if defined) which is defined in the object (or category) containing
the directive. Any conflicts are reported by Logtalk as compilation errors.

The object identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the messages are sent.
This feature simplifies experimenting with multiple implementations of the same protocol (for example, to
evaluate the performance of each implementation for a particular case). It also simplifies writing tests that
check multiple implementations of the same protocol.

1.8. Predicates 41

The Logtalk Handbook, Release v3.34.0

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inher-
ited or imported grammar rule non-terminal) through the use of the alias/2 directive:

:- alias(Entity, [
Predicate1 as Alias1,
Predicate2 as Alias2,
...

]).

This directive can be used in objects, protocols, or categories. The first argument, Entity, must be an entity
referenced in the opening directive of the entity containing the alias/2 directive. It can be an extended or
implemented protocol, an imported category, an extended prototype, an instantiated class, or a specialized
class. The second argument is a list of pairs of predicate indicators (or grammar rule non-terminal indicators)
using the as infix operator as connector.

A common use for the alias/2 directive is to give an alternative name to an inherited predicate in order to
improve readability. For example:

:- object(square,
extends(rectangle)).

:- alias(rectangle, [width/1 as side/1]).

...

:- end_object.

The directive allows both width/1 and side/1 to be used as messages to the object square. Thus, using this
directive, there is no need to explicitly declare and define a “new” side/1 predicate. Note that the alias/2
directive does not rename a predicate, only provides an alternative, additional name; the original name
continues to be available (although it may be masked due to the default inheritance conflict mechanism).

Another common use for this directive is to solve conflicts when two inherited predicates have the same
functor and arity. We may want to call the predicate which is masked out by the Logtalk lookup algorithm
(see the Inheritance section) or we may need to call both predicates. This is simply accomplished by using the
alias/2 directive to give alternative names to masked out or conflicting predicates. Consider the following
example:

:- object(my_data_structure,
extends(list, set)).

:- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

...

:- end_object.

Assuming that both list and set objects define a member/2 predicate, without the alias/2 directives, only
the definition of member/2 predicate in the object list would be visible on the object my_data_structure, as
a result of the application of the Logtalk predicate lookup algorithm. By using the alias/2 directives, all the
following messages would be valid (assuming a public scope for the predicates):

% uses list member/2
| ?- my_data_structure::list_member(X, L).

(continues on next page)

42 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

% uses set member/2
| ?- my_data_structure::set_member(X, L).

% uses list member/2
| ?- my_data_structure::member(X, L).

When used this way, the alias/2 directive provides functionality similar to programming constructs of other
object-oriented languages that support multi-inheritance (the most notable example probably being the re-
naming of inherited features in Eiffel).

Note that the alias/2 directive never hides a predicate which is visible on the entity containing the directive
as a result of the Logtalk lookup algorithm. However, it may be used to make visible a predicate which
otherwise would be masked by another predicate, as illustrated in the above example.

The alias/2 directive may also be used to give access to an inherited predicate, which otherwise would be
masked by another inherited predicate, while keeping the original name as follows:

:- object(my_data_structure,
extends(list, set)).

:- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

member(X, L) :-
::set_member(X, L).

...

:- end_object.

Thus, when sending the message member/2 to my_data_structure, the predicate definition in set will be
used instead of the one contained in list.

Documenting directive

A predicate can be documented with arbitrary user-defined information by using the info/2 directive:

:- info(Name/Arity, List).

The second argument is a list of Key is Value terms. See the Documenting section for details.

Multifile directive

A predicate can be declared multifile by using the multifile/1 directive:

:- multifile(Name/Arity).

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that
should be used with care. It’s commonly used in the definition of hook predicates. Multifile predicates (and
non-terminals) may also be declared dynamic using the same predicate (or non-terminal) notation (multifile
predicates are static by default).

Logtalk precludes using a multifile predicate for breaking object encapsulation by checking that the object
(or category) declaring the predicate (using a scope directive) defines it also as multifile. This entity is said

1.8. Predicates 43

The Logtalk Handbook, Release v3.34.0

to contain the primary declaration for the multifile predicate. Entities containing primary multifile predicate
declarations must always be compiled before entities defining clauses for those multifile predicates. The
Logtalk compiler will print a warning if the scope directive is missing. Note also that the multifile/1
directive is mandatory when defining multifile predicates.

Consider the following simple example:

:- object(main).

:- public(a/1).
:- multifile(a/1).
a(1).

:- end_object.

After compiling and loading the main object, we can define other objects (or categories) that contribute with
clauses for the multifile predicate. For example:

:- object(other).

:- multifile(main::a/1).
main::a(2).
main::a(X) :-

b(X).

b(3).
b(4).

:- end_object.

After compiling and loading the above objects, you can use queries such as:

| ?- main::a(X).

X = 1 ;
X = 2 ;
X = 3 ;
X = 4
yes

Note that the order of multifile predicate clauses depend on several factors, including loading order and
compiler implementation details. Therefore, your code should never assume or rely on a specific order of
the multifile predicate clauses.

When a clause of a multifile predicate is a rule, its body is compiled within the context of the object or
category defining the clause. This allows clauses for multifile predicates to call local object or category
predicates. But the values of the sender, this, and self in the implicit execution context are passed from the
clause head to the clause body. This is necessary to ensure that these values are always valid and to allow
multifile predicate clauses to be defined in categories. A call to the parameter/2 execution context methods,
however, retrieves parameters of the entity defining the clause, not from the entity for which the clause is
defined. The parameters of the entity for which the clause is defined can be accessed by simple unification
at the clause head.

Multifile predicate rules should not contain cuts as these may prevent other clauses for the predicate for
being used by callers. The compiler prints by default a warning when a cut is found in a multifile predicate
definition.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the
object own database instead of the database of the entity holding the multifile predicate primary declaration.

44 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Similarly, local calls to the expand_term/2 and expand_goal/2 methods from a multifile predicate clause
look for clauses of the term_expansion/2 and goal_expansion/2 hook predicates starting from the entity
defining the clause instead of the entity holding the multifile predicate primary declaration. Local calls
to the current_predicate/1, predicate_property/2, and current_op/3 methods from multifile predicate
clauses defined in an object also lookup predicates and their properties in the object own database instead
of the database of the entity holding the multifile predicate primary declaration.

Coinductive directive

A predicate can be declared coinductive by using the coinductive/1 directive. For example:

:- coinductive(comember/2).

Logtalk support for coinductive predicates is experimental and requires a backend Prolog compiler with min-
imal support for cyclic terms. The value of the read-only coinduction flag is set to supported for the backend
Prolog compilers providing that support.

Synchronized directive

A predicate can be declared synchronized by using the synchronized/1 directive. For example:

:- synchronized(write_log_entry/2).
:- synchronized([produce/1, consume/1]).

See the section on synchronized predicates for details.

1.8.3 Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference be that we have
four more control structures (the three message sending operators plus the external call operator) to play
with. For example, if we wish to define an object containing common utility list predicates like append/2 or
member/2 we could write something like:

:- object(list).

:- public(append/3).
:- public(member/2).

append([], L, L).
append([H| T], L, [H| T2]) :-

append(T, L, T2).

member(H, [H| _]).
member(H, [_| T]) :-

member(H, T).

:- end_object.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have
written is also valid Prolog code. Calls in a predicate definition body default to the local predicates, unless we
use the message sending operators or the external call operator. This enables easy conversion from Prolog

1.8. Predicates 45

The Logtalk Handbook, Release v3.34.0

code to Logtalk objects: we just need to add the necessary encapsulation and scope directives to the old
code.

Category predicates

Because a category can be imported by multiple objects, dynamic private predicates must be called either
in the context of self , using the message to self control structure, ::/1, or in the context of this (i.e. in the
context of the object importing the category). For example, if we want to define a category implementing
variables using destructive assignment where the variable values are stored in self we could write:

:- category(variable).

:- public(get/2).
:- public(set/2).

:- private(value_/2).
:- dynamic(value_/2).

get(Var, Value) :-
::value_(Var, Value).

set(Var, Value) :-
::retractall(value_(Var, _)),
::asserta(value_(Var, Value).

:- end_category.

In this case, the get/2 and set/2 predicates will always access/update the correct definition, contained in
the object receiving the messages. The alternative, storing the variable values in this, such that each object
importing the category will have its own definition for the value_/2 private predicate is simple: just omit
the use of the ::/1 control construct in the code above.

A category can only contain clauses for static predicates. Nevertheless, as the example above illustrates,
there are no restrictions in declaring and calling dynamic predicates from inside a category.

Meta-predicates

Meta-predicates may be defined inside objects and categories as any other predicate. A meta-predicate is
declared using the meta_predicate/1 directive as described earlier on this section. When defining a meta-
predicate, the arguments in the clause heads corresponding to the meta-arguments must be variables. All
meta-arguments are called in the context of the object or category calling the meta-predicate. In particular,
when sending a message that corresponds to a meta-predicate, the meta-arguments are called in the context
of the object or category sending the message.

Some meta-predicates have meta-arguments which are not goals but closures. Logtalk supports the definition
of meta-predicates that are called with closures instead of goals as long as the definition uses the call/1-N
built-in predicate to call the closure with the additional arguments. For example:

:- public(all_true/2).
:- meta_predicate(all_true(1, *)).

all_true(_, []).
all_true(Closure, [Arg| Args]) :-

call(Closure, Arg),
all_true(Closure, Args).

46 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Note that in this case the meta-predicate directive specifies that the closure will be extended with exactly
one extra argument.

When calling a meta-predicate, a closure can correspond to a user-defined predicate, a built-in predicate, a
lambda expression, or a control construct.

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary
predicates for the sole purpose of calling the meta-predicates. A simple example of a lambda expression is:

| ?- meta::map([X,Y]>>(Y is 2*X), [1,2,3], Ys).
Ys = [2,4,6]
yes

In this example, a lambda expression, [X,Y]>>(Y is 2*X), is used as an argument to the map/3 list mapping
predicate, defined in the library object meta, in order to double the elements of a list of integers. Using a
lambda expression avoids writing an auxiliary predicate for the sole purpose of doubling the list elements.
The lambda parameters are represented by the list [X,Y], which is connected to the lambda goal, (Y is
2*X), by the (>>)/2 operator.

Currying is supported. I.e. it is possible to write a lambda expression whose goal is another lambda expres-
sion. The above example can be rewritten as:

| ?- meta::map([X]>>([Y]>>(Y is 2*X)), [1,2,3], Ys).
Ys = [2,4,6]
yes

Lambda expressions may also contain lambda free variables. I.e. variables that are global to the lambda
expression. For example, using GNU Prolog as the backend compiler, we can write:

| ?- meta::map({Z}/[X,Y]>>(Z#=X+Y), [1,2,3], Zs).
Z = _#22(3..268435455)
Zs = [_#3(2..268435454),_#66(1..268435453),_#110(0..268435452)]
yes

The ISO Prolog construct {}/1 for representing the lambda free variables as this representation is often
associated with set representation. Note that the order of the free variables is of no consequence (on the
other hand, a list is used for the lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example
by Markus Triska:

| ?- meta::map([A-B,B-A]>>true, [1-a,2-b,3-c], Zs).
Zs = [a-1,b-2,c-3]
yes

Lambda expressions can be used, as expected, in non-deterministic queries as in the following example using
SWI-Prolog as the backend compiler and Markus Triska’s CLP(FD) library:

| ?- meta::map({Z}/[X,Y]>>(clpfd:(Z#=X+Y)), Xs, Ys).
Xs = [],
Ys = [] ;
Xs = [_G1369],
Ys = [_G1378],
_G1369+_G1378#=Z ;
Xs = [_G1579, _G1582],

(continues on next page)

1.8. Predicates 47

https://en.wikipedia.org/wiki/Lambda_calculus

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

Ys = [_G1591, _G1594],
_G1582+_G1594#=Z,
_G1579+_G1591#=Z ;
Xs = [_G1789, _G1792, _G1795],
Ys = [_G1804, _G1807, _G1810],
_G1795+_G1810#=Z,
_G1792+_G1807#=Z,
_G1789+_G1804#=Z ;
...

As illustrated by the above examples, lambda expression syntax reuses the ISO Prolog construct {}/1 and
the standard operators (/)/2 and (>>)/2, thus avoiding defining new operators, which is always tricky for
a portable system such as Logtalk. The operator (>>)/2 was chosen as it suggests an arrow, similar to the
syntax used in other languages such as OCaml and Haskell to connect lambda parameters with lambda
functions. This syntax was also chosen in order to simplify parsing, error checking, and compilation of
lambda expressions. The full specification of the lambda expression syntax can be found in the the language
grammar.

The compiler checks whenever possible that all variables in a lambda expression are either classified as
free variables or as lambda parameters. Non-classified variables in a lambda expression should be regarded
as a programming error. The compiler also checks if a variable is classified as both a free variable and a
lambda parameter. There are a few cases where a variable playing a dual role is intended but, in general,
this also results from a programming error. A third check verifies that no lambda parameter variable is used
elsewhere in a clause. Such cases are either programming errors, when the variable appears before the
lambda expression, or bad programming style, when the variable is used after the lambda expression. Note,
however, that the dynamic features of the language and lack of sufficient information at compile time may
prevent the compiler of checking all uses of lambda expressions.

Warning: Variables listed in lambda parameters must not be shared with other goals in a clause.

An optimizing meta-predicate and lambda expression compiler, based on the term-expansion mechanism, is
provided as a standard library for practical performance by the standard library.

1.8.4 Definite clause grammar rules

Definite clause grammar rules provide a convenient notation to represent the rewrite rules common of
most grammars in Prolog. In Logtalk, definite clause grammar rules can be encapsulated in objects and
categories. Currently, the ISO/IEC WG17 group is working on a draft specification for a definite clause
grammars Prolog standard. Therefore, in the mean time, Logtalk follows the common practice of Prolog
compilers supporting definite clause grammars, extending it to support calling grammar rules contained in
categories and objects. A common example of a definite clause grammar is the definition of a set of rules for
parsing simple arithmetic expressions:

:- object(calculator).

:- public(parse/2).

parse(Expression, Value) :-
phrase(expr(Value), Expression).

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.

(continues on next page)

48 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:- end_object.

The predicate phrase/2 called in the definition of predicate parse/2 above is a Logtalk built-in method,
similar to the predicate with the same name found on most Prolog compilers that support definite clause
grammars. After compiling and loading this object, we can test the grammar rules with calls such as the
following one:

| ?- calculator::parse("1+2-3*4", Result).

Result = -9
yes

In most cases, the predicates resulting from the translation of the grammar rules to regular clauses are not
declared. Instead, these predicates are usually called by using the built-in methods phrase/2 and phrase/3 as
shown in the example above. When we want to use the built-in methods phrase/2 and phrase/3, the non-
terminal used as first argument must be within the scope of the sender. For the above example, assuming
that we want the predicate corresponding to the expr//1 non-terminal to be public, the corresponding scope
directive would be:

:- public(expr//1).

The // infix operator used above tells the Logtalk compiler that the scope directive refers to a grammar rule
non-terminal, not to a predicate. The idea is that the predicate corresponding to the translation of the expr/
/1 non-terminal will have a number of arguments equal to one plus the number of additional arguments
necessary for processing the implicit difference list of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from
categories, or contained in other objects. This is accomplished by using non-terminals as messages. Using a
non-terminal as a message to self allows us to call grammar rules in categories and ancestor objects. To call
grammar rules encapsulated in other objects, we use a non-terminal as a message to those objects. Consider
the following example, containing grammar rules for parsing natural language sentences:

:- object(sentence,
imports(determiners, nouns, verbs)).

:- public(parse/2).

parse(List, true) :-
phrase(sentence, List).

parse(_, false).

sentence --> noun_phrase, verb_phrase.

noun_phrase --> ::determiner, ::noun.
noun_phrase --> ::noun.

(continues on next page)

1.8. Predicates 49

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

verb_phrase --> ::verb.
verb_phrase --> ::verb, noun_phrase.

:- end_object.

The categories imported by the object would contain the necessary grammar rules for parsing determiners,
nouns, and verbs. For example:

:- category(determiners).

:- private(determiner//0).

determiner --> [the].
determiner --> [a].

:- end_category.

Along with the message sending operators (::/1, ::/2, and ^^/1), we may also use other control constructs
such as \+/1, !/0, ;/2, ->/2, and {}/1 in the body of a grammar. In addition, grammar rules may contain
meta-calls (a variable taking the place of a non-terminal), which are translated to calls of the built-in method
phrase/3.

You may have noticed that Logtalk defines {}/1 as a control construct for bypassing the compiler when
compiling a clause body goal. As exemplified above, this is the same control construct that is used in
grammar rules for bypassing the expansion of rule body goals when a rule is converted into a clause. Both
control constructs can be combined in order to call a goal from a grammar rule body, while bypassing at the
same time the Logtalk compiler. Consider the following example:

bar :-
write('bar predicate called'), nl.

:- object(bypass).

:- public(foo//0).

foo --> {{bar}}.

:- end_object.

After compiling and loading this code, we may try the following query:

| ?- logtalk << phrase(bypass::foo, _, _).

bar predicate called
yes

This is the expected result as the expansion of the grammar rule into a clause leaves the {bar} goal un-
touched, which, in turn, is converted into the goal bar when the clause is compiled.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using
the same Name//Arity notation illustrated above for the scope directives. In addition, grammar rule non-
terminals can be documented using the info/2 directive, as in the following example:

50 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

:- public(sentence//0).

:- info(sentence//0, [
comment is 'Rewrites sentence into noun and verb phrases.']).

1.8.5 Built-in methods

Built-in methods are built-in object and category predicates. These include methods to access message
execution context, to find sets of solutions, to inspect objects, for database handling, for term and goal
expansion, and for printing messages. Some of them are counterparts to standard Prolog built-in predicates
that take into account Logtalk semantics. Similar to Prolog built-in predicates, built-in methods cannot not
be redefined.

Execution context methods

Logtalk defines five built-in private methods to access an object execution context. These methods are in
the common usage scenarios translated to a single unification performed at compile time with a clause
head context argument. Therefore, they can be freely used without worrying about performance penalties.
When called from inside a category, these methods refer to the execution context of the object importing the
category. These methods are private and cannot be used as messages to objects.

To find the object that received the message under execution we may use the self/1 method. We may also
retrieve the object that has sent the message under execution using the sender/1 method.

The method this/1 enables us to retrieve the name of the object for which the predicate clause whose body
is being executed is defined instead of using the name directly. This helps to avoid breaking the code if we
decide to change the object name and forget to change the name references. This method may also be used
from within a category. In this case, the method returns the object importing the category on whose behalf
the predicate clause is being executed.

Here is a short example including calls to these three object execution context methods:

:- object(test).

:- public(test/0).

test :-
this(This),
write('Calling predicate definition in '),
writeq(This), nl,
self(Self),
write('to answer a message received by '),
writeq(Self), nl,
sender(Sender),
write('that was sent by '),
writeq(Sender), nl, nl.

:- end_object.

:- object(descendant,
extends(test)).

:- end_object.

1.8. Predicates 51

The Logtalk Handbook, Release v3.34.0

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Calling predicate definition in test
to answer a message received by descendant
that was sent by user
yes

Note that the goals self(Self), sender(Sender), and this(This), being translated to unifications with the
clause head context arguments at compile time, are effectively removed from the clause body. Therefore, a
clause such as:

predicate(Arg) :-
self(Self),
atom(Arg),
... .

is compiled with the goal atom(Arg) as the first condition on the clause body. As such, the use of these context
execution methods do not interfere with the optimizations that some Prolog compilers perform when the first
clause body condition is a call to a built-in type-test predicate or a comparison operator.

For parametric objects and categories, the method parameter/2 enables us to retrieve current parameter
values (see the section on parametric objects for a detailed description). For example:

:- object(block(_Color)).

:- public(test/0).

test :-
parameter(1, Color),
write('Color parameter value is '),
writeq(Color), nl.

:- end_object.

An alternative to the parameter/2 predicate is to use parameter variables:

:- object(block(_Color_)).

:- public(test/0).

test :-
write('Color parameter value is '),
writeq(_Color_), nl.

:- end_object.

After compiling and loading either version of the object, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Calls to the parameter/2 method are translated to a compile time unification when the second argument is
a variable. When the second argument is bound, the calls are translated to a call to the built-in predicate
arg/3.

52 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

When type-checking predicate arguments, it is often useful to include the predicate execution context when
reporting an argument error. The context/1 method provides access to that context. For example, assume
a predicate foo/2 that takes an atom and an integer as arguments. We could type-check the arguments by
writing (using the library type object):

foo(A, N) :-
% type-check arguments
context(Context),
type::check(atom, A, Context),
type::check(integer, N, Context),
% arguments are fine; go ahead
... .

Error handling and throwing methods

Besides the catch/3 and throw/1 methods inherited from Prolog, Logtalk also provides a set of convenience
methods to throw standard error/2 exception terms: instantiation_error/0, type_error/2, domain_error/2,
existence_error/2, permission_error/3, representation_error/1, evaluation_error/1, resource_error/1, syn-
tax_error/1, and system_error/0.

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog
predicates: abolish/1, asserta/1, assertz/1, clause/2, retract/1, and retractall/1. These methods always oper-
ate on the database of the object receiving the corresponding message. When called locally, these predicates
take into account any uses/2 or use_module/2 directives that refer to the dynamic predicate being handled.
For example, in the following object, the clauses for the data/1 predicate are retracted and asserted in user
due to the uses/2 directive:

:- object(an_object).

:- uses(user, [data/1]).

:- public(some_predicate/1).
some_predicate(Arg) :-

retractall(data(_)),
assertz(data(Arg)).

:- end_object.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand_term/2
convert a grammar rule into a clause that can then be used with the database methods.

Meta-call methods

Logtalk supports the generalized call/1-N meta-predicate. This built-in private meta-predicate must be used
in the implementation of meta-predicates which work with closures instead of goals. In addition, Logtalk
supports the built-in private meta-predicates ignore/1, once/1, and \+/1. These methods cannot be used as
messages to objects.

1.8. Predicates 53

The Logtalk Handbook, Release v3.34.0

All solutions methods

The usual all solutions meta-predicates are built-in private methods in Logtalk: bagof/3, findall/3, findall/4,
and setof/3. There is also a forall/2 method that implements generate-and-test loops. These methods cannot
be used as messages to objects.

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in methods for querying about entities
and predicates. Some of the information, however, requires that the source files are compiled with the
source_data flag turned on.

The reflection API supports two different views on entities and their contents, which we may call the trans-
parent box view and the black box view. In the transparent box view, we look into an entity disregarding how
it will be used and returning all information available on it, including predicate declarations and predicate
definitions. This view is supported by the entity property built-in predicates. In the black box view, we
look into an entity from a usage point-of-view using built-in methods for inspecting object operators and
predicates that are within scope from where we are making the call: current_op/3, which returns operator
specifications, predicate_property/2, which returns predicate properties, and current_predicate/1, which en-
ables us to query about user-defined predicate definitions. See below for a more detailed description of these
methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private methods, phrase/2 and phrase/3, with
definitions similar to the predicates with the same name found on most Prolog compilers that support definite
clause grammars. These methods cannot be used as messages to objects.

Logtalk also supports phrase//1, call//1-N, and eos//0 built-in non-terminals. The call//1-N non-terminals
takes a closure (which can be a lambda expression) plus zero or more additional arguments and are processed
by appending the input list of tokens and the list of remaining tokens to the arguments.

1.8.6 Predicate properties

We can find the properties of visible predicates by calling the predicate_property/2 built-in method. For
example:

| ?- bar::predicate_property(foo(_), Property).

Note that this method takes into account the predicate’s scope declarations. In the above example, the call
will only return properties for public predicates.

An object’s set of visible predicates is the union of all the predicates declared for the object with all the
built-in methods and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope(Scope) The predicate scope (useful for finding the predicate scope with a single call to
predicate_property/2)

public, protected, private The predicate scope (useful for testing if a predicate have a specific scope)

static, dynamic All predicates are either static or dynamic (note, however, that a dynamic predicate can
only be abolished if it was dynamically declared)

54 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

logtalk, prolog, foreign A predicate can be defined in Logtalk source code, Prolog code, or in foreign code
(e.g. in C)

built_in The predicate is a built-in predicate

multifile The predicate is declared multifile (i.e. it can have clauses defined in multiple files or entities)

meta_predicate(Template) The predicate is declared as a meta-predicate with the specified template

coinductive(Template) The predicate is declared as a coinductive predicate with the specified template

declared_in(Entity) The predicate is declared (using a scope directive) in the specified entity

defined_in(Entity) The predicate definition is looked up in the specified entity (note that this property
does not necessarily imply that clauses for the predicate exist in Entity; the predicate can simply be
false as per the closed-world assumption)

redefined_from(Entity) The predicate is a redefinition of a predicate definition inherited from the specified
entity

non_terminal(NonTerminal//Arity) The predicate resulted from the compilation of the specified grammar
rule non-terminal

alias_of(Predicate) The predicate (name) is an alias for the specified predicate

alias_declared_in(Entity) The predicate alias is declared in the specified entity

synchronized The predicate is declared as synchronized (i.e. it’s a deterministic predicate synchronized
using a mutex when using a backend Prolog compiler supporting a compatible multi-threading imple-
mentation)

Some properties are only available when the entities are defined in source files and when those source files
are compiled with the source_data flag turned on:

inline The predicate definition is inlined

auxiliary The predicate is not user-defined but rather automatically generated by the compiler or the term-
expansion mechanism

mode(Mode, Solutions) Instantiation, type, and determinism mode for the predicate (which can have mul-
tiple modes)

info(ListOfPairs) Documentation key-value pairs as specified in the user-defined info/2 directive

number_of_clauses(N) The number of clauses for the predicate existing at compilation time (note that this
property is not updated at runtime when asserting and retracting clauses for dynamic predicates)

number_of_rules(N) The number of rules for the predicate existing at compilation time (note that this
property is not updated at runtime when asserting and retracting clauses for dynamic predicates)

declared_in(Entity, Line) The predicate is declared (using a scope directive) in the specified entity in a
source file at the specified line (if applicable)

defined_in(Entity, Line) The predicate is defined in the specified entity in a source file at the specified
line (if applicable)

redefined_from(Entity, Line) The predicate is a redefinition of a predicate definition inherited from the
specified entity, which is defined in a source file at the specified line (if applicable)

alias_declared_in(Entity, Line) The predicate alias is declared in the specified entity in a source file at
the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and redefined_from/1-2 do not apply to built-in methods
and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by

1.8. Predicates 55

The Logtalk Handbook, Release v3.34.0

the object, it will be the category name — not the object name — that will be returned by the property
declared_in/1. The same is true for protocol declared predicates.

1.8.7 Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the current_predicate/1 built-in method.
This method takes into account predicate scope declarations. For exampole, the following call will only
return user predicates that are declared public:

| ?- some_object::current_predicate(Name/Arity).

The predicate property non_terminal/1 may be used to retrieve all grammar rule non-terminals declared for
an object. For example:

current_non_terminal(Object, Name//Args) :-
Object::current_predicate(Name/Arity),
functor(Predicate, Functor, Arity),
Object::predicate_property(Predicate, non_terminal(Name//Args)).

Usually, the non-terminal and the corresponding predicate share the same functor but users should not rely
on this always being true.

1.8.8 Calling Prolog predicates

Logtalk is designed for both robustness and portability. In the context of calling Prolog predicates, robustness
requires that the compilation of Logtalk source code must not have accidental dependencies on Prolog code
that happens to be loaded at the time of the compilation. One immediate consequence is that only Prolog
built-in predicates are visible from within objects and categories. But Prolog systems provide a widely di-
verse set of built-in predicates, easily rising portability issues. Relying on non-standard predicates is often
unavoidable, however, due to the narrow scope of Prolog standards. Logtalk applications may also require
calling user-defined Prolog predicates, either in user or in Prolog modules.

Calling Prolog built-in predicates

In predicate clauses and object initialization/1 directives, predicate calls that are not prefixed with a
message sending, super call, or module qualification operator (::, ^^, or :), are compiled to either calls to
local predicates or as calls to Logtalk/Prolog built-in predicates. A predicate call is compiled as a call to a
local predicate if the object (or category) contains a scope directive, a definition for the called predicate, or a
dynamic declaration for it. When that is not the case, the compiler checks if the call corresponds to a Logtalk
or Prolog built-in predicate. Consider the following example:

foo :-
...,
write(bar),
...

The call to the write/1 predicate will be compiled as a call to the corresponding Prolog standard built-in
predicate unless the object (or category) containing the above definition also contains a predicate named
write/1 or a dynamic directive for the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prolog arithmetic functions, we
may run into portability problems while trying your applications with different backend Prolog compilers.

56 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

We can use the compiler portability flag to generate warnings for calls to non-standard predicates and arith-
metic functions. We can also document those calls using the uses/2 directive. For example, a few Prolog
systems provide an atom_string/2 non-standard predicate. We can write (in the object or category calling
the predicate):

:- uses(user, [atom_string/2])

This directive is based on the fact that built-in predicates are visible in plain Prolog (i.e. in user). Besides
helping to document the dependency on a non-standard built-in predicate, this directive will also silence the
compiler portability warning.

Calling Prolog non-standard built-in meta-predicates

Prolog built-in meta-predicates may only be called locally within objects or categories, i.e. they cannot be
used as messages. Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however,
as there is no standard way of checking if a built-in predicate is also a meta-predicate and finding out which
are its meta-arguments. But Logtalk supports overriding the original meta-predicate template when not
programmatically available or usable. For example, assume a det_call/1 Prolog built-in meta-predicate that
takes a goal as argument. We can add to the object (or category) calling it the directive:

:- meta_predicate(user::det_call(0)).

Another solution is to explicitly declare all non-standard built-in Prolog meta-predicates in the corresponding
adapter file using the internal predicate '$lgt_prolog_meta_predicate'/3. For example:

'$lgt_prolog_meta_predicate'(det_call(_), det_call(0), predicate).

The third argument can be either the atom predicate or the atom control_construct, a distinction that is
useful when compiling in debug mode.

Calling Prolog user-defined plain predicates

Prolog user-defined plain predicates can be called from within objects or categories by sending the corre-
sponding message to user. For example:

foo :-
...,
user::bar,
...

In alternative, we can use the uses/2 directive and write:

:- uses(user, [bar/0]).

foo :-
...,
bar,
...

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated
(either in a Logtalk entity or a Prolog module).

When the Prolog predicate is not a meta-predicate, we can also use the {}/1 compiler bypass control con-
struct. For example:

1.8. Predicates 57

The Logtalk Handbook, Release v3.34.0

foo :-
...,
{bar},
...

But note that in this case the reflection API will not record the dependency of the foo/0 predicate on the
Prolog bar/0 predicate as we are effectively bypassing the compiler.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by using explicit qualification. For
example:

foo :-
...,
module:bar,
...

You can also use in alternative the use_module/2 directive to call the module predicates using implicit quali-
fication:

:- use_module(module, [bar/0]).

foo :-
...,
bar,
...

Note that the first argument of the use_module/2, when used within an object or a category, is a module
name, not a file specification (also be aware that Prolog modules are sometimes defined in files with names
that differ from the module names).

As loading a Prolog module varies between Prolog systems, the actual loading directive or goal is preferably
done from the application loader file. An advantage of this approach is that it contributes to a clean separation
between loading and using a resource with the loader file being the central point that loads all application
resources (complex applications often use a hierarchy of loader files but the main idea remains the same).

As an example, assume that we need to call predicates defined in a CLP(FD) Prolog library, which can be
loaded using library(clpfd) as the file specification. In the loader file, we would add:

:- use_module(library(clpfd), []).

Specifying an empty import list is often used to avoid adding the module exported predicates to plain Prolog.
In the objects and categories we can then call the library predicates, using implicit or explicit qualification,
as explained. For example:

:- object(puzzle).

:- public(puzzle/1).

:- use_module(clpfd, [
all_different/1, ins/2, label/1,
(#=)/2, (#\=)/2,
op(700, xfx, #=), op(700, xfx, #\=)

]).

(continues on next page)

58 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),

S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=

M*10000 + O*1000 + N*100 + E*10 + Y,
M #\= 0, S #\= 0,
label([M,O,N,E,Y]).

:- end_object.

Warning: The actual module code must be loaded prior to compilation of Logtalk source code that uses
it. In particular, programmers should not expect that the module be auto-loaded (including when using
a backend Prolog compiler that supports an autoloading mechanism).

The module identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category. In this case, dynamic binding will necessarily be used for all listed predicates
(and non-terminals). The parameter variable must be instantiated at runtime when the calls are made.

Calling Prolog module meta-predicates

The Logtalk library provides implementations of common meta-predicates, which can be used in place of
module meta-predicates (e.g. list mapping meta-predicates). If that is not the case the Logtalk compiler
may need help to understand the module meta-predicate templates. Despite some recent progress in stan-
dardization of the syntax of meta_predicate/1 directives and of the meta_predicate/1 property returned
by the predicate_property/2 reflection predicate, portability is still a major problem. Thus, Logtalk allows
the original meta_predicate/1 directive to be overridden with a local directive that Logtalk can make sense
of. Note that Logtalk is not based on a predicate prefixing mechanism as found in module systems. This
fundamental difference precludes an automated solution at the Logtalk compiler level.

As an example, assume that you want to call from an object (or a category) a module meta-predicate with
the following meta-predicate directive:

:- module(foo, [bar/2]).

:- meta_predicate(bar(*, :)).

The : meta-argument specifier is ambiguous. It tell us that the second argument of the meta-predicate is
module sensitive but it does not tell us how. Some legacy module libraries and some Prolog systems use : to
mean 0 (i.e. a meta-argument that will be meta-called). Some others use : for meta-arguments that are not
meta-called but that still need to be augmented with module information. Whichever the case, the Logtalk
compiler doesn’t have enough information to unambiguously parse the directive and correctly compile the
meta-arguments in the meta-predicate call. Therefore, the Logtalk compiler will generate an error stating
that : is not a valid meta-argument specifier when trying to compile a foo:bar/2 goal. There are two
alternative solutions for this problem. The advised solution is to override the meta-predicate directive by
writing, inside the object (or category) where the meta-predicate is called:

:- meta_predicate(bar(*, *)).

or:

1.8. Predicates 59

The Logtalk Handbook, Release v3.34.0

:- meta_predicate(bar(*, 0)).

depending on the true meaning of the second meta-argument. The second alternative is to simply use the
{}/1 compiler bypass control construct to call the meta-predicate as-is:

... :- {foo:bar(..., ...)}, ...

The downside of this alternative is that it hides the dependency on the module library from the reflection
API and thus from the developer tools.

1.8.9 Defining Prolog multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be
defined in other modules. This is accomplished by declaring the library predicate multifile and by explicitly
prefixing predicate clause heads with the library module identifier. For example:

:- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

...

Logtalk supports the definition of Prolog module multifile predicates in objects and categories. While the
clause head is compiled as-is, the clause body is compiled in the same way as a regular object or category
predicate, thus allowing calls to local object or category predicates. For example:

:- object(...).

:- multifile(clpfd:run_propagator/2).
clpfd:run_propagator(..., ...) :-

% calls to local object predicates
...

:- end_object.

The Logtalk compiler will print a warning if the multifile/1 directive is missing. These multifile predicates
may also be declared dynamic using the same Module:Name/Arity notation.

1.8.10 Asserting and retracting Prolog predicates

To assert and retract clauses for Prolog dynamic predicates, we can use an explicitly qualified module argu-
ment (where the module can be user). For example:

:- object(...).

foo(X) :-
retractall(m:bar(_)),
assertz(m:bar(X)),
...

:- end_object.

In alternative, we can use use_module/2 directives to declare the module predicates. For example:

60 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

:- object(...).

:- use_module(m, [bar/1]).

foo(X) :-
% retract and assert bar/1 clauses in module m
retractall(bar(_)),
assertz(bar(X)),
...

:- end_object.

When the Prolog dynamic predicates are defined in user, the recommended and most portable practice is to
use a uses/2 directive:

:- object(...).

:- uses(user, [bar/1]).

foo(X) :-
% retract and assert bar/1 clauses in user
retractall(bar(_)),
assertz(bar(X)),
...

:- end_object.

Note that in the alternatives using uses/2 or use_module/2 directives, the argument of the database handling
predicates must be know at compile time. If that is not the case, you must use instead either an explicitly-
qualified argument or the {}/1 control construct. For example:

:- object(...).

add(X) :-
% assert clause X in module m
assertz(m:X),
...

remove(Y) :-
% retract all clauses in user whose head unifies with Y
{retractall(Y)},
...

:- end_object.

1.9 Inheritance

The inheritance mechanisms found on object-oriented programming languages allow the specialization of
previously defined objects, avoiding the unnecessary repetition of code and allowing the definition of com-
mon functionality for sets of objects. In the context of logic programming, we can interpret inheritance as
a form of theory extension: an object will virtually contain, besides its own predicates, all the predicates
inherited from other objects that are not redefined locally.

Logtalk uses a depth-first search procedure for finding predicate declarations and predicate definitions, as ex-
plained below. The search procedures locate the entities holding the predicate declaration and the predicate

1.9. Inheritance 61

The Logtalk Handbook, Release v3.34.0

definition using the predicate template. The alias/2 predicate directive may be used for defining alterna-
tive names for inherited predicates, for solving inheritance conflicts, and for giving access to all inherited
definitions (thus overriding the default search procedure).

The search procedures are notably used when compiling or handling a message sent to an object. The exact
details of the search procedures depend on the role played by the object receiving the message, as explained
next. The search procedures are also used by the current_predicate/1 and predicate_property/2 reflection
predicates.

1.9.1 Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations (scope directives). These can be con-
tained in objects, protocols, or categories. Logtalk supports single and multi-inheritance of protocols: an
object or a category may implement several protocols and a protocol may extend several protocols.

Search order for prototype hierarchies

The search order for predicate declarations is first the object, second the implemented protocols (and the
protocols that these may extend), third the imported categories (and the protocols that they may implement),
and last the objects that the object extends. This search is performed in depth-first order. When an object
inherits two different declarations for the same predicate, by default, only the first one will be considered.

Search order for class hierarchies

The search order for predicate declarations starts in the object classes. Following the classes declaration or-
der, the search starts in the classes implemented protocols (and the protocols that these may extend), second
the classes imported categories (and the protocols that they may implement), and last the superclasses of the
object classes. This search is performed in depth-first order. If the object inherits two different declarations
for the same predicate, by default only the first one will be considered.

1.9.2 Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in
objects or in categories. Logtalk supports multi-inheritance of implementation: an object may import several
categories or extend, specialize, or instantiate several objects.

Search order for prototype hierarchies

The search order for predicate definitions is similar to the search for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives).

62 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Search order for class hierarchies

The search order for predicate definitions is similar to the search for predicate declarations except that
implemented protocols are ignored (as they can only contain predicate directives) and that the search starts
at the instance itself (that received the message) before proceeding, if no predicate definition is found there,
to the instance classes and then to the class superclasses.

Redefining inherited predicate definitions

When we define a predicate that is already inherited from an ancestor object or an imported category, the
inherited definition is hidden by the new definition. This is called inheritance overriding: a local definition
overrides any inherited definitions. For example, assume that we have the following two objects:

:- object(root).

:- public(bar/1).
bar(root).

:- public(foo/1).
foo(root).

:- end_object.

:- object(descendant,
extends(root)).

foo(descendant).

:- end_object.

After compiling and loading these objects, we can check the overriding behavior by trying the following
queries:

| ?- root::(bar(Bar), foo(Foo)).

Bar = root
Foo = root
yes

| ?- descendant::(bar(Bar), foo(Foo)).

Bar = root
Foo = descendant
yes

However, we can explicitly code other behaviors. Some examples follow.

1.9. Inheritance 63

The Logtalk Handbook, Release v3.34.0

Specializing inherited predicate definitions

Specialization of inherited definitions: the new definition calls the inherited definition and makes additional
calls. This is accomplished by calling the ^^/1 super call operator in the new definition. For example,
assume a init/0 predicate that must account for object specific initializations along the inheritance chain:

:- object(root).

:- public(init/0).

init :-
write('root init'), nl.

:- end_object.

:- object(descendant,
extends(root)).

init :-
write('descendant init'), nl,
^^init.

:- end_object.

| ?- descendant::init.

descendant init
root init
yes

Union of inherited and local predicate definitions

Union of the new with the inherited definitions: all the definitions are taken into account, the calling order
being defined by the inheritance mechanisms. This can be accomplished by writing a clause that just calls,
using the ^^/1 super call operator, the inherited definitions. The relative position of this clause among the
other definition clauses sets the calling order for the local and inherited definitions. For example:

:- object(root).

:- public(foo/1).

foo(1).
foo(2).

:- end_object.

:- object(descendant,
extends(root)).

foo(3).
foo(Foo) :-

^^foo(Foo).

:- end_object.

64 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

| ?- descendant::foo(Foo).

Foo = 3 ;
Foo = 1 ;
Foo = 2 ;
no

Selective inheritance of predicate definitions

The selective inheritance of predicate definitions (also known as differential inheritance) is normally used in
the representation of exceptions to inherited default definitions. We can use the ^^/1 super call operator
to test and possibly reject some of the inherited definitions. A common example is representing flightless
birds:

:- object(bird).

:- public(mode/1).

mode(walks).
mode(flies).

:- end_object.

:- object(penguin,
extends(bird)).

mode(swims).
mode(Mode) :-

^^mode(Mode),
Mode \== flies.

:- end_object.

| ?- penguin::mode(Mode).

Mode = swims ;
Mode = walks ;
no

1.9.3 Public, protected, and private inheritance

To make all public predicates declared via implemented protocols, imported categories, or ancestor objects
protected predicates or to make all public and protected predicates private predicates we prefix the entity’s
name with the corresponding keyword. For example:

:- object(Object,
implements(private::Protocol)).

% all the Protocol public and protected
% predicates become private predicates
% for the Object clients

(continues on next page)

1.9. Inheritance 65

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

...

:- end_object.

or:

:- object(Class,
specializes(protected::Superclass)).

% all the Superclass public predicates become
% protected predicates for the Class clients

...

:- end_object.

Omitting the scope keyword is equivalent to using the public scope keyword. For example:

:- object(Object,
imports(public::Category)).

...

:- end_object.

This is the same as:

:- object(Object,
imports(Category)).

...

:- end_object.

This way we ensure backward compatibility with older Logtalk versions and a simplified syntax when pro-
tected or private inheritance are not used.

1.9.4 Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring to the long and probably endless de-
bate on single versus multiple inheritance. The single inheritance mechanism can be implemented efficiently
but it imposes several limitations on reusing, even if the multiple characteristics we intend to inherit are or-
thogonal. On the other hand, the multiple inheritance mechanisms are attractive in their apparent capability
of modeling complex situations. However, they include a potential for conflict between inherited definitions
whose variety does not allow a single and satisfactory solution for all the cases.

Until now, no solution that we might consider satisfactory for all the problems presented by the multiple
inheritance mechanisms has been found. From the simplicity of some extensions that use the Prolog search
strategy like [McCabe92] or [Moss94] and to the sophisticated algorithms of CLOS [Bobrow_et_al_88],
there is no adequate solution for all the situations. Besides, the use of multiple inheritance carries some
complex problems in the domain of software engineering, particularly in the reuse and maintenance of the
applications. All these problems are substantially reduced if we preferably use in our software development
composition mechanisms instead of specialization mechanisms [Taenzer89]. Multiple inheritance is best
used as an analysis and project abstraction, rather than as an implementation technique [Shan_et_al_93].
Logtalk provides first-class support for composition using categories.

66 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Nevertheless, Logtalk supports multi-inheritance by enabling an object to extend, instantiate, or specialize
more than one object. The alias/2 predicate directive can always be used to solve multi-inheritance conflicts.
It should also be noted that the multi-inheritance support does not affect performance when we use single-
inheritance.

1.10 Event-driven programming

The addition of event-driven programming capacities to the Logtalk language [Moura94] is based on a simple
but powerful idea:

The computations must result, not only from message sending, but also from the observation of
message sending.

The need to associate computations to the occurrence of events was very early recognized in knowl-
edge representation languages, programming languages [Stefik_et_al_86], [Moon86], operative systems
[Tanenbaum87], and graphical user interfaces.

With the integration between object-oriented and event-driven programming, we intend to achieve the fol-
lowing goals:

• Minimize the coupling between objects. An object should only contain what is intrinsic to it. If an
object observes another object, that means that it should depend only on the public protocol of the
object observed and not on the implementation of that protocol.

• Provide a mechanism for building reflexive systems in Logtalk based on the dynamic behavior of objects
in complement to the reflective information on object predicates and relations.

• Provide a mechanism for easily defining method pre- and post-conditions that can be toggled using the
events compiler flag. The pre- and post-conditions may be defined in the same object containing the
methods or distributed between several objects acting as method monitors.

• Provide a publish-subscribe mechanism where public messages play the role of events.

1.10.1 Definitions

The words event and monitor have multiple meanings in computer science. To avoid misunderstandings, we
start by defining them in the Logtalk context.

Event

In an object-oriented system, all computations start through message sending. It thus becomes quite natural
to declare that the only event that can occur in this kind of system is precisely the sending of a message. An
event can thus be represented by the ordered tuple (Object, Message, Sender).

If we consider message processing an indivisible activity, we can interpret the sending of a message and the
return of the control to the object that has sent the message as two distinct events. This distinction allows us
to have a more precise control over a system dynamic behavior. In Logtalk, these two types of events have
been named before and after, respectively for sending a message and for returning of control to the sender.
Therefore, we refine our event representation using the ordered tuple (Event, Object, Message, Sender).

The implementation of events in Logtalk enjoys the following properties:

Independence between the two types of events We can choose to watch only one event type or to process
each one of the events associated to a message sending in an independent way.

1.10. Event-driven programming 67

The Logtalk Handbook, Release v3.34.0

All events are automatically generated by the message sending mechanism The task of generating
events is transparently accomplished by the message sending mechanism. The user only needs to
define the events that will be monitored.

The events watched at any moment can be dynamically changed during program execution The no-
tion of event allows the user not only to have the possibility of observing, but also of controlling
and modifying an application behavior, namely by dynamically changing the observed events during
program execution. It is our goal to provide the user with the possibility of modeling the largest
number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor is an object that is automatically
notified by the message sending mechanism whenever a registered event occurs. Any object that defines the
event-handling predicates can play the role of a monitor.

The implementation of monitors in Logtalk enjoys the following properties:

Any object can act as a monitor The monitor status is a role that any object can perform during its ex-
istence. The minimum protocol necessary is declared in the built-in monitoring protocol. Strictly
speaking, the reference to this protocol is only needed when specializing event handlers. Nevertheless,
it is considered good programming practice to always refer the protocol when defining event handlers.

Unlimited number of monitors for each event Several monitors can observe the same event because of
distinct reasons. Therefore, the number of monitors per event is bounded only by the available com-
puting resources.

The monitor status of an object can be dynamically changed in runtime This property does not imply
that an object must be dynamic to act as a monitor (the monitor status of an object is not stored
in the object).

The execution of actions, defined in a monitor, associated to each event, never affects the term that denotes the message involved
In other words, if the message contains unbound variables, these are not affected by the acting of
monitors associated to the event.

1.10.2 Event generation

Assuming that the events flag is set to allow for the object (or category) sending the messages we want to
observe, for each message that is sent using the ::/2 control construct, the runtime system automatically
generates two events. The first — before event — is generated when the message is sent. The second — after
event — is generated after the message has successfully been executed.

Note that self messages (using the ::/1 control construct) or super calls (using the ^^/1 control construct)
don’t generate events.

1.10.3 Communicating events to monitors

Whenever a spied event occurs, the message sending mechanism calls the corresponding event handlers
directly for all registered monitors. These calls are internally made bypassing the message sending primitives
in order to avoid potential endless loops. The event handlers consist in user definitions for the public
predicates declared in the built-in monitoring protocol (see below for more details).

68 Chapter 1. User Manual

https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.34.0

1.10.4 Performance concerns

Ideally, the existence of monitored messages should not affect the processing of the remaining messages.
On the other hand, for each message that has been sent, the system must verify if its respective event is
monitored. Whenever possible, this verification should be performed in constant time and independently of
the number of monitored events. The events representation takes advantage of the first argument indexing
performed by most Prolog compilers, which ensure — in the general case — access in constant time.

Event-support can be turned off on a per-object (or per-category) basis using the events compiler flag. With
event-support turned off, Logtalk uses optimized code for processing message sending calls that skips the
checking of monitored events, resulting in a small but measurable performance improvement.

1.10.5 Monitor semantics

The established semantics for monitors actions consists on considering its success as a necessary condition
so that a message can succeed:

• All actions associated to events of type before must succeed, so that the message processing can start.

• All actions associated to events of type after also have to succeed so that the message itself succeeds.
The failure of any action associated to an event of type after forces backtracking over the message
execution (the failure of a monitor never causes backtracking over the preceding monitor actions).

Note that this is the most general choice. If we wish a transparent presence of monitors in a message
processing, we just have to define the monitor actions in such a way that they never fail (which is very
simple to accomplish).

1.10.6 Activation order of monitors

Ideally, whenever there are several monitors defined for the same event, the calling order should not inter-
fere with the result. However, this is not always possible. In the case of an event of type before, the failure
of a monitor prevents a message from being sent and prevents the execution of the remaining monitors. In
case of an event of type after, a monitor failure will force backtracking over message execution. Differ-
ent orders of monitor activation can therefore lead to different results if the monitor actions imply object
modifications unrecoverable in case of backtracking. Therefore, the order for monitor activation should be
assumed as arbitrary. In effect, to assume or to try to impose a specific sequence requires a global knowledge
of an application dynamics, which is not always possible. Furthermore, that knowledge can reveal itself as
incorrect if there is any changing in the execution conditions. Note that, given the independence between
monitors, it does not make sense that a failure forces backtracking over the actions previously executed.

1.10.7 Event handling

Logtalk provides three built-in predicates for event handling. These predicates support defining, enumerat-
ing, and abolishing events. Applications that use events extensively usually define a set of objects that use
these built-in predicates to implement more sophisticated and higher-level behavior.

1.10. Event-driven programming 69

The Logtalk Handbook, Release v3.34.0

Defining new events

New events can be defined using the define_events/5 built-in predicate:

| ?- define_events(Event, Object, Message, Sender, Monitor).

Note that if any of the Event, Object, Message, and Sender arguments is a free variable or contains free
variables, this call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the abolish_events/5 built-in predicate:

| ?- abolish_events(Event, Object, Message, Sender, Monitor).

If called with free variables, this goal will remove all matching events.

Finding defined events

The events that are currently defined can be retrieved using the current_event/5 built-in predicate:

| ?- current_event(Event, Object, Message, Sender, Monitor).

Note that this predicate will return sets of matching events if some of the returned arguments are free
variables or contain free variables.

Defining event handlers

The monitoring built-in protocol declares two public predicates, before/3 and after/3, that are automatically
called to handle before and after events. Any object that plays the role of monitor must define one or both
of these event handler methods:

before(Object, Message, Sender) :-
... .

after(Object, Message, Sender) :-
... .

The arguments in both methods are instantiated by the message sending mechanism when a monitored event
occurs. For example, assume that we want to define a monitor called tracer that will track any message
sent to an object by printing a describing text to the standard output. Its definition could be something like:

:- object(tracer,
% built-in protocol for event handler methods
implements(monitoring)).

before(Object, Message, Sender) :-
write('call: '), writeq(Object),
write(' <-- '), writeq(Message),
write(' from '), writeq(Sender), nl.

after(Object, Message, Sender) :-
write('exit: '), writeq(Object),
write(' <-- '), writeq(Message),

(continues on next page)

70 Chapter 1. User Manual

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

write(' from '), writeq(Sender), nl.

:- end_object.

Assume that we also have the following object:

:- object(any).

:- public(bar/1).
bar(bar).

:- public(foo/1).
foo(foo).

:- end_object.

After compiling and loading both objects and setting the events flag to allow, we can start tracing every
message sent to any object by calling the define_events/5 built-in predicate:

| ?- set_logtalk_flag(events, allow).

yes

| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent from user to any object will be traced to the standard output stream:

| ?- any::bar(X).

call: any <-- bar(X) from user
exit: any <-- bar(bar) from user
X = bar

yes

To stop tracing, we can use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

The monitoring protocol declares the event handlers as public predicates. If necessary, protected or private
implementation of the protocol may be used in order to change the scope of the event handler predicates.
Note that the message sending processing mechanism is able to call the event handlers irrespective of their
scope. Nevertheless, the scope of the event handlers may be restricted in order to prevent other objects from
calling them.

1.10. Event-driven programming 71

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.34.0

1.11 Multi-threading programming

Logtalk provides experimental support for multi-threading programming on selected Prolog compilers.
Logtalk makes use of the low-level Prolog built-in predicates that implement message queues and interface
with POSIX threads and mutexes (or a suitable emulation), providing a small set of high-level predicates and
directives that allows programmers to easily take advantage of modern multi-processor and multi-core com-
puters without worrying about the tricky details of creating, synchronizing, or communicating with threads,
mutexes, and message queues. Logtalk multi-threading programming integrates with object-oriented pro-
gramming providing a threaded engines API, enabling objects and categories to prove goals concurrently, and
supporting synchronous and asynchronous messages.

1.11.1 Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on the Prolog adapter files of sup-
ported compilers by setting the read-only threads compiler flag to supported.

1.11.2 Enabling objects to make multi-threading calls

The threaded/0 object directive is used to enable an object to make multi-threading calls:

:- threaded.

1.11.3 Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading programming. For simple tasks where
you simply want to prove a set of goals, each one in its own thread, Logtalk provides a threaded/1 built-in
predicate. The remaining predicates allow for fine-grained control, including postponing retrieving of thread
goal results at a later time, supporting non-deterministic thread goals, and making one-way asynchronous
calls. Together, these predicates provide high-level support for multi-threading programming, covering most
common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk built-in predicate threaded/1. Each goal in
the set runs in its own thread.

When the threaded/1 predicate argument is a conjunction of goals, the predicate call is akin to and-
parallelism. For example, assume that we want to find all the prime numbers in a given interval, [N, M].
We can split the interval in two parts and then span two threads to compute the prime numbers in each
sub-interval:

prime_numbers(N, M, Primes) :-
M > N,
N1 is N + (M - N) // 2,
N2 is N1 + 1,
threaded((

prime_numbers(N2, M, [], Acc),
prime_numbers(N, N1, Acc, Primes)

)).

(continues on next page)

72 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

prime_numbers(N, M, Acc, Primes) :-
...

The threaded/1 call terminates when the two implicit threads terminate. In a computer with two or more
processors (or with a processor with two or more cores) the code above can be expected to provide better
computation times when compared with single-threaded code for sufficiently large intervals.

When the threaded/1 predicate argument is a disjunction of goals, the predicate call is akin to or-parallelism,
here reinterpreted as a set of goals competing to find a solution. For example, consider the different methods
that we can use to find the roots of real functions. Depending on the function, some methods will faster than
others. Some methods will converge into the solution while others may diverge and never find it. We can
try all the methods simultaneously by writing:

find_root(Function, A, B, Error, Zero) :-
threaded((

bisection::find_root(Function, A, B, Error, Zero)
; newton::find_root(Function, A, B, Error, Zero)
; muller::find_root(Function, A, B, Error, Zero)
)).

The above threaded/1 goal succeeds when one of the implicit threads succeeds in finding the function root,
leading to the termination of all the remaining competing threads.

The threaded/1 built-in predicate is most useful for lengthy, independent deterministic computations where
the computational costs of each goal outweigh the overhead of the implicit thread creation and management.

Proving goals asynchronously using threads

A goal may be proved asynchronously using a new thread by calling the threaded_call/1-2 built-in predicate
. Calls to this predicate are always true and return immediately (assuming a callable argument). The term
representing the goal is copied, not shared with the thread. The thread computes the first solution to the
goal, posts it to the implicit message queue of the object from where the threaded_call/1 predicate was
called, and suspends waiting for either a request for an alternative solution or for the program to commit to
the current solution.

The results of proving a goal asynchronously in a new thread may be later retrieved by calling the
threaded_exit/1-2 built-in predicate within the same object where the call to the threaded_call/1 predi-
cate was made. The threaded_exit/1 calls suspend execution until the results of the threaded_call/1 calls
are sent back to the object message queue.

The threaded_exit/1 predicate allow us to retrieve alternative solutions through backtracking (if you want
to commit to the first solution, you may use the threaded_once/1-2 predicate instead of the threaded_call/1
predicate). For example, assuming a lists object implementing the usual member/2 predicate, we could
write:

| ?- threaded_call(lists::member(X, [1,2,3])).

X = _G189
yes

| ?- threaded_exit(lists::member(X, [1,2,3])).

X = 1 ;
X = 2 ;
X = 3 ;
no

1.11. Multi-threading programming 73

The Logtalk Handbook, Release v3.34.0

In this case, the threaded_call/1 and the threaded_exit/1 calls are made within the pseudo-object user.
The implicit thread running the lists::member/2 goal suspends itself after providing a solution, waiting for
a request to an alternative solution; the thread is automatically terminated when the runtime engine detects
that backtracking to the threaded_exit/1 call is no longer possible.

Calls to the threaded_exit/1 predicate block the caller until the object message queue receives the reply to
the asynchronous call. The predicate threaded_peek/1-2 may be used to check if a reply is already available
without removing it from the thread queue. The threaded_peek/1 predicate call succeeds or fails immedi-
ately without blocking the caller. However, keep in mind that repeated use of this predicate is equivalent to
polling a message queue, which may hurt performance.

Be careful when using the threaded_exit/1 predicate inside failure-driven loops. When all the solutions
have been found (and the thread generating them is therefore terminated), re-calling the predicate will
generate an exception. Note that failing instead of throwing an exception is not an acceptable solution as it
could be misinterpreted as a failure of the threaded_call/1 argument.

The example on the previous section with prime numbers could be rewritten using the threaded_call/1 and
threaded_exit/1 predicates:

prime_numbers(N, M, Primes) :-
M > N,
N1 is N + (M - N) // 2,
N2 is N1 + 1,
threaded_call(prime_numbers(N2, M, [], Acc)),
threaded_call(prime_numbers(N, N1, Acc, Primes)),
threaded_exit(prime_numbers(N2, M, [], Acc)),
threaded_exit(prime_numbers(N, N1, Acc, Primes)).

prime_numbers(N, M, Acc, Primes) :-
...

When using asynchronous calls, the link between a threaded_exit/1 call and the corresponding
threaded_call/1 call is established using unification. If there are multiple threaded_call/1 calls for a
matching threaded_exit/1 call, the connection can potentially be established with any of them (this is
akin to what happens with tabling). Nevertheless, you can easily use a call tag by using in alternative
threaded_call/2, threaded_once/2, and threaded_exit/2 built-in predicates. For example:

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 1
yes

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 2
yes

?- threaded_exit(member(X, [1,2,3]), 2).

X = 1 ;
X = 2 ;
X = 3
yes

When using these predicates, the tags shall be considered as an opaque term; users shall not rely on its type.
Tagged asynchronous calls can be canceled by using the threaded_cancel/1 predicate.

74 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.11.4 One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about the results. This may be accom-
plished by using the built-in predicate threaded_ignore/1. For example, assume that we are developing a
multi-agent application where an agent may send an “happy birthday” message to another agent. We could
write:

..., threaded_ignore(agent::happy_birthday), ...

The call succeeds with no reply of the goal success, failure, or even exception ever being sent back to the
object making the call. Note that this predicate implicitly performs a deterministic call of its argument.

1.11.5 Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems when the goal results in side
effects such as input/output operations or modifications to an object database. For example, if a new thread
is started with the same goal before the first one finished its job, we may end up with mixed output, a
corrupted database, or unexpected goal failures. In order to solve this problem, predicates (and grammar
rule non-terminals) with side effects can be declared as synchronized by using the synchronized/1 predicate
directive. Proving a query to a synchronized predicate (or synchronized non-terminal) is internally protected
by a mutex, thus allowing for easy thread synchronization. For example:

% ensure thread synchronization
:- synchronized(db_update/1).

db_update(Update) :-
% predicate with side-effects
...

A second example: assume an object defining two predicates for writing, respectively, even and odd numbers
in a given interval to the standard output. Given a large interval, a goal such as:

| ?- threaded_call(obj::odd_numbers(1,100)),
threaded_call(obj::even_numbers(1,100)).

1 3 2 4 6 8 5 7 10 ...
...

will most likely result in a mixed up output. By declaring the odd_numbers/2 and even_numbers/2 predicates
synchronized:

:- synchronized([
odd_numbers/2,
even_numbers/2]).

one goal will only start after the other one finished:

| ?- threaded_ignore(obj::odd_numbers(1,99)),
threaded_ignore(obj::even_numbers(1,99)).

1 3 5 7 9 11 ...
...
2 4 6 8 10 12 ...
...

1.11. Multi-threading programming 75

The Logtalk Handbook, Release v3.34.0

Note that, in a more realistic scenario, the two threaded_ignore/1 calls would be made concurrently from
different objects. Using the same synchronized directive for a set of predicates imply that they all use the
same mutex, as required for this example.

As each Logtalk entity is independently compiled, this directive must be included in every object or category
that contains a definition for the described predicate, even if the predicate declaration is inherited from
another entity, in order to ensure proper compilation. Note that a synchronized predicate cannot be declared
dynamic. To ensure atomic updates of a dynamic predicate, declare as synchronized the predicate performing
the update.

Synchronized predicates may be used as wrappers to messages sent to objects that are not multi-threading
aware. For example, assume a log object defining a write_log_entry/2 predicate that writes log entries to a
file, thus using side effects on its implementation. We can specify and define e.g. a sync_write_log_entry/2
predicate as follows:

:- synchronized(sync_write_log_entry/2).

sync_write_log_entry(File, Entry) :-
log::write_log_entry(File, Entry).

and then call the sync_write_log_entry/2 predicate instead of the write_log_entry/2 predicate from multi-
threaded code.

The synchronization directive may be used when defining objects that may be reused in both single-threaded
and multi-threaded Logtalk applications. The directive simply make calls to the synchronized predicates
deterministic when the objects are used in a single-threaded application.

1.11.6 Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they are not executed at the same time
by different threads. Sometimes we need to suspend a thread not on a synchronization lock but on some
condition that must hold true for a thread goal to proceed. I.e. we want a thread goal to be suspended
until a condition becomes true instead of simply failing. The built-in predicate threaded_wait/1 allows us
to suspend a predicate execution (running in its own thread) until a notification is received. Notifications
are posted using the built-in predicate threaded_notify/1. A notification is a Prolog term that a programmer
chooses to represent some condition becoming true. Any Prolog term can be used as a notification argument
for these predicates. Related calls to the threaded_wait/1 and threaded_notify/1 must be made within the
same object, this, as the object message queue is used internally for posting and retrieving notifications.

Each notification posted by a call to the threaded_notify/1 predicate is consumed by a single
threaded_wait/1 predicate call (i.e. these predicates implement a peer-to-peer mechanism). Care should be
taken to avoid deadlocks when two (or more) threads both wait and post notifications to each other.

1.11.7 Threaded engines

Threaded engines provide an alternative to the multi-threading predicates described in the previous sections.
An engine is a computing thread whose solutions can be lazily computed and retrieved. In addition, an engine
also supports a term queue that allows passing arbitrary terms to the engine.

An engine is created by calling the threaded_engine_create/3 built-in predicate. For example:

| ?- threaded_engine_create(X, member(X, [1,2,3]), worker).
yes

76 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

The first argument is an answer template to be used for retrieving solution bindings. The user can name
the engine, as in this example where the atom worker is used, or have the runtime generate a name, which
should be treated as an opaque term.

Engines are scoped by the object within which the threaded_engine_create/3 call takes place. Thus, differ-
ent objects can create engines with the same names with no conflicts. Moreover, engines share the visible
predicates of the object creating them.

The engine computes the first solution of its goal argument and suspends waiting for it to be retrieved.
Solutions can be retrieved one at a time using the threaded_engine_next/2 built-in predicate:

| ?- threaded_engine_next(worker, X).
X = 1
yes

The call blocks until a solution is available and fails if there are no solutions left. After returning a solution,
this predicate signals the engine to start computing the next one. Note that this predicate is deterministic.
In contrast with the threaded_exit/1-2 built-in predicates, retrieving the next solution requires calling the
predicate again instead of by backtracking into its call. For example:

collect_all(Engine, [Answer| Answers]) :-
threaded_engine_next(Engine, Answer),
!,
collect_all(Engine, Answers).

collect_all(_, []).

There is also a reified alternative version of the predicate, threaded_engine_next_reified/2, which returns
the(Answer), no, and exception(Error) terms as answers. Using this predicate, collecting all solutions to an
engine uses a different programming pattern:

... :-
...,
threaded_engine_next_reified(Engine, Reified),
collect_all_reified(Reified, Engine, Answers),
...

collect_all_reified(no, _, []).
collect_all_reified(the(Answer), Engine, [Answer| Answers]) :-

threaded_engine_next_reified(Engine, Reified),
collect_all_reified(Reified, Engine, Answers).

Engines must be explicitly terminated using the threaded_engine_destroy/1 built-in predicate:

| ?- threaded_engine_destroy(worker).
yes

A common usage pattern for engines is to define a recursive predicate that uses the engine term queue to
retrieve a task to be performed. For example, assume we define the following predicate:

loop :-
threaded_engine_fetch(Task),
handle(Task),
loop.

The threaded_engine_fetch/1 built-in predicate fetches a task for the engine term queue. The engine clients
would use the threaded_engine_post/2 built-in predicate to post tasks into the engine term queue. The engine
would be created using the call:

1.11. Multi-threading programming 77

The Logtalk Handbook, Release v3.34.0

| ?- threaded_engine_create(none, loop, worker).

yes

The handle/1 predicate, after performing a task, can use the threaded_engine_yield/1 built-in pred-
icate to make the task results available for consumption using the threaded_engine_next/2 and
threaded_engine_next_reified/2 built-in predicates. Blocking semantics are used by these two predi-
cates: the threaded_engine_yield/1 predicate blocks until the returned solution is consumed while the
threaded_engine_next/2 predicate blocks until a solution becomes available.

1.11.8 Multi-threading performance

The performance of multi-threading applications is highly dependent on the backend Prolog compiler, on the
operating-system, and on the use of dynamic binding and dynamic predicates. All compatible backend Prolog
compilers that support multi-threading features make use of POSIX threads or pthreads. The performance of
the underlying pthreads implementation can exhibit significant differences between operating systems. An
important point is synchronized access to dynamic predicates. As different threads may try to simultaneously
access and update dynamic predicates, these operations may used a lock-free algorithm or be protected by a
lock, usually implemented using a mutex. In the latter case, poor mutex lock operating-system performance,
combined with a large number of collisions by several threads trying to acquire the same lock, can result
in severe performance penalties. Thus, whenever possible, avoid using dynamic predicates and dynamic
binding.

1.12 Error handling

Error handling is accomplished in Logtalk by using the standard catch/3 and throw/1 predicates [ISO95]
together with a set of built-in methods that simplify generating errors decorated with expected context.

Errors thrown by Logtalk have, whenever possible, the following format:

error(Error, logtalk(Goal, ExecutionContext))

In this exception term, Goal is the goal that triggered the error Error and ExecutionContext is the context
in which Goal is called. For example:

error(
permission_error(modify,private_predicate,p),
logtalk(foo::abolish(p/0), _)

)

Note, however, that Goal and ExecutionContext can be unbound or only partially instantiated when the
corresponding information is not available (e.g. due to compiler optimizations that throw away the necessary
error context information). The ExecutionContext argument is an opaque term that can be decoded using
the logtalk::execution_context/7 predicate.

78 Chapter 1. User Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0-execution-context-7

The Logtalk Handbook, Release v3.34.0

1.12.1 Generating errors

The error handling section in the reference manual lists a set of convenient built-in methods that generate
error/2 exception terms with the expected context argument. For example, instead of manually constructing
a type error as in:

...,
context(Context),
throw(error(type_error(atom, 42), Context)).

we can simply type:

...,
type_error(atom, 42).

The provided error built-in methods cover all standard error types as notably found in the ISO Prolog Core
standard.

1.12.2 Type-checking

One of the most common case where errors may be generated is when type-checking predicate arguments
and input data before processing it. The standard library includes a type object that defines an extensive set
of types, together with predicates for validating and checking terms. The set of types is user extensible and
new types can be defined by adding clauses for the type/1 and check/2 multifile predicates. For example,
assume that we want to be able to check temperatures expressed in Celsius, Fahrenheit, or Kelvin scales. We
start by declaring (in an object or category) the new type:

:- multifile(type::type/1).
type::type(temperature(_Unit)).

Next, we need to define the actual code that would verify that a temperature is valid. As the different scales
use a different value for absolute zero, we can write:

:- multifile(type::check/2).
type::check(temperature(Unit), Term) :-

check_temperature(Unit, Term).

% given that temperature has only a lower bound, we make use of the library
% property/2 type to define the necessary test expression for each unit
check_temperature(celsius, Term) :-

type::check(property(float, [Temperature]>>(Temperature >= -273.15)), Term).
check_temperature(fahrenheit, Term) :-

type::check(property(float, [Temperature]>>(Temperature >= -459.67)), Term).
check_temperature(kelvin, Term) :-

type::check(property(float, [Temperature]>>(Temperature >= 0.0)), Term).

With this definition, a term is first checked that it is a float value before checking that it is in the expected
open interval. But how do we use this new type? If we want just to test if a temperature is valid, we can
write:

..., type::valid(temperature(celsius), 42.0), ...

The type::valid/2 predicate succeeds or fails depending on the second argument being of the type specified
in the first argument. If instead of success or failure we want to generate an error for invalid values, we can
use the type::check/2 predicate instead:

1.12. Error handling 79

https://logtalk.org/library/type_0.html#type-0
https://logtalk.org/library/type_0.html#type-0-valid-2
https://logtalk.org/library/type_0.html#type-0-check-2

The Logtalk Handbook, Release v3.34.0

..., type::check(temperature(celsius), 42.0), ...

If we require an error/2 exception term with the error context, we can use instead the type::check/3 predi-
cate:

...,
context(Context),
type::check(temperature(celsius), 42.0, Context),
...

Note that context/1 calls are inlined and messages to the library type object use static binding when com-
piling with the optimize flag turned on, thus enabling efficient type-checking.

1.12.3 Compiler warnings and errors

The current Logtalk compiler uses the standard read_term/3 built-in predicate to read and compile a Logtalk
source file. This improves the compatibility with backend Prolog compilers and their proprietary syntax
extensions and standard compliance quirks. But one consequence of this design choice is that invalid Prolog
terms or syntax errors may abort the compilation process with limited information given to the user (due to
the inherent limitations of the read_term/3 predicate).

Assuming that all the terms in a source file are valid, there is a set of errors and potential errors, described
below, that the compiler will try to detect and report, depending on the used compiler flags (see the Compiler
flags section of this manual on lint flags for details).

Unknown entities

The Logtalk compiler warns about any referenced entity that is not currently loaded. The warning may
reveal a misspell entity name or just an entity that it will be loaded later. Out-of-oder loading should be
avoided when possible as it prevents some code optimizations such as static binding of messages to methods.

Singleton variables

Singleton variables in a clause are often misspell variables and, as such, one of the most common errors
when programming in Prolog. Assuming that the backend Prolog compiler implementation of the read_term/
3 predicate supports the standard singletons/1 option, the compiler warns about any singleton variable
found while compiling a source file.

Redefinition of Prolog built-in predicates

The Logtalk compiler will warn us of any redefinition of a Prolog built-in predicate inside an object or
category. Sometimes the redefinition is intended. In other cases, the user may not be aware that a particular
backend Prolog compiler may already provide the predicate as a built-in predicate or may want to ensure
code portability among several Prolog compilers with different sets of built-in predicates.

80 Chapter 1. User Manual

https://logtalk.org/library/type_0.html#type-0-check-3

The Logtalk Handbook, Release v3.34.0

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn us if we try to redefine
a Logtalk built-in. But the redefinition will probably be an error in most (if not all) cases.

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in method inside an entity. The default
behavior is to report the error and abort the compilation of the offending entity.

Misspell calls of local predicates

A warning will be reported if Logtalk finds (in the body of a predicate definition) a call to a local predicate
that is not defined, built-in (either in Prolog or in Logtalk) or declared dynamic. In most cases these calls are
simple misspell errors.

Portability warnings

A warning will be reported if a predicate clause contains a call to a non-standard built-in predicate or
arithmetic function, Portability warnings are also reported for non-standard flags or flag values. These
warnings often cannot be avoided due to the limited scope of the ISO Prolog standard.

Deprecated elements

A warning will be reported if a deprecated directive, control construct, or predicate is used. These warnings
should be fixed as soon as possible as support for any deprecated features will likely be discontinued in
future versions.

Missing directives

A warning will be reported for any missing dynamic, discontiguous, meta-predicate, and public predicate
directive.

Duplicated directives

A warning will be reported for any duplicated scope, multifile, dynamic, discontiguous, meta-predicate, and
meta-non-terminal directives. Note that conflicting directives for the same predicate are handled as errors,
not as duplicated directive warnings.

Duplicated clauses

A warning will be reported for any duplicated entity clauses. This check is computationally heavy, however,
and usually turned off by default.

1.12. Error handling 81

The Logtalk Handbook, Release v3.34.0

Goals that are always true or false

A warning will be reported for any goal that is always true or false. This is usually caused by typos in the
code. For example, writing X == y instead of X == Y.

Trivial fails

A warning will be reported for any call to a local static predicate with no matching clause.

Suspicious calls

A warning will be reported for calls that are syntactically correct but most likely a semantic error. An example
is ::/1 calls in clauses that apparently are meant to implement recursive predicate definitions where the user
intention is to call the local predicate definition.

Lambda variables

A warning will be reported for lambda expressions with unclassified variables (not listed as either lambda free
or lambda parameter variables), for variables playing a dual role (as both lambda free and lambda parameter
variables), and for lambda parameters used elsewhere in a clause.

Redefinition of predicates declared in uses/2 or use_module/2 directives

A error will be reported for any attempt to define locally a predicate that is already declared in an uses/2 or
use_module/2 directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause or a directive that cannot be parsed.
The default behavior is to report the error and abort the compilation.

1.12.4 Runtime errors

This section briefly describes runtime errors that result from misuse of Logtalk built-in predicates, built-in
methods or from message sending. For a complete and detailed description of runtime errors please consult
the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates checks the type and mode of the calling arguments, throwing an exception
in case of misuse.

82 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Logtalk built-in methods

Most Logtalk built-in method checks the type and mode of the calling arguments, throwing an exception in
case of misuse.

Message sending

The message sending mechanisms always check if the receiver of a message is a defined object and if the
message corresponds to a declared predicate within the scope of the sender. The built-in protocol forwarding
declares a predicate, forward/1, which is automatically called (if defined) by the runtime for any message
that the receiving object does not understand. The usual definition for this error handler is to delegate or
forward the message to another object that might be able to answer it:

forward(Message) :-
% forward the message while preserving the sender
[Object::Message].

If preserving the original sender is not required, this definition can be simplified to:

forward(Message) :-
Object::Message.

More sophisticated definitions are, of course, possible.

1.13 Reflection

Logtalk provides support for both structural and behavioral reflection. Structural reflection supports compu-
tations over an application structure while behavioral reflection computations over what an application does
while running.

1.13.1 Structural reflection

Structural reflection allows querying the properties of objects, categories, protocols, and predicates. It is
materialized by an API that is used by all the developer tools, which are regular applications. This API
provides two views on the structure of an application: a transparent-box view and a black-box view, described
next.

Transparent-box view

The transparent-box view provides a structural view of the contents and properties of entities, predicates,
and source files akin to accessing the corresponding source code.

For entities, built-in predicates are provided for enumerating entities, enumerating entity properties (including
entity declared, defined, called, and updated predicates), and enumerating entity relations. For a detailed
description of the supported entity properties, see the sections on object properties, protocol properties, and
category properties. For examples of querying entity relations, see the sections on object relations, protocol
relations, and category relations.

The logtalk built-in object provides predicates for querying loaded source files and their properties.

1.13. Reflection 83

https://logtalk.org/library/forwarding_0.html#forwarding-0
https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

Black-box view

The black-box view provides a view that respects entity encapsulation and thus only allow querying predi-
cates and operators that are within scope of the entity calling the reflection methods.

Built-in methods are provided for querying the predicates that are declared and can be called or used as
messages and for querying the predicate properties. It is also possible to enumerate entity operators. See the
sections on finding declared predicates and on predicate properties for more details.

1.13.2 Behavioral reflection

Behavioral reflection provides insight on what an application does when running. Specifically, by observing
and acting on the messages being exchanged between objects. See the section on event-driven programming
for details. In addition, the logtalk built-in object provides predicates for handling debug events.

For use in debugging tools, there is also a small reflection API providing trace and debug event predicates.

1.14 Writing and running applications

1.14.1 Writing applications

For a successful programming in Logtalk, you need a good working knowledge of Prolog and an understand-
ing of the principles of object-oriented programming. Most guidelines for writing good Prolog code apply as
well to Logtalk programming. To those guidelines, you should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk is that it enable us to use the currently available object-
oriented methodologies, tools, and metrics [Champaux92] in logic programming. That said, writing appli-
cations in Logtalk is similar to writing applications in Prolog: we define new predicates describing what is
true about our domain objects, about our problem solution. We encapsulate our predicate directives and
definitions inside new objects, categories, and protocols that we create by hand with a text editor or by using
the Logtalk built-in predicates. Some of the information collected during the analysis and design phases
can be integrated in the objects, categories and protocols that we define by using the available entity and
predicate documenting directives.

Source files

Logtalk source files may define any number of entities (objects, categories, or protocols). Source files may
also contain Prolog code interleaved with Logtalk entity definitions. Plain Prolog code is usually copied
as-is to the corresponding Prolog output file (except, of course, if subject to the term-expansion mechanism).
Prolog modules are compiled as objects. The following Prolog directives are processed when read (thus
affecting the compilation of the source code that follows): ensure_loaded/1, use_module/1-2, op/3, and
set_prolog_flag/2. The initialization/1 Prolog directive may be used for defining an initialization goal
to be executed when loading a source file. Most calls to Logtalk built-in predicates from file initialization/
1 directives are compiled for better performance.

Logtalk source files can include the text of other files by using the include/1 directive. Although there is also
a standard Prolog include/1 directive, any occurrences of this directive in a Logtalk source file is handled by
the Logtalk compiler, not by the backend Prolog compiler.

84 Chapter 1. User Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

Multi-pass compiler

Logtalk is currently implemented using a multi-pass compiler. In comparison, some Prolog systems use a
multi-pass compiler while others use a single-pass compiler. While there are pros and cons with each solution,
the most relevant consequence in this context is for the content of source files. In Logtalk, entities and
predicates only become available (for the runtime system) after the source file is fully compiled and loaded.
This may prevent some compiler optimizations, notably static binding, if some of the referred entities are
defined in the same source file. On the other hand, the order of predicate directives and predicate definitions
is irrelevant. In contrast, in a system implemented using a single-pass compiler, the order of the source file
terms can and often is significant for proper and succesful compilation. In these systems, predicates may
become available for calling as soon as they are compiled even if the remaining of the source file is yet to be
compiled. When writing a Logtalk source file the following advice applies:

• When practical and when performance is critical, define each entity on its own source file.

• Source file loading order can impact performance (e.g. if an object imports a category defined in a
source file loaded after the object source file, no static binding optimizations will be possible).

• File directives that result in the compilation and loading of other source files (e.g. libraries) should
preferably be written in the application loader file to ensure the availability of the entities they define
when compiling the application source files.

Naming conventions

If you prefer to define each entity in its own source file, then it is recommended that the source file be
named after the entity identifier. For parametric objects, the identifier arity can be appended to the identifier
functor. By default, all Logtalk source files use the extension .lgt but this is optional and can be set in the
adapter files. Intermediate Prolog source files (generated by the Logtalk compiler) have, by default, a _lgt
suffix and a .pl extension. Again, this can be set to match the needs of a particular Prolog compiler in the
corresponding adapter file. For example, we may define an object named vehicle and save it in a vehicle.
lgt source file that will be compiled to a vehicle_lgt.pl Prolog file. If we have a sort(_) parametric object
we can save it on a sort_1.lgt source file that will be compiled to a sort_1_lgt.pl Prolog file. This name
scheme helps avoid file name conflicts (remember that all Logtalk entities share the same namespace). To
further prevent file name conflicts, specially when embedding applications, and depending on the backend
compiler, the names of the intermediate Prolog files may include a directory hash.

Source file text encoding

The text encoding used in a source file may be declared using the encoding/1 directive when running Logtalk
with backend Prolog compilers that support multiple encodings (check the encoding_directive flag in the
adapter file of your Prolog compiler).

Portable applications

Logtalk is compatible with most modern standards compliant Prolog compilers. However, this does not
necessarily imply that your Logtalk applications will have the same level of portability. If possible, you
should only use in your applications Logtalk built-in predicates and ISO Prolog specified built-in predicates
and arithmetic functions. If you need to use built-in predicates (or built-in arithmetic functions) that may
not be available in other Prolog compilers, you should try to encapsulate the non-portable code in a small
number of objects and provide a portable interface for that code through the use of Logtalk protocols. An
example will be code that access operating-system specific features. The Logtalk compiler can warn you of
the use of non-ISO specified built-in predicates and arithmetic functions by using the portability compiler
flag.

1.14. Writing and running applications 85

The Logtalk Handbook, Release v3.34.0

Conditional compilation

Logtalk supports conditional compilation within source files using the if/1, elif/1, else/0, and endif/0 direc-
tives. This support is similar to the support found in several Prolog systems such as ECLiPSe, GNU Prolog,
SICStus Prolog, SWI-Prolog, XSB, and YAP.

Avoiding common errors

Try to write objects and protocol documentation before writing any other code; if you are having trouble
documenting a predicate perhaps we need to go back to the design stage.

Try to avoid lengthy hierarchies. Composition is often a better choice over inheritance for defining new ob-
jects (Logtalk supports component-based programming through the use of categories). In addition, prototype-
based hierarchies are semantically simpler than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we should always try to minimize the
use of non-logical features such as asserts and retracts.

Since each Logtalk entity is independently compiled, if an object inherits a dynamic or a meta-predicate
predicate, then the respective directives must be repeated to ensure a correct compilation.

In general, Logtalk does not verify if a user predicate call/return arguments comply with the declared modes.
On the other hand, Logtalk built-in predicates, built-in methods, and message sending control structures are
fully checked for calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the chosen Prolog compiler. For instance,
the error terms that are generated by some Logtalk built-in predicates assume that the Prolog built-in predi-
cates behave as defined in the ISO standard regarding error conditions. In particular, if your Prolog compiler
does not support a read_term/3 built-in predicate compliant with the ISO Prolog Standard definition, then
the current version of the Logtalk compiler may not be able to detect misspell variables in your source code.

Coding style guidelines

It is suggested that all code between an entity opening and closing directives be indented by one tab stop.
When defining entity code, both directives and predicates, Prolog coding style guidelines may be applied.
All Logtalk source files, examples, and standard library entities use tabs (the recommended setting is a tab
width equivalent to 4 spaces) for laying out code. Closed related entities can be defined in the same source
file. However, for best performance, is often necessary to have an entity per source file. Entities that might
be useful in different contexts (such as library entities) are best defined in their own source files.

A detailed coding style guide is available at the Logtalk official website.

1.14.2 Compiling and running applications

We run Logtalk inside a normal Prolog session, after loading the necessary files. Logtalk extends but does
not modify your Prolog compiler. We can freely mix Prolog queries with the sending of messages and our
applications can be made of both normal Prolog clauses and object definitions.

86 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Starting Logtalk

Depending on your Logtalk installation, you may use a script or a shortcut to start Logtalk with your chosen
Prolog compiler. On POSIX operating systems, the scripts should be available from the command-line; scripts
are named upon the used backend Prolog compilers. On Windows, the shortcuts should be available from
the Start Menu.

If no scripts or shortcuts are available for your installation, operating-system, or Prolog compiler, you can
always start a Logtalk session by performing the following steps:

1. Start your Prolog compiler.

2. Load the appropriate adapter file for your compiler. Adapter files for most common Prolog compilers
can be found in the adapters subdirectory.

3. Load the library paths file corresponding to your Logtalk installation contained in the paths subdirec-
tory.

4. Load the Logtalk compiler/runtime files contained in the core subdirectory.

Note that the adapter files, compiler/runtime files, and library paths file are Prolog source files. The predicate
called to load (and compile) them depends on your Prolog compiler. In case of doubt, consult your Prolog
compiler reference manual or take a look at the definition of the predicate '$lgt_load_prolog_code'/3 in
the corresponding adapter file.

Most Prolog compilers support automatic loading of an initialization file, which can include the necessary
directives to load both the Prolog adapter file and the Logtalk compiler. This feature, when available, allows
automatic loading of Logtalk when you start your Prolog compiler.

Compiling and loading your applications

Your applications will be made of source files containing your objects, protocols, and categories. The source
files can be compiled to disk by calling the logtalk_compile/1 built-in predicate:

| ?- logtalk_compile([source_file1, source_file2, ...]).

This predicate runs the compiler on each file and, if no fatal errors are found, outputs Prolog source files that
can then be consulted or compiled in the usual way by your Prolog compiler.

To compile to disk and also load into memory the source files we can use the logtalk_load/1 built-in predicate:

| ?- logtalk_load([source_file1, source_file2, ...]).

This predicate works in the same way of the predicate logtalk_compile/1 but also loads the compiled files
into memory.

Both predicates expect a source file name or a list of source file names as an argument. The Logtalk source
file name extension, as defined in the adapter file (by default, .lgt), can be omitted.

If you have more than a few source files then you may want to use a loader helper file containing the calls
to the logtalk_load/1-2 predicates. Consulting or compiling the loader file will then compile and load all
your Logtalk entities into memory (see below for details).

With most backend Prolog compilers, you can use the shorthands {File} for logtalk_load(File) and {File1,
File2, ...} for logtalk_load([File1, File2, ...]). The use these shorthands should be restricted to the
Logtalk/Prolog top-level interpreter as they are not part of the language specification and may be commented
out in case of conflicts with backend Prolog compiler features.

1.14. Writing and running applications 87

The Logtalk Handbook, Release v3.34.0

The built-in predicate logtalk_make/0 can be used to reload all modified source files. Files are also reloaded
when the compilation mode changes. For example, assume that you have loaded your application files and
found a bug. You can easily recompile the files in debug mode by using the queries:

| ?- set_logtalk_flag(debug, on).
...

| ?- logtalk_make.
...

After debugging and fixing the bugs, you can reload the files in normal (or optimized) mode by turning the
debug flag off and calling the logtalk_make/0 predicate again. With most backend Prolog compilers, you can
also use the {*} top-level shortcut.

An extended version of this predicate, logtalk_make/1, accepts multiple targets including all, clean, check,
circular, documentation, and caches. See the Reference Manual for a complete list of targets and top-level
shortcuts. In particular, the logtalk_make(clean) goal can be specially useful before switching backend
Prolog compilers as the generated intermediate files may not be compatible. The logtalk_make(caches)
goal is usually used when benchmarking compiler performance improvements.

Loader files

Most examples directories contain a Logtalk utility file that can be used to load all included source files.
These loader files are usually named loader.lgt or contain the word “loader” in their name. Loader files
are ordinary source file and thus compiled and loaded like any source file. For an example loader file named
loader.lgt we would type:

| ?- logtalk_load(loader).

Usually these files contain a call to the built-in predicates set_logtalk_flag/2 (e.g. for setting global, project-
specific, flag values) and logtalk_load/1 or logtalk_load/2 (for loading project files), wrapped inside a Prolog
initialization/1 directive. For instance, if your code is split in three Logtalk source files named source1.
lgt, source2.lgt, and source3.lgt, then the contents of your loader file could be:

:- initialization((
% set project-specific global flags
set_logtalk_flag(events, allow),
% load the project source files
logtalk_load([source1, source2, source3])

)).

Another example of directives that are often used in a loader file would be op/3 directives declaring global
operators needed by your application. Loader files are also often used for setting source file-specific compiler
flags (this is useful even when you only have a single source file if you always load it with using the same
set of compiler flags). For example:

:- initialization((
% set project-specific global flags
set_logtalk_flag(underscore_variables, dont_care),
set_logtalk_flag(source_data, off),
% load the project source files
logtalk_load(

[source1, source2, source3],
% source file-specific flags
[portability(warning)]),

logtalk_load(
(continues on next page)

88 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

[source4, source5],
% source file-specific flags
[portability(silent)])

)).

To take the best advantage of loader files, define a clause for the multifile and dynamic
logtalk_library_path/2 predicate for the directory containing your source files as explained in the next
section.

A common mistake is to try to set compiler flags using logtalk_load/2 with a loader file. For example, by
writing:

| ?- logtalk_load(loader, [optimize(on)]).

This will not work as you might expect as the compiler flags will only be used in the compilation of the
loader.lgt file itself and will not affect the compilation of files loaded through the initialization/1 direc-
tive contained on the loader file.

Libraries of source files

Logtalk defines a library simply as a directory containing source files. Library locations can be specified by
defining or asserting clauses for the dynamic and multifile predicate logtalk_library_path/2. For example:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(shapes, '$LOGTALKUSER/examples/shapes/').

The first argument of the predicate is used as an alias for the path on the second argument. Library aliases
may also be used on the second argument. For example:

:- multifile(logtalk_library_path/2).
:- dynamic(logtalk_library_path/2).

logtalk_library_path(lgtuser, '$LOGTALKUSER/').
logtalk_library_path(examples, lgtuser('examples/')).
logtalk_library_path(viewpoints, examples('viewpoints/')).

This allows us to load a library source file without the need to first change the current working directory to
the library directory and then back to the original directory. For example, in order to load a loader.lgt file,
contained in a library named viewpoints, we just need to type:

| ?- logtalk_load(viewpoints(loader)).

The best way to take advantage of this feature is to load at startup a source file containing clauses for the
logtalk_library_path/2 predicate needed for all available libraries (typically, using a settings file). This
allows us to load library source files or entire libraries without worrying about libraries paths, improving
code portability. The directory paths on the second argument should always end with the path directory
separator character. Most backend Prolog compilers allows the use of environment variables in the second
argument of the logtalk_library_path/2 predicate. Use of POSIX relative paths (e.g. '../' or './') for
top-level library directories (e.g. lgtuser in the example above) is not advised as different backend Prolog
compilers may start with different initial working directories, which may result in portability problems of
your loader files.

1.14. Writing and running applications 89

The Logtalk Handbook, Release v3.34.0

This library notation provides functionality inspired by the file_search_path/2 mechanism introduced by
Quintus Prolog and later adopted by some other Prolog compilers.

Compiler linter

The compiler includes a linter that checks for a wide range of possible problems in source files. Notably,
the compiler checks for unknown entities, unknown predicates, undefined predicates (i.e. predicates that
are declared but not defined), missing directives (including missing dynamic/1 and meta_predicate/1 di-
rectives), redefined built-in predicates, calls to non-portable predicates, singleton variables, tautology and
falsehood goals (i.e. goals that are can be replaced by true or fail), and trivial fails (i.e. calls to predicates
with no match clauses). Some of the linter warnings are controlled by compiler flags. See the next section
for details.

Compiler flags

The logtalk_load/1 and logtalk_compile/1 always use the current set of default compiler flags as specified in
your settings file and the Logtalk adapter files or changed for the current session using the built-in predicate
set_logtalk_flag/2. Although the default flag values cover the usual cases, you may want to use a different
set of flag values while compiling or loading some of your Logtalk source files. This can be accomplished by
using the logtalk_load/2 or the logtalk_compile/2 built-in predicates. These two predicates accept a list of
options affecting how a Logtalk source file is compiled and loaded:

| ?- logtalk_compile(Files, Options).

or:

| ?- logtalk_load(Files, Options).

In fact, the logtalk_load/1 and logtalk_compile/1 predicates are just shortcuts to the extended versions
called with the default compiler flag values. The options are represented by a compound term where the
functor is the flag name and the sole argument is the flag value.

We may also change the default flag values from the ones loaded from the adapter file by using the
set_logtalk_flag/2 built-in predicate. For example:

| ?- set_logtalk_flag(unknown_entities, silent).

The current default flags values can be enumerated using the current_logtalk_flag/2 built-in predicate:

| ?- current_logtalk_flag(unknown_entities, Value).

Value = silent
yes

Logtalk also implements a set_logtalk_flag/2 directive, which can be used to set flags within a source file or
within an entity. For example:

% compile objects in this source file with event support
:- set_logtalk_flag(events, allow).

:- object(foo).

% compile this object with support
% for dynamic predicate declarations

(continues on next page)

90 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

:- set_logtalk_flag(dynamic_declarations, allow).
...

:- end_object.

...

Note that the scope of the set_logtalk_flag/2 directive is local to the entity or to the source file containing
it.

Note: Applications should never rely on default flag values for working properly. Whenever the compilation
of a source file or an entity requires a specific flag value, the flag should be set explicitly in the file, in the
entity, or in the loader file.

Version flags

version_data(Value) Read-only flag whose value is the compound term logtalk(Major,Minor,Patch,
Status). The first three arguments are integers and the last argument is an atom, possibly empty,
representing version status: aN for alpha versions, bN for beta versions, rcN for release candidates
(with N being a natural number), and stable for stable versions. The version_data flag is also a de
facto standard for Prolog compilers.

Lint flags

unknown_entities(Option) Controls the unknown entity warnings, resulting from loading an entity that
references some other entity that is not currently loaded. Possible option values are warning (the usual
default) and silent. Note that these warnings are not always avoidable, specially when using reflective
designs of class-based hierarchies.

unknown_predicates(Option) Defines the compiler behavior when calls to unknown predicates (or non-
terminals) are found. An unknown predicate is a called predicate that is neither locally declared or
defined. Possible option values are error, warning (the usual default), and silent (not recommended).

undefined_predicates(Option) Defines the compiler behavior when calls to declared but undefined pred-
icates (or non-terminals) are found. Note that calls to declared but undefined predicates (or non-
terminals) fail as per closed-world assumption. Possible option values are error, warning (the usual
default), and silent (not recommended).

steadfastness(Option) Controls warnings about possible non steadfast predicate definitions due to variable
aliasing at a clause head and a cut in the clause body. Possible option values are warning and silent
(the usual default due to the possibility of false positives).

portability(Option) Controls the non-ISO specified Prolog built-in predicate and non-ISO specified Prolog
built-in arithmetic function calls warnings plus use of non-standard Prolog flags and/or flag values.
Possible option values are warning and silent (the usual default).

missing_directives(Option) Controls the missing predicate directive warnings. Possible option values are
warning (the usual default) and silent (not recommended).

duplicated_directives(Option) Controls the duplicated predicate directive warnings. Possible option val-
ues are warning (the usual default) and silent (not recommended). Note that conflicting directives
for the same predicate are handled as errors, not as duplicated directive warnings.

1.14. Writing and running applications 91

The Logtalk Handbook, Release v3.34.0

trivial_goal_fails(Option) Controls the printing of warnings warnings for calls to local static predicates
with no matching clauses. Possible option values are warning (the usual default) and silent (not
recommended).

always_true_or_false_goals(Option) Controls the printing of warnings for goals that are always true or
false. Possible option values are warning (the usual default) and silent (not recommended).

lambda_variables(Option) Controls the printing of lambda variable related warnings. Possible option val-
ues are warning (the usual default) and silent (not recommended).

suspicious_calls(Option) Controls the printing of suspicious call warnings. Possible option values are
warning (the usual default) and silent (not recommended).

redefined_built_ins(Option) Controls the Logtalk and Prolog built-in predicate redefinition warnings.
Possible option values are warning (the usual default) and silent. Warnings about redefined Pro-
log built-in predicates are often the result of running a Logtalk application on several Prolog compilers
as each Prolog compiler defines its set of built-in predicates.

singleton_variables(Option) Controls the singleton variable warnings. Possible option values are warning
(the usual default) and silent (not recommended).

underscore_variables(Option) Controls the interpretation of variables that start with an underscore (ex-
cluding the anonymous variable) that occur once in a term as either don’t care variables or singleton
variables. Possible option values are dont_care and singletons (the usual default). Note that, depend-
ing on your Prolog compiler, the read_term/3 built-in predicate may report variables that start with an
underscore as singleton variables. There is no standard behavior, hence this option.

naming(Option) Controls warnings about entity, predicate, and variable names per official coding guidelines
(which advise using underscores for entity and predicate names and camel case for variable names).
Additionally, variable names should not differ only on case. Possible option values are warning and
silent (the usual default due to the current limitation to ASCII names and the computational cost of
the checks).

duplicated_clauses(Option) Controls warnings of duplicated entity clauses (and duplicated entity gram-
mar rules). Possible option values are warning and silent (the usual default due to the required heavy
computations). When the term-expansion mechanism is used and results in duplicated clauses, the
reported line numbers are for lines of the original clauses that were expanded.

Optional features compilation flags

complements(Option) Allows objects to be compiled with support for complementing categories turned off
in order to improve performance and security. Possible option values are allow (allow complement-
ing categories to override local object predicate declarations and definitions), restrict (allow com-
plementing categories to add predicate declarations and definitions to an object but not to override
them), and deny (ignore complementing categories; the usual default). This option can be used on a
per-object basis. Note that changing this option is of no consequence for objects already compiled and
loaded.

dynamic_declarations(Option) Allows objects to be compiled with support for dynamic declaration of new
predicates turned off in order to improve performance and security. Possible option values are allow
and deny (the usual default). This option can be used on a per-object basis. Note that changing this
option is of no consequence for objects already compiled and loaded. This option is only checked
when sending an asserta/1 or assertz/1 message to an object. Local asserting of new predicates is
always allowed.

events(Option) Allows message sending calls to be compiled with or without event-driven programming
support. Possible option values are allow and deny (the usual default). Objects (and categories)
compiled with this option set to deny use optimized code for message-sending calls that does not

92 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

trigger events. As such, this option can be used on a per-object (or per-category) basis. Note that
changing this option is of no consequence for objects already compiled and loaded.

context_switching_calls(Option) Allows context switching calls (<</2) to be either allowed or denied.
Possible option values are allow and deny. The default flag vale is allow. Note that changing this
option is of no consequence for objects already compiled and loaded.

Backend Prolog compiler and loader flags

prolog_compiler(Flags) List of compiler flags for the generated Prolog files. The valid flags are specific to
the used Prolog backend compiler. The usual default is the empty list. These flags are passed to the
backend Prolog compiler built-in predicate that is responsible for compiling to disk a Prolog file. For
Prolog compilers that don’t provide separate predicates for compiling and loading a file, use instead
the prolog_loader flag.

prolog_loader(Flags) List of loader flags for the generated Prolog files. The valid flags are specific to
the used Prolog backend compiler. The usual default is the empty list. These flags are passed to the
backend Prolog compiler built-in predicate that is responsible for loading a (compiled) Prolog file.

Other flags

scratch_directory(Directory) Sets the directory to be used to store the temporary files generated when
compiling Logtalk source files. This directory can be specified using an atom or using library nota-
tion. The directory must always end with a slash. The default value is a sub-directory of the source
files directory, either './lgt_tmp/' or './.lgt_tmp/' (depending on the backend Prolog compiler and
operating-system). Relative directories must always start with './' due to the lack of a portable solu-
tion to check if a path is relative or absolute.

report(Option) Controls the default printing of messages. Possible option values are on (by usual default,
print all messages that are not intercepted by the user), warnings (only print warning and error mes-
sages that are not intercepted by the user), and off (do not print any messages that are not intercepted
by the user).

code_prefix(Character) Enables the definition of prefix for all functors of Prolog code generated by the
Logtalk compiler. The option value must be a single character atom. Its default value is '$'. Specifying
a code prefix provides a way to solve possible conflicts between Logtalk compiled code and other
Prolog code. In addition, some Prolog compilers automatically hide predicates whose functor start
with a specific prefix such as the character $. Although this is not a read-only flag, it should only
be changed at startup time and before loading any source files. When changing this flag (e.g. from
a settings file), restart with the clean flag turned on to ensure that any compiled files using the old
code_prefix value will be recompiled.

optimize(Option) Controls the compiler optimizations. Possible option values are on (used by default for
deployment) and off (used by default for development). Compiler optimizations include the use of
static binding whenever possible, the removal of redundant calls to true/0 from predicate clauses, the
removal of redundant unifications when compiling grammar rules, and inlining of predicate definitions
with a single clause that links to a local predicate, to a plain Prolog built-in (or foreign) predicate, or to
a Prolog module predicate with the same arguments. Care should be taken when developing applica-
tions with this flag turned on as changing and reloading a file may render static binding optimizations
invalid for code defining in other loaded files. Turning on this flag automatically turns off the debug
flag.

source_data(Option) Defines how much information is retained when compiling a source file. Possible
option values are on (the usual default for development) and off. With this flag set to on, Logtalk will
keep the information represented using documenting directives plus source location data (including

1.14. Writing and running applications 93

The Logtalk Handbook, Release v3.34.0

source file names and line numbers). This information can be retrieved using the reflection API and is
useful for documenting, debugging, and integration with third-party development tools. This flag can
be turned off in order to generate more compact code.

debug(Option) Controls the compilation of source files in debug mode (the Logtalk default debugger can
only be used with files compiled in this mode). Also controls, by default, printing of debug> and
debug(Topic) messages. Possible option values are on and off (the usual default). Turning on this flag
automatically turns off the optimize flag.

reload(Option) Defines the reloading behavior for source files. Possible option values are skip (skip load-
ing of already loaded files; this value can be used to get similar functionality to the Prolog directive
ensure_loaded/1 but should be used only with fully debugged code), changed (the usual default;
reload files only when they are changed since last loaded provided that the any explicit flags and the
compilation mode are the same as before), and always (always reload files).

relative_to(Directory) Defines a base directory for resolving relative source file paths. The default value
is the directory of the source file being compiled.

hook(Object) Allows the definition of an object (which can be the pseudo-object user) implementing the
expanding built-in protocol. The hook object must be compiled and loaded when this option is used.
It’s also possible to specify a Prolog module instead of a Logtalk object but the module must be pre-
loaded and its identifier must be different from any object identifier.

clean(Option) Controls cleaning of the intermediate Prolog files generated when compiling Logtalk source
files. Possible option values are off and on (the usual default). When turned on, this flag also forces re-
compilation of all source files, disregarding any existing intermediate files. Thus, it is strongly advised
to turn on this flag when switching backend Prolog compilers or changing flags such as code_prefix as
the intermediate files generated by the compilation of source files may not be portable (due to differ-
ences in the implementation of the standard write_canonical/2 predicate) or valid (due to changes to
the intermediate code format).

User-defined flags

Logtalk provides a create_logtalk_flag/3 predicate that can be used for defining new flags.

Reloading and smart compilation of source files

As a general rule, reloading source files should never occur in production code and should be handled with
care in development code. Reloading a Logtalk source file usually requires reloading the intermediate Prolog
file that is generated by the Logtalk compiler. The problem is that there is no standard behavior for reloading
Prolog files. For static predicates, almost all Prolog compilers replace the old definitions with the new ones.
However, for dynamic predicates, the behavior depends on the Prolog compiler. Most compilers replace
the old definitions but some of them simply append the new ones, which usually leads to trouble. See the
compatibility notes for the backend Prolog compiler you intend to use for more information. There is an
additional potential problem when using multi-threading programming. Reloading a threaded object does
not recreate from scratch its old message queue, which may still be in use (e.g. threads may be waiting on
it).

When using library entities and stable code, you can avoid reloading the corresponding source files (and,
therefore, recompiling them) by setting the reload compiler flag to skip. For code under development, you
can turn off the clean flag to avoid recompiling files that have not been modified since last compilation
(assuming that backend Prolog compiler that you are using supports retrieving of file modification dates).
You can disable deleting the intermediate files generated when compiling source files by changing the default
flag value in your settings file, by using the corresponding compiler flag with the compiling and loading built-
in predicates, or, for the remaining of a working session, by using the call:

94 Chapter 1. User Manual

https://logtalk.org/library/user_0.html#user-0
https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.34.0

| ?- set_logtalk_flag(clean, off).

Some caveats that you should be aware. First, some warnings that might be produced when compiling a
source file will not show up if the corresponding object file is up-to-date because the source file is not being
(re)compiled. Second, if you are using several Prolog compilers with Logtalk, be sure to perform the first
compilation of your source files with smart compilation turned off: the intermediate Prolog files generated
by the Logtalk compiler may be not compatible across Prolog compilers or even for the same Prolog compiler
across operating systems (e.g. due to the use of different character encodings or end-of-line characters).

Using Logtalk for batch processing

If you use Logtalk for batch processing, you probably want to turn off the report flag to suppress all messages
of type banner, comment, comment(_), warning, and warning(_) that are normally printed. Note that error
messages and messages providing information requested by the user will still be printed.

Optimizing performance

The default compiler flag settings are appropriated for the development but not necessarily for the deploy-
ment of applications. To minimize the generated code size, turn the source_data flag off. To optimize runtime
performance, turn on the optimize flag. Your chosen backend Prolog compiler may also provide performance
related flags; check its documentation.

Pay special attention to file compilation/loading order. Whenever possible, compile/load your files taking
into account file dependencies to enable static binding optimizations. The easiest way to find the dependen-
cies and thus the best compilation/loading order is to use the ../devtools/diagrams tool to generate a file
dependency diagram for your application.

Minimize the use of dynamic predicates. Parametric objects can often be used in alternative. When dynamic
predicates cannot be avoided, try to make them private. Declaring a dynamic predicate also as a private
predicate allows the compiler to optimize local calls to the database methods (e.g. assertz/1 and retract/1)
that modify the predicate.

Sending a message to self implies dynamic binding but there are often cases where ::/1 is misused to call
an imported or inherited predicate that is never going to be redefined in a descendant. In these cases,
a super call, ^^/1, can be used instead with the benefit of often enabling static binding. Most of the
guidelines for writing efficient Prolog code also apply to Logtalk code. In particular, define your predicates
to take advantage of first-argument indexing. In the case of recursive predicates, define them as tail-recursive
predicates whenever possible.

See the section on performance for a detailed discussion on Logtalk performance.

1.15 Printing messages and asking questions

Applications, components, and libraries often print all sorts of messages. These include banners, logging,
debugging, and computation results messages but also, in some cases, user interaction messages. However,
the authors of applications, components, and libraries often cannot anticipate the context where their soft-
ware will be used and thus decide which and when messages should be displayed, suppressed, or diverted.
Consider the different components in a Logtalk application development and deployment. At the base level,
you have the Logtalk compiler and runtime. The compiler writes messages related to e.g. compiling and
loading files, compiling entities, compilation warnings and errors. The runtime may write banner messages
or throw execution errors that may result in printing human-level messages. The development environment

1.15. Printing messages and asking questions 95

The Logtalk Handbook, Release v3.34.0

can be console-based or you may be using a GUI tool such as PDT. In the latter case, PDT needs to inter-
cept the Logtalk compiler and runtime messages to present the relevant information using its GUI. Then
you have all the other components in a typical application. For example, your own libraries and third-party
libraries. The libraries may want to print messages on its own, e.g. banners, debugging information, or
logging information. As you assemble all your application components, you want to have the final word on
which messages are printed, where, and when. Uncontrolled message printing by libraries could potentially
disturb application flow, expose implementation details, spam the user with irrelevant details, or break user
interfaces.

The solution is to decouple the calls to print a message from the actual printing of the output text. The same
is true for calls to read user input. By decoupling the call to input some data from the actual read of the
data, we can easily switched e.g. from a command-line interface to a GUI input dialog or even automate
providing the data (e.g. when automating testing of user interaction).

Logtalk provides a solution based on the structured message printing mechanism that was introduced by
Quintus Prolog, where it was apparently implemented by Dave Bowen (thanks to Richard O’Keefe for the
historical bits). This mechanism gives the programmer full control of message printing, allowing it to filter,
rewrite, or redirect any message. Variations of this mechanism can also be found in some Prolog systems
including SICStus Prolog, SWI-Prolog, and YAP. Based on this mechanism, Logtalk introduces an extension
that also allows abstracting asking a user for input. Both mechanisms are implemented by the logtalk built-
in object and described in this section. The message printing mechanism is extensively used by the Logtalk
compiler itself and by the developer tools. The question asking mechanism is used in the debugger tool.

1.15.1 Printing messages

The main predicate for printing a message is logtalk::print_message/3. A simple example, using the Logtalk
runtime is:

| ?- logtalk::print_message(banner, core, banner).

Logtalk 3.23.0
Copyright (c) 1998-2018 Paulo Moura
yes

The first argument of the predicate is the kind of message that we want to print. In this case, we use banner
to indicate that we are printing a product name and copyright banner. An extensive list of message kinds is
supported by default:

banner banner messages (used e.g. when loading tools or main application components; can be suppressed
by setting the report flag to warnings or off)

help messages printed in reply for the user asking for help (mostly for helping port existing Prolog code)

information and information(Group) messages usually printed in reply to a user request for information

silent and silent(Group) not printed by default (but can be intercepted using the message_hook/4 predi-
cate)

comment and comment(Group) useful but usually not essential messages (can be suppressed by setting the
report flag to warnings or off)

warning and warning(Group) warning messages (generated e.g. by the compiler; can be suppressed by
turning off the report flag)

error and error(Group) error messages (generated e.g. by the compiler)

debug, debug(Group) debugging messages (by default, only printed when the debug flag is turned on; these
messages are suppressed by the compiler when the optimize flag is turned on)

96 Chapter 1. User Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

question, question(Group) questions to a user

Using a compound term allows easy partitioning of messages of the same kind in different groups. Note
that you can define your own alternative message kind identifiers, for your own components, together with
suitable definitions for their associated prefixes and output streams.

The second argument of print_message/3 is new to Logtalk and represents the component defining the
message being printed. Here component is a generic term that can designate e.g a tool, a library, or some
sub-system in a large application. In our example, the component name is core, identifying the Logtalk
compiler/runtime. This argument was introduced to simplify programming-in-the-large by allowing easy
filtering of all messages from a specific component or library and also avoiding conflicts when two compo-
nents happen to define the same message term (e.g. banner). Users should choose and use a unique name
for a component, which usually is the name of the component itself. For example, all messages from the
lgtunit tool use lgtunit for the component argument. The compiler and runtime are interpreted as a single
component designated as core.

The third argument of print_message/3 is the message itself, represented by a term. In the above example,
the message term is banner. Using a term to represent a message instead of a string with the message text
itself have significant advantages. Notably, it allows using a compound term for easy parameterization of the
message text and simplifies machine-processing, localization of applications, and message interception. For
example:

| ?- logtalk::print_message(comment, core, redefining_entity(object, foo)).

% Redefining object foo
yes

1.15.2 Message tokenization

The advantages of using message terms require a solution for generating the actual messages text. This
is supported by defining grammar rules for the logtalk::message_tokens//2 multifile non-terminal, which
translates a message term, for a given component, to a list of tokens. For example:

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

logtalk::message_tokens(redefining_entity(Type, Entity), core) -->
['Redefining ~w ~q'-[Type, Entity], nl].

The following tokens can be used when translating a message:

at_same_line Signals a following part to a multi-part message with no line break in between; this token is
ignored when it’s not the first in the list of tokens

flush Flush the output stream (by calling the flush_output/1 standard predicate)

nl Change line in the output stream

Format-Arguments Format must be an atom and Arguments must be a list of format arguments (the token
arguments are passed to a call to the format/3 de facto standard predicate)

term(Term, Options) Term can be any term and Options must be a list of valid write_term/3 output options
(the token arguments are passed to a call to the write_term/3 standard predicate)

ansi(Attributes, Format, Arguments) Taken from SWI-Prolog; by default, do nothing; can be used for
styled output

begin(Kind, Var) Taken from SWI-Prolog; by default, do nothing; can be used together with end(Var) to
wrap a sequence of message tokens

1.15. Printing messages and asking questions 97

The Logtalk Handbook, Release v3.34.0

end(Var) Taken from SWI-Prolog; by default, do nothing

The logtalk object also defines public predicates for printing a list of tokens, for hooking into printing an
individual token, and for setting default output stream and message prefixes. For example, the SWI-Prolog
adapter file uses the print message token hook predicate to enable coloring of messages printed on a console.

1.15.3 Meta-messages

Define tokenization rules for every message is not always necessary, however. Logtalk defines several meta-
messages that are handy for simple cases and temporary messages only used to help developing, notably
debugging messages. See the Debugging messages section and the logtalk built-in object remarks section for
details.

1.15.4 Intercepting messages

Calls to the logtalk::print_message/3 predicate can be intercepted by defining clauses for the
logtalk::message_hook/4 multifile hook predicate. This predicate can suppress, rewrite, and divert messages.

As a first example, assume that you want to make Logtalk startup less verbose by suppressing printing of the
default compiler flag values. This can be easily accomplished by defining the following category in a settings
file:

:- category(my_terse_logtalk_startup_settings).

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(default_flags, comment(settings), core, _).

:- end_category.

The printing message mechanism automatically calls the message_hook/4 hook predicate. When this call
succeeds, the mechanism assumes that the message have been successfully handled.

As another example, assume that you want to print all otherwise silent compiler messages:

:- category(my_verbose_logtalk_message_settings).

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

logtalk::message_hook(_Message, silent, core, Tokens) :-
logtalk::message_prefix_stream(comment, core, Prefix, Stream),
logtalk::print_message_tokens(Stream, Prefix, Tokens).

logtalk::message_hook(_Message, silent(Key), core, Tokens) :-
logtalk::message_prefix_stream(comment(Key), core, Prefix, Stream),
logtalk::print_message_tokens(Stream, Prefix, Tokens).

:- end_category.

This example calls the logtalk::message_prefix_stream/4 hook predicate, which can be used to define a mes-
sage line prefix and an output stream for printing messages for a given component.

98 Chapter 1. User Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

1.15.5 Asking questions

Logtalk structured question asking mechanism complements the message printing mechanism. It provides an
abstraction for the common task of asking a user a question and reading back its reply. By default, this mech-
anism writes the question, writes a prompt, and reads the answer using the current user input and output
streams but allows all steps to be intercepted, filtered, rewritten, and redirected. Two typical examples are
using a GUI dialog for asking questions and automatically providing answers to specific questions.

The question asking mechanism works in tandem with the message printing mechanism, using it to print the
question text and a prompt. It provides an asking predicate and a hook predicate, both declared and defined
in the logtalk built-in object. The asking predicate, logtalk::ask_question/5, is used for ask a question and
read the answer. Assume that we defined the following message tokenization and question prompt and
stream:

:- category(hitchhikers_guide_to_the_galaxy).

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

% abstract the question text using the atom ultimate_question
% the second argument, hitchhikers, is the application component
logtalk::message_tokens(ultimate_question, hitchhikers) -->

['The answer to the ultimate question of life, the universe and everything is?'-[], nl].

:- multifile(logtalk::question_prompt_stream/4).
:- dynamic(logtalk::question_prompt_stream/4).

% the prompt is specified here instead of being part of the question text
% as it will be repeated if the answer doesn't satisfy the question closure
logtalk::question_prompt_stream(question, hitchhikers, '> ', user_input).

:- end_category.

After compiling and loading this category, we can now ask the ultimate question:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

The answer to the ultimate question of life, the universe and everything is?
> 42.

N = 42
yes

Note that the fourth argument, '=='(42) in our example, is a closure that is used to check the answers
provided by the user. The question is repeated until the goal constructed by extending the closure with the
user answer succeeds. For example:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).
The answer to the ultimate question of life, the universe and everything is?
> icecream.
> tea.
> 42.

N = 42
yes

Practical usage examples of this mechanism can be found e.g. in the debugger tool where it’s used to abstract
the user interaction when tracing a goal execution in debug mode.

1.15. Printing messages and asking questions 99

The Logtalk Handbook, Release v3.34.0

1.15.6 Intercepting questions

Calls to the logtalk::ask_question/5 predicate can be intercepted by defining clauses for the
logtalk::question_hook/6 multifile hook predicate. This predicate can suppress, rewrite, and divert ques-
tions. For example, assume that we want to automate testing and thus cannot rely on someone manually
providing answers:

:- category(hitchhikers_fixed_answers).

:- multifile(logtalk::question_hook/6).
:- dynamic(logtalk::question_hook/6).

logtalk::question_hook(ultimate_question, question, hitchhikers, _, _, 42).

:- end_category.

After compiling and loading this category, trying the question again will now skip asking the user:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(42), N).

N = 42
yes

In a practical case, the fixed answer would be used for followup goals being tested. The question answer
read loop (which calls the question check closure) is not used when a fixed answer is provided using the
logtalk::question_hook/6 predicate thus preventing the creation of endless loops. For example, the fol-
lowing query succeeds:

| ?- logtalk::ask_question(question, hitchhikers, ultimate_question, '=='(41), N).

N = 42
yes

Note that the logtalk::question_hook/6 predicate takes as argument the closure specified in the
logtalk::ask_question/5 call, allowing a fixed answer to be checked before being returned.

1.16 Term and goal expansion

Logtalk supports the term and goal expansion mechanism also found in some Prolog systems. This macro
mechanism is used to define source-to-source transformations. Two common uses are the definition of
language extensions and domain-specific languages.

1.16.1 Defining expansions

Term and goal expansions are defined using, respectively, the predicates term_expansion/2 and
goal_expansion/2, which are declared in the expanding built-in protocol. For example:

:- object(an_object,
implements(expanding)).

term_expansion(ping, pong).
term_expansion(

colors,

(continues on next page)

100 Chapter 1. User Manual

https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

[white, yellow, blue, green, read, black]
).

goal_expansion(a, b).
goal_expansion(b, c).
goal_expansion(X is Expression, true) :-

catch(X is Expression, _, fail).

:- end_object.

These predicates can be explicitly called using the expand_term/2 and expand_goal/2 built-in methods.

Clauses for the term_expansion/2 predicate are called until of them succeeds. The returned expansion can
be a single term or a list of terms. For example:

| ?- an_object::expand_term(ping, Term).

Term = pong
yes

| ?- an_object::expand_term(colors, Colors).

Colors = [white, yellow, blue, green, read, black]
yes

When no term_expansion/2 clause applies, the same term that we are trying to expand is returned:

| ?- an_object::expand_term(sounds, Sounds).

Sounds = sounds
yes

Clauses for the goal_expansion/2 predicate are recursively called on the expanded goal until a fixed point is
reached. For example:

| ?- an_object::expand_goal(a, Goal).

Goal = c
yes

| ?- an_object::expand_goal(X is 3+2*5, Goal).

X = 13,
Goal = true
yes

When no goal_expansion/2 clause applies, the same goal that we are trying to expand is returned:

| ?- an_object::expand_goal(3 =:= 5, Goal).

Goal = (3=:=5)
yes

The goal-expansion mechanism prevents an infinite loop when expanding a goal by checking that a goal
to be expanded does not resulted from a previous expansion of the same goal. For example, consider the
following object:

1.16. Term and goal expansion 101

The Logtalk Handbook, Release v3.34.0

:- object(fixed_point,
implements(expanding)).

goal_expansion(a, b).
goal_expansion(b, c).
goal_expansion(c, (a -> b; c)).

:- end_object.

The expansion of the goal a results in the goal (a -> b; c) with no attempt to further expand the a, b, and
c goals as they have already been expanded.

Term and goal expansion predicates can also be used when compiling a source file as described below.

1.16.2 Expanding grammar rules

A common term expansion is the translation of grammar rules into predicate clauses. This transformation
is performed automatically by the compiler when a source file entity defines grammar rules. It can also be
done explicitly by calling the expand_term/2 built-in method. For example:

| ?- logtalk::expand_term((a --> b, c), Clause).

Clause = (a(A,B) :- b(A,C), c(C,B))
yes

Note that the default translation of grammar rules can be overridden by defining clauses for the
term_expansion/2 predicate.

1.16.3 Hook objects

Term and goal expansion of a source file during its compilation is performed by using hook objects. A hook
object is simply an object implementing the expanding built-in protocol and defining clauses for the term
and goal expansion hook predicates.

To compile a source file using a hook object, we can use the hook compiler flag in the second argument of
the logtalk_compile/2 and logtalk_load/2 built-in predicates. For example:

| ?- logtalk_load(source_file, [hook(hook_object)]).
...

In alternative, we can use a set_logtalk_flag/2 directive in the source file itself. For example:

:- set_logtalk_flag(hook, hook_object).

It is also possible to define a default hook object by defining a global value for the hook flag by calling the
set_logtalk_flag/2 predicate. For example:

| ?- set_logtalk_flag(hook, hook_object).

yes

Note that, due to the set_logtalk_flag/2 directive being local to a source, file, using it to specify a hook
object will override any defined default hook object or any hook object specified as a logtalk_compile/2 or
logtalk_load/2 predicate compiler option for compiling or loading the source file.

102 Chapter 1. User Manual

https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.34.0

When compiling a source file, the compiler will first try the source file specific hook object, if defined. If that
fails, it tries the default hook object, if defined. If that also fails, the compiler tries the Prolog dialect specific
expansion predicate definitions if defined in the adapter file.

Note: Clauses for the term_expansion/2 and goal_expansion/2 predicates defined within an object or a
category are never used in the compilation of the object or the category itself.

When using a hook object to expand the terms of a source file, two virtual file terms are generated:
begin_of_file and end_of_file. These terms allow the user to define term-expansions before and after
the actual source file terms.

Logtalk also provides a logtalk_load_context/2 built-in predicate that can be used to access the compila-
tion/loading context when performing expansions. The logtalk built-in object also provides a set of predi-
cates that can be useful, notably when adding Logtalk support for languages extensions originally developed
for Prolog.

As an example of using the virtual terms and the logtalk_load_context/2 predicate, assume that you want
to convert plain Prolog files to Logtalk by wrapping the Prolog code in each file using an object (named after
the file) that implements a given protocol. This could be accomplished by defining the following hook object:

:- object(wrapper(_Protocol_),
implements(expanding)).

term_expansion(begin_of_file, (:- object(Name,implements(_Protocol_)))) :-
logtalk_load_context(file, File),
os::decompose_file_name(File,_ , Name, _).

term_expansion(end_of_file, (:- end_object)).

:- end_object.

Assuming e.g. my_car.pl and lease_car.pl files to be wrapped and a car_protocol protocol, we could then
load them using:

| ?- logtalk_load(
['my_car.pl', 'lease_car.pl'],
[hook(wrapper(car_protocol))]

).

yes

Note: When a source file also contains plain Prolog directives and predicates, these are term-expanded but
not goal-expanded.

1.16. Term and goal expansion 103

The Logtalk Handbook, Release v3.34.0

1.16.4 Bypassing expansions

Terms and goals wrapped by the {}/1 control construct are not expanded. For example:

| ?- an_object::expand_term({ping}, Term).

Term = {ping}
yes

| ?- an_object::expand_goal({a}, Goal).

Goal = {a}
yes

This also applies to source file terms and source file goals.

1.16.5 Combining multiple expansions

Sometimes we have multiple hook objects that we need to use in the compilation of a source file. The Logtalk
library includes support for two basic expansion workflows: a pipeline of hook objects, where the expansion
results from a hook object are feed to the next hook object in the pipeline, and a set of hook objects, where
expansions are tried until one of them succeeds. These workflows are implemented as parametric objects
allowing combining them to implement more sophisticated expansion workflows.

1.16.6 Using Prolog defined expansions

In order to use clauses for the term_expansion/2 and goal_expansion/2 predicates defined in plain Prolog,
simply specify the pseudo-object user as the hook object when compiling source files. When using backend
Prolog compilers that support a module system, it can also be specified a module containing clauses for the
expanding predicates as long as the module name doesn’t coincide with an object name. But note that
Prolog module libraries may provide definitions of the expansion predicates that are not compatible with
the Logtalk compiler. Specially when setting the hook object to user, be aware of any Prolog library that
is loaded, possibly by default or implicitly by the Prolog system, that may be contributing definitions of the
expansion predicates. It is usually safer to define a specific hook object for combining multiple expansions
in a fully controlled way.

Note: The user object declares term_expansion/2 and goal_expansion/2 as multifile and dynamic predi-
cates. This helps in avoiding predicate existence errors when compiling source files with the hook flag set to
user as these predicates are only natively declared in some of the supported backend Prolog compilers.

1.17 Documenting

Assuming that the source_data flag is turned on, the compiler saves all relevant documenting information
collected when compiling a source file. The provided ../devtools/lgtdoc tool can access this information by
using the reflection support and generate a documentation file for each compiled entity (object, protocol, or
category) in XML format. Contents of the XML file include the entity name, type, and compilation mode
(static or dynamic), the entity relations with other entities, and a description of any declared predicates
(name, compilation mode, scope, . . .). The XML documentation files can be enriched with arbitrary user-
defined information, either about an entity or about its predicates, by using the two directives described in

104 Chapter 1. User Manual

https://logtalk.org/library/hook_pipeline_1.html#hook-pipeline-1
https://logtalk.org/library/hook_set_1.html#hook-set-1

The Logtalk Handbook, Release v3.34.0

the next section. The lgtdoc tool includes POSIX and Windows scripts for converting the XML documentation
files to several final formats (such as HTML and PDF).

1.17.1 Documenting directives

Logtalk supports two documentation directives for providing arbitrary user-defined information about an
entity or a predicate. These two directives complement other directives that also provide important docu-
mentation information such as the mode/2 and meta_predicate/1 directives.

Entity directives

Arbitrary user-defined entity information can be represented using the info/1 directive:

:- info([
Key1 is Value1,
Key2 is Value2,
...

]).

In this pattern, keys should be atoms and values should be ground terms. The following keys are predefined
and may be processed specially by Logtalk tools:

comment Comment describing the entity purpose (an atom).

author Entity author(s) (an atom or a compound term {entity} where entity is the name of an XML entity
in a user defined custom.ent file).

version Version number (a number).

date Date of last modification (formatted as Year/Month/Day where Year, Month, and Day are integers).

parameters Parameter names and descriptions for parametric entities (a list of Name-Description pairs
where both names and descriptions are atoms).

parnames Parameter names for parametric entities (a list of atoms; a simpler version of the previous key,
used when parameter descriptions are deemed unnecessary).

copyright Copyright notice for the entity source code (an atom or a compound term {entity} where entity
is the name of an XML entity defined in a user defined custom.ent file).

license License terms for the entity source code; usually, just the license name (an atom or a compound
term {entity} where entity is the name of an XML entity in a user defined custom.ent file).

remarks List of general remarks about the entity using Topic-Text pairs where both the topic and the text
must be atoms.

see_also List of related entities (using the entity identifiers, which can be atoms or compound terms).

For example:

:- info([
version is 2.1,
author is 'Paulo Moura',
date is 2000/04/20,
comment is 'Building representation.',
diagram is 'UML Class Diagram #312'

]).

1.17. Documenting 105

The Logtalk Handbook, Release v3.34.0

Use only the keywords that make sense for your application and remember that you are free to invent your
own keywords. All key-value pairs can be retrieved programmatically using the reflection API and are visible
to the ../devtools/lgtdoc tool.

Predicate directives

Arbitrary user-defined predicate information can be represented using the info/2 directive:

:- info(Name/Arity, [
Key1 is Value1,
Key2 is Value2,
...

]).

The first argument can also a grammar rule non-terminal indicator, Name//Arity. Keys should be atoms and
values should be bound terms. The following keys are predefined and may be processed specially by Logtalk
tools:

comment Comment describing the predicate purpose (an atom).

arguments Names and descriptions of predicate arguments for pretty print output (a list of
Name-Description pairs where both names and descriptions are atoms).

argnames Names of predicate arguments for pretty print output (a list of atoms; a simpler version of the
previous key, used when argument descriptions are deemed unnecessary).

allocation Objects where we should define the predicate. Some possible values are container,
descendants, instances, classes, subclasses, and any.

redefinition Describes if predicate is expected to be redefined and, if so, in what way. Some possible values
are never, free, specialize, call_super_first, call_super_last.

exceptions List of possible exceptions throw by the predicate using Description-Exception pairs. The
description must be an atom. The exception term must be a ground term.

examples List of typical predicate call examples using the format Description-Goal-Bindings. The descrip-
tion must be an atom with the goal s sharing variables with the bindings. The variable bindings term
uses the format {Variable = Term, ...}. When there are no variable bindings, the success or failure
of the predicate call should be represented by the terms {yes} or {no}, respectively.

remarks List of general remarks about the predicate using Topic-Text pairs where both the topic and the
text must be atoms.

For example:

:- info(color/1, [
comment is 'Table of defined colors.',
argnames is ['Color'],
constraint is 'Up to four visible colors allowed.'

]).

As with the info/1 directive, use only the keywords that make sense for your application and remember that
you are free to invent your own keywords. All key-value pairs can also be retrieved programmatically using
the reflection API and are visible to the ../devtools/lgtdoc tool.

106 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.17.2 Processing and viewing documenting files

The ../devtools/lgtdoc tool generates an XML documenting file per entity. It can also generate library, direc-
tory, entity, and predicate indexes when documenting libraries and directories. For example, assuming the
default filename extensions, a trace object and a sort(_) parametric object will result in trace_0.xml and
sort_1.xml XML files.

Each entity XML file contains references to two other files, an XML specification file and a XSLT style-sheet
file. The XML specification file can be either a DTD file (logtalk_entity.dtd) or an XML Scheme file
(logtalk_entity.xsd). The XSLT style-sheet file is responsible for converting the XML files to some desired
format such as HTML or PDF. The default names for the XML specification file and the XSL style-sheet file
are defined by the ../devtools/lgtdoc tool but can be overridden by passing a list of options to the tool
predicates. The lgtdoc/xml sub-directory in the Logtalk installation directory contains the XML specification
files described above, along with several sample XSL style-sheet files and sample scripts for converting XML
documenting files to several formats (e.g. reStructuredText, Markdown, HTML, and PDF). See the NOTES file
in the tool directory for details. You may use the supplied sample files as a starting point for generating the
documentation of your Logtalk applications.

The Logtalk DTD file, logtalk_entity.dtd, contains a reference to a user-customizable file, custom.ent,
which declares XML entities for source code author names, license terms, and copyright string. After editing
the custom.ent file to reflect your personal data, you may use the XML entities on info/1 documenting
directives. For example, assuming that the XML entities are named author, license, and copyright we may
write:

:- info([
version is 1.1,
author is {author},
license is {license},
copyright is {copyright}

]).

The entity references are replaced by the value of the corresponding XML entity when the XML documenting
files are processed (not when they are generated; this notation is just a shortcut to take advantage of XML
entities).

The ../devtools/lgtdoc tool supports a set of options that can be used to control the generation of the XML
documentation files. See the tool documentation for details. There is also a ../devtools/doclet tool that
allows automating the steps required to generate the documentation for an application.

1.17.3 Inline formatting in comments text

Inline formatting in comments text can be accomplished by using Markdown (or reStructuredText) syntax
and converting XML documenting files to Markdown (or reStructuredText) files (and these, if required, to
e.g. HTML, ePub, or PDF formats).

1.17. Documenting 107

The Logtalk Handbook, Release v3.34.0

1.17.4 Diagrams

The ../devtools/diagrams tool supports a wide range of diagrams that can also help in documenting an
application. The generated diagrams can include URL links to both source code and API documentation.
They can also be linked, connecting for example high level diagrams to detail diagrams. These features allow
diagrams to be an effective solution for navigating and understanding the structure and implementation of
an application. This tool uses the same reflection API as the lgtdoc tool and thus have access to the same
source data. See the tool documentation for details.

1.18 Debugging

The Logtalk distribution includes a command-line ../devtools/debugger tool implemented as a Logtalk ap-
plication. It can be loaded by typing:

| ?- logtalk_load(debugger(loader)).

It can also be loaded automatically at startup time by using a settings file. This tool implements debugging
features similar to those found on most Prolog systems. There are some differences, however, between the
usual implementation of Prolog debuggers and the current implementation of the Logtalk debugger that you
should be aware. First, unlike most Prolog debuggers, the Logtalk debugger is not a built-in feature but
a regular Logtalk application using documented debugging hook predicates. This translates to a different,
although similar, set of debugging features when compared with some of the more sophisticated Prolog
debuggers. Second, debugging is only possible for entities compiled in debug mode. When compiling
an entity in debug mode, Logtalk decorates clauses with source information to allow tracing of the goal
execution. Third, implementation of spy points allows the user to specify the execution context for entering
the debugger. This feature is a consequence of the encapsulation of predicates inside objects.

1.18.1 Compiling source files in debug mode

Compilation of source files in debug mode is controlled by the debug compiler flag. The default value for this
flag, usually off, is defined in the adapter files. Its default value may be changed at runtime by calling:

| ?- set_logtalk_flag(debug, on).

In alternative, if we want to compile only some source files in debug mode, we may instead write:

| ?- logtalk_load([file1, file2, ...], [debug(on)]).

The logtalk_make/1 built-in predicate can also be used to recompile all loaded files (that were compiled
without using explicit values for the debug and optimize compiler flags in a logtalk_load/2 call or in a
loader file, if used) in debug mode:

| ?- logtalk_make(debug).

With most backend Prolog compilers, the {+d} top-level shortcut can also be used. After debugging, the files
can be recompiled in normal or optimized mode using, respectively, the {+n} or {+o} top-level shortcuts.

The clean compiler flag should be turned on whenever the debug flag is turned on at runtime. This is
necessary because debug code would not be generated for files previously compiled in normal mode if there
are no changes to the source files.

After loading the debugger, we may check (or enumerate by backtracking), all loaded entities compiled in
debug mode as follows:

108 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

| ?- debugger::debugging(Entity).

To compile only a specific entity in debug mode, use the set_logtalk_flag/2 directive inside the entity.

1.18.2 Procedure box model

Logtalk uses a procedure box model similar to those found on most Prolog compilers. The traditional Prolog
procedure box model defines four ports (call, exit, redo, and fail) for describing control flow when a predicate
clause is used during program execution:

call

predicate call
exit

success of a predicate call
redo

backtracking into a predicate
fail

failure of a predicate call

Logtalk, as found on some recent Prolog compilers, adds a port for dealing with exceptions thrown when
calling a predicate:

exception

predicate call throws an exception

In addition to the ports described above, Logtalk adds two more ports, fact and rule, which show the result
of the unification of a goal with, respectively, a fact and a rule head:

fact

unification success between a goal and a fact
rule

unification success between a goal and a rule head

Following Prolog tradition, the user may define for which ports the debugger should pause for user interac-
tion by specifying a list of leashed ports. For example:

| ?- debugger::leash([call, exit, fail]).

Alternatively, the user may use an atom abbreviation for a pre-defined set of ports. For example:

| ?- debugger::leash(loose).

The abbreviations defined in Logtalk are similar to those defined on some Prolog compilers:

none

1.18. Debugging 109

The Logtalk Handbook, Release v3.34.0

[]

loose

[fact, rule, call]

half

[fact, rule, call, redo]

tight

[fact, rule, call, redo, fail, exception]

full

[fact, rule, call, exit, redo, fail, exception]

By default, the debugger pauses at every port for user interaction.

1.18.3 Defining spy points

Logtalk spy points can be defined by simply stating which file line numbers or predicates should be spied,
as in most Prolog debuggers, or by fully specifying the context for activating a spy point. In the case of line
number spy points (also known as breakpoints), the line number must correspond to the first line of an entity
clause. To simplify the definition of line number spy points, these are specified using the entity identifier
instead of the file name (as all entities share a single namespace, an entity can only be defined in a single
file).

Defining line number and predicate spy points

Line number and predicate spy points are specified using the debugger spy/1 predicate. The argument can
be a breakpoint (expressed as a Entity-Line pair), a predicate indicator (Name/Arity), or a list of spy points.
For example:

| ?- debugger::spy(person-42).

Spy points set.
yes

| ?- debugger::spy(foo/2).

Spy points set.
yes

| ?- debugger::spy([foo/4, bar/1]).

Spy points set.
yes

Line numbers and predicate spy points can be removed by using the debugger nospy/1 predicate. The
argument can be a spy point, a list of spy points, or a non-instantiated variable in which case all spy points
will be removed. For example:

| ?- debugger::nospy(_).

All matching predicate spy points removed.
yes

110 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Defining context spy points

A context spy point is a tuple describing a message execution context and a goal:

(Sender, This, Self, Goal)

The debugger is evoked whenever the spy point goal and the specified execution context subsumes the goal
currently being executed and its execution context. The user may establish any number of context spy points
as necessary. For example, in order to call the debugger whenever a predicate defined on an object named
foo is called we may define the following spy point:

| ?- debugger::spy(_, foo, _, _).

Spy point set.
yes

For example, we can spy all calls to a foo/2 predicate with a bar atom in the second argument by setting the
condition:

| ?- debugger::spy(_, _, _, foo(_, bar)).

Spy point set.
yes

The debugger nospy/4 predicate may be used to remove all matching spy points. For example, the call:

| ?- debugger::nospy(_, _, foo, _).

All matching context spy points removed.
yes

will remove all context spy points where the value of self matches the atom foo.

Removing all spy points

We may remove all line number, predicate, and context spy points by using the debugger nospyall/0 predi-
cate:

| ?- debugger::nospyall.

All line number spy points removed.
All predicate spy points removed.
All context spy points removed.
yes

1.18.4 Tracing program execution

Logtalk allows tracing of execution for all objects compiled in debug mode. To start the debugger in trace
mode, write:

| ?- debugger::trace.

yes

1.18. Debugging 111

The Logtalk Handbook, Release v3.34.0

Next, type the query to be debugged. For examples, using the family example in the Logtalk distribution
compiled for debugging:

| ?- addams::sister(Sister, Sibling).
Call: (1) sister(_1082,_1104) ?
Rule: (1) sister(_1082,_1104) ?
Call: (2) ::female(_1082) ?
Call: (3) female(_1082) ?
Fact: (3) female(morticia) ?
*Exit: (3) female(morticia) ?
*Exit: (2) ::female(morticia) ?
...

While tracing, the debugger will pause for user input at each leashed port, printing an informative message.
Each trace line starts with the port, followed by the goal invocation number, followed by the goal. The
invocation numbers are unique and allows us to correlate the ports used for a goal. In the output above,
you can see for example that the goal ::female(_1082) succeeds with the answer ::female(morticia). The
debugger also provides determinism information by prefixing the exit port with a * character when a call
succeeds with choice-points pending, thus indicating that there might be alternative solutions for the goal.

Note that, when tracing, spy points will be ignored. Before the port number, when a spy point is set for the
current clause or goal, the debugger will print a # character for line number spy points, a + character for
predicate spy points, and a * character for context spy points. For example:

| ?- debugger::spy(female/2).

yes

| ?- addams::sister(Sister, Sibling).
Call: (1) sister(_1078,_1100) ?
Rule: (1) sister(_1078,_1100) ?
Call: (2) ::female(_1078) ?

+ Call: (3) female(_1078) ?

To stop tracing and turning off the debugger, write:

| ?- debugger::notrace.

yes

1.18.5 Debugging using spy points

Tracing a program execution may generate large amounts of debugging data. Debugging using spy points
allows the user to concentrate in specific points of the code. To start a debugging session using spy points,
write:

| ?- debugger::debug.

yes

For example, assuming the spy point we set in the previous section on the female/1 predicate:

| ?- addams::sister(Sister, Sibling).
+ Call: (3) female(_1078) ?

To stop the debugger, write:

112 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

| ?- debugger::nodebug.

yes

Note that stopping the debugger does not remove any defined spy points.

1.18.6 Debugging commands

The debugger pauses at leashed ports when tracing or when finding a spy point for user interaction. The
commands available are as follows:

c — creep go on; you may use the spacebar, return, or enter keys in alternative

l — leap continues execution until the next spy point is found

s — skip skips debugging for the current goal; valid at call, redo, and unification ports

q — quasi-skip skips debugging until returning to the current goal or reaching a spy point; valid at call and
redo ports

r — retry retries the current goal but side-effects are not undone; valid at the fail port

j — jump reads invocation number and continues execution until a port is reached for that number

z — zap reads port name and continues execution until that port is reached reads negated port name and
continues execution until a port other than the negated port is reached

i — ignore ignores goal, assumes that it succeeded; valid at call and redo ports

f — fail forces backtracking; may also be used to convert an exception into a failure

n — nodebug turns off debugging

@ — command; ! can be used in alternative reads and executes a query

b — break suspends execution and starts new interpreter; type end_of_file to terminate

a — abort returns to top level interpreter

Q — quit quits Logtalk

p — print writes current goal using the print/1 predicate if available

d — display writes current goal without using operator notation

w — write writes current goal quoting atoms if necessary

$ — dollar outputs the compiled form of the current goal (for low-level debugging)

x — context prints execution context

. — file prints file, entity, predicate, and line number information at an unification port

e — exception prints exception term thrown by the current goal

= — debugging prints debugging information

< — write depth sets the write term depth (set to 0 to reset)

* — add adds a context spy point for the current goal

/ — remove removes a context spy point for the current goal

+ — add adds a predicate spy point for the current goal

- — remove removes a predicate spy point for the current goal

1.18. Debugging 113

The Logtalk Handbook, Release v3.34.0

— add adds a line number spy point for the current clause

| — remove removes a line number spy point for the current clause

h — condensed help prints list of command options

? — extended help prints list of command options

1.18.7 Context-switching calls

Logtalk provides a control construct, <</2, which allows the execution of a query within the context of an
object. Common debugging uses include checking an object local predicates (e.g. predicates representing
internal dynamic state) and sending a message from within an object. This control construct may also be
used to write unit tests.

Consider the following toy example:

:- object(broken).

:- public(a/1).

a(A) :- b(A, B), c(B).
b(1, 2). b(2, 4). b(3, 6).
c(3).

:- end_object.

Something is wrong when we try the object public predicate, a/1:

| ?- broken::a(A).

no

For helping diagnosing the problem, instead of compiling the object in debug mode and doing a trace of the
query to check the clauses for the non-public predicates, we can instead simply type:

| ?- broken << c(C).

C = 3
yes

The <</2 control construct works by switching the execution context to the object in the first argument and
then compiling and executing the second argument within that context:

| ?- broken << (self(Self), sender(Sender), this(This)).

Self = broken
Sender = broken
This = broken

yes

As exemplified above, the <</2 control construct allows you to call an object local and private predicates.
However, it is important to stress that we are not bypassing or defeating an object predicate scope directives.
The calls take place within the context of the specified object, not within the context of the object making
the <</2 call. Thus, the <</2 control construct implements a form of execution-context switching.

The availability of the <</2 control construct is controlled by the context_switching_calls compiler flag (its
default value is defined in the adapter files of the backend Prolog compilers).

114 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.18.8 Debugging messages

Calls to the logtalk::print_message/3 predicate where the message kind is either debug or debug(Group) are
only printed, by default, when the debug flag is turned on. Moreover, these calls are suppressed by the
compiler when the optimize flag is turned on. Note that actual printing of debug messages does not require
compiling the code in debug mode, only turning on the debug flag.

Meta-messages

To avoid having to define message_tokens//2 grammar rules for translating each and every debug message,
Logtalk provides default tokenization for four meta-messages that cover the most common cases:

@Message By default, the message is printed as passed to the write/1 predicate followed by a newline.

Key-Value By default, the message is printed as Key: Value followed by a newline. The value is printed as
passed to the writeq/1 predicate.

List By default, the list items are printed indented one per line. The items are preceded by a dash and
printed as passed to the writeq/1 predicate.

Title::List By default, the title is printed followed by a newline and the indented list items, one per line.
The items are preceded by a dash and printed as passed to the writeq/1 predicate.

These print messages goals can always be combined with hooks as described in the previous section to
remove them in production ready code. Some simple examples of using these meta-messages:

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
yes

| ?- set_logtalk_flag(debug, on).
yes

| ?- logtalk::print_message(debug, core, @'Phase 1 completed').
>>> Phase 1 completed
yes

| ?- logtalk::print_message(debug, core, answer-42).
>>> answer: 42
yes

| ?- logtalk::print_message(debug, core, [arthur,ford,marvin]).
>>> - arthur
>>> - ford
>>> - marvin
yes

| ?- logtalk::print_message(debug, core, names::[arthur,ford,marvin]).
>>> names:
>>> - arthur
>>> - ford
>>> - marvin
yes

The >>> prefix is the default message prefix for debug messages. It can be redefined using the
logtalk::message_prefix_stream/4 hook predicate. For example:

:- multifile(logtalk::message_prefix_stream/4).
:- dynamic(logtalk::message_prefix_stream/4).

(continues on next page)

1.18. Debugging 115

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

logtalk::message_prefix_stream(debug, core, '(dbg) ', user_error).

Selective printing of debug messages

By default, all debug messages are either printed or skipped, depending on the debug and optimize flags.
When the code is not compiled in optimal mode, the ../devtools/debug_messages tool allows selectively
enabling of debug messages per component and per debug group. For example, to enable all debug and
debug(Group) messages for the parser component:

% upon loading the tool, all messages are disabled by default:
| ?- logtalk_load(debug_messages(loader)).
...

% enable both debug and debug(_) messages:
| ?- debug_messages::enable(parser).
yes

To enable only debug(tokenization) messages for the parser component:

% first disable any and all enabled messages:
| ?- debug_messages::disable(parser).
yes

% enable only debug(tokenization) messages:
| ?- debug_messages::enable(parser, tokenization).
yes

See the tool documentation for more details.

1.18.9 Using the term-expansion mechanism for debugging

Debugging messages only output information by default. These messages can, however, be intercepted
to perform other actions. An alternative is to use instead the term-expansion mechanism for conditional
compilation of debugging goals. For example, assuming a debug/1 predicate is used to wrap debug goals,
we can define a hook object containing the following definition for goal_expansion/2:

goal_expansion(debug(Goal), Goal).

When not debugging, we can use a second hook object to discard the debug/1 calls by defining the predicate
goal_expansion/2 as follows:

goal_expansion(debug(_), true).

The Logtalk compiler automatically removes any redundant calls to the built-in predicate true/0 when com-
piling entity predicates.

116 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.18.10 Ports profiling

The Logtalk distribution includes a ../devtools/ports_profiler tool based on the same procedure box model
described above. This tool is specially useful for debugging performance issues (e.g. due to lack of deter-
minism or unexpected backtracking). See the tool documentation for details.

1.18.11 Debug and trace events

The debugging API defines two multifile predicates, logtalk::trace_event/2 and logtalk::debug_handler/2 for
handiling trace and debug events. It also provides a logtalk::debug_handler_provider/1 multifile predicate
that allows an object (or a category) to declare itself as a debug handler provider. The Logtalk debugger
and ports_profiler tools are regular applications thar are implemented using this API, which can also be
used to implement alternative or new debugging related tools. See the API documentation for details and
the source code of the debugger and ports_profiler tools for usage examples.

1.19 Performance

Logtalk is implemented as a trans-compiler to Prolog. When compiling predicates, it preserves in the gener-
ated Prolog code all cases of first-argument indexing and tail-recursion. In practice, this mean that if you
know how to write efficient Prolog predicates, you already know how to write efficient Logtalk predicates.

The Logtalk compiler appends a hidden execution-context argument to all entity predicate clauses. In the
common case where a predicate makes no calls to the execution-context predicates and message-sending
control constructs and is neither a meta-predicate nor a coinductive predicate, the execution-context argu-
ment is simply passed between goals. In this case, with most backend Prolog virtual machines, the cost of
this extra argument is null or negligible. When the execution-context needs to be accessed (e.g. to fetch
the value of self for a ::/1 call) there may be a small inherent overhead due to the access to the individual
arguments of the compound term used to represent the execution-context.

1.19.1 Source code compilation modes

Source code can be compiled in optimal, normal, or debug mode, depending on the optimize and debug
compiler flags. Optimal mode is used when deploying an application while normal and debug modes are used
when developing an application. Compiling code in optimal mode enables several optimizations, notably
use of static binding whenever enough information is available at compile time. In debug mode, most
optimizations are turned off and the code is instrumented to generate debug events that enable tools such as
the command-line debugger and the ports profiler.

1.19.2 Local predicate calls

Local calls to object (or category) predicates have zero overhead in terms of number of inferences, as ex-
pected, compared with local Prolog calls.

1.19. Performance 117

https://logtalk.org/library/logtalk_0.html#logtalk-0-trace-event-2
https://logtalk.org/library/logtalk_0.html#logtalk-0-debug-handler-2
https://logtalk.org/library/logtalk_0.html#logtalk-0-debug-handler-provider-1

The Logtalk Handbook, Release v3.34.0

1.19.3 Calls to imported or inherited predicates

Assuming the optimize flag is turned on and a static predicate, ^^/1 calls have zero overhead in terms of
number of inferences.

1.19.4 Calls to module predicates

Local calls from an object (or category) to a module predicate have zero overhead (assuming both the module
and the predicate are bound at compile time).

1.19.5 Messages

Logtalk implements static binding and dynamic binding for message sending calls. For dynamic binding, a
caching mechanism is used by the runtime. It’s useful to measure the performance overhead in number of
inferences compared with plain Prolog and Prolog modules. The results for Logtalk 3.17.0 and later versions
are:

• Static binding: 0

• Dynamic binding (object bound at compile time): 1

• Dynamic binding (object bound at runtime time): 2

Static binding is the common case with libraries and most application code; it requires compiling code with
the optimize flag turned on. Dynamic binding numbers are after the first call (i.e. after the generalization of
the query is cached). All numbers with the events flag set to deny (setting this flag to allow adds an overhead
of 5 inferences to the results above; note that this flag can be defined in a per-object basis as needed instead
of globally and thus minimizing the performance impact).

The dynamic binding caches assume the used backend Prolog compiler does indexing of dynamic predicates.
This is a common feature of modern Prolog systems but the actual details vary from system to system and
may have an impact on dynamic binding performance.

Note that messages to self (::/1 calls) always use dynamic binding as the object that receives the message is
only know at runtime.

Messages sent from Prolog modules may use static binding depending on the used backend Prolog compiler
when the optimize flag is turned on. Consult the Prolog compiler adapter file notes for details.

1.19.6 Automatic expansion of built-in meta-predicates

The compiler always expands calls to the forall/2, once/1, and ignore/1 meta-predicates into equivalent
definitions using the negation and conditional control constructs. It also expands calls to the call/1-N,
phrase/2, and phrase/3 meta-predicates when the first argument is bound.

118 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

1.19.7 Inlining

When the optimize flag is turned on, the Logtalk compiler performs inlining of predicate calls whenever possi-
ble. This includes calls to Prolog predicates that are either built-in, foreign, or defined in a module (including
user). Inlining notably allows wrapping module or foreign predicates using an object without introducing
any overhead. In the specific case of the execution-context predicates, calls are inlined independently of the
optimize flag value.

1.19.8 Generated code simplification and optimizations

When the optimize flag is turned on, the Logtalk compiler simplifies and optimizes generated clauses (in-
cluding those resulting from the compilation of grammar rules), by flattening conjunctions, folding left
unifications (e.g. generated as a by-product of the compilation of grammar rules), and removing redundant
calls to true/0.

1.19.9 Size of the generated code

The size of the intermediate Prolog code generated by the compiler is proportional to the size of the source
code. Assuming that the term-expansion mechanism is not used, each predicate clause in the source code
is compiled into a single predicate clause. But the Logtalk compiler also generates internal tables for the
defined entities, for the entity relations, and for the declared and defined predicates. These tables enable
support for fundamental features such as inheritance and reflection. The size of these tables is proportional
to the number of entities, entity relations, and predicate declarations and definitions. When the source_data
is turned on (the default when developing an application), the generated code also includes additional data
about the source code such as entity and predicates positions in a source file. This data enables advanced
developer tool functionality but it is usually not required when deploying an application. Thus, turning this
flag off is a common setting for minimizing an application footprint.

1.19.10 Debug mode overhead

Code compiled in debug mode runs slower, as expected, when compared with normal or optimized mode.
The overhead depends on the number of debug events generated when running the application. A debug
event is simply a pass on a call or unification port of the procedure box model. These debug events can be
intercepted by defined clauses for the logtalk::trace_event/2 and logtalk::debug_handler/2 multifile predi-
cates. With no application (such as a debugger or a port profiler) loaded defining clauses for these predicates,
each goal have an overhead of four extra inferences due to the runtime checking for a definition of the hook
predicates and a meta-call of the user goal. The clause head unification events results in one or more in-
ferences per goal (depending on the number of clauses whose head unify with the goal and backtracking).
In practice, this overhead translates to code compiled in debug mode running typically ~2x to ~7x slower
than code compiled in normal or optimized mode depending on the application (the exact overhead is pro-
portional to the number of passes on the call and unification ports; deterministic code often results in a
relatively larger overhead when compared with code performing significant backtracking).

1.19. Performance 119

https://logtalk.org/library/logtalk_0.html#logtalk-0-trace-event-2
https://logtalk.org/library/logtalk_0.html#logtalk-0-debug-handler-2

The Logtalk Handbook, Release v3.34.0

1.19.11 Other considerations

One aspect of performance, that affects both Logtalk and Prolog code, is the characteristics of the Prolog VM.
The Logtalk distribution includes two examples, bench and benchmarks, to help evaluate performance with
specific backend Prolog systems. A table with benchmark results for a subset of the supported systems is also
available at the Logtalk website. But note that multiple factors affect the performance of an application and
the benchmark examples and their results only provide a partial assessment.

1.20 Installing Logtalk

This page provides an overview of Logtalk installation requirements and instructions and a description of the
files contained on the Logtalk distribution. For detailed, up-to-date installation and configuration instruc-
tions, please see the README.md, INSTALL.md, and CUSTOMIZE.md files distributed with Logtalk. The broad
compatibility of Logtalk, both with Prolog compilers and operating-systems, together with all the possible
user scenarios, means that installation can vary from very simple by running an installer or a couple of scripts
to the need of patching both Logtalk and Prolog compilers to workaround the lack of strong Prolog standards
or to cope with the requirements of less common operating-systems.

The preferred installation scenario is to have Logtalk installed in a system-wide location, thus available for
all users, and a local copy of user-modifiable files on each user home directory (even when you are the
single user of your computer). This scenario allows each user to independently customize Logtalk and to
freely modify the provided libraries and programming examples. Logtalk installers, installation shell scripts,
and Prolog integration scripts favor this installation scenario, although alternative installation scenarios are
always possible. The installers set two environment variables, LOGTALKHOME and LOGTALKUSER, pointing,
respectively, to the Logtalk installation folder and to the Logtalk user folder.

User applications should preferable be kept outside of the Logtalk user folder created by the installation
process, however, as updating Logtalk often results in updating the contents of this folder. If your applications
depend on customizations to the distribution files, backup those changes before updating Logtalk.

1.20.1 Hardware and software requirements

Computer and operating system

Logtalk is compatible with almost any computer/operating-system with a modern, standards compliant,
Prolog compiler available.

Prolog compiler

Logtalk requires a backend Prolog compiler supporting official and de facto standards. Capabilities needed by
Logtalk that are not defined in the official ISO Prolog Core standard include:

• access to predicate properties

• operating-system access predicates

• de facto standard predicates not (yet) specified in the official standard

Logtalk needs access to the predicate property built_in to properly compile objects and categories that con-
tain Prolog built-in predicates calls. In addition, some Logtalk built-ins need to know the dynamic/static
status of predicates to ensure correct application. The ISO standard for Prolog modules defines a
predicate_property/2 predicate that is already implemented by most Prolog compilers. Note that if these
capabilities are not built-in the user cannot easily define them.

120 Chapter 1. User Manual

https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/bench
https://github.com/LogtalkDotOrg/logtalk3/tree/master/examples/benchmarks
https://logtalk.org/performance.html

The Logtalk Handbook, Release v3.34.0

For optimal performance, Logtalk requires that the Prolog compiler supports first-argument indexing for
both static and dynamic code (most modern compilers support this feature).

Since most Prolog compilers are moving closer to the ISO Prolog standard [ISO95], it is advisable that you
try to use the most recent version of your favorite Prolog compiler.

1.20.2 Logtalk installers

Logtalk installers are available for macOS, Linux, and Microsoft Windows. Depending on the chosen installer,
some tasks (e.g. setting environment variables or integrating Logtalk with some Prolog compilers) may need
to be performed manually.

1.20.3 Source distribution

Logtalk sources are available in a tar archive compressed with bzip2, lgt3xxx.tar.bz2. You may expand
the archive by using a decompressing utility or by typing the following commands at the command-line:

% tar -jxvf lgt3xxx.tar.bz2

This will create a sub-directory named lgt3xxx in your current directory. Almost all files in the Logtalk
distribution are text files. Different operating-systems use different end-of-line codes for text files. Ensure
that your decompressing utility converts the end-of-lines of all text files to match your operating system.

1.20.4 Distribution overview

In the Logtalk installation directory, you will find the following files and directories:

BIBLIOGRAPHY.bib – Logtalk bibliography in BibTeX format

CUSTOMIZE.md – Logtalk end-user customization instructions

INSTALL.md – Logtalk installation instructions

LICENSE.txt – Logtalk user license

NOTICE.txt – Logtalk copyright notice

QUICK_START.md – Quick start instructions for those that do not like to read manuals

README.md – several useful information

RELEASE_NOTES.md – release notes for this version

UPGRADING.md – instructions on how to upgrade your programs to the current Logtalk version

VERSION.txt – file containing the current Logtalk version number (used for compatibility checking when
upgrading Logtalk)

loader-sample.lgt – sample loader file for user applications

settings-sample.lgt – sample file for user-defined Logtalk settings

tester-sample.lgt – sample file for helping to automate running user application unit tests

adapters NOTES.md – notes on the provided adapter files template.pl – template adapter file ... – specific
adapter files

coding NOTES.md – notes on syntax highlighter and text editor support files providing syntax coloring for
publishing and editing Logtalk source code ... – syntax coloring support files

1.20. Installing Logtalk 121

The Logtalk Handbook, Release v3.34.0

contributions NOTES.md – notes on the user-contributed code ... – user-contributed code files

core NOTES.md – notes on the current status of the compiler and runtime ... – core source files

docs NOTES.md – notes on the provided documentation for core, library, tools, and contributions entities
index.html – root document for all entities documentation ... – other entity documentation files

examples NOTES.md – short description of the provided examples

bricks NOTES.md – example description and other notes SCRIPT.txt – step by step example tutorial
loader.lgt – loader utility file for the example objects ... – bricks example source files

... – other examples

integration NOTES.md – notes on scripts for Logtalk integration with Prolog compilers ... – Prolog integra-
tion scripts

library NOTES.md – short description of the library contents all_loader.lgt – loader utility file for all library
entities ... – library source files

man ... – POSIX man pages for the shell scripts

manuals NOTES.md – notes on the provided documentation bibliography.html – bibliography glossary.html
– glossary index.html – root document for all documentation ... – other documentation files

paths NOTES.md – description on how to setup library and examples paths paths.pl – default library and
example paths

ports NOTES.md – description of included ports of third-party software ... – ports

scratch NOTES.md – notes on the scratch directory

scripts NOTES.md – notes on scripts for Logtalk user setup, packaging, and installation ... – packaging,
installation, and setup scripts

tests NOTES.md – notes on the current status of the unit tests ... – unit tests for built-in features

tools NOTES.md – notes on the provided programming tools ... – programming tools

Adapter files

Adapter files provide the glue code between the Logtalk compiler/runtime and a Prolog compiler. Each
adapter file contains two sets of predicates: ISO Prolog standard predicates and directives not built-in in the
target Prolog compiler and Logtalk specific predicates.

Logtalk already includes ready to use adapter files for most academic and commercial Prolog compilers. If
an adapter file is not available for the compiler that you intend to use, then you need to build a new one,
starting from the included template.pl file. Start by making a copy of the template file. Carefully check (or
complete if needed) each listed definition. If your Prolog compiler conforms to the ISO standard, this task
should only take you a few minutes. In most cases, you can borrow code from the predefined adapter files.
If you are unsure that your Prolog compiler provides all the ISO predicates needed by Logtalk, try to run the
system by setting the unknown predicate error handler to report as an error any call to a missing predicate.
Better yet, switch to a modern, ISO compliant, Prolog compiler. If you send me your adapter file, with a
reference to the target Prolog compiler, maybe I can include it in the next release of Logtalk.

The adapter files specify default values for most of the Logtalk compiler flags. Most of these compiler flags are
described in the next section. A few of these flags have read-only values and cannot be changed at runtime.
These are:

settings_file Allows or disables loading of a settings file at startup. Possible values are allow, restrict,
and deny. The usual default value is allow but it can be changed by editing the adapter file when
e.g. embedding Logtalk in a compiled application. With a value of allow, settings files are searched

122 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

in the startup directory, in the Logtalk user directory, and in the user home directory. With a value of
restrict, settings files are only searched in the Logtalk user directory and in the user home directory.

prolog_dialect Name of the backend Prolog compiler (an atom). This flag can be used for conditional
compilation of Prolog specific code.

prolog_version Version of the backend Prolog compiler (a compound term, v(Major, Minor, Patch), whose
arguments are integers). This flag availability depends on the Prolog compiler. Checking the value of
this flag fails for any Prolog compiler that does not provide access to version data.

prolog_compatible_version Compatible version of the backend Prolog compiler (a compound term, usually
with the format @>=(v(Major, Minor, Patch)), whose arguments are integers). This flag availability
depends on the Prolog compiler. Checking the value of this flag fails for any Prolog compiler that does
not provide access to version data.

prolog_conformance Level of conformance of the backend Prolog compiler with the ISO Prolog Core stan-
dard. The possible values are strict for compilers claiming strict conformance and lax for compilers
claiming only broad conformance.

unicode Informs Logtalk if the backend Prolog compiler supports the Unicode standard. Possible flag values
are unsupported, full (all Unicode planes supported), and bmp (supports only the Basic Multilingual
Plane).

encoding_directive Informs Logtalk if the backend Prolog compiler supports the encoding/1 directive. This
directive is used for declaring the text encoding of source files. Possible flag values are unsupported,
full (can be used in both Logtalk source files and compiler generated Prolog files), and source (can
be used only in Logtalk source files).

tabling Informs Logtalk if the backend Prolog compiler provides tabling programming support. Possible flag
values are unsupported and supported.

engines Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for Logtalk threaded engines. Possible flag values are unsupported and supported.

threads Informs if the backend Prolog compiler provides the required low level multi-threading programming
support for all high-level Logtalk multi-threading features. Possible flag values are unsupported and
supported.

modules Informs Logtalk if the backend Prolog compiler provides suitable module support. Possible flag
values are unsupported and supported (Logtalk provides limited support for compiling Prolog modules
as objects).

coinduction Informs Logtalk if the backend Prolog compiler provides the required minimal support for cyclic
terms necessary for working with coinductive predicates. Possible flag values are unsupported and
supported.

Settings files

Although is always possible to edit the backend Prolog compiler adapter files, the recommended solution
to customize compiler flags is to create a settings.lgt file in the Logtalk user folder or in the user home
folder. Depending on the backend Prolog compiler and on the operating-system, is also possible to define
per-project settings files by creating a settings.lgt file in the project directory and by starting Logtalk from
this directory. At startup, Logtalk tries to load a settings.lgt file from the following directories, searched
in sequence:

• Startup directory ($LOGTALK_STARTUP_DIRECTORY)

• Logtalk user directory ($LOGTALKUSER)

• User home directory ($HOME)

1.20. Installing Logtalk 123

The Logtalk Handbook, Release v3.34.0

• Config directory in the user home directory ($HOME/.config)

The startup directory is only searched when the read-only settings_file flag is set to allow. When no settings
files are found, Logtalk will use the default compiler flag values set on the backend Prolog compiler adapter
files. When limitations of the backend Prolog compiler or on the operating-system prevent Logtalk from
finding the settings files, these can always be loaded manually after Logtalk startup.

Settings files are normal Logtalk source files (although when automatically loaded by Logtalk they are com-
piled and loaded silently with any errors being reported but otherwise ignored). The usual contents is an
initialization/1 Prolog directive containing calls to the set_logtalk_flag/2 Logtalk built-in predicate and
asserting clauses for the logtalk_library_path/2 multifile dynamic predicate. Note that the set_logtalk_flag/2
directive cannot be used as its scope is local to the source file being compiled.

One of the troubles of writing portable applications is the different feature sets of Prolog compilers. Using
the Logtalk support for conditional compilation and the prolog_dialect flag we can write a single settings file
that can be used with several backend Prolog compilers:

:- if(current_logtalk_flag(prolog_dialect, yap)).

% YAP specific settings
...

:- elif(current_logtalk_flag(prolog_dialect, gnu)).

% GNU Prolog specific settings
...

:- else.

% generic Prolog settings

:- endif.

Compiler and runtime

The core sub-directory contains the Prolog and Logtalk source files that implement the Logtalk compiler and
the Logtalk runtime. The compiler and the runtime may be split in two (or more) separate files or combined
in a single file, depending on the Logtalk release that you are installing.

Library

The Logtalk distribution includes a standard library of useful objects, categories, and protocols. Read the
corresponding NOTES.md file for details about the library contents.

Examples

The Logtalk distribution includes a large number of programing examples. The sources of each one of these
examples can be found included in a subdirectory with the same name, inside the directory examples. The
majority of these examples include tests and a file named SCRIPT.txt with sample calls. Some examples
may depend on other examples and library objects to work properly. Read the corresponding NOTES.md file
for details before running an example.

124 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Logtalk source files

Logtalk source files are text files containing one or more entity definitions (objects, categories, or protocols).
The Logtalk source files may also contain plain Prolog code. The extension .lgt is normally used. Logtalk
compiles these files to plain Prolog by appending to the file name a suffix derived from the extension and by
replacing the .lgt extension with .pl (.pl is the default Prolog extension; if your Prolog compiler expects
the Prolog source filenames to end with a specific, different extension, you can set it in the corresponding
adapter file).

1.21 Prolog integration and migration

An application may include plain Prolog files, Prolog modules, and Logtalk objects. This is a perfectly valid
way of developing a complex application and, in some cases, it might be the most appropriated solution.
Modules may be used for legacy code or when a simple encapsulation mechanism is adequate. Logtalk
objects may be used when more powerful encapsulation, abstraction, and reuse features are required.

This section provides tips for integrating and migrating plain Prolog code and Prolog module code to Logtalk.
Step-by-step instructions are provided for encapsulating plain Prolog code in objects, converting Prolog mod-
ules into objects, and compiling and reusing Prolog modules as objects from inside Logtalk. An interesting
application of the techniques described in this section is a solution for running a Prolog application which
uses modules on a Prolog compiler with no module system. The wrapper tool can be used to help in migrating
Prolog code.

1.21.1 Source files with both Prolog code and Logtalk code

Logtalk source files may contain plain Prolog code intermixed with Logtalk code. The Logtalk compiler
simply copies the plain Prolog code as-is to the generated Prolog file. With Prolog modules, it is assumed
that the module code starts with a module/1-2 directive and ends at the end of the file. There is no module
ending directive which would allowed us to define more than one module per file. In fact, most if not all
Prolog module systems always define a single module per file. Some of them mandate that the module/1-2
directive be the first term on a source file. As such, when the Logtalk compiler finds a module/1-2 directive,
it assumes that all code that follows until the end of the file belongs to the module.

1.21.2 Encapsulating plain Prolog code in objects

Most applications consist of several plain Prolog source files, each one defining a few top-level predicates
and auxiliary predicates that are not meant to be directly called by the user. Encapsulating plain Prolog code
in objects allows us to make clear the different roles of each predicate, to hide implementation details, to
prevent auxiliary predicates from being called outside the object, and to take advantage of Logtalk advanced
code encapsulating and reusing features.

Encapsulating Prolog code using Logtalk objects is simple. First, for each source file, add an opening object
directive, object/1-5, to the beginning of the file and an ending object directive, end_object/0, to end of the
file. Choose an object name that reflects the purpose of source file code (this is a good opportunity for
code refactoring if necessary). Second, add public/1 predicate directives for the top-level predicates that are
used directly by the user or called from other source files. Third, we need to be able to call from inside
an object predicates defined in other source files/objects. The easiest solution, which has the advantage of
not requiring any changes to the predicate definitions, is to use the uses/2 directive. If your Prolog compiler
supports cross-referencing tools, you may use them to help you make sure that all calls to predicates on other
source files/objects are listed in the uses/2 directives. The Logtalk wrapper tool can also help in detecting
cross predicate calls. Compiling the resulting objects with the Logtalk unknown_predicates and portability

1.21. Prolog integration and migration 125

The Logtalk Handbook, Release v3.34.0

flags set to warning will help you identify calls to predicates defined on other converted source files and
possible portability issues.

Prolog multifile predicates

Prolog multifile predicates are used when clauses for the same predicate are spread among several source
files. When encapsulating plain Prolog code that uses multifile predicates, is often the case that the clauses
of the multifile predicates get spread between different objects and categories but conversion is straight-
forward. In the Logtalk object (or category) holding the multifile predicate primary declaration, add a
predicate scope directive and a multifile/1 directive. In all other objects (or categories) defining clauses for
the multifile predicate, add a multifile/1 directive and predicate clauses using the format:

:- multifile(Entity::Name/Arity).

Entity::Functor(...) :-
...

See the User Manual section on the multifile/1 predicate directive for more information. An alternative
solution is to simply keep the clauses for the multifile predicates as plain Prolog code and define, if necessary,
a parametric object to encapsulate all predicates working with the multifile predicate clauses. For example,
assume the following multifile/1 directive:

% city(Name, District, Population, Neighbors)
:- multifile(city/4).

We can define a parametric object with city/4 as its identifier:

:- object(city(_Name, _District, _Population, _Neighbors)).

% predicates for working with city/4 clauses

:- end_object.

This solution is preferred when the multifile predicates are used to represent large tables of data. See the
section on Parametric objects for more details.

1.21.3 Converting Prolog modules into objects

Converting Prolog modules into objects may allow an application to run on a wider range of Prolog compilers,
overcoming compatibility problems. Some Prolog compilers don’t support a module system. Among those
Prolog compilers which support a module system, the lack of standardization leads to several issues, specially
with semantics, operators, and meta-predicates. In addition, the conversion allows you to take advantage
of Logtalk more powerful abstraction and reuse mechanisms such as separation between interface from
implementation, inheritance, parametric objects, and categories.

Converting a Prolog module into an object is easy as long as the directives used in the module are supported
by Logtalk (see below). Assuming that this is the case, apply the following steps:

1. Convert the module module/1 directive into an opening object directive, object/1-5, using the module
name as the object name. For module/2 directives apply the same conversion and convert the list of
exported predicates into Logtalk public/1 predicate directives.

2. Add a closing object directive, end_object/0, at the end of the module code.

3. Convert any export/1 directives into public/1 predicate directives.

126 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

4. Convert any use_module/1 directives into use_module/2 directives (see next section).

5. Convert any use_module/2 directives referencing other modules also being converted to objects into
Logtalk uses/2 directives. If the referenced modules are not being converted into objects, keep the
use_module/2 directives but change the first argument to be the module name.

6. Convert each reexport/1 directive into a uses/2 directive and public/1 predicate directives (see next
section).

7. Convert any meta_predicate/1 directives into Logtalk meta_predicate/1 directives by replacing the
module meta-argument indicator, :, with the Logtalk meta-argument indicator, 0. Closures must be
represented using an integer denoting the number of additional arguments that will be appended to
construct a goal. Arguments which are not meta-arguments are represented by the * character.

8. Convert any explicit qualified calls to module predicates to messages by replacing the :/2 operator
with the ::/2 message sending operator when the referenced modules are also being converted into
objects. Calls in the pseudo-module user can be encapsulated using the {}/1 Logtalk external call
control construct. You can also use instead an uses/2 directive where the first argument would be the
atom user and the second argument a list of all external predicates. This alternative has the advantage
of not requiring changes to the code making the predicate calls.

9. If your module uses the database built-in predicates to implement module local mutable state using
dynamic predicates, add both private/1 and dynamic/1 directives for each dynamic predicate.

10. If your module declares or defines clauses for multifile module predicates, replace the :/2 functor
by ::/2 in the multifile/1 directives and in the clause heads for all modules defining the multifile
predicates that are also being converted into objects; if that is not the case, just keep the multifile/1
directives and the clause heads as-is).

11. Compile the resulting objects with the Logtalk unknown_predicates, and portability flags set to warning
to help you locate possible issues and calls to proprietary Prolog built-in predicates and to predicates
defined on other converted modules. In order to improve code portability, check the Logtalk library for
possible alternatives to the use of proprietary Prolog built-in predicates.

Before converting your modules to objects, you may try to compile them first as objects (using the
logtalk_compile/1 Logtalk built-in predicates) to help identify any issues that must be dealt with when doing
the conversion to objects. Note that Logtalk supports compiling Prolog files as Logtalk source code without
requiring changes to the file name extensions.

1.21.4 Compiling Prolog modules as objects

A possible alternative to port Prolog code to Logtalk is to compile the Prolog source files using the
logtalk_load/1-2 and logtalk_compile/1-2 predicates. The Logtalk compiler provides partial support for
compiling Prolog modules as Logtalk objects. This support may allow using modules from a backend Prolog
system in a different backend Prolog system although its main purpose is to help in porting existing Pro-
log code to Logtalk in order to benefit from its extended language features and its developer tools. Why
partial support? Although there is a ISO Prolog standard for modules, it is (rightfully) ignored by most
implementers and vendors (due to its flaws and deviation from common practice). In addition, there is no
de facto standard for module systems, despite otherwise frequent bogus claims. Systems differences include
the set of implemented module directives, the directive semantics, the handling of operators, the locality of
flags, and on the integration of term-expansion mechanisms (when provided). Follows a discussion of the
limitations of this approach that you should be aware.

1.21. Prolog integration and migration 127

The Logtalk Handbook, Release v3.34.0

Supported module directives

Currently, Logtalk supports the following module directives:

module/1 The module name becomes the object name.

module/2 The module name becomes the object name. The exported predicates become public object pred-
icates. The exported grammar rule non-terminals become public grammar rule non-terminals. The
exported operators become public object operators but are not active elsewhere when loading the
code.

use_module/2 This directive is compiled as a Logtalk uses/2 directive in order to ensure correct compilation
of the module predicate clauses. The first argument of this directive must be the module name (an
atom), not a module file specification (the adapter files attempt to use the Prolog dialect level term-
expansion mechanism to find the module name from the module file specification). Note that the
module is not automatically loaded by Logtalk (as it would be when compiling the directive using
Prolog instead of Logtalk; the programmer may also want the specified module to be compiled as
an object). The second argument must be a predicate indicator (Name/Arity), a grammar rule non-
terminal indicator (Name//Arity), a operator declaration, or a list of predicate indicators, grammar
rule non-terminal indicators, and operator declarations.

export/1 Exported predicates are compiled as public object predicates. The argument must be a predicate
indicator (Name/Arity), a grammar rule non-terminal indicator (Name//Arity), an operator declara-
tion, or a list of predicate indicators, grammar rule non-terminal indicators, and operator declarations.

reexport/2 Reexported predicates are compiled as public object predicates. The first argument is the module
name. The second argument must be a predicate indicator (Name/Arity), a grammar rule non-terminal
indicator (Name//Arity), an operator declaration, or a list of predicate indicators, grammar rule non-
terminal indicators, and operator declarations.

meta_predicate/1 Module meta-predicates become object meta-predicates. Only predicate arguments
marked as goals or closures (using an integer) are interpreted as meta-arguments. In addition, Pro-
log module meta-predicates and Logtalk meta-predicates don’t share the same explicit-qualification
calling semantics: in Logtalk, meta-arguments are always called in the context of the sender.

A common issue when compiling modules as objects is the use of the atoms dynamic, discontiguous, and
multifile as operators in directives. For better portability avoid this usage. For example, write:

:- dynamic([foo/1, bar/2]).

instead of:

:- dynamic foo/1, bar/2.

Another common issue is missing meta_predicate/1, dynamic/1, discontiguous/1, and multifile/1 predi-
cate directives. The Logtalk compiler supports detection of missing directives (by setting its missing_directives
flag to warning).

When compiling modules as objects, you probably don’t need event support turned on. You may use the
events compiler flag to deny with the Logtalk compiling and loading built-in methods for a small performance
gain for the compiled code.

128 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

Unsupported module directives

The reexport/1 and use_module/1 directives are not directly supported by the Logtalk compiler. But most
Prolog adapter files provide support for compiling these directives using Logtalk’s first stage of its term-
expansion mechanism. Nevertheless, these directives can be converted, respectively, into a sequence of :-
use_module/2 and export/1 directives and use_module/2 directives by finding which predicates exported by
the specified modules are reexported or imported into the module containing the directive. For use_module/1
directives, finding the names of the imported predicates that are actually used is easy. First, comment out the
and compile the file (making sure that the unknown_predicates compiler flag is set to warning). Logtalk will
print a warning with a list of predicates that are called but never defined. Second, use these list to replace
the use_module/1 directives by use_module/2 directives. You should then be able to compile the modified
Prolog module as an object.

Modules using a term-expansion mechanism

Although Logtalk supports term and goal expansion mechanisms, the semantics are different from similar
mechanisms found in some Prolog compilers. In particular, Logtalk does not support defining term and goal
expansions clauses in a source file for expanding the source file itself. Logtalk forces a clean separation
between expansions clauses and the source files that will be subject to source-to-source expansions by using
hook objects. But hook objects also provide a working solution here when the expansion code is separated
from the code to be expanded. Logtalk supports using a module as a hook object as long as its name doesn’t
coincide with the name of an object and that the module uses term_expansion/2 and goal_expansion/2
predicates. Assuming that’s the case, before attempting to compile the modules as objects, the default hook
object is set to the module containing the expansion code. For example, if the expansions stored in a system
module:

| ?- set_logtalk_flag(hook, system).
...

This, however, may not be enough as some expansions may stored in more than one module. A common
example is to use a module named prolog. It is also common to store the expansions in user. The Logtalk
library provides a solution for these scenarios. Using the hook_flows library we can select multiple hook
objects or hook modules. For example, assuming expansions stored on both user and system modules:

| ?- logtalk_load(hook_flows(loader)).
...

| ?- set_logtalk_flag(hook, hook_set([user, system])).
...

After these queries, we can try to compile the modules and look for other porting or portability issues.

1.21.5 Dealing with proprietary Prolog directives and predicates

Most Prolog compilers define proprietary, non-standard, directives and predicates that may be used in both
plain code and module code. Non-standard Prolog built-in predicates are usually not problematic, as Logtalk
is usually able to identify and compile them correctly (but see the notes on built-in meta-predicates for
possible caveats). However, Logtalk will generate compilation errors on source files containing propri-
etary directives unless you first specify how the directives should be handled. Several actions are possi-
ble on a per-directive basis: ignoring the directive (i.e. do not copy the directive, although a goal can
be proved as a consequence), rewriting and copy the directive to the generated Prolog files, or rewriting
and recompiling the resulting directive. To specify these actions, the adapter files contain clauses for the
'$lgt_prolog_term_expansion'/2 predicate. For example, assume that a given Prolog compiler defines a
comment/2 directive for predicates using the format:

1.21. Prolog integration and migration 129

The Logtalk Handbook, Release v3.34.0

:- comment(foo/2, "Brief description of the predicate").

We can rewrite this predicate into a Logtalk info/2 directive by defining a suitable clause for the
'$lgt_prolog_term_expansion'/2 predicate:

'$lgt_prolog_term_expansion'(
comment(F/A, String),
info(F/A, [comment is Atom])

) :-
atom_codes(Atom, String).

This Logtalk feature can be used to allow compilation of legacy Prolog code without the need of changing
the sources. When used, is advisable to set the portability compiler flag to warning in order to more easily
identify source files that are likely non-portable across Prolog compilers.

A second example, where a proprietary Prolog directive is discarded after triggering a side effect:

'$lgt_prolog_term_expansion'(
load_foreign_files(Files,Libs,InitRoutine),
[]

) :-
load_foreign_files(Files,Libs,InitRoutine).

In this case, although the directive is not copied to the generated Prolog file, the foreign library files are
loaded as a side effect of the Logtalk compiler calling the '$lgt_prolog_term_expansion'/2 hook predicate.

1.21.6 Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by simply using explicit module
qualification, i.e. by writing Module:Goal or Goal@Module (depending on the module system). Logtalk
also supports the use of use_module/2 directives in object and categories (with the restriction that the first
argument of the directive must be the actual module name and not the module file name or the module file
path). In this case, these directives are parsed in a similar way to Logtalk uses/2 directives, with calls to the
specified module predicates being automatically translated to Module:Goal calls.

As a general rule, the Prolog modules should be loaded (e.g. in the auxiliary Logtalk loader files) before
compiling objects that make use of module predicates. Moreover, the Logtalk compiler does not generate
code for the automatic loading of modules referenced in use_module/1-2 directives. This is a consequence
of the lack of standardization of these directives, whose first argument can be a module name, a straight file
name, or a file name using some kind of library notation, depending on the backend Prolog compiler. Worse,
modules are sometimes defined in files with names different from the module names requiring finding,
opening, and reading the file in order to find the actual module name.

Logtalk supports the declaration of predicate aliases in use_module/2 directives used within object and cate-
gories. For example, the ECLiPSe IC Constraint Solvers define a ::/2 variable domain operator that clashes
with the Logtalk ::/2 message sending operator. We can solve the conflict by writing:

:- use_module(ic, [(::)/2 as ins/2]).

With this directive, calls to the ins/2 predicate alias will be automatically compiled by Logtalk to calls to the
::/2 predicate in the ic module.

Logtalk allows you to send a message to a module in order to call one of its predicates. This is usually
not advised as it implies a performance penalty when compared to just using the Module:Call notation.
Moreover, this works only if there is no object with the same name as the module you are targeting. This
feature is necessary, however, in order to properly support compilation of modules containing use_module/2

130 Chapter 1. User Manual

The Logtalk Handbook, Release v3.34.0

directives as objects. If the modules specified in the use_module/2 directives are not compiled as objects but
are instead loaded as-is by Prolog, the exported predicates would need to be called using the Module:Call
notation but the converted module will be calling them through message sending. Thus, this feature ensures
that, on a module compiled as an object, any predicate calling other module predicates will work as expected
either these other modules are loaded as-is or also compiled as objects.

For more details, see the Calling Prolog predicates section.

1.21. Prolog integration and migration 131

The Logtalk Handbook, Release v3.34.0

132 Chapter 1. User Manual

CHAPTER

TWO

REFERENCE MANUAL

2.1 Grammar

The Logtalk grammar is here described using Backus-Naur Form syntax. Non-terminal symbols in italics have
the definition found in the ISO Prolog Core standard. Terminal symbols are represented in a fixed width
font and between double-quotes.

2.1.1 Entities

entity ::=
object |
category |
protocol

2.1.2 Object definition

object ::=
begin_object_directive [object_terms] end_object_directive.

begin_object_directive ::=
“:- object(” object_identifier [“,” object_relations] “).”

end_object_directive ::=
“:- end_object.”

object_relations ::=
prototype_relations |
non_prototype_relations

prototype_relations ::=
prototype_relation |
prototype_relation “,” prototype_relations

133

The Logtalk Handbook, Release v3.34.0

prototype_relation ::=
implements_protocols |
imports_categories |
extends_objects

non_prototype_relations ::=
non_prototype_relation |
non_prototype_relation “,” non_prototype_relations

non_prototype_relation ::=
implements_protocols |
imports_categories |
instantiates_classes |
specializes_classes

2.1.3 Category definition

category ::=
begin_category_directive [category_terms] end_category_directive.

begin_category_directive ::=
“:- category(” category_identifier [“,” category_relations] “).”

end_category_directive ::=
“:- end_category.”

category_relations ::=
category_relation |
category_relation “,” category_relations

category_relation ::=
implements_protocols |
extends_categories |
complements_objects

134 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.1.4 Protocol definition

protocol ::=
begin_protocol_directive [protocol_directives] end_protocol_directive.

begin_protocol_directive ::=
“:- protocol(” protocol_identifier [“,” extends_protocols] “).”

end_protocol_directive ::=
“:- end_protocol.”

2.1.5 Entity relations

extends_protocols ::=
“extends(” extended_protocols “)”

extends_objects ::=
“extends(” extended_objects “)”

extends_categories ::=
“extends(” extended_categories “)”

implements_protocols ::=
“implements(” implemented_protocols “)”

imports_categories ::=
“imports(” imported_categories “)”

instantiates_classes ::=
“instantiates(” instantiated_objects “)”

specializes_classes ::=
“specializes(” specialized_objects “)”

complements_objects ::=
“complements(” complemented_objects “)”

2.1. Grammar 135

The Logtalk Handbook, Release v3.34.0

Implemented protocols

implemented_protocols ::=
implemented_protocol |
implemented_protocol_sequence |
implemented_protocol_list

implemented_protocol ::=
protocol_identifier |
scope “::” protocol_identifier

implemented_protocol_sequence ::=
implemented_protocol |
implemented_protocol “,” implemented_protocol_sequence

implemented_protocol_list ::=
“[” implemented_protocol_sequence “]”

Extended protocols

extended_protocols ::=
extended_protocol |
extended_protocol_sequence |
extended_protocol_list

extended_protocol ::=
protocol_identifier |
scope “::” protocol_identifier

extended_protocol_sequence ::=
extended_protocol |
extended_protocol “,” extended_protocol_sequence

extended_protocol_list ::=
“[” extended_protocol_sequence “]”

136 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Imported categories

imported_categories ::=
imported_category |
imported_category_sequence |
imported_category_list

imported_category ::=
category_identifier |
scope “::” category_identifier

imported_category_sequence ::=
imported_category |
imported_category “,” imported_category_sequence

imported_category_list ::=
“[” imported_category_sequence “]”

Extended objects

extended_objects ::=
extended_object |
extended_object_sequence |
extended_object_list

extended_object ::=
object_identifier |
scope “::” object_identifier

extended_object_sequence ::=
extended_object |
extended_object “,” extended_object_sequence

extended_object_list ::=
“[” extended_object_sequence “]”

2.1. Grammar 137

The Logtalk Handbook, Release v3.34.0

Extended categories

extended_categories ::=
extended_category |
extended_category_sequence |
extended_category_list

extended_category ::=
category_identifier |
scope “::” category_identifier

extended_category_sequence ::=
extended_category |
extended_category “,” extended_category_sequence

extended_category_list ::=
“[” extended_category_sequence “]”

Instantiated objects

instantiated_objects ::=
instantiated_object |
instantiated_object_sequence |
instantiated_object_list

instantiated_object ::=
object_identifier |
scope “::” object_identifier

instantiated_object_sequence ::=
instantiated_object
instantiated_object “,” instantiated_object_sequence |

instantiated_object_list ::=
“[” instantiated_object_sequence “]”

138 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Specialized objects

specialized_objects ::=
specialized_object |
specialized_object_sequence |
specialized_object_list

specialized_object ::=
object_identifier |
scope “::” object_identifier

specialized_object_sequence ::=
specialized_object |
specialized_object “,” specialized_object_sequence

specialized_object_list ::=
“[” specialized_object_sequence “]”

Complemented objects

complemented_objects ::=
object_identifier |
complemented_object_sequence |
complemented_object_list

complemented_object_sequence ::=
object_identifier |
object_identifier “,” complemented_object_sequence

complemented_object_list ::=
“[” complemented_object_sequence “]”

Entity and predicate scope

scope ::=
“public” |
“protected” |
“private”

2.1. Grammar 139

The Logtalk Handbook, Release v3.34.0

2.1.6 Entity identifiers

entity_identifiers ::=
entity_identifier |
entity_identifier_sequence |
entity_identifier_list

entity_identifier ::=
object_identifier |
protocol_identifier |
category_identifier

entity_identifier_sequence ::=
entity_identifier |
entity_identifier “,” entity_identifier_sequence

entity_identifier_list ::=
“[” entity_identifier_sequence “]”

Object identifiers

object_identifiers ::=
object_identifier |
object_identifier_sequence |
object_identifier_list

object_identifier ::=
atom |
compound

object_identifier_sequence ::=
object_identifier |
object_identifier “,” object_identifier_sequence

object_identifier_list ::=
“[” object_identifier_sequence “]”

140 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Category identifiers

category_identifiers ::=
category_identifier |
category_identifier_sequence |
category_identifier_list

category_identifier ::=
atom |
compound

category_identifier_sequence ::=
category_identifier |
category_identifier “,” category_identifier_sequence

category_identifier_list ::=
“[” category_identifier_sequence “]”

Protocol identifiers

protocol_identifiers ::=
protocol_identifier |
protocol_identifier_sequence |
protocol_identifier_list

protocol_identifier ::=
atom

protocol_identifier_sequence ::=
protocol_identifier |
protocol_identifier “,” protocol_identifier_sequence

protocol_identifier_list ::=
“[” protocol_identifier_sequence “]”

2.1. Grammar 141

The Logtalk Handbook, Release v3.34.0

Module identifiers

module_identifier ::=
atom

2.1.7 Source file names

source_file_names ::=
source_file_name |
source_file_name_list

source_file_name ::=
atom |
library_source_file_name

library_source_file_name ::=
library_name “(” atom “)”

library_name ::=
atom

source_file_name_sequence ::=
source_file_name |
source_file_name “,” source_file_name_sequence

source_file_name_list ::=
“[” source_file_name_sequence “]”

2.1.8 Terms

Object terms

object_terms ::=
object_term |
object_term object_terms

object_term ::=
object_directive |
clause |
grammar_rule

142 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Category terms

category_terms ::=
category_term |
category_term category_terms

category_term ::=
category_directive |
clause |
grammar_rule

2.1.9 Directives

Source file directives

source_file_directives ::=
source_file_directive |
source_file_directive source_file_directives

source_file_directive ::=
“:- encoding(” atom “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).”
Prolog directives

Conditional compilation directives

conditional_compilation_directives ::=
conditional_compilation_directive |
conditional_compilation_directive conditional_compilation_directives

conditional_compilation_directive ::=
“:- if(” callable “).” |
“:- elif(” callable “).” |
“:- else.” |
“:- endif.”

2.1. Grammar 143

The Logtalk Handbook, Release v3.34.0

Object directives

object_directives ::=
object_directive |
object_directive object_directives

object_directive ::=
“:- initialization(” callable “).” |
“:- built_in.” |
“:- threaded.” |
“:- dynamic.” |
“:- info(” entity_info_list “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).” |
“:- uses(” object_alias_list “).” |
predicate_directives

Category directives

category_directives ::=
category_directive |
category_directive category_directives

category_directive ::=
“:- built_in.” |
“:- dynamic.” |
“:- info(” entity_info_list “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).” |
“:- uses(” object_alias_list “).” |
predicate_directives

Protocol directives

protocol_directives ::=
protocol_directive |
protocol_directive protocol_directives

protocol_directive ::=
“:- built_in.” |
“:- dynamic.” |
“:- info(” entity_info_list “).” |
“:- set_logtalk_flag(” atom “,” nonvar “).” |
“:- include(” source_file_name “).” |
predicate_directives

144 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Predicate directives

predicate_directives ::=
predicate_directive |
predicate_directive predicate_directives

predicate_directive ::=
alias_directive |
synchronized_directive |
uses_directive |
use_module_directive |
scope_directive |
mode_directive |
meta_predicate_directive |
meta_non_terminal_directive |
info_directive |
dynamic_directive |
discontiguous_directive |
multifile_directive |
coinductive_directive |
operator_directive

alias_directive ::=
“:- alias(“

entity_identifier “,”
predicate_indicator_alias_list | non_terminal_indicator_alias_list

“).”

synchronized_directive ::=
“:- synchronized(” predicate_indicator_term | non_terminal_indicator_term “).”

uses_directive ::=
“:- uses(“

object_identifier | parameter_variable “,”
predicate_indicator_alias_list | non_terminal_indicator_alias_list | operator_list

“).”

use_module_directive ::=
“:- use_module(“

module_identifier | parameter_variable “,”
module_predicate_indicator_alias_list | module_non_terminal_indicator_alias_list |
operator_list

“).”

2.1. Grammar 145

The Logtalk Handbook, Release v3.34.0

scope_directive ::=
“:- public(” predicate_indicator_term | non_terminal_indicator_term “).” |
“:- protected(” predicate_indicator_term | non_terminal_indicator_term “).” |
“:- private(” predicate_indicator_term | non_terminal_indicator_term “).”

mode_directive ::=
“:- mode(“

predicate_mode_term | non_terminal_mode_term “,”
number_of_proofs

“).”

meta_predicate_directive ::=
“:- meta_predicate(” meta_predicate_template_term “).”

meta_non_terminal_directive ::=
“:- meta_non_terminal(” meta_non_terminal_template_term “).”

info_directive ::=
“:- info(“

predicate_indicator | non_terminal_indicator “,”
predicate_info_list

“).”

dynamic_directive ::=
“:- dynamic(” qualified_predicate_indicator_term | qualified_non_terminal_indicator_term “).”

discontiguous_directive ::=
“:- discontiguous(” predicate_indicator_term |
non_terminal_indicator_term “).”

multifile_directive ::=
“:- multifile(” qualified_predicate_indicator_term |
qualified_non_terminal_indicator_term “).”

coinductive_directive ::=
“:- coinductive(” predicate_indicator_term |
coinductive_predicate_template_term “).”

parameter_variable ::=
variable

146 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

predicate_indicator_term ::=
predicate_indicator |
predicate_indicator_sequence |
predicate_indicator_list

predicate_indicator_sequence ::=
predicate_indicator |
predicate_indicator “,” predicate_indicator_sequence

predicate_indicator_list ::=
“[” predicate_indicator_sequence “]”

qualified_predicate_indicator_term ::=
qualified_predicate_indicator |
qualified_predicate_indicator_sequence |
qualified_predicate_indicator_list

qualified_predicate_indicator_sequence ::=
qualified_predicate_indicator |
qualified_predicate_indicator “,” qualified_predicate_indicator_sequence

qualified_predicate_indicator_list ::=
“[” qualified_predicate_indicator_sequence “]”

qualified_predicate_indicator ::=
predicate_indicator |
object_identifier “::” predicate_indicator |
category_identifier “::” predicate_indicator |
module_identifier “:” predicate_indicator

predicate_indicator_alias ::=
predicate_indicator |
predicate_indicator “as” predicate_indicator |
predicate_indicator “::” predicate_indicator

predicate_indicator_alias_sequence ::=
predicate_indicator_alias |
predicate_indicator_alias “,” predicate_indicator_alias_sequence

predicate_indicator_alias_list ::=
“[” predicate_indicator_alias_sequence “]”

2.1. Grammar 147

The Logtalk Handbook, Release v3.34.0

predicate_template_alias ::=
callable “as” callable |
callable “::” callable

predicate_template_alias_sequence ::=
predicate_template_alias |
predicate_template_alias “,” predicate_template_alias_sequence

predicate_template_alias_list ::=
“[” predicate_template_alias_sequence “]”

module_predicate_indicator_alias ::=
predicate_indicator |
predicate_indicator “as” predicate_indicator |
predicate_indicator “:” predicate_indicator

module_predicate_indicator_alias_sequence ::=
module_predicate_indicator_alias |
module_predicate_indicator_alias “,” module_predicate_indicator_alias_sequence

module_predicate_indicator_alias_list ::=
“[” module_predicate_indicator_alias_sequence “]”

module_non_terminal_indicator_alias ::=
non_terminal_indicator |
non_terminal_indicator “as” non_terminal_indicator
non_terminal_indicator “:” non_terminal_indicator

module_non_terminal_indicator_alias_sequence ::=
module_non_terminal_indicator_alias |
module_non_terminal_indicator_alias “,” module_non_terminal_indicator_alias_sequence

module_non_terminal_indicator_alias_list ::=
“[” module_non_terminal_indicator_alias_sequence “]”

non_terminal_indicator_term ::=
non_terminal_indicator |
non_terminal_indicator_sequence |
non_terminal_indicator_list

non_terminal_indicator_sequence ::=

148 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

non_terminal_indicator |
non_terminal_indicator “,” non_terminal_indicator_sequence

non_terminal_indicator_list ::=
“[” non_terminal_indicator_sequence “]”

non_terminal_indicator ::=
functor “//” arity

qualified_non_terminal_indicator_term ::=
qualified_non_terminal_indicator |
qualified_non_terminal_indicator_sequence |
qualified_non_terminal_indicator_list

qualified_non_terminal_indicator_sequence ::=
qualified_non_terminal_indicator |
qualified_non_terminal_indicator “, ” qualified_non_terminal_indicator_sequence

qualified_non_terminal_indicator_list ::=
“[” qualified_non_terminal_indicator_sequence “]”

qualified_non_terminal_indicator ::=
non_terminal_indicator |
object_identifier “::” non_terminal_indicator |
category_identifier “::” non_terminal_indicator |
module_identifier “:” non_terminal_indicator

non_terminal_indicator_alias ::=
non_terminal_indicator |
non_terminal_indicator “as” non_terminal_indicator
non_terminal_indicator “::” non_terminal_indicator

non_terminal_indicator_alias_sequence ::=
non_terminal_indicator_alias |
non_terminal_indicator_alias “,”
non_terminal_indicator_alias_sequence

non_terminal_indicator_alias_list ::=
“[” non_terminal_indicator_alias_sequence “]”

operator_sequence ::=

2.1. Grammar 149

The Logtalk Handbook, Release v3.34.0

operator specification |
operator specification “,”
operator_sequence

operator_list ::=
“[” operator_sequence “]”

coinductive_predicate_template_term ::=
coinductive_predicate_template |
coinductive_predicate_template_sequence |
coinductive_predicate_template_list

coinductive_predicate_template_sequence ::=
coinductive_predicate_template |
coinductive_predicate_template “,”
coinductive_predicate_template_sequence

coinductive_predicate_template_list ::=
“[” coinductive_predicate_template_sequence “]”

coinductive_predicate_template ::=
atom “(” coinductive_mode_terms “)”

coinductive_mode_terms ::=
coinductive_mode_term |
coinductive_mode_terms “,” coinductive_mode_terms

coinductive_mode_term ::=
“+” | “-“

predicate_mode_term ::=
atom “(” mode_terms “)”

non_terminal_mode_term ::=
atom “(” mode_terms “)”

mode_terms ::=
mode_term |
mode_term “,” mode_terms

150 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

mode_term ::=
“@” [type] | “+” [type] | “-” [type] | “?” [
type] |
“++” [type] | “--” [type]

type ::=
prolog_type | logtalk_type | user_defined_type

prolog_type ::=
“term” | “nonvar” | “var” |
“compound” | “ground” | “callable” | “list” |
“atomic” | “atom” |
“number” | “integer” | “float”

logtalk_type ::=
“object” | “category” | “protocol” |
“event”

user_defined_type ::=
atom |
compound

number_of_proofs ::=
“zero” | “zero_or_one” | “zero_or_more” | “one” |
“one_or_more” | “one_or_error” | “error”

meta_predicate_template_term ::=
meta_predicate_template |
meta_predicate_template_sequence |
meta_predicate_template_list

meta_predicate_template_sequence ::=
meta_predicate_template |
meta_predicate_template “,” meta_predicate_template_sequence

meta_predicate_template_list ::=
“[” meta_predicate_template_sequence “]”

meta_predicate_template ::=
object_identifier “::” atom “(” meta_predicate_specifiers “)” |
category_identifier “::” atom “(” meta_predicate_specifiers “)” |

2.1. Grammar 151

The Logtalk Handbook, Release v3.34.0

atom “(” meta_predicate_specifiers “)”

meta_predicate_specifiers ::=
meta_predicate_specifier |
meta_predicate_specifier “,” meta_predicate_specifiers

meta_predicate_specifier ::=
non-negative integer | “::” | “^” |
“*”

meta_non_terminal_template_term ::=
meta_predicate_template_term

entity_info_list ::=
“[]” |
“[” entity_info_item “is” nonvar “|” entity_info_list
“]”

entity_info_item ::=
“comment” | “remarks” |
“author” | “version” | “date” |
“copyright” | “license” |
“parameters” | “parnames” |
“see_also” |
atom

predicate_info_list ::=
“[]” |
“[” predicate_info_item “is” nonvar “|” predicate_info_list “]”

predicate_info_item ::=
“comment” | “remarks” |
“arguments” | “argnames” |
“redefinition” | “allocation” |
“examples” | “exceptions” |
atom

object_alias ::=
object_identifier “as” object_identifier

object_alias_sequence ::=

152 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

object_alias |
object_alias “,” object_alias_sequence

object_alias_list ::=
“[” object_alias_sequence “]”

2.1.10 Clauses and goals

clause ::=
object_identifier “::” head “:-” body |
module_identifier “:” head “:-” body |
head :- body |
fact

goal ::=
message_sending |
super_call |
external_call |
context_switching_call |
callable

message_sending ::=
message_to_object |
message_delegation |
message_to_self

message_to_object ::=
receiver “::” messages

message_delegation ::=
“[” message_to_object “]”

message_to_self ::=
“::” messages

super_call ::=
“^^” message

messages ::=
message |
“(” message “,” messages “)” |
“(” message “;” messages “)” |

2.1. Grammar 153

The Logtalk Handbook, Release v3.34.0

“(” message “->” messages “)”

message ::=
callable |
variable

receiver ::=
“{” callable “}” |
object_identifier |
variable

external_call ::=
“{” callable “}”

context_switching_call ::=
object_identifier “<<” goal

2.1.11 Lambda expressions

lambda_expression ::=
lambda_free_variables “/” lambda_parameters “>>” callable |
lambda_free_variables “/” callable |
lambda_parameters “>>” callable

lambda_free_variables ::=
“{” conjunction of variables “}” |
“{” variable “}” |
“{}”

lambda_parameters ::=
list of terms |
“[]”

2.1.12 Entity properties

category_property ::=
“static” |
“dynamic” |
“built_in” |
“file(” atom “)” |
“file(” atom “,” atom “)” |
“lines(” integer “,” integer “)” |

154 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

“events” |
“source_data” |
“public(” predicate_indicator_list “)” |
“protected(” predicate_indicator_list “)” |
“private(” predicate_indicator_list “)” |
“declares(” predicate_indicator “,” predicate_declaration_property_list “)” |
“defines(” predicate_indicator “,” predicate_definition_property_list “)” |
“includes(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)” |
“provides(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)” |
“alias(” predicate_indicator “,” predicate_alias_property_list “)” |
“calls(” predicate “,” predicate_call_update_property_list “)” |
“updates(” predicate “,” predicate_call_update_property_list “)” |
“number_of_clauses(” integer “)” |
“number_of_rules(” integer “)” |
“number_of_user_clauses(” integer “)” |
“number_of_user_rules(” integer “)” |
“debugging”

object_property ::=
“static” |
“dynamic” |
“built_in” |
“threaded” |
“file(” atom “)” |
“file(” atom “,” atom “)” |
“lines(” integer “,” integer “)” |
“context_switching_calls” |
“dynamic_declarations” |
“events” |
“source_data” |
“complements(” “allow” | “restrict” “)” |
“complements” |
“public(” predicate_indicator_list “)” |
“protected(” predicate_indicator_list “)” |
“private(” predicate_indicator_list “)” |
“declares(” predicate_indicator “,” predicate_declaration_property_list “)” |
“defines(” predicate_indicator “,” predicate_definition_property_list “)” |
“includes(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)” |
“provides(” predicate_indicator “,” object_identifier | category_identifier “,”
predicate_definition_property_list “)”
“alias(” predicate_indicator “,” predicate_alias_property_list “)” |
“calls(” predicate “,” predicate_call_update_property_list “)” |
“updates(” predicate “,” predicate_call_update_property_list “)” |
“number_of_clauses(” integer “)” |

2.1. Grammar 155

The Logtalk Handbook, Release v3.34.0

“number_of_rules(” integer “)” |
“number_of_user_clauses(” integer “)”
“number_of_user_rules(” integer “)” |
“module |”
“debugging”

protocol_property ::=
“static” |
“dynamic” |
“built_in” |
“source_data” |
“file(” atom “)” |
“file(” atom “,” atom “)” |
“lines(” integer “,” integer “)” |
“public(” predicate_indicator_list “)” |
“protected(” predicate_indicator_list “)” |
“private(” predicate_indicator_list “)” |
“declares(” predicate_indicator “,” predicate_declaration_property_list “)” |
“alias(” predicate_indicator “,” predicate_alias_property_list “)” |
“debugging”

predicate_declaration_property_list ::=
“[” predicate_declaration_property_sequence “]”

predicate_declaration_property_sequence ::=
predicate_declaration_property |
predicate_declaration_property “,”
predicate_declaration_property_sequence

predicate_declaration_property ::=
“static” | “dynamic” |
“scope(” scope “)” |
“private” | “protected” | “public” |
“coinductive” |
“multifile” |
“synchronized” |
“meta_predicate(” meta_predicate_template “)” |
“coinductive(” coinductive_predicate_template “)” |
“non_terminal(” non_terminal_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)” |
“mode(” predicate_mode_term | non_terminal_mode_term “,” number_of_proofs “)” |
“info(” list “)”

156 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

predicate_definition_property_list ::=
“[” predicate_definition_property_sequence “]”

predicate_definition_property_sequence ::=
predicate_definition_property |
predicate_definition_property “,”
predicate_definition_property_sequence

predicate_definition_property ::=
“inline” | “auxiliary” |
“non_terminal(” non_terminal_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)” |
“number_of_clauses(” integer “)” |
“number_of_rules(” integer “)”

predicate_alias_property_list ::=
“[” predicate_alias_property_sequence “]”

predicate_alias_property_sequence ::=
predicate_alias_property |
predicate_alias_property “,” predicate_alias_property_sequence

predicate_alias_property ::=
“for(” predicate_indicator “)” |
“from(” entity_identifier “)” |
“non_terminal(” non_terminal_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)”

predicate ::=
predicate_indicator |
“^^” predicate_indicator |
“::” predicate_indicator |
variable “::” predicate_indicator |
object_identifier “::” predicate_indicator |
variable “:” predicate_indicator |
module_identifier “:” predicate_indicator

predicate_call_update_property_list ::=
“[” predicate_call_update_property_sequence “]”

2.1. Grammar 157

The Logtalk Handbook, Release v3.34.0

predicate_call_update_property_sequence ::=
predicate_call_update_property |
predicate_call_update_property “,”
predicate_call_update_property_sequence

predicate_call_update_property ::=
“caller(” predicate_indicator “)” |
“include(” atom “)” |
“line_count(” integer “)” |
“as(” predicate_indicator “)”

2.1.13 Predicate properties

predicate_property ::=
“static” | “dynamic” |
“scope(” scope “)” |
“private” | “protected” | “public” |
“logtalk” | “prolog” | “foreign” |
“coinductive(” coinductive_predicate_template “)” |
“multifile” |
“synchronized” |
“built_in” |
“inline” |
“declared_in(” entity_identifier “)” |
“defined_in(” object_identifier | category_identifier “)” |
“redefined_from(” object_identifier | category_identifier “)” |
“meta_predicate(” meta_predicate_template “)” |
“alias_of(” callable “)” |
“alias_declared_in(” entity_identifier “)” |
“non_terminal(” non_terminal_indicator “)” |
“mode(” predicate_mode_term | non_terminal_mode_term “,” number_of_proofs “)” |
“info(” list “)” |
“number_of_clauses(” integer “)” |
“number_of_rules(” integer “)” |
“declared_in(” entity_identifier “,” line_count “)” |
“defined_in(” object_identifier | category_identifier “,” line_count “)” |
“redefined_from(” object_identifier | category_identifier “,” line_count “)” |
“alias_declared_in(” entity_identifier “,” line_count “)”

line_count ::=
integer”

158 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.1.14 Compiler flags

compiler_flag ::=
flag(flag_value)

2.2 Control constructs

2.2.1 Message sending

::/2

Description

Object::Message
{Proxy}::Message

Sends a message to an object. The message argument must match a public predicate of the receiver object.
When the message corresponds to a protected or private predicate, the call is only valid if the sender matches
the predicate scope container. When the predicate is declared but not defined, the message simply fails (as
per the closed-world assumption).

The {Proxy}::Message syntax allows simplified access to parametric object proxies. Its operational semantics
is equivalent to the conjunction (call(Proxy), Proxy::Message). I.e. Proxy is proved within the context of
the pseudo-object user and, if successful, the Proxy term is used as an object identifier. Exceptions thrown
when proving Proxy are handled by the ::/2 control construct. This construct construct supports backtrack-
ing over the {Proxy} goal.

The lookups for the message declaration and the corresponding method are performed using a depth-first
strategy. Depending on the value of the optimize flag, these lookups are performed at compile time whenever
sufficient information is available. When the lookups are performed at runtime, a caching mechanism is used
to improve performance in subsequent messages. See the User Manual section on performance for details.

Modes and number of proofs

+object_identifier::+callable - zero_or_more
{+object_identifier}::+callable - zero_or_more

Errors

Either Object or Message is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is declared protected:

2.2. Control constructs 159

The Logtalk Handbook, Release v3.34.0

permission_error(access, protected_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Object does not exist:
existence_error(object, Object)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor a callable term:
type_error(callable, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:
existence_error(procedure, Name/Arity)

Examples

| ?- list::member(X, [1, 2, 3]).

X = 1 ;
X = 2 ;
X = 3
yes

See also:

::/1, ^^/1, []/1

::/1

Description

::Message

Sends a message to self . Can only used in the body of a predicate definition. The argument should match a
public or protected predicate of self. It may also match a private predicate if the predicate is within the scope
of the object where the method making the call is defined, if imported from a category, if used from within
a category, or when using private inheritance. When the predicate is declared but not defined, the message
simply fails (as per the closed-world assumption).

The lookups for the message declaration and the corresponding method are performed using a depth-first
strategy. A message to self necessarily implies the use of dynamic binding but a caching mechanism is used
to improve performance in subsequent messages. See the User Manual section on performance for details.

160 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

::+callable - zero_or_more

Errors

Message is a variable:
instantiation_error

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

area(Area) :-
::width(Width),
::height(Height),
Area is Width * Height.

See also:

::/2, ^^/1, []/1

2.2.2 Message delegation

[]/1

Description

[Object::Message]
[{Proxy}::Message]

This control construct allows the programmer to send a message to an object while preserving the original
sender. It is mainly used in the definition of object handlers for unknown messages. This functionality is
usually known as delegation but be aware that this is an overloaded word that can mean different things in
different object-oriented programming languages.

To prevent using of this control construct to break object encapsulation, an attempt to delegate a message
to the original sender results in an error. The remaining error conditions are the same as the ::/2 control
construct.

Note that, despite the correct functor for this control construct being (traditionally) '.'/2, we refer to it as
[]/1 simply to emphasize that the syntax is a list with a single element.

2.2. Control constructs 161

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

[+object_identifier::+callable] - zero_or_more
[{+object_identifier}::+callable] - zero_or_more

Errors

Object is a variable:
instantiation_error

Object is neither a variable nor an object identifier:
type_error(object_identifier, Object)

Object does not exist:
existence_error(object, Object)

Object and the original sender are the same object:
permission_error(access, object, Sender)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor an object identifier:
type_error(object_identifier, Proxy)

Proxy, with predicate indicator Name/Arity, does not exist in the user pseudo-object:
existence_error(procedure, Name/Arity)

Message is a variable:
instantiation_error

Message is neither a variable nor a callable term:
type_error(callable, Message)

Message, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is declared protected:
permission_error(access, protected_predicate, Name/Arity)

Message, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

% delegate unknown messages to the "backup" object:
forward(Message) :-

[backup::Message].

See also:

::/2, ::/1, ^^/1, forward/1

162 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.2.3 Calling imported and inherited predicates

^^/1

Description

^^Predicate

Calls an imported or inherited predicate definition. The call fails if the predicate is declared but there is no
imported or inherited predicate definition (as per the closed-world assumption). This control construct may
be used within objects or categories in the body of a predicate definition.

This control construct preserves the implicit execution context self and sender arguments (plus the meta-
call context and coinduction stack when applicable) when calling the inherited (or imported) predicate
definition.

The lookups for the predicate declaration and the predicate definition are performed using a depth-first
strategy. Depending on the value of the optimize flag, these lookups are performed at compile time when
the predicate is static and sufficient information is available. When the lookups are performed at runtime,
a caching mechanism is used to improve performance in subsequent calls. See the User Manual section on
performance for details.

When the call is made from within an object, the lookup for the predicate definition starts at the imported
categories, if any. If an imported predicate definition is not found, the lookup proceeds to the ancestor
objects. Calls from predicates defined in complementing categories lookup inherited definitions as if the
calls were made from the complemented object, thus allowing more comprehensive object patching. For
other categories, the predicate definition lookup is restricted to the extended categories.

The called predicate should be declared public or protected. It may also be declared private if within the
scope of the entity where the method making the call is defined.

This control construct is a generalization of the Smalltalk super keyword to take into account Logtalk support
for prototypes and categories besides classes.

Modes and number of proofs

^^+callable - zero_or_more

Errors

Predicate is a variable:
instantiation_error

Predicate is neither a variable nor a callable term:
type_error(callable, Predicate)

Predicate, with predicate indicator Name/Arity, is declared private:
permission_error(access, private_predicate, Name/Arity)

Predicate, with predicate indicator Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

2.2. Control constructs 163

The Logtalk Handbook, Release v3.34.0

Examples

% specialize the inherited definition
% of the init/0 predicate:
init :-

assertz(counter(0)),
^^init.

See also:

::/2, ::/1, []/1

2.2.4 Calling external predicates

{}/1

Description

{Term}
{Goal}

This control construct allows the programmer to bypass the Logtalk compiler. It can also be used to wrap a
source file term (either a clause or a directive) to bypass the term-expansion mechanism. Similarly, it can also
be used to wrap a goal to bypass the goal-expansion mechanism. When used to wrap a goal, it is opaque
to cuts and the argument is called within the context of the pseudo-object user. It is also possible to use
{Closure} as the first argument of call/1-N calls. In this case, Closure will be extended with the remaining
arguments of the call/2-N call in order to construct a goal that will be called within the context of user.
It can also be used as a message to any object. This is useful when the message is e.g. a conjunction of
messages, some of which being calls to Prolog built-in predicates.

This control construct may also be used in place of an object identifier when sending a message. In this
case, the result of proving its argument as a goal (within the context of the pseudo-object user) is used as an
object identifier in the message sending call. This feature is mainly used with parametric objects when their
identifiers correspond to predicates defined in user.

Modes and number of proofs

{+callable} - zero_or_more

Errors

Term is a variable:
instantiation_error

Term is neither a variable nor a callable term:
type_error(callable, Term)

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

164 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

% bypass the compiler for the next term:
{:- load_foreign_resource(file)}.

% overload the standard </2 operator:
N1/D1 < N2/D2 :-

{N1*D2 < N2*D1}.

% call a closure in the context of "user":
call_in_user(F, X, Y, Z) :-

call({F}, X, Y, Z).

% use parametric object proxies:
| ?- {circle(Id, Radius, Color)}::area(Area).
...

% use Prolog built-in predicates as messages:
| ?- logtalk::{write('hello world!'), nl}.
hello world!
yes

2.2.5 Context switching calls

<</2

Description

Object<<Goal
{Proxy}<<Goal

Debugging control construct. Calls a goal within the context of the specified object. The goal is called with
the execution context (sender, this, and self) set to the object. The goal may need to be written between
parenthesis to avoid parsing errors due to operator conflicts. This control construct should only be used
for debugging or for writing unit tests. This control construct can only be used for objects compiled with
the context_switching_calls compiler flag set to allow. Set this compiler flag to deny to disable this control
construct and thus preventing using it to break encapsulation.

The {Proxy}<<Goal syntax allows simplified access to parametric object proxies. Its operational semantics is
equivalent to the goal conjunction (call(Proxy), Proxy<<Goal). I.e. Proxy is proved within the context of
the pseudo-object user and, if successful, the goal term is used as a parametric object identifier. Exceptions
thrown when proving Proxy are handled by the <</2 control construct. This syntax construct supports
backtracking over the {Proxy} goal.

Caveat: although the goal argument is fully compiled before calling, some necessary information for the
second compiler pass may not be available at runtime.

2.2. Control constructs 165

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

+object_identifier<<+callable - zero_or_more
{+object_identifier}<<+callable - zero_or_more

Errors

Object is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Object does not contain a local definition for the Goal predicate:
existence_error(procedure, Goal)

Object does not exist:
existence_error(object, Object)

Object was created/compiled with support for context switching calls turned off:
permission_error(access, database, Goal)

Proxy is a variable:
instantiation_error

Proxy is neither a variable nor an object identifier:
type_error(object_identifier, Proxy)

The predicate Proxy does not exist in the user pseudo-object:
existence_error(procedure, ProxyFunctor/ProxyArity)

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

% call the member/2 predicate in the
% context of the "list" object:
test(member) :-

list << member(1, [1]).

166 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.3 Directives

2.3.1 Source file directives

encoding/1

Description

encoding(Encoding)

Declares the source file text encoding. Requires a backend Prolog compiler supporting the chosen encoding.
When used, this directive must be the first term in the source file in the first line. This directive is also
supported in files included in a main file or in a dynamically created entity using include/1 directives.

The encoding used in a source file (and, in the case of a Unicode encoding, any BOM present) will be used
for the intermediate Prolog file generated by the compiler. Logtalk uses the encoding names specified by
IANA. In those cases where a preferred MIME name alias is specified, the alias is used instead. Examples in-
cludes 'US-ASCII', 'ISO-8859-1', 'ISO-8859-2', 'ISO-8859-15', 'UCS-2', 'UCS-2LE', 'UCS-2BE', 'UTF-8',
'UTF-16', 'UTF-16LE', 'UTF-16BE', 'UTF-32', 'UTF-32LE', 'UTF-32BE', 'Shift_JIS', and 'EUC-JP'. When
writing portable code that cannot be expressed using ASCII, 'UTF-8' is the most commonly supported Uni-
code encoding.

The backend Prolog compiler adapter files define a table that translates between the Logtalk and Prolog
specific atoms that represent each supported encoding. The encoding_directive read-only flag can be used to
find if a backend supports this directive and how.

Template and modes

encoding(+atom)

Examples

:- encoding('UTF-8').

include/1

Description

include(File)

Includes a file contents, which must be valid terms, at the place of occurrence of the directive. The file can
be specified as a relative path, an absolute path, or using library notation and is expanded as a source file
name. Relative paths are interpreted as relative to the path of the file containing the directive.

When using the reflection API, predicates from an included file can be distinguished from predicates from
the main file by looking for the include/1 predicate declaration or predicate definition property. For the
included predicates, the line_count/1 property stores the term line number in the included file.

This directive can be used as either a source file directive or an entity directive. As an entity directive, it can
be used both in entities defined in source files and with the entity creation built-in predicates. In the latter

2.3. Directives 167

http://www.iana.org/assignments/character-sets/character-sets.xhtml

The Logtalk Handbook, Release v3.34.0

case, the file should be specified using an absolute path or using library notation (which expands to a full
path).

Included files may contain an encoding/1 directive, which may specify the same encoding of the main file or
a different encoding.

Warning: When using this directive as an argument in calls to the create_object/4 and create_category/4
predicates, the objects and categories will not be recreated or redefined when the included file(s) are
modified and the logtalk_make/0 predicate or the logtalk_make/1 (with target all) predicates are called.

Template and modes

include(@source_file_name)

Examples

% include the "raw_1.txt" text file found
% on the "data" library directory:
:- include(data('raw_1.txt')).

% include a "factbase.pl" file in the
% current directory:
:- include('factbase.pl').

% include a file given its absolute path:
:- include('/home/me/databases/countries.pl').

% create a wrapper object for a Prolog file:
| ?- create_object(cities, [], [public(city/4), include('cities.pl')], []).

initialization/1

Description

initialization(Goal)

When used within an object, this directive defines a goal to be called after the object has been loaded into
memory. When used at a global level within a source file, this directive defines a goal to be called after the
compiled source file is loaded into memory.

Multiple initialization directives can be used in a source file or in an object. Their goals will be called in the
same order as the directives at loading time.

Note: Categories and protocols cannot contain initialization/1 directives as the initialization goals would
lack a complete execution context that is only available for objects.

Although technically a global initialization/1 directive in a source file is a Prolog directive, calls to Logtalk
built-in predicates from it are usually compiled to improve performance and providing better support for
embedded applications.

168 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Warning: Some backend Prolog compilers declare initialization as an operator for a lighter syntax.
But this makes the code non-portable and is a practice best avoided.

Template and modes

initialization(@callable)

Examples

% call the init/0 predicate after loading the
% source file containing the directive:
:- initialization(init).

op/3

Description

op(Precedence, Associativity, Operator)
op(Precedence, Associativity, [Operator, ...])

Declares operators. Operators declared inside entities have local scope. Global operators can be declared
inside a source file by writing the respective directives before the entity opening directives.

Template and modes

op(+integer, +associativity, +atom_or_atom_list)

Examples

:- op(200, fy, +).
:- op(200, fy, ?).
:- op(200, fy, @).
:- op(200, fy, -).

See also:

current_op/3

2.3. Directives 169

The Logtalk Handbook, Release v3.34.0

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets local flag values. The scope of this directive is the entity or the source file containing it. For global
scope, use the corresponding set_logtalk_flag/2 built-in predicate called from an initialization/1 directive.
For a description of the predefined compiler flags, consult the Compiler flags section in the User Manual.

Template and modes

set_logtalk_flag(+atom, +nonvar)

Errors

Flag is a variable:
instantiation_error

Value is a variable:
instantiation_error

Flag is not an atom:
type_error(atom, Flag)

Flag is neither a variable nor a valid flag:
domain_error(flag, Flag)

Value is not a valid value for flag Flag:
domain_error(flag_value, Flag + Value)

Flag is a read-only flag:
permission_error(modify, flag, Flag)

Examples

% turn off the compiler unknown entity warnings
% during the compilation of this source file:
:- set_logtalk_flag(unknown_entities, silent).

:- object(...).

% generate events for messages sent from this object:
:- set_logtalk_flag(events, allow).
...

170 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.3.2 Conditional compilation directives

if/1

Description

if(Goal)

Starts conditional compilation. The code following the directive is compiled iff Goal is true. The goal is
subjected to goal expansion when the directive occurs in a source file. Conditional compilation directives can
be nested.

Conditional compilation goals cannot depend on predicate definitions contained in the same source file that
contains the conditional compilation directives (as those predicates only become available after the file is
fully compiled and loaded).

Template and modes

if(@callable)

Examples

A common example is checking if a built-in predicate exists and providing a definition when the predicate is
absent:

:- if(\+ predicate_property(length(_,_), built_in)).

length(List, Length) :-
...

:- endif.

Another common example is conditionally including code for a specific backend Prolog compiler:

:- if(current_logtalk_flag(prolog_dialect, swi)).

% SWI-Prolog specific code
:- set_prolog_flag(double_quotes, codes).

:- endif.

See also:

elif/1, else/0, endif/0

2.3. Directives 171

The Logtalk Handbook, Release v3.34.0

elif/1

Description

elif(Goal)

Supports embedded conditionals when performing conditional compilation. The code following the directive
is compiled iff Goal is true. The goal is subjected to goal expansion when the directive occurs in a source file.

Conditional compilation goals cannot depend on predicate definitions contained in the same source file that
contains the conditional compilation directives (as those predicates only become available after the file is
fully compiled and loaded).

Template and modes

elif(@callable)

Examples

:- if(current_prolog_flag(double_quotes, codes)).

...

:- elif(current_prolog_flag(double_quotes, chars)).

...

:- elif(current_prolog_flag(double_quotes, atom)).

...

:- endif.

See also:

else/0, endif/0, if/1

else/0

Description

else

Starts an else branch when performing conditional compilation. The code following this directive is compiled
iff the goal in the matching if/1 or elif/1 directive is false.

172 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Template and modes

else

Examples

An example where a hypothetic application would have some limitations that the user should be made aware
when running on a backend Prolog compiler with bounded arithmetic:

:- if(current_prolog_flag(bounded, true)).

:- initialization(
logtalk::print_message(warning,app,bounded_arithmetic)

).

:- else.

:- initialization(
logtalk::print_message(comment,app,unbounded_arithmetic)

).

:- endif.

See also:

elif/1, endif/0, if/1

endif/0

Description

endif

Ends conditional compilation for the matching if/1 directive.

Template and modes

endif

Examples

:- if(date::today(_,5,25)).

:- initialization(write('Happy Towel Day!\n')).

:- endif.

See also:

elif/1, else/0, if/1

2.3. Directives 173

The Logtalk Handbook, Release v3.34.0

2.3.3 Entity directives

built_in/0

Description

built_in

Declares an entity as built-in. Built-in entities must be static and cannot be redefined once loaded. This
directive is used in the pre-defined protocols, categories, and objects that are automatically loaded at startup.

Template and modes

built_in

Examples

:- built_in.

category/1-4

Description

category(Category)

category(Category,
implements(Protocols))

category(Category,
extends(Categories))

category(Category,
complements(Objects))

category(Category,
implements(Protocols),
extends(Categories))

category(Category,
implements(Protocols),
complements(Objects))

category(Category,
extends(Categories),
complements(Objects))

category(Category,
implements(Protocols),
extends(Categories),
complements(Objects))

174 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Starting category directive.

Template and modes

category(+category_identifier)

category(+category_identifier,
implements(+implemented_protocols))

category(+category_identifier,
extends(+extended_categories))

category(+category_identifier,
complements(+complemented_objects))

category(+category_identifier,
implements(+implemented_protocols),
extends(+extended_categories))

category(+category_identifier,
implements(+implemented_protocols),
complements(+complemented_objects))

category(+category_identifier,
extends(+extended_categories),
complements(+complemented_objects))

category(+category_identifier,
implements(+implemented_protocols),
extends(+extended_categories),
complements(+complemented_objects))

Examples

:- category(monitoring).

:- category(monitoring,
implements(monitoringp)).

:- category(attributes,
implements(protected::variables)).

:- category(extended,
extends(minimal)).

:- category(logging,
implements(monitoring),
complements(employee)).

See also:

end_category/0

2.3. Directives 175

The Logtalk Handbook, Release v3.34.0

dynamic/0

Description

dynamic

Declares an entity and its contents as dynamic. Dynamic entities can be abolished at runtime.

Template and modes

dynamic

Examples

:- dynamic.

See also:

dynamic/1, object_property/2, protocol_property/2, category_property/2

end_category/0

Description

end_category

Ending category directive.

Template and modes

end_category

Examples

:- end_category.

See also:

category/1-4

176 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

end_object/0

Description

end_object

Ending object directive.

Template and modes

end_object

Examples

:- end_object.

See also:

object/1-5

end_protocol/0

Description

end_protocol

Ending protocol directive.

Template and modes

end_protocol

Examples

:- end_protocol.

See also:

protocol/1-2

2.3. Directives 177

The Logtalk Handbook, Release v3.34.0

info/1

Description

info([Key is Value, ...])

Documentation directive for objects, protocols, and categories. The directive argument is a list of pairs using
the format Key is Value. See the Entity directives section for a description of the default keys.

Template and modes

info(+entity_info_list)

Examples

:- info([
version is 1.0,
author is 'Paulo Moura',
date is 2000/4/20,
comment is 'List protocol.'

]).

See also:

info/2, object_property/2, protocol_property/2, category_property/2

object/1-5

Description

Stand-alone objects (prototypes)

object(Object)

object(Object,
implements(Protocols))

object(Object,
imports(Categories))

object(Object,
implements(Protocols),
imports(Categories))

Prototype extensions

object(Object,
extends(Objects))

object(Object,
implements(Protocols),

(continues on next page)

178 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

extends(Objects))

object(Object,
imports(Categories),
extends(Objects))

object(Object,
implements(Protocols),
imports(Categories),
extends(Objects))

Class instances

object(Object,
instantiates(Classes))

object(Object,
implements(Protocols),
instantiates(Classes))

object(Object,
imports(Categories),
instantiates(Classes))

object(Object,
implements(Protocols),
imports(Categories),
instantiates(Classes))

Classes

object(Object,
specializes(Classes))

object(Object,
implements(Protocols),
specializes(Classes))

object(Object,
imports(Categories),
specializes(Classes))

object(Object,
implements(Protocols),
imports(Categories),
specializes(Classes))

Classes with metaclasses

object(Object,
instantiates(Classes),
specializes(Classes))

object(Object,
implements(Protocols),
instantiates(Classes),

(continues on next page)

2.3. Directives 179

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

specializes(Classes))

object(Object,
imports(Categories),
instantiates(Classes),
specializes(Classes))

object(Object,
implements(Protocols),
imports(Categories),
instantiates(Classes),
specializes(Classes))

Starting object directive.

Template and modes

Stand-alone objects (prototypes)

object(+object_identifier)

object(+object_identifier,
implements(+implemented_protocols))

object(+object_identifier,
imports(+imported_categories))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories))

Prototype extensions

object(+object_identifier,
extends(+extended_objects))

object(+object_identifier,
implements(+implemented_protocols),
extends(+extended_objects))

object(+object_identifier,
imports(+imported_categories),
extends(+extended_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
extends(+extended_objects))

Class instances

object(+object_identifier,
instantiates(+instantiated_objects))

object(+object_identifier,

(continues on next page)

180 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

implements(+implemented_protocols),
instantiates(+instantiated_objects))

object(+object_identifier,
imports(+imported_categories),
instantiates(+instantiated_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
instantiates(+instantiated_objects))

Classes

object(+object_identifier,
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
specializes(+specialized_objects))

object(+object_identifier,
imports(+imported_categories),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
specializes(+specialized_objects))

Class with metaclasses

object(+object_identifier,
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
imports(+imported_categories),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

2.3. Directives 181

The Logtalk Handbook, Release v3.34.0

Examples

:- object(list).

:- object(list,
implements(listp)).

:- object(list,
extends(compound)).

:- object(list,
implements(listp),
extends(compound)).

:- object(object,
imports(initialization),
instantiates(class)).

:- object(abstract_class,
instantiates(class),
specializes(object)).

:- object(agent,
imports(private::attributes)).

See also:

end_object/0

protocol/1-2

Description

protocol(Protocol)

protocol(Protocol,
extends(Protocols))

Starting protocol directive.

Template and modes

protocol(+protocol_identifier)

protocol(+protocol_identifier,
extends(+extended_protocols))

182 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

:- protocol(listp).

:- protocol(listp,
extends(compoundp)).

:- protocol(queuep,
extends(protected::listp)).

See also:

end_protocol/0

threaded/0

Description

threaded

Declares that an object supports threaded engines, concurrent calls, and asynchronous messages. Any object
containing calls to the built-in multi-threading predicates (or importing a category that contains such calls)
must include this directive.

This directive results in the automatic creation and set up of an object message queue when the object
is loaded or created at runtime. Object message queues are used for exchanging thread notifications and
for storing concurrent goal solutions and replies to the multi-threading calls made within the object. The
message queue for the user pseudo-object is automatically created at Logtalk startup (provided that multi-
threading programming is supported and enabled for the chosen backend Prolog compiler).

Template and modes

threaded

Examples

:- threaded.

See also:

synchronized/1, object_property/2

2.3. Directives 183

The Logtalk Handbook, Release v3.34.0

uses/1

Description

uses([Object as Alias, ...])

Declares object aliases. Typically used to shorten long object names, to simplify and consistently send mes-
sages to parameterized objects, and to simplify experimenting with different object implementations of the
same protocol when using explicit message sending. Object aliases are local to the object (or category) where
they are defined.

The objects being aliased can be parameter variables or parametric objects where one of more parameters
are parameter variables when using the directive in a parametric object or a parametric category defined in
a source file (the common case).

Declaring multiple aliases for the same object are allowed. But repeated declarations of the same alias,
declaring an alias for an object alias, and redefining an alias to reference a different object are reported as
compilation errors.

To enable the use of static binding, and thus optimal message sending performance, the objects should be
loaded before compiling the entities that call their predicates.

Template and modes

uses(+object_alias_list)

Examples

:- object(foo(_HeapType_, _OptionsObject_)).

:- uses([
fast_random as rnd,
time(utc) as time,
heap(_HeapType_) as heap,
OptionsObject as options

]).

bar :-
...,
% the same as fast_random::permutation(L, P)
rnd::permutation(L, P),
% the same as heap(_HeapType_)::as_heap(L, H)
heap::as_heap(L, H),
% the same as _OptionsObject_::get(foo, X)
options::get(foo, X),
% the same as time(utc)::now(T)
time::now(T),
...

See also:

uses/2, use_module/2

184 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.3.4 Predicate directives

alias/2

Description

alias(Entity, [Name/Arity as Alias/Arity, ...])
alias(Entity, [Name//Arity as Alias//Arity, ...])

Declares predicate and grammar rule non-terminal aliases. A predicate (non-terminal) alias is an alternative
name for a predicate (non-terminal) declared or defined in an extended protocol, an implemented protocol,
an extended category, an imported category, an extended prototype, an instantiated class, or a specialized
class. Predicate aliases may be used to solve conflicts between imported or inherited predicates. It may also
be used to give a predicate (non-terminal) a name more appropriated in its usage context. This directive
may be used in objects, protocols, and categories.

Predicate (and non-terminal) aliases are specified using (preferably) the notation Name/Arity as Alias/
Arity or, in alternative, the notation Name/Arity::Alias/Arity.

It is also possible to declare predicate and grammar rule non-terminal aliases in implicit qualification direc-
tives for sending messages to objects and calling module predicates.

Template and modes

alias(@entity_identifier, +list(predicate_indicator_alias))
alias(@entity_identifier, +list(non_terminal_indicator_alias))

Examples

% resolve a predicate name conflict:
:- alias(list, [member/2 as list_member/2]).
:- alias(set, [member/2 as set_member/2]).

% define an alternative name for a non-terminal:
:- alias(words, [singular//0 as peculiar//0]).

See also:

uses/2, use_module/2, uses/1

coinductive/1

Description

coinductive(Name/Arity)
coinductive((Name/Arity, ...))
coinductive([Name/Arity, ...])

coinductive(Name//Arity)
coinductive((Name//Arity, ...))
coinductive([Name//Arity, ...])

(continues on next page)

2.3. Directives 185

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

coinductive(Template)
coinductive((Template1, ...))
coinductive([Template1, ...])

This is an experimental directive, used for declaring coinductive predicates. Requires a backend Prolog
compiler with minimal support for cyclic terms. The current implementation of coinduction allows the gen-
eration of only the basic cycles but all valid solutions should be recognized. Use a predicate indicator or a
non-terminal indicator as argument when all the coinductive predicate arguments are relevant for coinduc-
tive success. Use a template when only some coinductive predicate arguments (represented by a “+”) should
be considered when testing for coinductive success (represent the arguments that should be disregarded by
a “-“). It’s possible to define local coinductive_success_hook/1-2 predicates that are automatically called with
the coinductive predicate term resulting from a successful unification with an ancestor goal as first argument.
The second argument, when present, is the coinductive hypothesis (i.e. the ancestor goal) used. These hook
predicates can provide an alternative to the use of tabling when defining some coinductive predicates. There
is no overhead when these hook predicates are not defined.

This directive must precede any calls to the declared coinductive predicates.

Template and modes

coinductive(+predicate_indicator_term)
coinductive(+non_terminal_indicator_term)
coinductive(+coinductive_predicate_template_term)

Examples

:- coinductive(comember/2).
:- coinductive(ones_and_zeros//0).
:- coinductive(controller(+,+,+,-,-)).

See also:

coinductive_success_hook/1-2, predicate_property/2

discontiguous/1

Description

discontiguous(Name/Arity)
discontiguous((Name/Arity, ...))
discontiguous([Name/Arity, ...])

discontiguous(Name//Arity)
discontiguous((Name//Arity, ...))
discontiguous([Name//Arity, ...])

Declares discontiguous predicates and discontiguous grammar rule non-terminals. The use of this directive
should be avoided as not all backend Prolog compilers support discontiguous predicates.

186 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Warning: Some backend Prolog compilers declare discontiguous as an operator for a lighter syntax.
But this makes the code non-portable and is a practice best avoided.

Template and modes

discontiguous(+predicate_indicator_term)
discontiguous(+non_terminal_indicator_term)

Examples

:- discontiguous(counter/1).

:- discontiguous((lives/2, works/2)).

:- discontiguous([db/4, key/2, file/3]).

dynamic/1

Description

dynamic(Name/Arity)
dynamic((Name/Arity, ...))
dynamic([Name/Arity, ...])

dynamic(Entity::Name/Arity)
dynamic((Entity::Name/Arity, ...))
dynamic([Entity::Name/Arity, ...])

dynamic(Module:Name/Arity)
dynamic((Module:Name/Arity, ...))
dynamic([Module:Name/Arity, ...])

dynamic(Name//Arity)
dynamic((Name//Arity, ...))
dynamic([Name//Arity, ...])

dynamic(Entity::Name//Arity)
dynamic((Entity::Name//Arity, ...))
dynamic([Entity::Name//Arity, ...])

dynamic(Module:Name//Arity)
dynamic((Module:Name//Arity, ...))
dynamic([Module:Name//Arity, ...])

Declares dynamic predicates and dynamic grammar rule non-terminals. Note that an object can be static
and have both static and dynamic predicates/non-terminals. When the dynamic predicates are local to an
object, declaring them also as private predicates allows the Logtalk compiler to generate optimized code
for asserting and retracting predicate clauses. Categories can also contain dynamic predicate directives but
cannot contain clauses for dynamic predicates.

2.3. Directives 187

The Logtalk Handbook, Release v3.34.0

The predicate indicators (or non-terminal indicators) can be explicitly qualified with an object, category, or
module identifier when the predicates (or non-terminals) are also declared multifile.

Note that dynamic predicates cannot be declared synchronized (when necessary, declare the predicates
updating the dynamic predicates as synchronized).

Warning: Some backend Prolog compilers declare dynamic as an operator for a lighter syntax. But this
makes the code non-portable and is a practice best avoided.

Template and modes

dynamic(+qualified_predicate_indicator_term)
dynamic(+qualified_non_terminal_indicator_term)

Examples

:- dynamic(counter/1).

:- dynamic((lives/2, works/2)).

:- dynamic([db/4, key/2, file/3]).

See also:

dynamic/0, predicate_property/2

info/2

Description

info(Name/Arity, [Key is Value, ...])
info(Name//Arity, [Key is Value, ...])

Documentation directive for predicates and grammar rule non-terminals. The first argument is either a
predicate indicator or a grammar rule non-terminal indicator. The second argument is a list of pairs using
the format Key is Value. See the Predicate directives section for a description of the default keys.

Template and modes

info(+predicate_indicator, +predicate_info_list)
info(+non_terminal_indicator, +predicate_info_list)

188 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

:- info(empty/1, [
comment is 'True if the argument is an empty list.',
argnames is ['List']

]).

:- info(sentence//0, [
comment is 'Rewrites a sentence into a noun phrase and a verb phrase.'

]).

See also:

info/1, mode/2, predicate_property/2

meta_predicate/1

Description

meta_predicate(Template)
meta_predicate((Template, ...))
meta_predicate([Template, ...])

meta_predicate(Entity::Template)
meta_predicate((Entity::Template, ...))
meta_predicate([Entity::Template, ...])

meta_predicate(Module:Template)
meta_predicate((Module:Template, ...))
meta_predicate([Module:Template, ...])

Declares meta-predicates, i.e., predicates that have arguments that will be called as goals. An argument
may also be a closure instead of a goal if the meta-predicate uses the call/1-N Logtalk built-in methods to
construct and call the actual goal from the closure and the additional arguments.

Meta-arguments which are goals are represented by the integer 0. Meta-arguments which are closures are
represented by a positive integer, N, representing the number of additional arguments that will be appended
to the closure in order to construct the corresponding meta-call. Meta-arguments that will be called using
the bagof/3 or setof/3 predicates and that can thus be existentially-qualified are represented by the atom ^.
Normal arguments are represented by the atom *. Meta-arguments are always called in the meta-predicate
calling context, not in the meta-predicate definition context.

Logtalk allows the use of this directive to override the original meta-predicate directive. This is sometimes
necessary when calling Prolog built-in meta-predicates or Prolog module meta-predicates due to the lack of
standardization of the syntax of the meta-predicate templates.

Warning: Some backend Prolog compilers declare meta_predicate as an operator for a lighter syntax.
But this makes the code non-portable and is a practice best avoided.

2.3. Directives 189

The Logtalk Handbook, Release v3.34.0

Template and modes

meta_predicate(+meta_predicate_template_term)

meta_predicate(+object_identifier::+meta_predicate_template_term)
meta_predicate(+category_identifier::+meta_predicate_template_term)

meta_predicate(+module_identifier:+meta_predicate_template_term)

Examples

% findall/3 second argument is interpreted as a goal:
:- meta_predicate(findall(*, 0, *)).

% both forall/2 arguments are interpreted as goals:
:- meta_predicate(forall(0, 0)).

% maplist/3 first argument is interpreted as a closure
% that will be expanded to a goal by appending two
% arguments:
:- meta_predicate(maplist(2, *, *)).

See also:

meta_non_terminal/1, predicate_property/2

meta_non_terminal/1

Description

meta_non_terminal(Template)
meta_non_terminal((Template, ...))
meta_non_terminal([Template, ...])

meta_non_terminal(Entity::Template)
meta_non_terminal((Entity::Template, ...))
meta_non_terminal([Entity::Template, ...])

meta_non_terminal(Module:Template)
meta_non_terminal((Module:Template, ...))
meta_non_terminal([Module:Template, ...])

Declares meta-non-terminals, i.e., non-terminals that have arguments that will be called as non-terminals
(or grammar rule bodies). An argument may also be a closure instead of a goal if the non-terminal uses the
call//1-N Logtalk built-in methods to construct and call the actual non-terminal from the closure and the
additional arguments.

Meta-arguments which are non-terminals are represented by the integer 0. Meta-arguments which are clo-
sures are represented by a positive integer, N, representing the number of additional arguments that will be
appended to the closure in order to construct the corresponding meta-call. Normal arguments are repre-
sented by the atom *. Meta-arguments are always called in the meta-non-terminal calling context, not in the
meta-non-terminal definition context.

190 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Template and modes

meta_non_terminal(+meta_non_terminal_template_term)

meta_non_terminal(+object_identifier::+meta_non_terminal_template_term)
meta_non_terminal(+category_identifier::+meta_non_terminal_template_term)

meta_non_terminal(+module_identifier:+meta_non_terminal_template_term)

Examples

:- meta_non_terminal(phrase(1, *)).
phrase(X, T) --> call(X, T).

See also:

meta_predicate/1, predicate_property/2

mode/2

Description

mode(Mode, NumberOfProofs)

Most predicates can be used with several instantiations modes. This directive enables the specification of
each instantiation mode and the corresponding number of proofs (not necessarily distinct solutions). You
may also use this directive for documenting grammar rule non-terminals.

Template and modes

mode(+predicate_mode_term, +number_of_proofs)
mode(+non_terminal_mode_term, +number_of_proofs)

Examples

:- mode(atom_concat(-atom, -atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, -atom), one).

:- mode(var(@term), zero_or_one).

:- mode(solve(+callable, -list(atom)), zero_or_one).

See also:

info/2, predicate_property/2

2.3. Directives 191

The Logtalk Handbook, Release v3.34.0

multifile/1

Description

multifile(Name/Arity)
multifile((Name/Arity, ...))
multifile([Name/Arity, ...])

multifile(Entity::Name/Arity)
multifile((Entity::Name/Arity, ...))
multifile([Entity::Name/Arity, ...])

multifile(Module:Name/Arity)
multifile((Module:Name/Arity, ...))
multifile([Module:Name/Arity, ...])

multifile(Name//Arity)
multifile((Name//Arity, ...))
multifile([Name//Arity, ...])

multifile(Entity::Name//Arity)
multifile((Entity::Name//Arity, ...))
multifile([Entity::Name//Arity, ...])

multifile(Module:Name//Arity)
multifile((Module:Name//Arity, ...))
multifile([Module:Name//Arity, ...])

Declares multifile predicates and multifile grammar rule non-terminals. In the case of object or category
multifile predicates, the predicate (or non-terminal) must also have a scope directive in the object or category
holding its primary declaration (i.e. the declaration without the Entity:: prefix). Entities holding multifile
predicate primary declarations must be compiled and loaded prior to any entities contributing with clauses
for the multifile predicates (to prevent using multifile predicates to break entity encapsulation).

Protocols cannot declare or define multifile predicates as protocols cannot contain predicate definitions.

Warning: Some backend Prolog compilers declare multifile as an operator for a lighter syntax. But
this makes the code non-portable and is a practice best avoided.

192 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Template and modes

multifile(+qualified_predicate_indicator_term)
multifile(+qualified_non_terminal_indicator_term)

Examples

:- multifile(table/3).
:- multifile(user::hook/2).

See also:

public/1, protected/1, private/1, predicate_property/2

private/1

Description

private(Name/Arity)
private((Name/Arity, ...))
private([Name/Arity, ...])

private(Name//Arity)
private((Name//Arity, ...))
private([Name//Arity, ...])

private(op(Precedence,Associativity,Operator))
private((op(Precedence,Associativity,Operator), ...))
private([op(Precedence,Associativity,Operator), ...])

Declares private predicates, private grammar rule non-terminals, and private operators. A private predicate
can only be called from the object containing the private directive. A private non-terminal can only be used
in a call of the phrase/2 and phrase/3 methods from the object containing the private directive.

Template and modes

private(+predicate_indicator_term)
private(+non_terminal_indicator_term)
private(+operator_declaration)

2.3. Directives 193

The Logtalk Handbook, Release v3.34.0

Examples

:- private(counter/1).

:- private((init/1, free/1)).

:- private([data/3, key/1, keys/1]).

See also:

protected/1, public/1, predicate_property/2

protected/1

Description

protected(Name/Arity)
protected((Name/Arity, ...))
protected([Name/Arity, ...])

protected(Name//Arity)
protected((Name//Arity, ...))
protected([Name//Arity, ...])

protected(op(Precedence,Associativity,Operator))
protected((op(Precedence,Associativity,Operator), ...))
protected([op(Precedence,Associativity,Operator), ...])

Declares protected predicates, protected grammar rule non-terminals, and protected operators. A protected
predicate can only be called from the object containing the directive or from an object that inherits the
directive. A protected non-terminal can only be used as an argument in a phrase/2 and phrase/3 calls from
the object containing the directive or from an object that inherits the directive. Protected operators are
not inherited but declaring them provides a reusable specification for using them in descendant objects (or
categories).

Template and modes

protected(+predicate_indicator_term)
protected(+non_terminal_indicator_term)
protected(+operator_declaration)

Examples

:- protected(init/1).

:- protected((print/2, convert/4)).

:- protected([load/1, save/3]).

See also:

private/1, public/1, predicate_property/2

194 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

public/1

Description

public(Name/Arity)
public((Name/Arity, ...))
public([Name/Arity, ...])

public(Name//Arity)
public((Name//Arity, ...))
public([Name//Arity, ...])

public(op(Precedence,Associativity,Operator))
public((op(Precedence,Associativity,Operator), ...))
public([op(Precedence,Associativity,Operator), ...])

Declares public predicates, public grammar rule non-terminals, and public operators. A public predicate can
be called from any object. A public non-terminal can be used as an argument in phrase/2 and phrase/3 calls
from any object. Declaring a public operator does not make it global when the entity holding the scope
directive is compiled and loaded. But declaring public operators provides a reusable specification for using
them in the entity clients.

Template and modes

public(+predicate_indicator_term)
public(+non_terminal_indicator_term)
public(+operator_declaration)

Examples

:- public(ancestor/1).

:- public((instance/1, instances/1)).

:- public([leaf/1, leaves/1]).

See also:

private/1, protected/1, predicate_property/2

synchronized/1

Description

synchronized(Name/Arity)
synchronized((Name/Arity, ...))
synchronized([Name/Arity, ...])

synchronized(Name//Arity)
synchronized((Name//Arity, ...))
synchronized([Name//Arity, ...])

2.3. Directives 195

The Logtalk Handbook, Release v3.34.0

Declares synchronized predicates and synchronized grammar rule non-terminals. The most common use is
for predicates that have side effects (e.g. asserting or retracting clauses for a dynamic predicate) in multi-
threaded applications. A synchronized predicate (or synchronized non-terminal) is protected by a mutex in
order to allow for thread synchronization when proving a call to the predicate (or non-terminal).

All predicates (and non-terminals) declared in the same synchronized directive share the same mutex. In
order to use a separate mutex for each predicate (non-terminal) so that they are independently synchronized,
a per-predicate synchronized directive must be used.

Warning: Declaring a predicate synchronized implicitly makes it deterministic. When using a single-
threaded backend Prolog compiler, calls to synchronized predicates behave as wrapped by the standard
once/1 meta-predicate.

Note that synchronized predicates cannot be declared dynamic (when necessary, declare the predicates up-
dating the dynamic predicates as synchronized).

Template and modes

synchronized(+predicate_indicator_term)
synchronized(+non_terminal_indicator_term)

Examples

:- synchronized(db_update/1).

:- synchronized((write_stream/2, read_stream/2)).

:- synchronized([add_to_queue/2, remove_from_queue/2]).

See also:

predicate_property/2

uses/2

Description

uses(Object, [Name/Arity, ...])
uses(Object, [Name/Arity as Alias/Arity, ...])

uses(Object, [Predicate as Alias, ...])

uses(Object, [Name//Arity, ...])
uses(Object, [Name//Arity as Alias//Arity, ...])

uses(Object, [op(Precedence, Associativity, Operator), ...])

Declares that all calls made from predicates (or non-terminals) defined in the category or object containing
the directive to the specified predicates (or non-terminals) are to be interpreted as messages to the specified
object. Thus, this directive may be used to simplify writing of predicate definitions by allowing the program-
mer to omit the Object:: prefix when using the predicates listed in the directive (as long as the calls do

196 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

not occur as arguments for non-standard Prolog meta-predicates not declared on the adapter files). It is also
possible to include operator declarations in the second argument.

This directive is also taken into account when compiling calls to the database and reflection built-in methods
by looking into these methods predicate arguments if bound at compile time.

It is possible to specify a predicate alias using the notation Name/Arity as Alias/Arity or, in alternative,
the notation Name/Arity::Alias/Arity. Aliases may be used either for avoiding conflicts between predicates
specified in use_module/2 and uses/2 directives or for giving more meaningful names considering the calling
context of the predicates. For predicates, is also possible to define alias shorthands using the notation
Predicate as Alias or, in alternative, the notation Predicate::Alias, where Predicate and Alias are
callable terms where some or all arguments may be instantiated.

To enable the use of static binding, and thus optimal message sending performance, the objects should be
loaded before compiling the entities that call their predicates.

The object identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category defined in a source file (the common case). In this case, dynamic binding
will be used for all listed predicates (and non-terminals). The parameter variable must be instantiated at
runtime when the messages are sent.

Template and modes

uses(+object_identifier, +predicate_indicator_list)
uses(+object_identifier, +predicate_indicator_alias_list)

uses(+object_identifier, +predicate_template_alias_list)

uses(+object_identifier, +non_terminal_indicator_list)
uses(+object_identifier, +non_terminal_indicator_alias_list)

uses(+object_identifier, +operator_list)

Examples

:- uses(list, [append/3, member/2]).
:- uses(store, [data/2]).
:- uses(user, [table/4]).

foo :-
...,
% the same as findall(X, list::member(X, L), A)
findall(X, member(X, L), A),
% the same as list::append(A, B, C)
append(A, B, C),
% the same as store::assertz(data(X, C))
assertz(data(X, C)),
% call the table/4 predicate in "user"
table(X, Y, Z, T),
...

Another example, using the extended notation that allows us to define predicate aliases:

2.3. Directives 197

The Logtalk Handbook, Release v3.34.0

:- uses(btrees, [new/1 as new_btree/1]).
:- uses(queues, [new/1 as new_queue/1]).

btree_to_queue :-
...,
% the same as btrees::new(Tree)
new_btree(Tree),
% the same as queues::new(Queue)
new_queue(Queue),
...

An example of defining a predicate alias that is also a shorthand:

:- uses(logtalk, [
print_message(debug, my_app, Message) as dbg(Message)

]).

An example of using a parameter variable in place of the object identifier to allow using the same test set for
checking multiple implementations of the same protocol:

:- object(tests(_HeapObject_),
extends(lgtunit)).

:- uses(_HeapObject_, [
as_heap/2, as_list/2, valid/1, new/1,
insert/4, insert_all/3, delete/4, merge/3,
empty/1, size/2, top/3, top_next/5

])

See also:

use_module/2, uses/1, alias/2

use_module/2

Description

use_module(Module, [Name/Arity, ...])
use_module(Module, [Name/Arity as Alias/Arity, ...])

use_module(Module, [Predicate as Alias, ...])

use_module(Module, [Name//Arity, ...])
use_module(Module, [Name//Arity as Alias//Arity, ...])

use_module(Module, [op(Precedence,Associativity,Operator), ...])

This directive declares that all calls (made from predicates defined in the category or object containing the
directive) to the specified predicates (or non-terminals) are to be interpreted as calls to explicitly-qualified
module predicates (or non-terminals). Thus, this directive may be used to simplify writing of predicate
definitions by allowing the programmer to omit the Module: prefix when using the predicates listed in the
directive (as long as the predicate calls do not occur as arguments for non-standard Prolog meta-predicates
not declared on the adapter files). It is also possible to include operator declarations in the second argument.

This directive is also taken into account when compiling calls to the database and reflection built-in methods
by looking into these methods predicate arguments if bound at compile time.

198 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

It is possible to specify a predicate alias using the notation Name/Arity as Alias/Arity or, in alternative,
the notation Name/Arity:Alias/Arity. Aliases may be used either for avoiding conflicts between predicates
specified in use_module/2 and uses/2 directives or for giving more meaningful names considering the calling
context of the predicates. For predicates, is also possible to define alias shorthands using the notation
Predicate as Alias or, in alternative, the notation Predicate::Alias, where Predicate and Alias are
callable terms where some or all arguments may be instantiated.

Note that this directive differs from the directive with the same name found on some Prolog implementations
by requiring the first argument to be a module name (an atom) instead of a file specification. In Logtalk,
there’s no mixing between loading a resource and (declaring the) using (of) a resource. As a consequence,
this directive doesn’t automatically load the module. Loading the module file is dependent of the used back-
end Prolog compiler and must be done separately (usually, using a source file directive such as use_module/1
or use_module/2 in the entity file or preferably in the application loader file). Also, note that the name of
the module may differ from the name of the module file.

Warning: The modules must be loaded prior to the compilation of entities that call the module pred-
icates. This is required in general to allow the compiler to check if the called module predicate is a
meta-predicate and retrieve its meta-predicate template to ensure proper call compilation.

The module identifier argument can also be a parameter variable when using the directive in a parametric
object or a parametric category defined in a source file (the common case). In this case, dynamic binding
will be used for all listed predicates (and non-terminals). The parameter variable must be instantiated at
runtime when the calls are made.

Template and modes

use_module(+module_identifier, +predicate_indicator_list)
use_module(+module_identifier, +module_predicate_indicator_alias_list)

use_module(+module_identifier, +predicate_template_alias_list)

use_module(+module_identifier, +non_terminal_indicator_list)
use_module(+module_identifier, +module_non_terminal_indicator_alias_list)

use_module(+module_identifier, +operator_list)

Examples

:- use_module(lists, [append/3, member/2]).
:- use_module(store, [data/2]).
:- use_module(user, [foo/1 as bar/1]).

foo :-
...,
% same as findall(X, lists:member(X, L), A)
findall(X, member(X, L), A),
% same as lists:append(A, B, C)
append(A, B, C),
% same as assertz(store:data(X, C))
assertz(data(X, C)),
% same as retractall(user:foo(_))

(continues on next page)

2.3. Directives 199

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

retractall(bar(_)),
...

Another example, using the extended notation that allows us to define predicate aliases:

:- use_module(ugraphs, [transpose_ugraph/2 as transpose/2]).

convert_graph :-
...,
% the same as ugraphs:transpose_ugraph(Graph0, Graph)
transpose(Graph0, Graph),
...

An example of defining a predicate alias that is also a shorthand:

:- use_module(pairs, [
map_list_to_pairs(length, Lists, Pairs) as length_pairs(Lists, Pairs)

]).

An example of using a parameter variable in place of the module identifier to delay to runtime the actual
module to use:

:- object(bar(_OptionsModule_)).

:- use_module(_OptionsModule_, [
set/2, get/2, reset/0

])

See also:

uses/2, uses/1, alias/2

2.4 Built-in predicates

2.4.1 Enumerating objects, categories and protocols

current_category/1

Description

current_category(Category)

Enumerates, by backtracking, all currently defined categories. All categories are found, either static, dy-
namic, or built-in.

200 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

current_category(?category_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Examples

% enumerate the defined categories:
| ?- current_category(Category).

Category = core_messages ;
...

See also:

abolish_category/1, category_property/2, create_category/4, complements_object/2, extends_category/2-3,
imports_category/2-3

current_object/1

Description

current_object(Object)

Enumerates, by backtracking, all currently defined objects. All objects are found, either static, dynamic or
built-in.

Modes and number of proofs

current_object(?object_identifier) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

2.4. Built-in predicates 201

The Logtalk Handbook, Release v3.34.0

Examples

% enumerate the defined objects:
| ?- current_object(Object).

Object = user ;
Object = logtalk ;
...

See also:

abolish_object/1, create_object/4, object_property/2, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

current_protocol/1

Description

current_protocol(Protocol)

Enumerates, by backtracking, all currently defined protocols. All protocols are found, either static, dynamic,
or built-in.

Modes and number of proofs

current_protocol(?protocol_identifier) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Examples

% enumerate the defined protocols:
| ?- current_protocol(Protocol).

Protocol = expanding ;
Protocol = monitoring ;
Protocol = forwarding ;
...

See also:

abolish_protocol/1, create_protocol/3, protocol_property/2, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

202 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.4.2 Enumerating objects, categories and protocols properties

category_property/2

Description

category_property(Category, Property)

Enumerates, by backtracking, the properties associated with the defined categories. The valid properties
are listed in the language grammar section on entity properties and described in the User Manual section on
category properties.

Modes and number of proofs

category_property(?category_identifier, ?category_property) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Property is neither a variable nor a callable term:
type_error(callable, Property)

Property is a callable term but not a valid category property:
domain_error(category_property, Property)

Examples

% enumerate the properties of the core_messages built-in category:
| ?- category_property(core_messages, Property).

Property = source_data ;
Property = static ;
Property = built_in ;
...

See also:

abolish_category/1, create_category/4, current_category/1, complements_object/2, extends_category/2-3,
imports_category/2-3

2.4. Built-in predicates 203

The Logtalk Handbook, Release v3.34.0

object_property/2

Description

object_property(Object, Property)

Enumerates, by backtracking, the properties associated with the defined objects. The valid properties are
listed in the language grammar section on entity properties and described in the User Manual section on
object properties.

Modes and number of proofs

object_property(?object_identifier, ?object_property) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Property is neither a variable nor a callable term:
type_error(callable, Property)

Property is a callable term but not a valid object property:
domain_error(object_property, Property)

Examples

% enumerate the properties of the logtalk built-in object:
| ?- object_property(logtalk, Property).

Property = context_switching_calls ;
Property = source_data ;
Property = threaded ;
Property = static ;
Property = built_in ;
...

See also:

abolish_object/1, create_object/4, current_object/1, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

204 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

protocol_property/2

Description

protocol_property(Protocol, Property)

Enumerates, by backtracking, the properties associated with the currently defined protocols. The valid
properties are listed in the language grammar section on entity properties and described in the User Manual
section on protocol properties.

Modes and number of proofs

protocol_property(?protocol_identifier, ?protocol_property) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Property is neither a variable nor a callable term:
type_error(callable, Property)

Property is a callable term but not a valid protocol property:
domain_error(protocol_property, Property)

Examples

% enumerate the properties of the monitoring built-in protocol:
| ?- protocol_property(monitoring, Property).

Property = source_data ;
Property = static ;
Property = built_in ;
...

See also:

abolish_protocol/1, create_protocol/3, current_protocol/1, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4.3 Creating new objects, categories and protocols

create_category/4

Description

create_category(Identifier, Relations, Directives, Clauses)

2.4. Built-in predicates 205

The Logtalk Handbook, Release v3.34.0

Creates a new, dynamic category. This predicate is often used as a primitive to implement high-level category
creation methods.

Note that, when opting for runtime generated category identifiers, it’s possible to run out of identifiers when
using a backend Prolog compiler with bounded integer support. The portable solution, when creating a large
number of dynamic category in long-running applications, is to recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be de-
clared synchronized in order to avoid race conditions.

Modes and number of proofs

create_category(?category_identifier, @list(category_relation), @list(category_directive),␣
→˓@list(clause)) - one

Errors

Relations, Directives, or Clauses is a variable:
instantiation_error

Identifier is neither a variable nor a valid category identifier:
type_error(category_identifier, Identifier)

Identifier is already in use:
permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:
type_error(list, Relations)

Repeated entity relation clause:
permission_error(repeat, entity_relation, implements/1)

permission_error(repeat, entity_relation, extends/1)

permission_error(repeat, entity_relation, complements/1)

Directives is neither a variable nor a proper list:
type_error(list, Directives)

Clauses is neither a variable nor a proper list:
type_error(list, Clauses)

Examples

| ?- create_category(
tolerances,
[implements(comparing)],
[],
[epsilon(1e-15), (equal(X, Y) :- epsilon(E), abs(X-Y) =< E)]

).

See also:

abolish_category/1, category_property/2, current_category/1, complements_object/2, extends_category/2-3,
imports_category/2-3

206 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

create_object/4

Description

create_object(Identifier, Relations, Directives, Clauses)

Creates a new, dynamic object. The word object is used here as a generic term. This predicate can be used
to create new prototypes, instances, and classes. This predicate is often used as a primitive to implement
high-level object creation methods.

Note that, when opting for runtime generated object identifiers, it’s possible to run out of identifiers when
using a backend Prolog compiler with bounded integer support. The portable solution, when creating a large
number of dynamic objects in long-running applications, is to recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be de-
clared synchronized in order to avoid race conditions.

Modes and number of proofs

create_object(?object_identifier, @list(object_relation), @list(object_directive), @list(clause)) - one

Errors

Relations, Directives, or Clauses is a variable:
instantiation_error

Identifier is neither a variable nor a valid object identifier:
type_error(object_identifier, Identifier)

Identifier is already in use:
permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:
type_error(list, Relations)

Repeated entity relation clause:
permission_error(repeat, entity_relation, implements/1)

permission_error(repeat, entity_relation, imports/1)

permission_error(repeat, entity_relation, extends/1)

permission_error(repeat, entity_relation, instantiates/1)

permission_error(repeat, entity_relation, specializes/1)

Directives is neither a variable nor a proper list:
type_error(list, Directives)

Clauses is neither a variable nor a proper list:
type_error(list, Clauses)

2.4. Built-in predicates 207

The Logtalk Handbook, Release v3.34.0

Examples

% create a stand-alone object (a prototype):
| ?- create_object(

translator,
[],
[public(int/2)],
[int(0, zero)]

).

% create a prototype derived from a parent prototype:
| ?- create_object(

mickey,
[extends(mouse)],
[public(alias/1)],
[alias(mortimer)]

).

% create a class instance:
| ?- create_object(

p1,
[instantiates(person)],
[],
[name('Paulo Moura'), age(42)]

).

% create a subclass:
| ?- create_object(

hovercraft,
[specializes(vehicle)],
[public([propeller/2, fan/2])],
[]

).

% create an object with an initialization goal:
| ?- create_object(

runner,
[instantiates(runners)],
[initialization(::start)],
[length(22), time(60)]

).

% create an object supporting dynamic predicate declarations:
| ?- create_object(

database,
[],
[set_logtalk_flag(dynamic_declarations, allow)],
[]

).

See also:

abolish_object/1, current_object/1, object_property/2, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

208 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

create_protocol/3

Description

create_protocol(Identifier, Relations, Directives)

Creates a new, dynamic, protocol. This predicate is often used as a primitive to implement high-level protocol
creation methods.

Note that, when opting for runtime generated protocol identifiers, it’s possible to run out of identifiers when
using a backend Prolog compiler with bounded integer support. The portable solution, when creating a large
number of dynamic protocols in long-running applications, is to recycle, whenever possible, the identifiers.

When using Logtalk multi-threading features, predicates calling this built-in predicate may need to be de-
clared synchronized in order to avoid race conditions.

Modes and number of proofs

create_protocol(?protocol_identifier, @list(protocol_relation), @list(protocol_directive)) - one

Errors

Either Relations or Directives is a variable:
instantiation_error

Identifier is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Identifier)

Identifier is already in use:
permission_error(modify, category, Identifier)

permission_error(modify, object, Identifier)

permission_error(modify, protocol, Identifier)

Relations is neither a variable nor a proper list:
type_error(list, Relations)

Repeated entity relation clause:
permission_error(repeat, entity_relation, extends/1)

Directives is neither a variable nor a proper list:
type_error(list, Directives)

Examples

| ?- create_protocol(
logging,
[extends(monitoring)],
[public([log_file/1, log_on/0, log_off/0])]

).

See also:

abolish_protocol/1, current_protocol/1, protocol_property/2, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4. Built-in predicates 209

The Logtalk Handbook, Release v3.34.0

2.4.4 Abolishing objects, categories and protocols

abolish_category/1

Description

abolish_category(Category)

Abolishes a dynamic category. The category identifier can then be reused when creating a new category.

Modes and number of proofs

abolish_category(+category_identifier) - one

Errors

Category is a variable:
instantiation_error

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Category is an identifier of a static category:
permission_error(modify, static_category, Category)

Category does not exist:
existence_error(category, Category)

Examples

| ?- abolish_category(monitoring).

See also:

category_property/2, create_category/4, current_category/1 complements_object/2, extends_category/2-3,
imports_category/2-3

abolish_object/1

Description

abolish_object(Object)

Abolishes a dynamic object. The object identifier can then be reused when creating a new object.

210 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

abolish_object(+object_identifier) - one

Errors

Object is a variable:
instantiation_error

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Object is an identifier of a static object:
permission_error(modify, static_object, Object)

Object does not exist:
existence_error(object, Object)

Examples

| ?- abolish_object(list).

See also:

create_object/4, current_object/1, object_property/2, extends_object/2-3, instantiates_class/2-3,
specializes_class/2-3, complements_object/2

abolish_protocol/1

Description

abolish_protocol(Protocol)

Abolishes a dynamic protocol. The protocol identifier can then be reused when creating a new protocol.

Modes and number of proofs

abolish_protocol(@protocol_identifier) - one

Errors

Protocol is a variable:
instantiation_error

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Protocol is an identifier of a static protocol:
permission_error(modify, static_protocol, Protocol)

Protocol does not exist:

2.4. Built-in predicates 211

The Logtalk Handbook, Release v3.34.0

existence_error(protocol, Protocol)

Examples

| ?- abolish_protocol(listp).

See also:

create_protocol/3, current_protocol/1, protocol_property/2, conforms_to_protocol/2-3, extends_protocol/2-3,
implements_protocol/2-3

2.4.5 Objects, categories, and protocols relations

extends_object/2-3

Description

extends_object(Prototype, Parent)
extends_object(Prototype, Parent, Scope)

Enumerates, by backtracking, all pairs of objects such that the first one extends the second. The relation
scope is represented by the atoms public, protected, and private.

Modes and number of proofs

extends_object(?object_identifier, ?object_identifier) - zero_or_more
extends_object(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Prototype is neither a variable nor a valid object identifier:
type_error(object_identifier, Prototype)

Parent is neither a variable nor a valid object identifier:
type_error(object_identifier, Parent)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

212 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

% enumerate objects derived from the state_space prototype:
| ?- extends_object(Object, state_space).

% enumerate objects publicly derived from the list prototype:
| ?- extends_object(Object, list, public).

See also:

current_object/1, instantiates_class/2-3, specializes_class/2-3

extends_protocol/2-3

Description

extends_protocol(Protocol, ParentProtocol)
extends_protocol(Protocol, ParentProtocol, Scope)

Enumerates, by backtracking, all pairs of protocols such that the first one extends the second. The relation
scope is represented by the atoms public, protected, and private.

Modes and number of proofs

extends_protocol(?protocol_identifier, ?protocol_identifier) - zero_or_more
extends_protocol(?protocol_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

ParentProtocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, ParentProtocol)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate the protocols extended by the listp protocol:
| ?- extends_protocol(listp, Protocol).

% enumerate protocols that privately extend the termp protocol:
| ?- extends_protocol(Protocol, termp, private).

See also:

current_protocol/1, implements_protocol/2-3, conforms_to_protocol/2-3

2.4. Built-in predicates 213

The Logtalk Handbook, Release v3.34.0

extends_category/2-3

Description

extends_category(Category, ParentCategory)
extends_category(Category, ParentCategory, Scope)

Enumerates, by backtracking, all pairs of categories such that the first one extends the second. The relation
scope is represented by the atoms public, protected, and private.

Modes and number of proofs

extends_category(?category_identifier, ?category_identifier) - zero_or_more
extends_category(?category_identifier, ?category_identifier, ?scope) - zero_or_more

Errors

Category is neither a variable nor a valid protocol identifier:
type_error(category_identifier, Category)

ParentCategory is neither a variable nor a valid protocol identifier:
type_error(category_identifier, ParentCategory)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate the categories extended by the derailleur category:
| ?- extends_category(derailleur, Category).

% enumerate categories that privately extend the basics category:
| ?- extends_category(Category, basics, private).

See also:

current_category/1, complements_object/2, imports_category/2-3

implements_protocol/2-3

Description

implements_protocol(Object, Protocol)
implements_protocol(Category, Protocol)

implements_protocol(Object, Protocol, Scope)
implements_protocol(Category, Protocol, Scope)

214 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Enumerates, by backtracking, all pairs of entities such that an object or a category implements a protocol.
The relation scope is represented by the atoms public, protected, and private. This predicate only returns
direct implementation relations; it does not implement a transitive closure.

Modes and number of proofs

implements_protocol(?object_identifier, ?protocol_identifier) - zero_or_more
implements_protocol(?category_identifier, ?protocol_identifier) - zero_or_more

implements_protocol(?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
implements_protocol(?category_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% check that the list object implements the listp protocol:
| ?- implements_protocol(list, listp).

% check that the list object publicly implements the listp protocol:
| ?- implements_protocol(list, listp, public).

% enumerate only objects that implement the listp protocol:
| ?- current_object(Object), implements_protocol(Object, listp).

% enumerate only categories that implement the serialization protocol:
| ?- current_category(Category), implements_protocol(Category, serialization).

See also:

current_object/1, current_protocol/1, current_category/1, conforms_to_protocol/2-3

2.4. Built-in predicates 215

The Logtalk Handbook, Release v3.34.0

conforms_to_protocol/2-3

Description

conforms_to_protocol(Object, Protocol)
conforms_to_protocol(Category, Protocol)

conforms_to_protocol(Object, Protocol, Scope)
conforms_to_protocol(Category, Protocol, Scope)

Enumerates, by backtracking, all pairs of entities such that an object or a category conforms to a protocol.
The relation scope is represented by the atoms public, protected, and private. This predicate implements
a transitive closure for the protocol implementation relation.

Modes and number of proofs

conforms_to_protocol(?object_identifier, ?protocol_identifier) - zero_or_more
conforms_to_protocol(?category_identifier, ?protocol_identifier) - zero_or_more

conforms_to_protocol(?object_identifier, ?protocol_identifier, ?scope) - zero_or_more
conforms_to_protocol(?category_identifier, ?protocol_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Protocol is neither a variable nor a valid protocol identifier:
type_error(protocol_identifier, Protocol)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate objects and categories that conform to the listp protocol:
| ?- conforms_to_protocol(Object, listp).

% enumerate objects and categories that privately conform to the listp protocol:
| ?- conforms_to_protocol(Object, listp, private).

% enumerate only objects that conform to the listp protocol:
| ?- current_object(Object), conforms_to_protocol(Object, listp).

% enumerate only categories that conform to the serialization protocol:
| ?- current_category(Category), conforms_to_protocol(Category, serialization).

216 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

See also:

current_object/1, current_protocol/1, current_category/1, implements_protocol/2-3

complements_object/2

Description

complements_object(Category, Object)

Enumerates, by backtracking, all category–object pairs such that the category explicitly complements the
object.

Modes and number of proofs

complements_object(?category_identifier, ?object_identifier) - zero_or_more

Errors

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Prototype)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Parent)

Examples

% check that the logging category complements the employee object:
| ?- complements_object(logging, employee).

See also:

current_category/1, imports_category/2-3

imports_category/2-3

Description

imports_category(Object, Category)

imports_category(Object, Category, Scope)

Enumerates, by backtracking, importation relations between objects and categories. The relation scope is
represented by the atoms public, protected, and private.

2.4. Built-in predicates 217

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

imports_category(?object_identifier, ?category_identifier) - zero_or_more
imports_category(?object_identifier, ?category_identifier, ?scope) - zero_or_more

Errors

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Category is neither a variable nor a valid category identifier:
type_error(category_identifier, Category)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% check that the xref_diagram object imports the diagram category:
| ?- imports_category(xref_diagram, diagram).

% enumerate the objects that privately import the diagram category:
| ?- imports_category(Object, diagram, private).

See also:

current_category/1, complements_object/2

instantiates_class/2-3

Description

instantiates_class(Instance, Class)
instantiates_class(Instance, Class, Scope)

Enumerates, by backtracking, all pairs of objects such that the first one instantiates the second. The relation
scope is represented by the atoms public, protected, and private.

Modes and number of proofs

instantiates_class(?object_identifier, ?object_identifier) - zero_or_more
instantiates_class(?object_identifier, ?object_identifier, ?scope) - zero_or_more

218 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Errors

Instance is neither a variable nor a valid object identifier:
type_error(object_identifier, Instance)

Class is neither a variable nor a valid object identifier:
type_error(object_identifier, Class)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% check that the water_jug is an instante of state_space:
| ?- instantiates_class(water_jug, state_space).

% enumerate the state_space instances where the
% instantiation relation is public:
| ?- instantiates_class(Space, state_space, public).

See also:

current_object/1, extends_object/2-3, specializes_class/2-3

specializes_class/2-3

Description

specializes_class(Class, Superclass)
specializes_class(Class, Superclass, Scope)

Enumerates, by backtracking, all pairs of objects such that the first one specializes the second. The relation
scope is represented by the atoms public, protected, and private.

2.4. Built-in predicates 219

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

specializes_class(?object_identifier, ?object_identifier) - zero_or_more
specializes_class(?object_identifier, ?object_identifier, ?scope) - zero_or_more

Errors

Class is neither a variable nor a valid object identifier:
type_error(object_identifier, Class)

Superclass is neither a variable nor a valid object identifier:
type_error(object_identifier, Superclass)

Scope is neither a variable nor an atom:
type_error(atom, Scope)

Scope is an atom but an invalid entity scope:
domain_error(scope, Scope)

Examples

% enumerate the state_space subclasses:
| ?- specializes_class(Subclass, state_space).

% enumerate the state_space subclasses where the
% specialization relation is public:
| ?- specializes_class(Subclass, state_space, public).

See also:

current_object/1, extends_object/2-3, instantiates_class/2-3

2.4.6 Event handling

abolish_events/5

Description

abolish_events(Event, Object, Message, Sender, Monitor)

Abolishes all matching events. The two types of events are represented by the atoms before and after.
When the predicate is called with the first argument unbound, both types of events are abolished.

220 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

abolish_events(@term, @term, @term, @term, @term) - one

Errors

Event is neither a variable nor a valid event identifier:
type_error(event, Event)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error(object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:
type_error(object_identifier, Monitor)

Examples

% abolish all events for messages sent to the "list"
% object being monitored by the "debugger" object:
| ?- abolish_events(_, list, _, _, debugger).

See also:

current_event/5, define_events/5, before/3, after/3

current_event/5

Description

current_event(Event, Object, Message, Sender, Monitor)

Enumerates, by backtracking, all defined events. The two types of events are represented by the atoms
before and after.

Modes and number of proofs

current_event(?event, ?term, ?term, ?term, ?object_identifier) - zero_or_more

2.4. Built-in predicates 221

The Logtalk Handbook, Release v3.34.0

Errors

Event is neither a variable nor a valid event identifier:
type_error(event, Event)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error(object_identifier, Sender)

Monitor is neither a variable nor a valid object identifier:
type_error(object_identifier, Monitor)

Examples

% enumerate all events monitored by the "debugger" object:
| ?- current_event(Event, Object, Message, Sender, debugger).

See also:

abolish_events/5, define_events/5, before/3, after/3

define_events/5

Description

define_events(Event, Object, Message, Sender, Monitor)

Defines a new set of events. The two types of events are represented by the atoms before and after. When
the predicate is called with the first argument unbound, both types of events are defined. The object Monitor
must define the event handler methods required by the Event argument.

Modes and number of proofs

define_events(@term, @term, @term, @term, +object_identifier) - one

Errors

Event is neither a variable nor a valid event identifier:
type_error(event, Event)

Object is neither a variable nor a valid object identifier:
type_error(object_identifier, Object)

Message is neither a variable nor a callable term:
type_error(callable, Message)

Sender is neither a variable nor a valid object identifier:
type_error(object_identifier, Sender)

222 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Monitor is a variable:
instantiation_error

Monitor is neither a variable nor a valid object identifier:
existence_error(object_identifier, Monitor)

Monitor does not define the required before/3 method:
existence_error(procedure, before/3)

Monitor does not define the required after/3 method:
existence_error(procedure, after/3)

Examples

% define "debugger" as a monitor for member/2 messages
% sent to the "list" object:
| ?- define_events(_, list, member(_, _), _ , debugger).

See also:

abolish_events/5, current_event/5, before/3, after/3

2.4.7 Multi-threading

threaded/1

Description

threaded(Goals)

threaded(Conjunction)
threaded(Disjunction)

Proves each goal in a conjunction (disjunction) of goals in its own thread. This predicate is deterministic
and opaque to cuts. The predicate argument is not flattened.

When the argument is a conjunction of goals, a call to this predicate blocks until either all goals succeed, one
of the goals fail, or one of the goals generate an exception; the failure of one of the goals or an exception on
the execution of one of the goals results in the termination of the remaining threads. The predicate call is
true iff all goals are true.

When the argument is a disjunction of goals, a call to this predicate blocks until either one of the goals
succeeds, all the goals fail, or one of the goals generate an exception; the success of one of the goals or
an exception on the execution of one of the goals results in the termination of the remaining threads. The
predicate call is true iff one of the goals is true.

When the predicate argument is neither a conjunction not a disjunction of goals, no threads are used. In this
case, the predicate call is equivalent to a once/1 predicate call.

2.4. Built-in predicates 223

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded(+callable) - zero_or_one

Errors

Goals is a variable:
instantiation_error

A goal in Goals is a variable:
instantiation_error

Goals is neither a variable nor a callable term:
type_error(callable, Goals)

A goal Goal in Goals is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Prove a conjunction of goals, each one in its own thread:
threaded((Goal, Goals))

Prove a disjunction of goals, each one in its own thread:
threaded((Goal; Goals))

See also:

threaded_call/1-2, threaded_once/1-2, threaded_ignore/1, synchronized/1

threaded_call/1-2

Description

threaded_call(Goal)
threaded_call(Goal, Tag)

Proves Goal asynchronously using a new thread. The argument can be a message sending goal. Calls
to this predicate always succeeds and return immediately. The results (success, failure, or exception) are
sent back to the message queue of the object containing the call (this) and can be retrieved by calling the
threaded_exit/1 predicate.

The threaded_call/2 variant returns a threaded call identifier tag that can be used with the threaded_exit/2
and threaded_cancel/1 predicates. Tags shall be regarded as opaque terms; users shall not rely on its type.

224 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded_call(@callable) - one
threaded_call(@callable, --nonvar) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Tag is not a variable:
type_error(variable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_call(Goal)

Prove ::Message asynchronously in a new thread:
threaded_call(::Message)

Prove Object::Message asynchronously in a new thread:
threaded_call(Object::Message)

See also:

threaded_exit/1-2, threaded_ignore/1, threaded_once/1-2, threaded_peek/1-2, threaded_cancel/1, threaded/1,
synchronized/1

threaded_once/1-2

Description

threaded_once(Goal)
threaded_once(Goal, Tag)

Proves Goal asynchronously using a new thread. Only the first goal solution is found. The argument can be
a message sending goal. This call always succeeds. The result (success, failure, or exception) is sent back to
the message queue of the object containing the call (this).

The threaded_once/2 variant returns a threaded call identifier tag that can be used with the threaded_exit/2
and threaded_cancel/1 predicates. Tags shall be regarded as opaque terms; users shall not rely on its type.

2.4. Built-in predicates 225

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded_once(@callable) - one
threaded_once(@callable, --nonvar) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Tag is not a variable:
type_error(variable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_once(Goal)

Prove ::Message asynchronously in a new thread:
threaded_once(::Message)

Prove Object::Message asynchronously in a new thread:
threaded_once(Object::Message)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_ignore/1, threaded_peek/1-2, threaded_cancel/1, threaded/1,
synchronized/1

threaded_ignore/1

Description

threaded_ignore(Goal)

Proves Goal asynchronously using a new thread. Only the first goal solution is found. The argument can be a
message sending goal. This call always succeeds, independently of the result (success, failure, or exception),
which is simply discarded instead of being sent back to the message queue of the object containing the call
(this).

226 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded_ignore(@callable) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Prove Goal asynchronously in a new thread:
threaded_ignore(Goal)

Prove ::Message asynchronously in a new thread:
threaded_ignore(::Message)

Prove Object::Message asynchronously in a new thread:
threaded_ignore(Object::Message)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_once/1-2, threaded_peek/1-2, threaded/1, synchronized/1

threaded_exit/1-2

Description

threaded_exit(Goal)
threaded_exit(Goal, Tag)

Retrieves the result of proving Goal in a new thread. This predicate blocks execution until the reply is sent
to the this message queue by the thread executing the goal. When there is no thread proving the goal, the
predicate generates an exception. This predicate is non-deterministic, providing access to any alternative
solutions of its argument.

The argument of this predicate should be a variant of the argument of the corresponding threaded_call/1 or
threaded_once/1 call. When the predicate argument is subsumed by the threaded_call/1 or threaded_once/
1 call argument, the threaded_exit/1 call will succeed iff its argument is a solution of the (more general)
goal.

The threaded_exit/2 variant accepts a threaded call identifier tag generated by the calls to the
threaded_call/2 and threaded_once/2 predicates. Tags shall be regarded as an opaque term; users shall
not rely on its type.

2.4. Built-in predicates 227

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded_exit(+callable) - zero_or_more
threaded_exit(+callable, +nonvar) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

No thread is running for proving Goal:
existence_error(goal_thread, Goal)

Tag is a variable:
instantiation_error

Examples

To retrieve an asynchronous goal proof result:
threaded_exit(Goal)

To retrieve an asynchronous message to self result:
threaded_exit(::Goal)

To retrieve an asynchronous message result:
threaded_exit(Object::Goal)

See also:

threaded_call/1-2, threaded_ignore/1, threaded_once/1-2, threaded_peek/1-2, threaded_cancel/1, threaded/1

threaded_peek/1-2

Description

threaded_peek(Goal)
threaded_peek(Goal, Tag)

Checks if the result of proving Goal in a new thread is already available. This call succeeds or fails without
blocking execution waiting for a reply to be available.

The argument of this predicate should be a variant of the argument of the corresponding threaded_call/1 or
threaded_once/1 call. When the predicate argument is subsumed by the threaded_call/1 or threaded_once/
1 call argument, the threaded_peek/1 call will succeed iff its argument unifies with an already available
solution of the (more general) goal.

The threaded_peek/2 variant accepts a threaded call identifier tag generated by the calls to the
threaded_call/2 and threaded_once/2 predicates. Tags shall be regarded as an opaque term; users shall
not rely on its type.

228 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded_peek(+callable) - zero_or_one
threaded_peek(+callable, +nonvar) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Tag is a variable:
instantiation_error

Examples

To check for an asynchronous goal proof result:
threaded_peek(Goal)

To check for an asynchronous message to self result:
threaded_peek(::Goal)

To check for an asynchronous message result:
threaded_peek(Object::Goal)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_ignore/1, threaded_once/1-2, threaded_cancel/1, threaded/1

threaded_cancel/1

Description

threaded_cancel(Tag)

Cancels a tagged threaded call. When there is no asynchronous call with the given tag, calling this predicate
succeeds assuming the asynchronous call have already terminated or canceled. The threaded call identifier
tag is generated by calls to the threaded_call/2 and threaded_once/2 predicates. Tags shall be regarded as an
opaque term; users shall not rely on its type.

2.4. Built-in predicates 229

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded_cancel(+nonvar) - one

Errors

Tag is a variable:
instantiation_error

Examples

(none)

See also:

threaded_call/1-2, threaded_exit/1-2, threaded_ignore/1, threaded_once/1-2, threaded/1

threaded_wait/1

Description

threaded_wait(Term)
threaded_wait([Term| Terms])

Suspends the thread making the call until a notification is received that unifies with Term. The call must be
made within the same object (this) containing the calls to the threaded_notify/1 predicate that will eventually
send the notification. The argument may also be a list of notifications, [Term| Terms]. In this case, the thread
making the call will suspend until all notifications in the list are received.

Modes and number of proofs

threaded_wait(?term) - one
threaded_wait(+list(term)) - one

Errors

(none)

230 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

% wait until the "data_available" notification is received:
..., threaded_wait(data_available), ...

See also:

threaded_notify/1

threaded_notify/1

Description

threaded_notify(Term)
threaded_notify([Term| Terms])

Sends Term as a notification to any thread suspended waiting for it in order to proceed. The call must be
made within the same object (this) containing the calls to the threaded_wait/1 predicate waiting for the
notification. The argument may also be a list of notifications, [Term| Terms]. In this case, all notifications
in the list will be sent to any threads suspended waiting for them in order to proceed.

Modes and number of proofs

threaded_notify(@term) - one
threaded_notify(@list(term)) - one

Errors

(none)

Examples

% send a "data_available" notification:
..., threaded_notify(data_available), ...

See also:

threaded_wait/1

2.4.8 Multi-threading engines

threaded_engine_create/3

Description

threaded_engine_create(AnswerTemplate, Goal, Engine)

2.4. Built-in predicates 231

The Logtalk Handbook, Release v3.34.0

Creates a new engine for proving the given goal and defines an answer template for retrieving the goal
solution bindings. A message queue for passing arbitrary terms to the engine is also created. If the name
for the engine is not given, a unique name is generated and returned. Engine names shall be regarded as
opaque terms; users shall not rely on its type.

Modes and number of proofs

threaded_engine_create(@term, @callable, @nonvar) - one
threaded_engine_create(@term, @callable, --nonvar) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Engine is the name of an existing engine:
permission_error(create, engine, Engine)

Examples

% create a new engine for finding members of a list:
| ?- threaded_engine_create(X, member(X, [1,2,3]), worker_1).

See also:

threaded_engine_destroy/1, threaded_engine_self/1, threaded_engine/1, threaded_engine_next/2,
threaded_engine_next_reified/2

threaded_engine_destroy/1

Description

threaded_engine_destroy(Engine)

Stops and destroys an engine.

Modes and number of proofs

threaded_engine_destroy(@nonvar) - one

232 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

Examples

% stop the worker_1 engine:
| ?- threaded_engine_destroy(worker_1).

% stop all engines:
| ?- forall(

threaded_engine(Engine),
threaded_engine_destroy(Engine)

).

See also:

threaded_engine_create/3, threaded_engine_self/1, threaded_engine/1

threaded_engine/1

Description

threaded_engine(Engine)

Enumerates, by backtracking, all existing engines. Engine names shall be regarded as opaque terms; users
shall not rely on its type.

Modes and number of proofs

threaded_engine(?nonvar) - zero_or_more

Errors

(none)

2.4. Built-in predicates 233

The Logtalk Handbook, Release v3.34.0

Examples

% check that the worker_1 engine exists:
| ?- threaded_engine(worker_1).

% write the names of all existing engines:
| ?- forall(

threaded_engine(Engine),
(writeq(Engine), nl)

).

See also:

threaded_engine_create/3, threaded_engine_self/1, threaded_engine_destroy/1

threaded_engine_self/1

Description

threaded_engine_self(Engine)

Queries the name of engine calling the predicate.

Modes and number of proofs

threaded_engine_self(?nonvar) - zero_or_one

Errors

(none)

Examples

% find the name of the engine making the query:
..., threaded_engine_self(Engine), ...

% check if the the engine making the query is worker_1:
..., threaded_engine_self(worker_1), ...

See also:

threaded_engine_create/3, threaded_engine_destroy/1, threaded_engine/1

234 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

threaded_engine_next/2

Description

threaded_engine_next(Engine, Answer)

Retrieves an answer from an engine and signals it to start computing the next answer. This predicate blocks
until an answer becomes available. The predicate fails when there are no more solutions to the engine goal.
If the engine goal throws an exception, calling this predicate will re-throw the exception and subsequent
calls will fail.

Modes and number of proofs

threaded_engine_next(@nonvar, ?term) - zero_or_one

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

Examples

% get the next answer from the worker_1 engine:
| ?- threaded_engine_next(worker_1, Answer).

See also:

threaded_engine_create/3, threaded_engine_next_reified/2, threaded_engine_yield/1

threaded_engine_next_reified/2

Description

threaded_engine_next_reified(Engine, Answer)

Retrieves an answer from an engine and signals it to start computing the next answer. This predicate always
succeeds and blocks until an answer becomes available. Answers are returned using the terms the(Answer),
no, and exception(Error).

2.4. Built-in predicates 235

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

threaded_engine_next_reified(@nonvar, ?nonvar) - one

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

Examples

% get the next reified answer from the worker_1 engine:
| ?- threaded_engine_next_reified(worker_1, Answer).

See also:

threaded_engine_create/3, threaded_engine_next/2, threaded_engine_yield/1

threaded_engine_yield/1

Description

threaded_engine_yield(Answer)

Returns an answer independent of the solutions of the engine goal. Fails if not called from within an engine.
This predicate is usually used when the engine goal is a call to a recursive predicate processing terms from
the engine term queue.

This predicate blocks until the returned answer is consumed.

Note that this predicate should not be called as the last element of a conjunction resulting in an
engine goal solution as, in this case, an answer will always be returned. For example, instead of
(threaded_engine_yield(ready); member(X,[1,2,3])) use (X=ready; member(X,[1,2,3])).

Modes and number of proofs

threaded_engine_yield(@term) - zero_or_one

236 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Errors

(none)

Examples

% returns the atom "ready" as an engine answer:
..., threaded_engine_yield(ready), ...

See also:

threaded_engine_create/3, threaded_engine_next/2, threaded_engine_next_reified/2

threaded_engine_post/2

Description

threaded_engine_post(Engine, Term)

Posts a term to the engine term queue.

Modes and number of proofs

threaded_engine_post(@nonvar, @term) - one

Errors

Engine is a variable:
instantiation_error

Engine is neither a variable nor the name of an existing engine:
existence_error(engine, Engine)

Examples

% post the atom "ready" to the worker_1 engine queue:
| ?- threaded_engine_post(worker_1, ready).

See also:

threaded_engine_fetch/1

2.4. Built-in predicates 237

The Logtalk Handbook, Release v3.34.0

threaded_engine_fetch/1

Description

threaded_engine_fetch(Term)

Fetches a term from the engine term queue. Blocks until a term is available. Fails if not called from within
an engine.

Modes and number of proofs

threaded_engine_fetch(?term) - zero_or_one

Errors

(none)

Examples

% fetch a term from the engine term queue:
..., threaded_engine_fetch(Term), ...

See also:

threaded_engine_post/2

2.4.9 Compiling and loading source files

logtalk_compile/1

Description

logtalk_compile(File)
logtalk_compile(Files)

Compiles to disk a source file or a list of source files using the default compiler flag values. The Logtalk
source file name extension (by default, .lgt) can be omitted. Source file paths can be absolute, relative to
the current directory, or use library notation. This predicate can also be used to compile Prolog source files
as Logtalk source code. When no recognized Logtalk or Prolog extension is specified, the compiler tries first
to append a Logtalk source file extension and then a Prolog source file extension. If that fails, the compiler
tries to use the file name as-is.

When this predicate is called from the top-level, relative source file paths are resolved using the current
working directory. When the calls are made from a source file, relative source file paths are resolved using
the source file directory.

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no file with the compiled code is
written to disk.

238 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

logtalk_compile(@source_file_name) - zero_or_one
logtalk_compile(@list(source_file_name)) - zero_or_one

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list does not exist:
existence_error(file, File)

Examples

% compile to disk the "set" source file in the
% current directory:
| ?- logtalk_compile(set).

% compile to disk the "tree" source file in the
% "types" library directory:
| ?- logtalk_load(types(tree)).

% compile to disk the "listp" and "list" source
% files in the current directory:
| ?- logtalk_compile([listp, list]).

See also:

logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/0, logtalk_make/1, logtalk_library_path/2

logtalk_compile/2

Description

logtalk_compile(File, Flags)
logtalk_compile(Files, Flags)

Compiles to disk a source file or a list of source files using a list of compiler flags. The Logtalk source file
name extension (by default, .lgt) can be omitted. Source file paths can be absolute, relative to the current
directory, or use library notation. This predicate can also be used to compile Prolog source files as Logtalk
source code. When no recognized Logtalk or Prolog extension is specified, the compiler tries first to append
a Logtalk source file extension and then a Prolog source file extension. If that fails, the compiler tries to use

2.4. Built-in predicates 239

The Logtalk Handbook, Release v3.34.0

the file name as-is. Compiler flags are represented as flag(value). For a description of the available compiler
flags, please see the Compiler flags section in the User Manual.

When this predicate is called from the top-level, relative source file paths are resolved using the current
working directory. When the calls are made from a source file, relative source file paths are resolved by
default using the source file directory (unless a relative_to flag is passed).

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no file with the compiled code is
written to disk.

Warning: The compiler flags specified in the second argument only apply to the files listed in the first
argument. Notably, if you are compiling a loader file, the flags only apply to the loader file itself.

Modes and number of proofs

logtalk_compile(@source_file_name, @list(compiler_flag)) - zero_or_one
logtalk_compile(@list(source_file_name), @list(compiler_flag)) - zero_or_one

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list, does not exist:
existence_error(file, File)

Flags is a variable or a list with an element which is a variable:
instantiation_error

Flags is neither a variable nor a proper list:
type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:
type_error(compiler_flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:
permission_error(modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:
domain_error(flag_value, Flag+Value)

240 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

% compile to disk the "list" source file in the
% current directory using default compiler flags:
| ?- logtalk_compile(list, []).

% compile to disk the "tree" source file in the "types"
% library directory with the source_data flag turned on:
| ?- logtalk_compile(types(tree), [source_data(on)]).

% compile to disk the "file_system" source file in the
% current directory with portability warnings suppressed:
| ?- logtalk_compile(file_system, [portability(silent)]).

See also:

logtalk_compile/1, logtalk_load/1, logtalk_load/2, logtalk_make/0, logtalk_make/1, logtalk_library_path/2

logtalk_load/1

Description

logtalk_load(File)
logtalk_load(Files)

Compiles to disk and then loads to memory a source file or a list of source files using the default compiler flag
values. The Logtalk source file name extension (by default, .lgt) can be omitted. Source file paths can be
absolute, relative to the current directory, or use library notation. This predicate can also be used to compile
Prolog source files as Logtalk source code. When no recognized Logtalk or Prolog extension is specified, the
compiler tries first to append a Logtalk source file extension and then a Prolog source file extension. If that
fails, the compiler tries to use the file name as-is.

When this predicate is called from the top-level, relative source file paths are resolved using the current
working directory. When the calls are made from a source file, relative source file paths are resolved using
the source file directory.

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no contents of the source file are
loaded.

Depending on the backend Prolog compiler, the shortcuts {File} or {File1, File2, ...} may be used in
alternative. Check the adapter files for the availability of these shortcuts as they are not part of the language
(and thus should only be used at the top-level interpreter).

Modes and number of proofs

logtalk_load(@source_file_name) - zero_or_one
logtalk_load(@list(source_file_name)) - zero_or_one

2.4. Built-in predicates 241

The Logtalk Handbook, Release v3.34.0

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list, does not exist:
existence_error(file, File)

Examples

% compile and load the "set" source file in the
% current directory:
| ?- logtalk_load(set).

% compile and load the "tree" source file in the
% "types" library directory:
| ?- logtalk_load(types(tree)).

% compile and load the "listp" and "list" source
% files in the current directory:
| ?- logtalk_load([listp, list]).

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/2, logtalk_make/0, logtalk_make/1,
logtalk_library_path/2

logtalk_load/2

Description

logtalk_load(File, Flags)
logtalk_load(Files, Flags)

Compiles to disk and then loads to memory a source file or a list of source files using a list of compiler flags.
The Logtalk source file name extension (by default, .lgt) can be omitted. Source file paths can be absolute,
relative to the current directory, or use library notation. Compiler flags are represented as flag(value). This
predicate can also be used to compile Prolog source files as Logtalk source code. When no recognized Logtalk
or Prolog extension is specified, the compiler tries first to append a Logtalk source file extension and then a
Prolog source file extension. If that fails, the compiler tries to use the file name as-is. For a description of the
available compiler flags, please see the Compiler flags section in the User Manual.

When this predicate is called from the top-level, relative source file paths are resolved using the current
working directory. When the calls are made from a source file, relative source file paths are resolved by
default using the source file directory (unless a relative_to flag is passed).

242 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Note that only the errors related to problems in the predicate argument are listed below. This predicate fails
on the first error found during compilation of a source file. In this case, no contents of the source file are
loaded.

Warning: The compiler flags specified in the second argument only apply to the files listed in the first
argument and not to any files that those files may load or compile. Notably, if you are loading a loader
file, the flags only apply to the loader file itself and not to the files loaded by it.

Modes and number of proofs

logtalk_load(@source_file_name, @list(compiler_flag)) - zero_or_one
logtalk_load(@list(source_file_name), @list(compiler_flag)) - zero_or_one

Errors

File is a variable:
instantiation_error

Files is a variable or a list with an element which is a variable:
instantiation_error

File, or an element File of the Files list, is neither a variable nor a source file name:
type_error(source_file_name, File)

File, or an element File of the Files list, uses library notation but the library does not exist:
existence_error(library, Library)

File or an element File of the Files list, does not exist:
existence_error(file, File)

Flags is a variable or a list with an element which is a variable:
instantiation_error

Flags is neither a variable nor a proper list:
type_error(list, Flags)

An element Flag of the Flags list is not a valid compiler flag:
type_error(compiler_flag, Flag)

An element Flag of the Flags list defines a value for a read-only compiler flag:
permission_error(modify, flag, Flag)

An element Flag of the Flags list defines an invalid value for a flag:
domain_error(flag_value, Flag+Value)

Examples

% compile and load the "list" source file in the
% current directory using default compiler flags:
| ?- logtalk_load(list, []).

% compile and load the "tree" source file in the "types"
% library directory with the source_data flag turned on:
| ?- logtalk_load(types(tree)).

(continues on next page)

2.4. Built-in predicates 243

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

% compile and load the "file_system" source file in the
% current directory with portability warnings suppressed:
| ?- logtalk_load(file_system, [portability(silent)]).

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_make/0, logtalk_make/1,
logtalk_library_path/2

logtalk_make/0

Description

logtalk_make

Reloads all Logtalk source files that have been modified since the time they are last loaded. Only source
files loaded using the logtalk_load/1 and logtalk_load/2 predicates are reloaded. Non-modified files will
also be reloaded when there is a change to the compilation mode (i.e. when the files were loaded without
explicit debug or optimize flags and the default values of these flags changed after loading; no check is made,
however, for other implicit compiler flags that may have changed since loading). When an included file is
modified, this predicate reloads its main file (i.e. the file that contains the include/1 directive).

Depending on the backend Prolog compiler, the shortcut {*} may be used in alternative. Check the adapter
files for the availability of the shortcut as it is not part of the language.

Warning: Only use the {*} shortcut at the top-level interpreter and never in source files.

This predicate can be extended by the user by defining clauses for the logtalk_make_target_action/1 multifile
and dynamic hook predicate using the argument all. The additional user defined actions are run after the
default one.

Modes and number of proofs

logtalk_make - one

Errors

(none)

244 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

% reload all files modified since last loaded:
| ?- logtalk_make.

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/1,
logtalk_make_target_action/1

logtalk_make/1

Description

logtalk_make(Target)

Runs a make target. Fails of the target is not valid.

Allows reloading all Logtalk source files that have been modified since last loaded when called with the target
all, deleting all intermediate files generated by the compilation of Logtalk source files when called with the
target clean, checking for code issues when called with the target check, listing of circular dependencies
between pairs or trios of objects when called with the target circular, generating documentation when
called with the target documentation, and deleting the dynamic binding caches with the target caches.

There are also three variants of the all target: debug, normal, and optimal. These targets change the
compilation mode (by changing the default value of the debug and optimize flags) and reload all affected
files (i.e. all files loaded without an explicit debug/1 or optimize/1 compiler option).

When using the all target, only source files loaded using the logtalk_load/1 and logtalk_load/2 predicates
are reloaded. Non-modified files will also be reloaded when there is a change to the compilation mode (i.e.
when the files were loaded without explicit debug or optimize flags and the default values of these flags
changed after loading; no check is made, however, for other implicit compiler flags that may have changed
since loading). When an included file is modified, this target reloads its main file (i.e. the file that contains
the include/1 directive).

When using the check or circular targets, be sure to compile your source files with the source_data flag
turned on for complete and detailed reports.

When using the check target, predicates for messages sent to objects that implement the forwarding built-in
protocol are not reported. While this usually avoids only false positives, it may also result in failure to report
true missing predicates in some cases.

When using the circular target, be prepared for a lengthy computation time for applications with a large
combined number of objects and message calls. Only mutual and triangular dependencies are checked due
to the computational cost.

The documentation target requires the doclet tool and a single doclet object to be loaded. See the doclet
tool for more details.

Depending on the backend Prolog compiler, the following top-level shortcuts are usually defined:

• {*} - logtalk_make(all)

• {!} - logtalk_make(clean)

• {?} - logtalk_make(check)

• {@} - logtalk_make(circular)

2.4. Built-in predicates 245

https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.34.0

• {#} - logtalk_make(documentation)

• {$} - logtalk_make(caches)

• {+d} - logtalk_make(debug)

• {+n} - logtalk_make(normal)

• {+o} - logtalk_make(optimal)

Check the adapter files for the availability of these shortcuts as they are not part of the language.

Warning: Only use the shortcuts at the top-level interpreter and never in source files.

The target actions can be extended by defining clauses for the multifile and dynamic hook predicate
logtalk_make_target_action(Target) where Target is one of the targets listed above. The additional user
defined actions are run after the default ones.

Modes and number of proofs

logtalk_make(+atom) - zero_or_one

Errors

(none)

Examples

% reload loaded source files in debug mode:
| ?- logtalk_make(debug).

% check for code issues in the loaded source files:
| ?- logtalk_make(check).

% delete all intermediate files generated by
% the compilation of Logtalk source files:
| ?- logtalk_make(clean).

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_load/2, logtalk_make/0,
logtalk_make_target_action/1

246 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

logtalk_make_target_action/1

Description

logtalk_make_target_action(Target)

Multifile and dynamic hook predicate that allows defining user actions for the logtalk_make/1 targets. The
user defined actions are run after the default ones using a failure driven loop. This loop does not catch any
exceptions thrown when calling the user-defined actions.

Modes and number of proofs

logtalk_make_target_action(+atom) - zero_or_more

Errors

(none)

Examples

% integrate the dead_code_scanner tool with logtalk_make/1

:- multifile(logtalk_make_target_action/1).
:- dynamic(logtalk_make_target_action/1).

logtalk_make_target_action(check) :-
dead_code_scanner::all.

See also:

logtalk_make/1, logtalk_make/0

logtalk_library_path/2

Description

logtalk_library_path(Library, Path)

Dynamic and multifile user-defined predicate, allowing the declaration of aliases to library paths. Library
aliases may also be used on the second argument (using the notation alias(path)). Paths must always end
with the path directory separator character ('/').

Relative paths (e.g. '../' or './') should only be used within the alias(path)) notation so that library paths
can always be expanded to absolute paths independently of the (usually unpredictable) current directory at
the time the logtalk_library_path/2 predicate is called.

When working with a relocatable application, the actual application installation directory can be retrieved by
calling the logtalk_load_context/2 predicate with the directory key and using the returned value to define

2.4. Built-in predicates 247

The Logtalk Handbook, Release v3.34.0

the logtalk_library_path/2 predicate. On a settings file or a loader file, simply use an initialization/1 direc-
tive to wrap the call to the logtalk_load_context/2 predicate and the assert of the logtalk_library_path/2
fact.

This predicate may also be used to override the default scratch directory by defining the library alias
scratch_directory in a backend Prolog initialization file (assumed to be loaded prior to Logtalk loading).
This allows e.g. Logtalk to be installed in a read-only directory by setting this alias to the operating-system
directory for temporary files. It also allows several Logtalk instances to run concurrently without conflict by
using a unique scratch directory per instance (e.g. using a process ID or a UUID generator).

The logtalk built-in object provides an expand_library_path/2 predicate that can be used to expand library
aliases and files expressed using library notation.

Modes and number of proofs

logtalk_library_path(?atom, -atom) - zero_or_more
logtalk_library_path(?atom, -compound) - zero_or_more

Errors

(none)

Examples

:- initialization((
logtalk_load_context(directory, Directory),
assertz(logtalk_library_path(my_application_root, Directory))

)).

| ?- logtalk_library_path(viewpoints, Path).

Path = examples('viewpoints/')
yes

| ?- logtalk_library_path(Library, Path).

Library = home,
Path = '$HOME/' ;

Library = logtalk_home,
Path = '$LOGTALKHOME/' ;

Library = logtalk_user
Path = '$LOGTALKUSER/' ;

Library = examples
Path = logtalk_user('examples/') ;

Library = library
Path = logtalk_user('library/') ;

Library = viewpoints

(continues on next page)

248 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0-expand-library-path-2

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

Path = examples('viewpoints/')
yes

| ?- logtalk::expand_library_path(viewpoints, Path).

Path = '/Users/pmoura/logtalk/examples/viewpoints/'.
yes

| ?- logtalk::expand_library_path(viewpoints('loader.lgt'), Path).

Path = '/Users/pmoura/logtalk/examples/viewpoints/loader.lgt'.
yes

See also:

logtalk_compile/1, logtalk_compile/2, logtalk_load/1, logtalk_load/2

logtalk_load_context/2

Description

logtalk_load_context(Key, Value)

Provides access to the Logtalk compilation/loading context. The following keys are currently supported:

• entity_identifier - identifier of the entity being compiled if any

• entity_prefix - internal prefix for the entity compiled code

• entity_type - returns the value module when compiling a module as an object

• source - full path of the source file being compiled

• file - the actual file being compiled, different from source only when processing an include/1 direc-
tive

• basename - source file basename

• directory - source file directory

• stream - input stream being used to read source file terms

• target - the full path of the intermediate Prolog file

• flags - the list of the explicit flags used for the compilation of the source file

• term - the source file term being compiled

• term_position - the position of the term being compiled (StartLine-EndLine)

• variable_names - the variable names of the term being compiled ([Name1=Variable1, ...])

The logtalk_load_context/2 predicate can also be called initialization/1 directives in a source file. A com-
mon scenario is to use the directory key to define library aliases.

Warning: The term_position key is only supported in backend Prolog compilers that provide access to
the start and end lines of a read term.

2.4. Built-in predicates 249

The Logtalk Handbook, Release v3.34.0

Currently, any variables in the values of the term and variable_names keys are not shared with, respec-
tively, the term and goal arguments of the term_expansion/2 and goal_expansion/2 methods.

Using the variable_names key requires calling the standard built-in predicate term_variables/2 on the
term read and unifying the term variables with the variables in the names list. This, however, may
rise portability issues with those Prolog compilers that don’t return the variables in the same order for
the term_variables/2 predicate and the option variable_names/1 of the read_term/3 built-in predicate,
which is used by the Logtalk compiler to read source files.

Modes and number of proofs

logtalk_load_context(?atom, -nonvar) - zero_or_more

Errors

(none)

Examples

term_expansion(Term, ExpandedTerms) :-
...
logtalk_load_context(entity_identifier, Entity),
....

:- initialization((
logtalk_load_context(directory, Directory),
assertz(logtalk_library_path(my_app, Directory))

)).

See also:

term_expansion/2, goal_expansion/2

2.4.10 Flags

current_logtalk_flag/2

Description

current_logtalk_flag(Flag, Value)

Enumerates, by backtracking, the current Logtalk flag values. For a description of the predefined compiler
flags, please see the Compiler flags section in the User Manual.

250 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

current_logtalk_flag(?atom, ?atom) - zero_or_more

Errors

Flag is neither a variable nor an atom:
type_error(atom, Flag)

Flag is an atom but an invalid flag:
domain_error(flag, Value)

Examples

% get the current value of the source_data flag:
| ?- current_logtalk_flag(source_data, Value).

See also:

create_logtalk_flag/3, set_logtalk_flag/2

set_logtalk_flag/2

Description

set_logtalk_flag(Flag, Value)

Sets global, default, flag values. For local flag scope, use the corresponding set_logtalk_flag/2 directive. To
set a global flag value when compiling and loading a source file, wrap the calls to this built-in predicate with
an initialization/1 directive. For a description of the predefined compiler flags, please see the Compiler flags
section in the User Manual.

Modes and number of proofs

set_logtalk_flag(+atom, +nonvar) - one

Errors

Flag is a variable:
instantiation_error

Value is a variable:
instantiation_error

Flag is neither a variable nor an atom:
type_error(atom, Flag)

Flag is an atom but an invalid flag:
domain_error(flag, Flag)

2.4. Built-in predicates 251

The Logtalk Handbook, Release v3.34.0

Value is not a valid value for flag Flag:
domain_error(flag_value, Flag + Value)

Flag is a read-only flag:
permission_error(modify, flag, Flag)

Examples

% turn off globally and by default the compiler
% unknown entities warnings:
| ?- set_logtalk_flag(unknown_entities, silent).

See also:

create_logtalk_flag/3, current_logtalk_flag/2

create_logtalk_flag/3

Description

create_logtalk_flag(Flag, Value, Options)

Creates a new Logtalk flag and sets its default value. User-defined flags can be queried and set in the
same way as predefined flags by using, respectively, the current_logtalk_flag/2 and set_logtalk_flag/2 built-in
predicates. For a description of the predefined compiler flags, please see the Compiler flags section in the
User Manual.

This predicate is based on the specification of the SWI-Prolog create_prolog_flag/3 built-in predicate
and supports the same options: access(Access), where Access can be either read_write (the default) or
read_only; keep(Keep), where Keep can be either false (the default) or true, for deciding if an existing
definition of the flag should be kept or replaced by the new one; and type(Type) for specifying the type of
the flag, which can be boolean, atom, integer, float, or term (which only restricts the flag value to ground
terms). When the type/1 option is not specified, the type of the flag is inferred from its initial value.

Modes and number of proofs

create_logtalk_flag(+atom, +ground, +list(ground)) - one

Errors

Flag is a variable:
instantiation_error

Value is not a ground term:
instantiation_error

Options is not a ground term:
instantiation_error

Flag is neither a variable nor an atom:
type_error(atom, Flag)

Options is neither a variable nor a list:

252 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

type_error(atom, Flag)

Value is not a valid value for flag Flag:
domain_error(flag_value, Flag + Value)

Flag is a system-defined flag:
permission_error(modify, flag, Flag)

An element Option of the list Options is not a valid option
domain_error(flag_option,Option)

The list Options contains a type(Type) option and Value is not of type Type

type_error(Type, Value)

Examples

% create a new boolean flag with default value set to false:
| ?- create_logtalk_flag(pretty_print_blobs, false, []).

See also:

current_logtalk_flag/2, set_logtalk_flag/2

2.5 Built-in methods

2.5.1 Execution context

context/1

Description

context(Context)

Returns the execution context for a predicate clause using the term logtalk(Head,ExecutionContext) where
Head is the head of the clause containing the call. This private predicate is mainly used for providing a default
error context when type-checking predicate arguments. The ExecutionContext term should be regarded
as an opaque term, which can be decoded using the logtalk::execution_context/7 predicate. Calls to this
predicate are inlined at compilation time.

Modes and number of proofs

context(--callable) - one

2.5. Built-in methods 253

https://logtalk.org/library/logtalk_0.html#logtalk-0-execution-context-7

The Logtalk Handbook, Release v3.34.0

Errors

Context is not a variable:
type_error(var, Context)

Examples

foo(A, N) :-
% type-check arguments
context(Context),
type::check(atom, A, Context),
type::check(integer, N, Context),
% arguments are fine; go ahead
... .

See also:

parameter/2, self/1, sender/1, this/1

parameter/2

Description

parameter(Number, Term)

Used in parametric objects (and parametric categories), this private method provides runtime access to the
parameter values of the entity that contains the predicate clause whose body is being executed by using
the argument number in the entity identifier. This predicate is implemented as a unification between its
second argument and the corresponding implicit execution-context argument in the predicate clause making
the call. This unification occurs at the clause head when the second argument is not instantiated (the most
common case). When the second argument is instantiated, the unification must be delayed to runtime and
thus occurs at the clause body.

Entity parameters can also be accessed using parameter variables, which use the syntax _VariableName_.
The compiler recognizes occurrences of these variables in entity clauses. Parameter variables allows us to
abstract parameter positions thus simplifying code maintenance.

Modes and number of proofs

parameter(+integer, ?term) - zero_or_one

254 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Errors

Number is a variable:
instantiation_error

Number is neither a variable nor an integer value:
type_error(integer, Number)

Number is smaller than one or greater than the parametric entity identifier arity:
domain_error(out_of_range, Number)

Entity identifier is not a compound term:
type_error(compound, Entity)

Examples

:- object(box(_Color, _Weight)).

...

% this clause is translated into
% a fact upon compilation
color(Color) :-

parameter(1, Color).

% upon compilation, the >/2 call will be
% the single goal in the clause body
heavy :-

parameter(2, Weight),
Weight > 10.

...

The same example using parameter variables:

:- object(box(_Color_, _Weight_)).

...

color(_Color_).

heavy :-
Weight > 10.

...

See also:

context/1, self/1, sender/1, this/1

2.5. Built-in methods 255

The Logtalk Handbook, Release v3.34.0

self/1

Description

self(Self)

Returns the object that has received the message under processing. This private method is translated to a
unification between its argument and the corresponding implicit context argument in the predicate clause
making the call. This unification occurs at the clause head when the argument is not instantiated (the most
common case).

Modes and number of proofs

self(?object_identifier) - zero_or_one

Errors

(none)

Examples

% upon compilation, the write/1 call will be
% the first goal on the clause body
test :-

self(Self),
write('executing a method in behalf of '),
writeq(Self), nl.

See also:

context/1, parameter/2, sender/1, this/1

sender/1

Description

sender(Sender)

Returns the object that has sent the message under processing. This private method is translated into a
unification between its argument and the corresponding implicit context argument in the predicate clause
making the call. This unification occurs at the clause head when the argument is not instantiated (the most
common case).

256 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

sender(?object_identifier) - zero_or_one

Errors

(none)

Examples

% after compilation, the write/1 call will
% be the first goal on the clause body
test :-

sender(Sender),
write('executing a method to answer a message sent by '),
writeq(Sender), nl.

See also:

context/1, parameter/2, self/1, this/1

this/1

Description

this(This)

Unifies its argument with the identifier of the object for which the predicate clause whose body is being
executed is defined (or the object importing the category that contains the predicate clause). This private
method is implemented as a unification between its argument and the corresponding implicit execution-
context argument in the predicate clause making the call. This unification occurs at the clause head when
the argument is not instantiated (the most common case). This method is useful for avoiding hard-coding
references to an object identifier or for retrieving all object parameters with a single call when using para-
metric objects.

Modes and number of proofs

this(?object_identifier) - zero_or_one

2.5. Built-in methods 257

The Logtalk Handbook, Release v3.34.0

Errors

(none)

Examples

% after compilation, the write/1 call will
% be the first goal on the clause body
test :-

this(This),
write('Using a predicate clause contained in '),
writeq(This), nl.

See also:

context/1, parameter/2, self/1, sender/1

2.5.2 Reflection

current_op/3

Description

current_op(Priority, Specifier, Operator)

Enumerates, by backtracking, the visible operators declared for an object. Operators not declared using a
scope directive are not enumerated.

Modes and number of proofs

current_op(?operator_priority, ?operator_specifier, ?atom) - zero_or_more

Errors

Priority is neither a variable nor an integer:
type_error(integer, Priority)

Priority is an integer but not a valid operator priority:
domain_error(operator_priority, Priority)

Specifier is neither a variable nor an atom:
type_error(atom, Specifier)

Specifier is an atom but not a valid operator specifier:
domain_error(operator_specifier, Specifier)

Operator is neither a variable nor an atom:
type_error(atom, Operator)

258 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

To enumerate, by backtracking, the local operators or the operators visible in this:
current_op(Priority, Specifier, Operator)

To enumerate, by backtracking, the public and protected operators visible in self :
::current_op(Priority, Specifier, Operator)

To enumerate, by backtracking, the public operators visible for an explicit object:
Object::current_op(Priority, Specifier, Operator)

See also:

current_predicate/1, predicate_property/2, op/3

current_predicate/1

Description

current_predicate(Predicate)

Enumerates, by backtracking, visible, user-defined, object predicates. Built-in predicates and predicates not
declared using a scope directive are not enumerated.

When Predicate is ground at compile time, this predicate also succeeds for any predicates listed in uses/2
and use_module/2 directives.

When Predicate is bound at compile time to a :/2 term, this predicate enumerates module predicates
(assuming that the backend Prolog compiler supports modules).

Modes and number of proofs

current_predicate(?predicate_indicator) - zero_or_more

Errors

Predicate is neither a variable nor a valid predicate indicator:
type_error(predicate_indicator, Predicate)

Predicate is a Name/Arity term but Functor is neither a variable nor an atom:
type_error(atom, Name)

Predicate is a Name/Arity term but Arity is neither a variable nor an integer:
type_error(integer, Arity)

Predicate is a Name/Arity term but Arity is a negative integer:
domain_error(not_less_than_zero, Arity)

2.5. Built-in methods 259

The Logtalk Handbook, Release v3.34.0

Examples

To enumerate, by backtracking, the locally visible user predicates or the user predicates visible in this:
current_predicate(Predicate)

To enumerate, by backtracking, the public and protected user predicates visible in self :
::current_predicate(Predicate)

To enumerate, by backtracking, the public user predicates visible for an explicit object:
Object::current_predicate(Predicate)

See also:

current_op/3, predicate_property/2, uses/2, use_module/2

predicate_property/2

Description

predicate_property(Predicate, Property)

Enumerates, by backtracking, the properties of a visible object predicate. Properties for predicates not
declared using a scope directive are not enumerated. The valid predicate properties are listed in the language
grammar section on predicate properties and described in the User Manual section on predicate properties.

When Predicate is ground at compile time and its predicate indicator is listed in a uses/2 or use_module/2
directive, properties are enumerated for the referenced object or module predicate.

When Predicate is bound at compile time to a :/2 term, this predicate enumerates properties for module
predicates (assuming that the backend Prolog compiler supports modules).

Modes and number of proofs

predicate_property(+callable, ?predicate_property) - zero_or_more

Errors

Predicate is a variable:
instantiation_error

Predicate is neither a variable nor a callable term:
type_error(callable, Predicate)

Property is neither a variable nor a valid predicate property:
domain_error(predicate_property, Property)

260 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Examples

To enumerate, by backtracking, the properties of a locally visible user predicate or a user predicate visible
in this:

predicate_property(Predicate, Property)

To enumerate, by backtracking, the properties of a public or protected predicate visible in self :
::predicate_property(Predicate, Property)

To enumerate, by backtracking, the properties of a public predicate visible in an explicit object:
Object::predicate_property(Predicate, Property)

See also:

current_op/3, current_predicate/1, uses/2, use_module/2

2.5.3 Database

abolish/1

Description

abolish(Predicate)

Abolishes a runtime declared object dynamic predicate or an object local dynamic predicate. Only predicates
that are dynamically declared at runtime (using a call to the asserta/1 or assertz/1 built-in methods) can be
abolished.

When the predicate indicator is declared in a uses/2 or use_module/2 directive, the predicate is abolished in
the referenced object or module. When the backend Prolog compiler supports a module system, the predicate
argument can also be module qualified.

Modes and number of proofs

abolish(@predicate_indicator) - one

Errors

Predicate is a variable:
instantiation_error

Functor is a variable:
instantiation_error

Arity is a variable:
instantiation_error

Predicate is neither a variable nor a valid predicate indicator:
type_error(predicate_indicator, Predicate)

Functor is neither a variable nor an atom:
type_error(atom, Functor)

Arity is neither a variable nor an integer:

2.5. Built-in methods 261

The Logtalk Handbook, Release v3.34.0

type_error(integer, Arity)

Predicate is statically declared:
permission_error(modify, predicate_declaration, Name/Arity)

Predicate is a private predicate:
permission_error(modify, private_predicate, Name/Arity)

Predicate is a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

Predicate is a static predicate:
permission_error(modify, static_predicate, Name/Arity)

Predicate is not declared for the object receiving the message:
existence_error(predicate_declaration, Name/Arity)

Examples

To abolish a local dynamic predicate or a dynamic predicate in this:
abolish(Predicate)

To abolish a public or protected dynamic predicate in self :
::abolish(Predicate)

To abolish a public dynamic predicate in an explicit object:
Object::abolish(Predicate)

See also:

asserta/1, assertz/1, clause/2, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

asserta/1

Description

asserta(Head)
asserta((Head:-Body))

Asserts a clause as the first one for an object dynamic predicate. If the predicate is not previously declared
(using a scope directive), then a dynamic predicate declaration is added to the object (assuming that we are
asserting locally or that the dynamic_declarations compiler flag was set to allow when the object was created
or compiled).

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is asserted
in the referenced object or module. When the backend Prolog compiler supports a module system, the
predicate argument can also be module qualified.

This method may be used to assert clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this. This allows easy initialization of dynamically created objects
when writing constructors.

262 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

asserta(+clause) - one

Errors

Head is a variable:
instantiation_error

Head is a neither a variable nor a callable term:
type_error(callable, Head)

Body cannot be converted to a goal:
type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was
created or compiled with support for dynamic declaration of predicates turned off:

permission_error(create, predicate_declaration, Name/Arity)

Examples

To assert a clause as the first one for a local dynamic predicate or a dynamic predicate in this:
asserta(Clause)

To assert a clause as the first one for any public or protected dynamic predicate in self :
::asserta(Clause)

To assert a clause as the first one for any public dynamic predicate in an explicit object:
Object::asserta(Clause)

See also:

abolish/1, assertz/1, clause/2, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

assertz/1

Description

assertz(Head)
assertz((Head:-Body))

Asserts a clause as the last one for a dynamic predicate. If the predicate is not previously declared (using a
scope directive), then a dynamic predicate declaration is added to the object (assuming that we are asserting
locally or that the dynamic_declarations compiler flag was set to allow when the object was created or
compiled).

2.5. Built-in methods 263

The Logtalk Handbook, Release v3.34.0

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is asserted
in the referenced object or module. When the backend Prolog compiler supports a module system, the
predicate argument can also be module qualified.

This method may be used to assert clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this. This allows easy initialization of dynamically created objects
when writing constructors.

Modes and number of proofs

assertz(+clause) - one

Errors

Head is a variable:
instantiation_error

Head is a neither a variable nor a callable term:
type_error(callable, Head)

Body cannot be converted to a goal:
type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, does not match a declared predicate and the target object was
created/compiled with support for dynamic declaration of predicates turned off:

permission_error(create, predicate_declaration, Name/Arity)

Examples

To assert a clause as the last one for a local dynamic predicate or a dynamic predicate in this:
assertz(Clause)

To assert a clause as the last one for any public or protected dynamic predicate in self :
::assertz(Clause)

To assert a clause as the last one for any public dynamic predicate in an explicit object:
Object::assertz(Clause)

See also:

abolish/1, asserta/1, clause/2, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

264 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

clause/2

Description

clause(Head, Body)

Enumerates, by backtracking, the clauses of a dynamic predicate.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the predicate enu-
merates the clauses in the referenced object or module. When the backend Prolog compiler supports a
module system, the head argument can also be module qualified.

This method may be used to enumerate clauses for predicates that are not declared dynamic for dynamic
objects provided that the predicates are declared in this.

Modes and number of proofs

clause(+callable, ?body) - zero_or_more

Errors

Head is a variable:
instantiation_error

Head is a neither a variable nor a callable term:
type_error(callable, Head)

Body is a neither a variable nor a callable term:
type_error(callable, Body)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(access, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(access, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(access, static_predicate, Name/Arity)

Head is not a declared predicate:
existence_error(predicate_declaration, Name/Arity)

Examples

To retrieve a matching clause of a local dynamic predicate or a dynamic predicate in this:
clause(Head, Body)

To retrieve a matching clause of a public or protected dynamic predicate in self :
::clause(Head, Body)

To retrieve a matching clause of a public dynamic predicate in an explicit object:
Object::clause(Head, Body)

See also:

2.5. Built-in methods 265

The Logtalk Handbook, Release v3.34.0

abolish/1, asserta/1, assertz/1, retract/1, retractall/1 dynamic/0, dynamic/1, uses/2, use_module/2

retract/1

Description

retract(Head)
retract((Head:-Body))

Retracts a clause for an object dynamic predicate. On backtracking, the predicate retracts the next matching
clause.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clause is retracted
in the referenced object or module. When the backend Prolog compiler supports a module system, the
predicate argument can also be module qualified.

This method may be used to retract clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this.

Modes and number of proofs

retract(+clause) - zero_or_more

Errors

Head is a variable:
instantiation_error

Head is neither a variable nor a callable term:
type_error(callable, Head)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

To retract a matching clause of a dynamic predicate in this:
retract(Clause)

To retract a matching clause of a public or protected dynamic predicate in self :
::retract(Clause)

To retract a matching clause of a public dynamic predicate in an explicit object:
Object::retract(Clause)

266 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

See also:

abolish/1, asserta/1, assertz/1, clause/2, retractall/1, dynamic/0, dynamic/1, uses/2, use_module/2

retractall/1

Description

retractall(Head)

Retracts all clauses with a matching head for an object dynamic predicate.

When the predicate indicator for Head is declared in a uses/2 or use_module/2 directive, the clauses are
retracted in the referenced object or module. When the backend Prolog compiler supports a module system,
the predicate argument can also be module qualified.

This method may be used to retract clauses for predicates that are not declared dynamic for dynamic objects
provided that the predicates are declared in this.

Modes and number of proofs

retractall(@callable) - one

Errors

Head is a variable:
instantiation_error

Head is neither a variable nor a callable term:
type_error(callable, Head)

The predicate indicator of Head, Name/Arity, is that of a private predicate:
permission_error(modify, private_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a protected predicate:
permission_error(modify, protected_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is that of a static predicate:
permission_error(modify, static_predicate, Name/Arity)

The predicate indicator of Head, Name/Arity, is not declared:
existence_error(predicate_declaration, Name/Arity)

Examples

To retract all clauses with a matching head of a dynamic predicate in this:
retractall(Head)

To retract all clauses with a matching head of a public or protected dynamic predicate in self :
::retractall(Head)

To retract all clauses with a matching head of a public dynamic predicate in an explicit object:
Object::retractall(Head)

2.5. Built-in methods 267

The Logtalk Handbook, Release v3.34.0

See also:

abolish/1, asserta/1, assertz/1, clause/2, retract/1, dynamic/0, dynamic/1, uses/2, use_module/2

2.5.4 Meta-calls

call/1-N

Description

call(Goal)
call(Closure, Arg1, ...)

Calls a goal constructed by appending additional arguments to a closure. The upper limit for N depends on
the upper limit for the arity of a compound term of the backend Prolog compiler. This built-in meta-predicate
is declared as a private method and thus cannot be used as a message to an object. The Closure argument
can also be a lambda expression or a Logtalk control construct. When using a backend Prolog compiler
supporting a module system, calls in the format call(Module:Closure, Arg1, ...) may also be used.

This meta-predicate is opaque to cuts in its arguments.

Modes and number of proofs

call(+callable) - zero_or_more
call(+callable, ?term) - zero_or_more
call(+callable, ?term, ?term) - zero_or_more
...

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error(callable, Closure)

Examples

Call a goal, constructed by appending additional arguments to a closure, in the context of the object or
category containing the call:

call(Closure, Arg1, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to self :
call(::Closure, Arg1, Arg2, ...)

To send a goal, constructed by appending additional arguments to a closure, as a message to an explicit
object:

268 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

call(Object::Closure, Arg1, Arg2, ...)

See also:

ignore/1, once/1, \+/1

ignore/1

Description

ignore(Goal)

This predicate succeeds whether its argument succeeds or fails and it is not re-executable. This built-in
meta-predicate is declared as a private method and thus cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Modes and number of proofs

ignore(+callable) - one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Call a goal and succeeding even if it fails:
ignore(Goal)

To send a message succeeding even if it fails to self :
ignore(::Goal)

To send a message succeeding even if it fails to an explicit object:
ignore(Object::Goal)

See also:

call/1-N, once/1, \+/1

2.5. Built-in methods 269

The Logtalk Handbook, Release v3.34.0

once/1

Description

once(Goal)

This predicate behaves as call(Goal) but it is not re-executable. This built-in meta-predicate is declared as
a private method and thus cannot be used as a message to an object.

This meta-predicate is opaque to cuts in its argument.

Modes and number of proofs

once(+callable) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Call a goal deterministically in the context of the object or category containing the call:
once(Goal)

To send a goal as a non-backtracable message to self :
once(::Goal)

To send a goal as a non-backtracable message to an explicit object:
once(Object::Goal)

See also:

call/1-N, ignore/1, \+/1

\+/1

Description

\+ Goal

Not-provable meta-predicate. True iff call(Goal) is false. This built-in meta-predicate is declared as a
private method and thus cannot be used as a message to an object.

270 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

\+ +callable - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

Not-provable goal in the context of the object or category containing the call:
\+ Goal

Not-provable goal sent as a message to self :
\+ ::Goal

Not-provable goal sent as a message to an explicit object:
\+ Object::Goal

See also:

call/1-N, ignore/1, once/1

2.5.5 Error handling

catch/3

Description

catch(Goal, Catcher, Recovery)

Catches exceptions thrown by a goal. See the ISO Prolog standard definition. This built-in meta-predicate is
declared as a private method and thus cannot be used as a message to an object.

Modes and number of proofs

catch(?callable, ?term, ?term) - zero_or_more

2.5. Built-in methods 271

The Logtalk Handbook, Release v3.34.0

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Examples

(none)

See also:

throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, evaluation_error/1, representation_error/1 resource_error/1, syntax_error/1, system_error/0

throw/1

Description

throw(Exception)

Throws an exception. This built-in method is declared private and thus cannot be used as a message to an
object.

Modes and number of proofs

throw(+nonvar) - error

Errors

Exception is a variable:
instantiation_error

Exception does not unify with the second argument of any call of catch/3:
system_error

Examples

(none)

See also:

catch/3, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, evaluation_error/1, representation_error/1 resource_error/1, syntax_error/1, system_error/0

272 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

instantiation_error/0

Description

instantiation_error

Throws an instantiation error. This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(instantiation_error, Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

instantiation_error - error

Errors

When called:
instantiation_error

Examples

...,
var(Handler),
instantiation_error.

See also:

catch/3, throw/1, context/1, type_error/2, domain_error/2, existence_error/2, permission_error/3, represen-
tation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, system_error/0

type_error/2

Description

type_error(Type, Culprit)

Throws a type error. This built-in method is declared private and thus cannot be used as a message to an
object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(type_error(Type,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

2.5. Built-in methods 273

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

type_error(@nonvar, @term) - error

Errors

When called:
type_error(Type, Culprit)

Examples

...,
\+ atom(Name),
type_error(atom, Name).

See also:

catch/3, throw/1, context/1, instantiation_error/0, domain_error/2, existence_error/2, permission_error/3,
representation_error/1 evaluation_error/1, resource_error/1, syntax_error/1, system_error/0,

domain_error/2

Description

domain_error(Domain, Culprit)

Throws a domain error. This built-in method is declared private and thus cannot be used as a message to an
object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(domain_error(Domain,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

domain_error(+atom, @nonvar) - error

274 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Errors

When called:
domain_error(Domain, Culprit)

Examples

...,
atom(Color),
\+ color(Color),
domain_error(color, Color).

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, existence_error/2, permission_error/3, rep-
resentation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, system_error/0

existence_error/2

Description

existence_error(Thing, Culprit)

Throws an existence error. This built-in method is declared private and thus cannot be used as a message to
an object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(existence_error(Thing,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

existence_error(@nonvar, @nonvar) - error

Errors

When called:
existence_error(Thing, Culprit)

2.5. Built-in methods 275

The Logtalk Handbook, Release v3.34.0

Examples

...,
\+ current_object(payroll),
existence_error(object, payroll).

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, evaluation_error/1, per-
mission_error/3, representation_error/1, resource_error/1, syntax_error/1, system_error/0

permission_error/3

Description

permission_error(Operation, Permission, Culprit)

Throws an evaluation error. This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(permission_error(Operation,Permission,Culprit), Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

permission_error(@nonvar, @nonvar, @nonvar) - error

Errors

When called:
permission_error(Operation, Permission, Culprit)

Examples

...,
\+ writable(File),
permission_error(modify, file, File).

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, repre-
sentation_error/1, evaluation_error/1, resource_error/1, syntax_error/1, system_error/0

276 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

representation_error/1

Description

representation_error(Flag)

Throws a representation error. This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(representation_error(Flag), Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

representation_error(+atom) - error

Errors

When called:
representation_error(Flag)

Examples

...,
Code > 127,
representation_error(character_code).

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, evaluation_error/1, resource_error/1, syntax_error/1, system_error/0

evaluation_error/1

Description

evaluation_error(Exception)

Throws an evaluation error. This built-in method is declared private and thus cannot be used as a message
to an object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(evaluation_error(Exception), Context)).

This allows the user to generate errors in the same format used by the runtime.

2.5. Built-in methods 277

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

evaluation_error(@nonvar) - error

Errors

When called:
evaluation_error(Exception)

Examples

...,
Divisor =:= 0,
evaluation_error(zero_divisor).

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1, resource_error/1, syntax_error/1, system_error/0

resource_error/1

Description

resource_error(Resource)

Throws a resource error. This built-in method is declared private and thus cannot be used as a message to
an object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(resource_error(Resource), Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

resource_error(@nonvar) - error

278 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Errors

When called:
resource_error(Resource)

Examples

...,
empty(Tank),
resource_error(gas).

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1, instantiation_error/0, syntax_error/1, system_error/0

syntax_error/1

Description

syntax_error(Description)

Throws a syntax error. This built-in method is declared private and thus cannot be used as a message to an
object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(syntax_error(Description), Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

syntax_error(@nonvar) - error

Errors

When called:
syntax_error(Description)

2.5. Built-in methods 279

The Logtalk Handbook, Release v3.34.0

Examples

(none)

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1, instantiation_error/0, system_error/0 resource_error/1

system_error/0

Description

system_error

Throws a system error. This built-in method is declared private and thus cannot be used as a message to an
object. Calling this predicate is equivalent to the following sequence of calls:

...,
context(Context),
throw(error(system_error, Context)).

This allows the user to generate errors in the same format used by the runtime.

Modes and number of proofs

system_error - error

Errors

When called:
system_error

Examples

(none)

See also:

catch/3, throw/1, context/1, instantiation_error/0, type_error/2, domain_error/2, existence_error/2, permis-
sion_error/3, representation_error/1 evaluation_error/1, resource_error/1, syntax_error/1,

280 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.5.6 All solutions

bagof/3

Description

bagof(Template, Goal, List)

Collects a bag of solutions for the goal for each set of instantiations of the free variables in the goal. The
order of the elements in the bag follows the order of the goal solutions. The free variables in the goal are the
variables that occur in the goal but not in the template. Free variables can be ignored, however, by using the
^/2 existential qualifier. For example, if T is term containing all the free variables that we want to ignore, we
can write T^Goal. Note that the term T can be written as V1^V2^....

When there are free variables, this method is re-executable on backtracking. This method fails when there
are no solutions, never returning an empty list.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

bagof(@term, +callable, -list) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

Examples

To find a bag of solutions in the context of the object or category containing the call:
bagof(Template, Goal, List)

To find a bag of solutions of sending a message to self :
bagof(Template, ::Message, List)

To find a bag of solutions of sending a message to an explicit object:
bagof(Template, Object::Message, List)

See also:

findall/3, findall/4, forall/2, setof/3

2.5. Built-in methods 281

The Logtalk Handbook, Release v3.34.0

findall/3

Description

findall(Template, Goal, List)

Collects a list of solutions for the goal. The order of the elements in the list follows the order of the goal
solutions. It succeeds returning an empty list when the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

findall(?term, +callable, ?list) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

Examples

To find all solutions in the context of the object or category containing the call:
findall(Template, Goal, List)

To find all solutions of sending a message to self :
findall(Template, ::Message, List)

To find all solutions of sending a message to an explicit object:
findall(Template, Object::Message, List)

See also:

bagof/3, findall/4, forall/2, setof/3

282 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

findall/4

Description

findall(Template, Goal, List, Tail)

Variant of the findall/3 method that allows passing the tail of the results list. It succeeds returning the tail
argument when the goal has no solutions.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

findall(?term, +callable, ?list, ?term) - zero_or_one

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

Examples

To find all solutions in the context of the object or category containing the call:
findall(Template, Goal, List, Tail)

To find all solutions of sending a message to self :
findall(Template, ::Message, List, Tail)

To find all solutions of sending a message to an explicit object:
findall(Template, Object::Message, List, Tail)

See also:

bagof/3, findall/3, forall/2, setof/3

2.5. Built-in methods 283

The Logtalk Handbook, Release v3.34.0

forall/2

Description

forall(Generator, Test)

For all solutions of Generator, Test is true. This meta-predicate implements a generate-and-test loop using a
definition equivalent to \+ (Generator, \+ Test).

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

forall(@callable, @callable) - zero_or_one

Errors

Either Generator or Test is a variable:
instantiation_error

Generator is neither a variable nor a callable term:
type_error(callable, Generator)

Test is neither a variable nor a callable term:
type_error(callable, Test)

Examples

To call both goals in the context of the object or category containing the call:
forall(Generator, Test)

To send both goals as messages to self :
forall(::Generator, ::Test)

To send both goals as messages to explicit objects:
forall(Object1::Generator, Object2::Test)

See also:

bagof/3, findall/3, findall/4, setof/3

284 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

setof/3

Description

setof(Template, Goal, List)

Collects a set of solutions for the goal for each set of instantiations of the free variables in the goal. The
solutions are sorted using standard term order. The free variables in the goal are the variables that occur
in the goal but not in the template. Free variables can be ignored, however, by using the ^/2 existential
qualifier. For example, if T is term containing all the free variables that we want to ignore, we can write
T^Goal. Note that the term T can be written as V1^V2^....

When there are free variables, this method is re-executable on backtracking. This method fails when there
are no solutions, never returning an empty list.

This built-in meta-predicate is declared as a private method and thus cannot be used as a message to an
object.

Modes and number of proofs

setof(@term, +callable, -list) - zero_or_more

Errors

Goal is a variable:
instantiation_error

Goal is neither a variable nor a callable term:
type_error(callable, Goal)

Goal is a call to a non-existing predicate:
existence_error(procedure, Predicate)

Examples

To find a set of solutions in the context of the object or category containing the call:
setof(Template, Goal, List)

To find a set of solutions of sending a message to self :
setof(Template, ::Message, List)

To find a set of solutions of sending a message to an explicit object:
setof(Template, Object::Message, List)

See also:

bagof/3, findall/3, findall/4, forall/2

2.5. Built-in methods 285

The Logtalk Handbook, Release v3.34.0

2.5.7 Event handling

before/3

Description

before(Object, Message, Sender)

User-defined method for handling before events. This method is declared in the monitoring built-in proto-
col as a public predicate and automatically called by the runtime for messages sent using the ::/2 control
construct from within objects compiled with the events flag set to allow.

Note that you can make this predicate scope protected or private by using, respectively, protected or private
implementation of the monitoring protocol.

Modes and number of proofs

before(?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

Examples

:- object(...,
implements(monitoring),
...).

% write a log message when a message is sent:
before(Object, Message, Sender) :-

writeq(Object), write('::'), writeq(Message),
write(' from '), writeq(Sender), nl.

See also:

after/3, abolish_events/5, current_event/5, define_events/5

after/3

Description

after(Object, Message, Sender)

User-defined method for handling after events. This method is declared in the monitoring built-in protocol as
a public predicate and automatically called by the runtime for messages sent using the ::/2 control construct
from within objects compiled with the events flag set to allow.

Note that you can make this predicate scope protected or private by using, respectively, protected or private
implementation of the monitoring protocol.

286 Chapter 2. Reference Manual

https://logtalk.org/library/monitoring_0.html#monitoring-0
https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

after(?object_identifier, ?callable, ?object_identifier) - zero_or_more

Errors

(none)

Examples

:- object(...,
implements(monitoring),
...).

% write a log message when a message is successful:
after(Object, Message, Sender) :-

writeq(Object), write('::'), writeq(Message),
write(' from '), writeq(Sender), nl.

See also:

before/3, abolish_events/5, current_event/5, define_events/5

2.5.8 Message forwarding

forward/1

Description

forward(Message)

User-defined method for forwarding unknown messages sent to an object (using the ::/2 control construct),
automatically called by the runtime when defined. This method is declared in the forwarding built-in pro-
tocol as a public predicate. Note that you can make its scope protected or private by using, respectively,
protected or private implementation of the forwarding protocol.

Modes and number of proofs

forward(+callable) - zero_or_more

2.5. Built-in methods 287

https://logtalk.org/library/forwarding_0.html#forwarding-0

The Logtalk Handbook, Release v3.34.0

Errors

(none)

Examples

:- object(proxy,
implements(forwarding),
...).

forward(Message) :-
% delegate unknown messages to the "real" object
[real::Message].

See also:

[]/1

2.5.9 Definite clause grammar rules

call//1-N

Description

call(Closure)
call(Closure, Arg1, ...)
call(Object::Closure, Arg1, ...)
call(::Closure, Arg1, ...)
call(^^Closure, Arg1, ...)
...

This non-terminal takes a closure and is processed by appending the input list of tokens and the list of
remaining tokens to the arguments of the closure. This built-in non-terminal is interpreted as a private
non-terminal and thus cannot be used as a message to an object.

Using this non-terminal is recommended when calling a predicate whose last two arguments are the input
list of tokens and the list of remaining tokens to avoid hard-coding assumptions about how grammar rules
are compiled into clauses. Note that the compiler ensures zero overhead when using this non-terminal with
a bound argument at compile time.

When using a backend Prolog compiler supporting a module system, calls in the format call(Module:Closure)
may also be used. By using as argument a lambda expression, this built-in non-terminal can provide controlled
access to the input list of tokens and to the list of the remaining tokens processed by the grammar rule
containing the call.

288 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

call(+callable) - zero_or_more
call(+callable, ?term) - zero_or_more
call(+callable, ?term, ?term) - zero_or_more
...

Errors

Closure is a variable:
instantiation_error

Closure is neither a variable nor a callable term:
type_error(callable, Closure)

Examples

Calls a goal, constructed by appending the tokens difference list to the closure, in in the context of the
object or category containing the call:

call(Closure)

To make a super call, constructed by appending the tokens difference list to the closure:
call(^^Closure)

To send a goal, constructed by appending the tokens difference list to the closure, as a message to self :
call(::Closure)

To send a goal, constructed by appending the tokens difference list to the closure, as a message to an
explicit object:

call(Object::Closure)

See also:

eos//0, phrase//1, phrase/2, phrase/3

eos//0

Description

eos

This non-terminal matches the end-of-input. It is implemented by checking that the implicit difference list
unifies with []-[].

2.5. Built-in methods 289

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

eos - zero_or_one

Errors

(none)

Examples

abc --> a, b, c, eos.

See also:

call//1-N, phrase//1, phrase/2, phrase/3

phrase//1

Description

phrase(NonTerminal)

This non-terminal takes a non-terminal or a grammar rule body and parses it using the implicit difference
list of tokens. A common use is to wrap what otherwise would be a naked variable in a grammar rule body.

Modes and number of proofs

phrase(+callable) - zero_or_more

Errors

NonTerminal is a variable:
instantiation_error

NonTerminal is neither a variable nor a callable term:
type_error(callable, NonTerminal)

Examples

(none)

See also:

call//1-N, phrase/2, phrase/3

290 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

phrase/2

Description

phrase(GrammarRuleBody, Input)
phrase(::GrammarRuleBody, Input)
phrase(Object::GrammarRuleBody, Input)

True when the GrammarRuleBody grammar rule body can be applied to the Input list of tokens. In the
most common case, GrammarRuleBody is a non-terminal defined by a grammar rule. This built-in method is
declared private and thus cannot be used as a message to an object. When using a backend Prolog compiler
supporting a module system, calls in the format phrase(Module:GrammarRuleBody, Input) may also be used.

This method is opaque to cuts in the first argument. When the first argument is sufficiently instantiated
at compile time, the method call is compiled in order to eliminate the implicit overheads of converting the
grammar rule body into a goal and meta-calling it. For performance reasons, the second argument is only
type-checked at compile time.

Modes and number of proofs

phrase(+callable, ?list) - zero_or_more

Errors

NonTerminal is a variable:
instantiation_error

NonTerminal is neither a variable nor a callable term:
type_error(callable, NonTerminal)

Examples

To parse a list of tokens using a local non-terminal:
phrase(NonTerminal, Input)

To parse a list of tokens using a non-terminal within the scope of self :
phrase(::NonTerminal, Input)

To parse a list of tokens using a public non-terminal of an explicit object:
phrase(Object::NonTerminal, Input)

See also:

call//1-N, phrase//1, phrase/3

2.5. Built-in methods 291

The Logtalk Handbook, Release v3.34.0

phrase/3

Description

phrase(GrammarRuleBody, Input, Rest)
phrase(::GrammarRuleBody, Input, Rest)
phrase(Object::GrammarRuleBody, Input, Rest)

True when the GrammarRuleBody grammar rule body can be applied to the Input-Rest difference list of
tokens. In the most common case, GrammarRuleBody is a non-terminal defined by a grammar rule. This
built-in method is declared private and thus cannot be used as a message to an object. When using a backend
Prolog compiler supporting a module system, calls in the format phrase(Module:GrammarRuleBody, Input,
Rest) may also be used.

This method is opaque to cuts in the first argument. When the first argument is sufficiently instantiated
at compile time, the method call is compiled in order to eliminate the implicit overheads of converting the
grammar rule body into a goal and meta-calling it. For performance reasons, the second and third arguments
are only type-checked at compile time.

Modes and number of proofs

phrase(+callable, ?list, ?list) - zero_or_more

Errors

NonTerminal is a variable:
instantiation_error

NonTerminal is neither a variable nor a callable term:
type_error(callable, NonTerminal)

Examples

To parse a list of tokens using a local non-terminal:
phrase(NonTerminal, Input, Rest)

To parse a list of tokens using a non-terminal within the scope of self :
phrase(::NonTerminal, Input, Rest)

To parse a list of tokens using a public non-terminal of an explicit object:
phrase(Object::NonTerminal, Input, Rest)

See also:

call//1-N, phrase/2, phrase/3

292 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

2.5.10 Term and goal expansion

expand_term/2

Description

expand_term(Term, Expansion)

Expands a term. The most common use is to expand a grammar rule into a clause. Users may override the
default Logtalk grammar rule translator by defining clauses for the term_expansion/2 hook predicate.

The expansion works as follows: if the first argument is a variable, then it is unified with the second argu-
ment; if the first argument is not a variable and there are local or inherited clauses for the term_expansion/2
hook predicate within scope, then this predicate is called to provide an expansion that is then unified with
the second argument; if the term_expansion/2 predicate is not used and the first argument is a compound
term with functor -->/2 then the default Logtalk grammar rule translator is used, with the resulting clause
being unified with the second argument; when the translator is not used, the two arguments are unified.
The expand_term/2 predicate may return a single term or a list of terms.

This built-in method may be used to expand a grammar rule into a clause for use with the built-in database
methods.

Automatic term expansion is only performed at compile time (to expand terms read from a source file) when
using a hook object. This predicate can be used by the user to manually perform term expansion at runtime
(for example, to convert a grammar rule into a clause).

Modes and number of proofs

expand_term(?term, ?term) - one

Errors

(none)

Examples

(none)

See also:

expand_goal/2, goal_expansion/2, term_expansion/2

2.5. Built-in methods 293

The Logtalk Handbook, Release v3.34.0

term_expansion/2

Description

term_expansion(Term, Expansion)

Defines an expansion for a term. This predicate, when defined and within scope, is automatically called
by the expand_term/2 method. When that is not the case, the expand_term/2 method only uses the default
expansions. Use of this predicate by the expand_term/2 method may be restricted by changing its default
public scope.

The term_expansion/2 predicate may return a list of terms. Returning an empty list effectively suppresses
the term.

Term expansion may be also be applied when compiling source files by defining the object providing access
to the term_expansion/2 clauses as a hook object. Clauses for the term_expansion/2 predicate defined within
an object or a category are never used in the compilation of the object or the category itself. Moreover, in
this context, terms wrapped using the {}/1 compiler bypass control construct are not expanded and any
expanded term wrapped in this control construct will not be further expanded.

Objects and categories implementing this predicate should declare that they implement the expanding pro-
tocol if no ancestor already declares it. This protocol implementation relation can be declared as either
protected or private to restrict the scope of this predicate.

Modes and number of proofs

term_expansion(+nonvar, -nonvar) - zero_or_one
term_expansion(+nonvar, -list(nonvar)) - zero_or_one

Errors

(none)

Examples

term_expansion((:- license(default)), (:- license(gplv3))).
term_expansion(data(Millimeters), data(Meters)) :- Meters is Millimeters / 1000.

See also:

expand_goal/2, expand_term/2, goal_expansion/2, logtalk_load_context/2

294 Chapter 2. Reference Manual

https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.34.0

expand_goal/2

Description

expand_goal(Goal, ExpandedGoal)

Expands a goal. The expansion works as follows: if the first argument is a variable, then it is unified with
the second argument; if the first argument is not a variable and there are local or inherited clauses for the
goal_expansion/2 hook predicate within scope, then this predicate is recursively called until a fixed-point
is reached to provide an expansion that is then unified with the second argument; if the goal_expansion/2
predicate is not within scope, the two arguments are unified.

Automatic goal expansion is only performed at compile time (to expand the body of clauses and meta-
directives read from a source file) when using hook objects. This predicate can be used by the user to
manually perform goal expansion at runtime (for example, before asserting a clause).

Modes and number of proofs

expand_goal(?term, ?term) - one

Errors

(none)

Examples

(none)

See also:

expand_term/2, goal_expansion/2, term_expansion/2

goal_expansion/2

Description

goal_expansion(Goal, ExpandedGoal)

Defines an expansion for a goal. The first argument is the goal to be expanded. The expanded goal is
returned in the second argument. This predicate is called recursively on the expanded goal until a fixed point
is reached. Thus, care must be taken to avoid compilation loops. This predicate, when defined and within
scope, is automatically called by the expand_goal/2 method. Use of this predicate by the expand_goal/2
method may be restricted by changing its default public scope.

Goal expansion may be also be applied when compiling source files by defining the object providing access to
the goal_expansion/2 clauses as a hook object. Clauses for the goal_expansion/2 predicate defined within
an object or a category are never used in the compilation of the object or the category itself. Moreover,
in this context, goals wrapped using the {}/1 compiler bypass control construct are not expanded and any
expanded goal wrapped in this control construct will not be further expanded.

2.5. Built-in methods 295

The Logtalk Handbook, Release v3.34.0

Objects and categories implementing this predicate should declare that they implement the expanding built-
in protocol if no ancestor already declares it. This protocol implementation relation can be declared as either
protected or private to restrict the scope of this predicate.

Modes and number of proofs

goal_expansion(+callable, -callable) - zero_or_one

Errors

(none)

Examples

goal_expansion(write(Term), (write_term(Term, []), nl)).
goal_expansion(read(Term), (write('Input: '), {read(Term)})).

See also:

expand_goal/2, expand_term/2, term_expansion/2, logtalk_load_context/2

2.5.11 Coinduction hooks

coinductive_success_hook/1-2

Description

coinductive_success_hook(Head, Hypothesis)
coinductive_success_hook(Head)

User-defined hook predicates that are automatically called in case of coinductive success when proving a
query for a coinductive predicates. The hook predicates are called with the head of the coinductive predicate
on coinductive success and, optionally, with the hypothesis used that to reach coinductive success.

When both hook predicates are defined, the coinductive_success_hook/1 clauses are only used if no
coinductive_success_hook/2 clause applies. The compiler ensures zero performance penalties when defin-
ing coinductive predicates without a corresponding definition for the coinductive success hook predicates.

The compiler assumes that these hook predicates are defined as static predicates in order to optimize their
use.

296 Chapter 2. Reference Manual

https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

coinductive_success_hook(+callable, +callable) - zero_or_one
coinductive_success_hook(+callable) - zero_or_one

Errors

(none)

Examples

% Are there "occurrences" of arg1 in arg2?
:- public(member/2).
:- coinductive(member/2).

member(X, [X| _]).
member(X, [_| T]) :-

member(X, T).

% Are there infinitely many "occurrences" of arg1 in arg2?
:- public(comember/2).
:- coinductive(comember/2).
comember(X, [_| T]) :-

comember(X, T).

coinductive_success_hook(member(_, _)) :-
fail.

coinductive_success_hook(comember(X, L)) :-
member(X, L).

See also:

coinductive/1

2.5.12 Message printing

print_message/3

Description

print_message(Kind, Component, Term)

Built-in method for printing a message represented by a term, which is converted to the message text using
the logtalk::message_tokens(Term, Component) hook non-terminal. This method is declared in the logtalk
built-in object as a public predicate. The line prefix and the output stream used for each Kind-Component
pair can be found using the logtalk::message_prefix_stream(Kind, Component, Prefix, Stream) hook predicate.

This predicate starts by converting the message term to a list of tokens and by calling the
logtalk::message_hook(Message, Kind, Component, Tokens) hook predicate. If this predicate succeeds, the
print_message/3 predicate assumes that the message have been successfully printed.

2.5. Built-in methods 297

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

print_message(+nonvar, +nonvar, +nonvar) - one

Errors

(none)

Examples

..., logtalk::print_message(information, core, redefining_entity(object, foo)), ...

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message_tokens/3,
print_message_token/4, ask_question/5, question_hook/6, question_prompt_stream/4

message_tokens//2

Description

message_tokens(Message, Component)

User-defined non-terminal hook used to rewrite a message term into a list of tokens and declared in the
logtalk built-in object as a public, multifile, and dynamic non-terminal. The list of tokens can be printed
by calling the print_message_tokens/3 method. This non-terminal hook is automatically called by the
print_message/3 method.

Modes and number of proofs

message_tokens(+nonvar, +nonvar) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::message_tokens//2).
:- dynamic(logtalk::message_tokens//2).

logtalk::message_tokens(redefining_entity(Type, Entity), core) -->
['Redefining ~w ~q'-[Type, Entity], nl].

See also:

message_hook/4, message_prefix_stream/4, print_message/3, print_message_tokens/3,
print_message_token/4, ask_question/5, question_hook/6, question_prompt_stream/4

298 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

message_hook/4

Description

message_hook(Message, Kind, Component, Tokens)

User-defined hook method for intercepting printing of a message, declared in the logtalk built-in object as a
public, multifile, and dynamic predicate. This hook method is automatically called by the print_message/3
method. When the call succeeds, the print_message/3 method assumes that the message have been success-
fully printed.

Modes and number of proofs

message_hook(@nonvar, @nonvar, @nonvar, @list(nonvar)) - zero_or_one

Errors

(none)

Examples

:- multifile(logtalk::message_hook/4).
:- dynamic(logtalk::message_hook/4).

% print silent messages instead of discarding them as default
logtalk::message_hook(_, silent, core, Tokens) :-

logtalk::message_prefix_stream(silent, core, Prefix, Stream),
logtalk::print_message_tokens(Stream, Prefix, Tokens).

See also:

message_prefix_stream/4, message_tokens//2, print_message/3, print_message_tokens/3,
print_message_token/4, ask_question/5, question_hook/6, question_prompt_stream/4

message_prefix_stream/4

Description

message_prefix_stream(Kind, Component, Prefix, Stream)

User-defined hook method for specifying the default prefix and stream for printing a message for a given
kind and component. This method is declared in the logtalk built-in object as a public, multifile, and dynamic
predicate.

2.5. Built-in methods 299

https://logtalk.org/library/logtalk_0.html#logtalk-0
https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

message_prefix_stream(?nonvar, ?nonvar, ?atom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::message_prefix_stream/4).
:- dynamic(logtalk::message_prefix_stream/4).

logtalk::message_prefix_stream(information, core, '% ', user_output).

See also:

message_hook/4, message_tokens//2, print_message/3, print_message_tokens/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

print_message_tokens/3

Description

print_message_tokens(Stream, Prefix, Tokens)

Built-in method for printing a list of message tokens, declared in the logtalk built-in object as a public predi-
cate. This method is automatically called by the print_message/3 method (assuming that the message was not
intercepted by a message_hook/4 definition) and calls the user-defined hook predicate print_message_token/4
for each token. When a call to this hook predicate succeeds, the print_message_tokens/3 predicate assumes
that the token have been printed. When the call fails, the print_message_tokens/3 predicate uses a default
printing procedure for the token.

Modes and number of proofs

print_message_tokens(@stream_or_alias, +atom, @list(nonvar)) - zero_or_one

Errors

(none)

300 Chapter 2. Reference Manual

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

Examples

...,
logtalk::print_message_tokens(user_error, '% ', ['Redefining ~w ~q'-[object,foo], nl]),
...

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message/3, print_message_token/4,
ask_question/5, question_hook/6, question_prompt_stream/4

print_message_token/4

Description

print_message_token(Stream, Prefix, Token, Tokens)

User-defined hook method for printing a message token, declared in the logtalk built-in object as a public,
multifile, and dynamic predicate. It allows the user to intercept the printing of a message token. This hook
method is automatically called by the print_message_tokens/3 built-in method for each token.

Modes and number of proofs

print_message_token(@stream_or_alias, @atom, @nonvar, @list(nonvar)) - zero_or_one

Errors

(none)

Examples

:- multifile(logtalk::print_message_token/4).
:- dynamic(logtalk::print_message_token/4).

% ignore all flush tokens
logtalk::print_message_token(_Stream, _Prefix, flush, _Tokens).

See also:

message_hook/4, message_prefix_stream/4, message_tokens//2, print_message/3, print_message_tokens/3,
ask_question/5, question_hook/6, question_prompt_stream/4

2.5. Built-in methods 301

https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

2.5.13 Question asking

ask_question/5

Description

ask_question(Question, Kind, Component, Check, Answer)

Built-in method for asking a question represented by a term, Question, which is converted to the question
text using the logtalk::message_tokens(Question, Component) hook predicate. This method is declared in
the logtalk built-in object as a public predicate. The default question prompt and the input stream used for
each Kind-Component pair can be found using the logtalk::question_prompt_stream(Kind, Component, Prompt,
Stream) hook predicate. The Check argument is a closure that is converted into a checking goal by extending
it with the user supplied answer. This predicate implements a read-loop that terminates when the checking
predicate succeeds.

This predicate starts by calling the logtalk::question_hook(Question, Kind, Component, Check, Answer) hook
predicate. If this predicate succeeds, the ask_question/5 predicate assumes that the question have been
successfully asked and replied.

Modes and number of proofs

ask_question(+nonvar, +nonvar, +nonvar, +callable, -term) - one

Meta-predicate template

ask_question(*, *, *, 1, *)

Errors

(none)

Examples

...,
logtalk::ask_question(enter_age, question, my_app, integer, Age),
...

See also:

question_hook/6, question_prompt_stream/4, message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4

302 Chapter 2. Reference Manual

The Logtalk Handbook, Release v3.34.0

question_hook/6

Description

question_hook(Question, Kind, Component, Tokens, Check, Answer)

User-defined hook method for intercepting asking a question, declared in the logtalk built-in object as a
public, multifile, and dynamic predicate. This hook method is automatically called by the ask_question/5
method. When the call succeeds, the ask_question/5 method assumes that the question have been success-
fully asked and replied.

Modes and number of proofs

question_hook(+nonvar, +nonvar, +nonvar, +list(nonvar), +callable, -term) - zero_or_one

Meta-predicate template

question_hook(*, *, *, *, 1, *)

Errors

(none)

Examples

:- multifile(logtalk::question_hook/6).
:- dynamic(logtalk::question_hook/6).

% use a pre-defined answer instead of asking the user
logtalk::question_hook(upper_limit, question, my_app, _, _, 3.7).

See also:

ask_question/5, question_prompt_stream/4 message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4,

question_prompt_stream/4

Description

question_prompt_stream(Kind, Component, Prompt, Stream)

User-defined hook method for specifying the default prompt and input stream for asking a question for a
given kind and component. This method is declared in the logtalk built-in object as a public, multifile, and
dynamic predicate.

2.5. Built-in methods 303

https://logtalk.org/library/logtalk_0.html#logtalk-0
https://logtalk.org/library/logtalk_0.html#logtalk-0

The Logtalk Handbook, Release v3.34.0

Modes and number of proofs

question_prompt_stream(?nonvar, ?nonvar, ?atom, ?stream_or_alias) - zero_or_more

Errors

(none)

Examples

:- multifile(logtalk::question_prompt_stream/4).
:- dynamic(logtalk::question_prompt_stream/4).

logtalk::question_prompt_stream(question, debugger, ' > ', user_input).

See also:

ask_question/5, question_hook/6, message_hook/4, message_prefix_stream/4, message_tokens//2,
print_message/3, print_message_tokens/3, print_message_token/4

304 Chapter 2. Reference Manual

CHAPTER

THREE

TUTORIAL

3.1 List predicates

In this example, we will illustrate the use of:

• objects

• protocols

by using common list utility predicates.

3.1.1 Defining a list object

We will start by defining an object, list, containing predicate definitions for some common list predicates
like append/3, length/2, and member/2:

:- object(list).

:- public([
append/3, length/2, member/2

]).

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).

length(List, Length) :-
length(List, 0, Length).

length([], Length, Length).
length([_| Tail], Acc, Length) :-

Acc2 is Acc + 1,
length(Tail, Acc2, Length).

member(Element, [Element| _]).
member(Element, [_| List]) :-

member(Element, List).

:- end_object.

What is different here from a regular Prolog program? The definitions of the list predicates are the usual
ones. We have two new directives, object/1-5 and end_object/0, that encapsulate the object’s code. In Logtalk,
by default, all object predicates are private; therefore, we have to explicitly declare all predicates that we

305

The Logtalk Handbook, Release v3.34.0

want to be public, that is, that we want to call from outside the object. This is done using the public/1 scope
directive.

After we copy the object code to a text file and saved it under the name list.lgt, we need to change the
Prolog working directory to the one used to save our file (consult your Prolog compiler reference manual).
Then, after starting Logtalk (see the Installing and running Logtalk section on the User Manual), we can
compile and load the object using the logtalk_load/1 Logtalk built-in predicate:

| ?- logtalk_load(list).

object list loaded
yes

We can now try goals like:

| ?- list::member(X, [1, 2, 3]).

X = 1;
X = 2;
X = 3;
no

or:

| ?- list::length([1, 2, 3], L).

L = 3
yes

The infix operator ::/2 is used in Logtalk to send a message to an object. The message must match a public
object predicate. If we try to call a non-public predicate such as the length/3 auxiliary predicate an exception
will be generated:

| ?- list::length([1, 2, 3], 0, L).

uncaught exception:
error(

existence_error(predicate_declaration, length/3),
logtalk(list::length([1,2,3],0,_), ...)

)

The exception term describes the type of error and the context where the error occurred.

3.1.2 Defining a list protocol

As we saw in the above example, a Logtalk object may contain predicate directives and predicate definitions
(clauses). The set of predicate directives defines what we call the object’s protocol or interface. An interface
may have several implementations. For instance, we may want to define a new object that implements the
list predicates using difference lists. However, we do not want to repeat the predicate directives in the new
object. Therefore, what we need is to split the object’s protocol from the object’s implementation by defining
a new Logtalk entity known as a protocol. Logtalk protocols are compilations units, at the same level as
objects and categories. That said, let us define a listp protocol:

:- protocol(listp).

:- public([

(continues on next page)

306 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

append/3, length/2, member/2
]).

:- end_protocol.

Similar to what we have done for objects, we use the protocol/1-2 and end_protocol/0 directives to encapsu-
late the predicate directives. We can improve this protocol by documenting the call/return modes and the
number of proofs of each predicate using the mode/2 directive:

:- protocol(listp).

:- public(append/3).
:- mode(append(?list, ?list, ?list), zero_or_more).

:- public(length/2).
:- mode(length(?list, ?integer), zero_or_more).

:- public(member/2).
:- mode(member(?term, ?list), zero_or_more).

:- end_protocol.

We now need to change our definition of the list object by removing the predicate directives and by declar-
ing that the object implements the listp protocol:

:- object(list,
implements(listp)).

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).
...

:- end_object.

The protocol declared in listp may now be alternatively implemented using difference lists by defining a
new object, difflist:

:- object(difflist,
implements(listp).

append(L1-X, X-L2, L1-L2).
...

:- end_object.

3.1. List predicates 307

The Logtalk Handbook, Release v3.34.0

3.1.3 Summary

• It is easy to define a simple object: just put your Prolog code inside starting and ending object directives
and add the necessary scope directives. The object will be self-defining and ready to use.

• Define a protocol when you may want to provide or enable several alternative definitions to a given set
of predicates. This way we avoid needless repetition of predicate directives.

3.2 Dynamic object attributes

In this example, we will illustrate the use of:

• categories

• category predicates

• dynamic predicates

by defining a category that implements a set of predicates for handling dynamic object attributes.

3.2.1 Defining a category

We want to define a set of predicates to handle dynamic object attributes. We need public predicates
to set, get, and delete attributes, and a private dynamic predicate to store the attributes values. Let us
name these predicates set_attribute/2 and get_attribute/2, for getting and setting an attribute value,
del_attribute/2 and del_attributes/2, for deleting attributes, and attribute_/2, for storing the attributes
values.

But we do not want to encapsulate these predicates in an object. Why? Because they are a set of useful,
closely related, predicates that may be used by several, unrelated, objects. If defined at an object level, we
would be constrained to use inheritance in order to have the predicates available to other objects. Further-
more, this could force us to use multi-inheritance or to have some kind of generic root object containing all
kinds of possible useful predicates.

For this kind of situation, Logtalk enables the programmer to encapsulate the predicates in a category, so
that they can be used in any object. A category is a Logtalk entity, at the same level as objects and protocols.
It can contain predicates directives and/or definitions. Category predicates can be imported by any object,
without code duplication and without resorting to inheritance.

When defining category predicates, we need to remember that a category can be imported by more than one
object. Thus, the calls to the built-in methods that handle the private dynamic predicate (such as assertz/1
or retract/1) must be made either in the context of self, using the message to self control structure, ::/1, or in
the context of this (i.e. in the context of the object importing the category). This way, we ensure that when
we call one of the attribute predicates on an object, the intended object own definition of attribute_/2 will
be used. The predicates definitions are straightforward. For example, if opting for storing the attributes in
self :

:- category(attributes).

:- public(set_attribute/2).
:- mode(set_attribute(+nonvar, +nonvar), one).

:- public(get_attribute/2).
:- mode(get_attribute(?nonvar, ?nonvar), zero_or_more).

(continues on next page)

308 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

:- public(del_attribute/2).
:- mode(del_attribute(?nonvar, ?nonvar), zero_or_more).

:- public(del_attributes/2).
:- mode(del_attributes(@term, @term), one).

:- private(attribute_/2).
:- mode(attribute_(?nonvar, ?nonvar), zero_or_more).
:- dynamic(attribute_/2).

set_attribute(Attribute, Value):-
::retractall(attribute_(Attribute, _)),
::assertz(attribute_(Attribute, Value)).

get_attribute(Attribute, Value):-
::attribute_(Attribute, Value).

del_attribute(Attribute, Value):-
::retract(attribute_(Attribute, Value)).

del_attributes(Attribute, Value):-
::retractall(attribute_(Attribute, Value)).

:- end_category.

The alternative, opting for storing the attributes on this, is similar: just delete the uses of the ::/1 control
structure from the code above.

We have two new directives, category/1-4 and end_category/0, that encapsulate the category code. If needed,
we can put the predicates directives inside a protocol that will be implemented by the category:

:- category(attributes,
implements(attributes_protocol)).

...

:- end_category.

Any protocol can be implemented by either an object, a category, or both.

3.2.2 Importing the category

We reuse a category’s predicates by importing them into an object:

:- object(person,
imports(attributes)).

...

:- end_object.

After compiling and loading this object and our category, we can now try queries like:

| ?- person::set_attribute(name, paulo).

(continues on next page)

3.2. Dynamic object attributes 309

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

yes

| ?- person::set_attribute(gender, male).

yes

| ?- person::get_attribute(Attribute, Value).

Attribute = name, Value = paulo ;
Attribute = gender, Value = male ;
no

3.2.3 Summary

• Categories are similar to objects: we just write our predicate directives and definitions bracketed by
opening and ending category directives.

• An object reuses a category by importing it. The imported predicates behave as if they have been
defined in the object itself.

• When do we use a category instead of an object? Whenever we have a set of closely related predicates
that we want to reuse in several, unrelated, objects without being constrained by inheritance relations.
Thus, categories can be interpreted as object building components.

3.3 A reflective class-based system

When compiling an object, Logtalk distinguishes prototypes from instance or classes by examining the object
relations. If an object instantiates and/or specializes another object, then it is compiled as an instance or
class, otherwise it is compiled as a prototype. A consequence of this is that, in order to work with instance or
classes, we always have to define root objects for the instantiation and specialization hierarchies (however,
we are not restricted to a single hierarchy). The best solution is often to define a reflective class-based system
[Maes87], where every class is also an object and, as such, an instance of some class.

In this example, we are going to define the basis for a reflective class-based system, based on an extension
of the ideas presented in [Cointe87]. This extension provides, along with root objects for the instantiation
and specialization hierarchies, explicit support for abstract classes [Moura94].

3.3.1 Defining the base classes

We will start by defining three classes: object, abstract_class, and class. The class object will contain all
predicates common to all objects. It will be the root of the inheritance graph:

:- object(object,
instantiates(class)).

% predicates common to all objects

:- end_object.

The class abstract_class specializes object by adding predicates common to all classes. It will be the
default meta-class for abstract classes:

310 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.34.0

:- object(abstract_class,
instantiates(class),
specializes(object)).

% predicates common to all classes

:- end_object.

The class class specializes abstract_class by adding predicates common to all instantiable classes. It will
be the root of the instantiation graph and the default meta-class for instantiable classes:

:- object(class,
instantiates(class),
specializes(abstract_class)).

% predicates common to all instantiable classes

:- end_object.

Note that all three objects are instances of class class. The instantiation and specialization relationships
are chosen so that each object may use the predicates defined in itself and in the other two objects, with no
danger of message lookup endless loops.

3.3.2 Summary

• An object that does not instantiate or specialize other objects is always compiled as a prototype.

• An instance must instantiate at least one object (its class). Similarly, a class must at least specialize or
instantiate other object.

• The distinction between abstract classes and instantiable classes is an operational one, depending on
the class inherited methods. A class is instantiable if inherits methods for creating instances. Con-
versely, a class is abstract if does not inherit any instance creation method.

3.4 Profiling programs

In this example, we will illustrate the use of:

• events

• monitors

by defining a simple profiler that prints the starting and ending time for processing a message sent to an
object.

3.4. Profiling programs 311

The Logtalk Handbook, Release v3.34.0

3.4.1 Messages as events

In a pure object-oriented system, all computations start by sending messages to objects. We can thus define
an event as the sending of a message to an object. An event can then be specified by the tuple (Object,
Message, Sender). This definition can be refined by interpreting the sending of a message and the return of
the control to the object that has sent the message as two distinct events. We call these events respectively
before and after. Therefore, we end up by representing an event by the tuple (Event, Object, Message,
Sender). For instance, if we send the message:

| ?- foo::bar(X).

X = 1
yes

the two corresponding events will be:

(before, foo, bar(X), user)
(after, foo, bar(1), user)

Note that the second event is only generated if the message succeeds. If the message as a goal have multiple
solutions, then one after event will be generated for each solution.

Events are automatically generated by the message sending mechanisms for each public message sent using
the ::/2 operator.

3.4.2 Profilers as monitors

A monitor is an object that reacts whenever a spied event occurs. The monitor actions are defined by two
event handlers: before/3 for before events and after/3 for after events. These predicates are automatically
called by the message sending mechanisms when an event registered for the monitor occurs. These event
handlers are declared as public predicates in the monitoring built-in protocol.

In our example, we need a way to get the current time before and after we process a message. We will
assume that we have a time object implementing a cpu_time/1 predicate that returns the current CPU time
for the Prolog session:

:- object(time).

:- public(cpu_time/1).
:- mode(cpu_time(-number), one).
...

:- end_object.

Our profiler will be named stop_watch. It must define event handlers for the before and after events that
will print the event description (object, message, and sender) and the current time:

:- object(stop_watch,
% event handler predicates protocol
implements(monitoring)).

:- uses(time, [cpu_time/1]).

before(Object, Message, Sender) :-
write(Object), write(' <-- '), writeq(Message),
write(' from '), write(Sender), nl, write('STARTING at '),

(continues on next page)

312 Chapter 3. Tutorial

The Logtalk Handbook, Release v3.34.0

(continued from previous page)

cpu_time(Seconds), write(Seconds), write(' seconds'), nl.

after(Object, Message, Sender) :-
write(Object), write(' <-- '), writeq(Message),
write(' from '), write(Sender), nl, write('ENDING at '),
cpu_time(Seconds), write(Seconds), write(' seconds'), nl.

:- end_object.

After compiling and loading the stop_watch object (and the objects that we want to profile), we can use the
define_events/5 built-in predicate to set up our profiler. For example, to profile all messages that are sent to
the object foo, we need to call the goal:

| ?- define_events(_, foo, _, _, stop_watch).

yes

This call will register stop_watch as a monitor to all messages sent to object foo, for both before and after
events. Note that we say “as a monitor”, not “the monitor”: we can have any number of monitors over the
same events.

From now on, every time we sent a message to foo, the stop_watch monitor will print the starting and
ending times for the message execution. For instance:

| ?- foo::bar(X).

foo <-- bar(X) from user
STARTING at 12.87415 seconds
foo <-- bar(1) from user
ENDING at 12.87419 seconds

X = 1
yes

To stop profiling the messages sent to foo we use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, foo, _, _, stop_watch).

yes

This call will abolish all events defined over the object foo assigned to the stop_watch monitor.

3.4.3 Summary

• An event is defined as the sending of a (public) message to an object.

• There are two kinds of events: before events, generated before a message is processed, and after
events, generated after the message processing completed successfully.

• Any object can be declared as a monitor to any event. A monitor shall reference the monitoring built-in
protocol in the object opening directive.

• A monitor defines event handlers, the predicates before/3 and after/3, that are automatically called by
the runtime engine when a spied event occurs.

• Three built-in predicates, define_events/5, current_event/5, and abolish_events/5, enables us define,
query, and abolish both events and monitors.

3.4. Profiling programs 313

The Logtalk Handbook, Release v3.34.0

314 Chapter 3. Tutorial

CHAPTER

FOUR

FAQ

4.1 General

• Why are all versions of Logtalk numbered 2.x or 3.x?

• Why do I need a Prolog compiler to use Logtalk?

• Is the Logtalk implementation based on Prolog modules?

• Does the Logtalk implementation use term-expansion?

4.1.1 Why are all versions of Logtalk numbered 2.x or 3.x?

The numbers “2” and “3” in the Logtalk version string refers to, respectively, the second and the third
generations of the Logtalk language. Development of Logtalk 2 started on January 1998, with the first alpha
release for registered users on July and the first public beta on October. The first stable version of Logtalk
2 was released on February 9, 1999. Development of Logtalk 3 started on April 2012, with the first public
alpha released on August 21, 2012. The first stable version of Logtalk 3 was released on January 7, 2015.

4.1.2 Why do I need a Prolog compiler to use Logtalk?

Currently, the Logtalk language is implemented as a Prolog extension instead of as a standalone compiler.
Compilation of Logtalk source files is performed in two steps. First, the Logtalk compiler converts a source
file to a Prolog file. Second, the chosen Prolog compiler is called by Logtalk to compile the intermediate
Prolog file generated on the first step. The implementation of Logtalk as a Prolog extension allows users to
use Logtalk together with features only available on specific Prolog compilers.

4.1.3 Is the Logtalk implementation based on Prolog modules?

No. Logtalk is (currently) implemented is plain Prolog code. Only a few Prolog compilers include a module
system, with several compatibility problems between them. Moreover, the current ISO Prolog standard for
modules is next to worthless and is ignored by most of the Prolog community. Nevertheless, the Logtalk
compiler is able to compile simple modules (using a common subset of module directives) as objects for
backward-compatibility with existing code (see the Prolog integration and migration for details).

315

The Logtalk Handbook, Release v3.34.0

4.1.4 Does the Logtalk implementation use term-expansion?

No. Term-expansion mechanisms are not standard and are not available in all supported Prolog compilers.

4.2 Compatibility

• What are the backend Prolog compiler requirements to run Logtalk?

• Can I use constraint-based packages with Logtalk?

• Can I use Logtalk objects and Prolog modules at the same time?

4.2.1 What are the backend Prolog compiler requirements to run Logtalk?

See the backend Prolog compiler requirements guide.

4.2.2 Can I use constraint-based packages with Logtalk?

Usually, yes. Some constraint-based packages may define operators which clash with the ones defined by
Logtalk. In these cases, compatibility with Logtalk depends on the constraint-based packages providing
an alternative for accessing the functionality provided by those operators. When the constraint solver is
encapsulated using a Prolog module, a possible workaround is to use either explicit module qualification or
encapsulate the call using the {}/1 control construct (thus bypassing the Logtalk compiler).

4.2.3 Can I use Logtalk objects and Prolog modules at the same time?

Yes. In order to call a module predicate from within an object (or category) you may use an use_module/2
directive or use explicit module qualification (possibly wrapping the call using the Logtalk control construct
{}/1 that allows bypassing of the Logtalk compiler when compiling a predicate call). Logtalk also allows
modules to be compiled as objects (see the Prolog integration and migration for details).

4.3 Installation

• The integration scripts/shortcuts are not working!

• I get errors when starting up Logtalk after upgrading to the latest version!

4.3.1 The integration scripts/shortcuts are not working!

Check that the LOGTALKHOME and LOGTALKUSER environment variables are defined, that the Logtalk user
folder is available on the location pointed by LOGTALKUSER (you can create this folder by running the
logtalk_user_setup shell script), and that the Prolog compilers that you want to use are supported and
available from the system path. If the problem persists, run the shell script that creates the integration script
or shortcut manually and check for any error message or additional instructions. For some Prolog compilers
such as XSB and Ciao, the first call of the integration script or shortcut must be made by an administrator
user. If you are using Windows, make sure that any anti-virus or other security software that you might have
installed is not silently blocking some of the installer tasks.

316 Chapter 4. FAQ

https://logtalk.org/backend_requirements.html

The Logtalk Handbook, Release v3.34.0

4.3.2 I get errors when starting up Logtalk after upgrading to the latest version!

Changes in the Logtalk compiler between releases may render Prolog adapter files from older versions in-
compatible with new ones. You may need to update your local Logtalk user files by running e.g. the
logtalk_user_setup shell script. Check the UPGRADING.md file on the root of the Logtalk installation direc-
tory and the release notes for any incompatible changes to the adapter files.

4.4 Portability

• Are my Logtalk applications portable across Prolog compilers?

• Are my Logtalk applications portable across operating systems?

4.4.1 Are my Logtalk applications portable across Prolog compilers?

Yes, as long you don’t use built-in predicates or special features only available on some Prolog compilers.
There is a portability compiler flag that you can set to instruct Logtalk to print a warning for each occurrence
of non-ISO Prolog standard features such as proprietary built-in predicates. In addition, it is advisable that
you constrain, if possible, the use of platform or compiler dependent code to a small number of objects with
clearly defined protocols. You may also use Logtalk support for conditional compilation to compile different
entity or predicate definitions depending on the backend Prolog compiler being used.

4.4.2 Are my Logtalk applications portable across operating systems?

Yes, as long you don’t use built-in predicates or special features that your chosen backend Prolog compiler
only supports in some operating-systems. You may need to change the end-of-lines characters of your source
files to match the ones on the target operating system and the expectations of your Prolog compiler. Some
Prolog compilers silently fail to compile source files with the wrong end-of-lines characters.

4.5 Programming

• Should I use prototypes or classes in my application?

• Can I use both classes and prototypes in the same application?

• Can I mix classes and prototypes in the same hierarchy?

• Can I use a protocol or a category with both prototypes and classes?

• What support is provided in Logtalk for defining and using components?

• What support is provided in Logtalk for reflective programming?

4.4. Portability 317

The Logtalk Handbook, Release v3.34.0

4.5.1 Should I use prototypes or classes in my application?

Prototypes and classes provide different patterns of code reuse. A prototype encapsulates code that can be
used by itself and by its descendent prototypes. A class encapsulates code to be used by its descendent
instances. Prototypes provide the best replacement to the use of modules as encapsulation units, avoiding
the need to instantiate a class in order to access its code.

4.5.2 Can I use both classes and prototypes in the same application?

Yes. In addition, you may freely exchange messages between prototypes, classes, and instances.

4.5.3 Can I mix classes and prototypes in the same hierarchy?

No. However, you may define as many prototype hierarchies and class hierarchies and classes as needed by
your application.

4.5.4 Can I use a protocol or a category with both prototypes and classes?

Yes. A protocol may be implemented by both prototypes and classes in the same application. Likewise, a
category may be imported by both prototypes and classes in the same application.

4.5.5 What support is provided in Logtalk for defining and using components?

Logtalk supports component-based programming (since its inception on January 1998), by using categories
(which are first-class entities like objects and protocols). Logtalk categories can be used with both classes
and prototypes and are inspired on the Smalltalk-80 (documentation-only) concept of method categories
and on Objective-C categories, hence the name. For more information, please consult the Categories section
and the examples provided with the distribution.

4.5.6 What support is provided in Logtalk for reflective programming?

Logtalk supports meta-classes, behavioral reflection through the use of event-driven programming, and struc-
tural reflection through the use of a set of built-in predicates and built-in methods which allow us to query
the system about existing entities, entity relations, and entity predicates.

4.6 Troubleshooting

• Using compiler options on calls to the Logtalk compiling and loading predicates do not work!

• Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting
files!

• Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compila-
tion with zero errors and zero warnings!

318 Chapter 4. FAQ

The Logtalk Handbook, Release v3.34.0

4.6.1 Using compiler options on calls to the Logtalk compiling and loading predicates do
not work!

Using compiler options on calls to the Logtalk logtalk_compile/2 and logtalk_load/2 built-in predicates only
apply the file being compiled. If the first argument is a loader file, the compiler options will only be used
in the compilation of the loader file itself, not in the compilation of the files loaded by the loader file. The
solution is to edit the loader file and add the compiler options to the calls that compile/load the individual
files.

4.6.2 Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when
browsing XML documenting files!

Using Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities (e.g. –) when browsing
XML documenting files after running the lgt2xml shell script in the directory containing the XML document-
ing files. This is a consequence of the lack of support for the disable-output-escaping attribute in the
browser XSLT processor. The workaround is to use other browser (e.g. Safari or Opera) or to use instead
the lgt2html shell script in the directory containing the XML documenting files to convert them to (X)HTML
files for browsing.

4.6.3 Compiling a source file results in errors orwarnings but the Logtalk compiler reports
a successful compilation with zero errors and zero warnings!

This may happen when your Prolog compiler implementation of the ISO Prolog standard write_canonical/
2 built-in predicate is buggy and writes terms that cannot be read back when consulting the intermediate
Prolog files generated by the Logtalk compiler. Often, syntax errors found when consulting result in error
messages but not in exceptions as the Prolog compiler tries to continue the compilation despite the problems
found. As the Logtalk compiler relies on the exception mechanisms to catch compilation problems, it may
report zero errors and zero warnings despite the error messages. Send a bug report to the Prolog compiler
developers asking them to fix the write_canonical/2 buggy implementation.

4.7 Usability

• Is there a shortcut for compiling and loading source files?

• Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

• Are there shortcuts for the make functionality?

4.7.1 Is there a shortcut for compiling and loading source files?

Yes. With most backend Prolog compilers, you can use {File} as a shortcut for logtalk_load(File). For
compiling and loading multiple files simply use {File1, File2, ...}. See the documentation of the
logtalk_load/1 predicate for details.

4.7. Usability 319

The Logtalk Handbook, Release v3.34.0

4.7.2 Is there an equivalent directive to the ensure_loaded/1 Prolog directive?

You can use the goal logtalk_load(File, [reload(skip)]) to ensure that File is only loaded once. See the
documentation of the logtalk_load/2 predicate for details.

4.7.3 Are there shortcuts for the make functionality?

Yes. With most backend Prolog compilers, you can use {*} as a shortcut for logtalk_make(all) to
reload all files modified since last compiled and loaded, {!} as a shortcut for logtalk_make(clean)
to delete all intermediate Prolog files generated by the compilation of Logtalk source files, {?} as a
shortcut for logtalk_make(missing) to list missing entities and predicates, and {@} as a shortcut for
logtalk_make(circular) to list circular references. See the documentation of the logtalk_make/1 predi-
cate for details.

4.8 Deployment

• Can I create standalone applications with Logtalk?

4.8.1 Can I create standalone applications with Logtalk?

It depends on the Prolog compiler that you use to run Logtalk. Assuming that your Prolog compiler supports
the creation of standalone executables, your application must include the adapter file for your compiler and
the Logtalk compiler and runtime. The distribution includes embedding scripts for selected backend Prolog
compilers and embedding examples.

For instructions on how to embed Logtalk and Logtalk applications see the embedding guide.

4.9 Performance

• Is Logtalk implemented as a meta-interpreter?

• What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?

• How about message-sending performance? Does Logtalk use static binding or dynamic binding?

• How does Logtalk performance compare with plain Prolog and with Prolog modules?

4.9.1 Is Logtalk implemented as a meta-interpreter?

No. Objects and their encapsulated predicates are compiled, not meta-interpreted. In particular, inheritance
relations are pre-compiled for improved performance. Moreover, no meta-interpreter is used even for objects
compiled in debug mode.

320 Chapter 4. FAQ

https://logtalk.org/embedding.html

The Logtalk Handbook, Release v3.34.0

4.9.2 What kind of code Logtalk generates when compiling objects? Dynamic code?
Static code?

Static objects are compiled to static code. Static objects containing dynamic predicates are also compiled
to static code, except, of course, for the dynamic predicates themselves. Dynamic objects are necessarily
compiled to dynamic code. As in Prolog programming, for best performance, dynamic object predicates and
dynamic objects should only be used when truly needed.

4.9.3 How about message-sending performance? Does Logtalk use static binding or dy-
namic binding?

Logtalk supports both static binding and dynamic binding. When static binding is not possible, Logtalk uses
dynamic binding coupled with a caching mechanism that avoids repeated lookups of predicate declarations
and predicate definitions. This is a solution common to other programming languages supporting dynamic
binding. Message lookups are automatically cached the first time a message is sent. Cache entries are
automatically removed when loading entities or using Logtalk dynamic features that invalidate the cached
lookups. Whenever static binding is used, message sending performance is essentially the same as a predicate
call in plain Prolog. Performance of dynamic binding when lookups are cached is close to the performance
that would be achieved with static binding. See the User Manual section on performance for more details.

4.9.4 Which Prolog-dependent factors are most crucial for good Logtalk performance?

Logtalk compiles objects assuming first-argument indexing for static code. First-argument indexing of dy-
namic code, when available, helps to improve performance due to the automatic caching of method lookups
and the necessary use of book-keeping tables by the runtime engine (this is specially important when using
event-driven programming). Dynamic objects and static objects containing dynamic predicates also benefit
from first-argument indexing of dynamic predicates. The availability of multi-argument indexing, notably
for dynamic predicates, also benefits dynamic binding performance.

4.9.5 How does Logtalk performance compare with plain Prolog and with Prolog mod-
ules?

Plain Prolog, Prolog modules, and Logtalk objects provide different trade-offs between performance and
features. In general, for a given predicate definition, the best performance will be attained using plain
Prolog, second will be Prolog modules (assuming no explicitly qualified calls are used), and finally Logtalk
objects. Whenever static binding is used, the performance of Logtalk is equal or close to that of plain Prolog
(depending on the Prolog virtual machine implementation and compiler optimizations). See the simple
benchmark test results using some popular Prolog compilers.

4.10 Licensing

• What’s the Logtalk distribution license?

• Can Logtalk be used in commercial applications?

• What’s the final license for a combination of Logtalk with a Prolog compiler?

4.10. Licensing 321

https://logtalk.org/performance.html
https://logtalk.org/performance.html

The Logtalk Handbook, Release v3.34.0

4.10.1 What’s the Logtalk distribution license?

Logtalk follows the Apache License 2.0.

4.10.2 Can Logtalk be used in commercial applications?

Yes, the Apache License 2.0 allows commercial use. See e.g. the Apache License and Distribution FAQ.

4.10.3 What’s the final license for a combination of Logtalk with a Prolog compiler?

See the licensing guide for details and relevant resources.

4.11 Support

• Are there professional consulting, training and supporting services?

4.11.1 Are there professional consulting, training and supporting services?

Yes. Please visit logtalk.pt for professional consulting, developing, training, and other supporting services.

322 Chapter 4. FAQ

https://github.com/LogtalkDotOrg/logtalk3/blob/master/LICENSE.txt
http://www.apache.org/foundation/license-faq.html
https://logtalk.org/licensing.html
https://logtalk.pt

CHAPTER

FIVE

GLOSSARY

abstract class A class that cannot be instantiated. Usually used to contain common predicates that are
inherited by other classes.

abstract method A method implementing an algorithm whose step corresponds to calls to methods defined
in the descendants of the object (or category) containing it.

adapter file A Prolog source file defining a minimal abstraction layer between the Logtalk compiler/runtime
and a specific backend Prolog compiler.

ancestor A class or a parent prototype that contributes (via inheritance) to the definition of an object. For
class-based hierarchies, the ancestors of an instance are its class(es) and all the superclasses of its
class(es). For prototype-based hierarchies, the ancestors of a prototype are its parent(s) and the ances-
tors of its parent(s).

backend Prolog compiler The Prolog compiler that is used to host and run Logtalk and that is called for
compiling the intermediate Prolog code generated by the Logtalk compiler when compiling source files.

built-in method A predefined method that can be called from within any object or category. I.e. built-in
methods are built-in object and category predicates. Built-in methods cannot be redefined.

built-in predicate A predefined predicate that can be called from anywhere. Built-in predicates can be
redefined within objects and categories.

category A set of predicates directives and clauses that can be (virtually) imported by any object. Categories
support composing objects using fine-grained units of code reuse and also hot patching of existing
objects. A category should be functionally-cohesive, defining a single functionality.

class An object that specializes another object, interpreted as its superclass. Classes define the common
predicates of a set of objects that instantiates it. An object can also be interpreted as a class when it
instantiates itself.

closed-world assumption The assumption that what cannot be proved true is false. Therefore, sending a
message corresponding to a declared but not defined predicate, or calling a declared predicate with no
clauses, fails. But messages or calls to undeclared predicates generate an error.

closure A callable term (i.e. an atom or a compound term) passed to a meta-predicate call where it is
extended with additional arguments to form a goal called by the meta-predicate.

coinductive predicate A predicate whose calls are proved using greatest fixed point semantics. Coinductive
predicates allows reasoning about infinite rational entities such as cyclic terms and 𝜔-automata.

complementing category A category used for hot patching an existing object (or a set of objects).

component A unique atom or compound term template identifying a library, tool, application, or applica-
tion sub-system. Component names are notably used by the message printing and question asking
mechanisms. Compound terms are used instead of atoms when parameterization is required.

323

The Logtalk Handbook, Release v3.34.0

directive A source file term that affects the interpretation of source code. Directives use the (:-)/1 prefix
operator as functor.

doclet file A source file whose main purpose is to generate documentation for e.g. a library or an application.

doclet object An object specifying the steps necessary to (re)generate the API documentation for a project.
See the doclet and lgtdoc tools for details.

dynamic binding Runtime lookup of a predicate declaration and predicate definition to verify the validity of
a message (or a super call) and find the predicate definition that will be used to answer the message (or
the super call). Also known as late binding. See also static binding.

dynamic entity See entity.

early binding See static binding.

encapsulation The hiding of an object implementation. This promotes software reuse by isolating the object
clients from its implementation details. Encapsulation is enforced in Logtalk by using predicate scope
directives.

entity Generic name for Logtalk compilation units: objects, categories, and protocols. Entities share a single
namespace (i.e. entity identifiers must be unique) and can be static (the default) or dynamic. Static
entities are defined in source files. Dynamic entities can be created and abolished at runtime using the
language built-in predicates.

entity directive A directive that affects how Logtalk entities (objects, categories, or protocols) are used or
compiled.

event The sending of a message to an object. An event can be expressed as an ordered tuple: (Event,
Object, Message, Sender). Logtalk distinguish between the sending of a message — before event —
and the return of control to the sender — after event.

grammar rule An alternative notation for predicates used to parse or generate sentences on some language.
This notation hides the arguments used to pass the sequences of tokens being processed, thus simplify-
ing the representation of grammars. Grammar rules are represented using as functor the infix operator
(-->)/2 instead of the (:-)/2 operator used with predicate clauses.

grammar rule non-terminal A syntactic category of words or phrases. A non-terminal is identified by its
non-terminal indicator, i.e. by its name and number of arguments using the notation Name//Arity.

grammar rule terminal A word or basic symbol of a language.

hook object An object, implementing the expanding built-in protocol, defining term- and goal-expansion
predicates, used in the compilation of Logtalk or Prolog source files. A hook object can be specified
using the hook compiler flag. It can also be specified using a set_logtalk_flag/2 directive in the source
files to be expanded.

hook predicate A predicate, usually declared multifile, that allows the user to customize another predicate
or provide alternative definitions for a default predicate definition.

hot patching The act of fixing entity directives and predicates or adding new entity directives and predicates
to loaded entities in a running application without requiring access to the entities source code or
restarting the application.

identity Property of an entity that distinguishes it from every other entity. The identifier of an entity is its
functor (i.e. its name and arity), which must be unique. Object and category identifiers can be atoms
or compound terms. Protocol identities must be atoms. All Logtalk entities (objects, protocols, and
categories) share the same namespace.

inheritance An entity inherits predicate directives and clauses from related entities. In the particular case
of objects, when an object extends other object, we have prototype-based inheritance. When an object

324 Chapter 5. Glossary

https://github.com/LogtalkDotOrg/logtalk3/tree/master/tools/doclet/NOTES.md
https://github.com/LogtalkDotOrg/logtalk3/tree/master/tools/lgtdoc/NOTES.md
https://logtalk.org/library/expanding_0.html#expanding-0

The Logtalk Handbook, Release v3.34.0

specializes or instantiates another object, we have class-based inheritance. See also public inheritance,
protected inheritance, and private inheritance.

instance An object that instantiates one another object, interpreted as its class. An object may instantiate
multiple objects (also known as multiple instantiation).

instantiation The process of creating a new class instance. In Logtalk, this does not necessarily imply
dynamic creation of an object at runtime; an instance may also be defined as a static object in a source
file.

interface See protocol.

lambda expression A compound term that can be used in place of a goal or closure meta-argument and that
abstracts a predicate definition by listing its variables and a callable term that implements the definition.
Lambda expressions help avoiding the need of naming and defining auxiliary predicates.

lambda free variable A variable that is global to a lambda expression. All used global variables must be
explicitly listed in a lambda expression.

lambda parameter A term (usually a variable or a non-ground compound term) that is local to a lambda
expression. All lambda parameters must be explicitly enumerated in a lambda expression.

late binding See dynamic binding.

library A directory containing source files. See also library alias and library notation.

library alias An atom that can be used as an alias for a library full path. Library aliases and their corre-
sponding paths can be defined using the logtalk_library_path/2 predicate. See also library notation.

library notation A compound term where the name is a library alias and the single argument is a source file
relative path. Use of library notation simplifies compiling and loading source files and can make an
application easily relocatable by defining an alias for the root directory of the application files.

loader file A source file whose main purpose is to load a set of source files.

local predicate A predicate that is defined in an object (or in a category) but that is not listed in a scope
directive. These predicates behave like private predicates but are invisible to the reflection built-in
methods. Local predicates are usually auxiliary predicates and only relevant to the entity where they
are defined.

message A query sent to an object. In logical terms, a message can be seen as a request for proof construc-
tion using an object database and the databases of related entities.

message lookup Sending a message to an object requires a lookup for the predicate declaration, to check if
the message is within the scope of the sender, and a lookup for the predicate definition that is going to
be called to answer the message. Message lookup can occur at compile time or at runtime.

message to self A message sent to the object that received the original message under processing. Messages
to self require dynamic binding as the value of self is only know at runtime.

meta-argument A predicate argument that is called as a goal, used as a closure to construct a goal that will
be called, or that is handled in a way that requires awareness of the predicate calling context.

meta-interpreter A program capable of running other programs written in the same language.

meta-predicate A predicate with one or more meta-arguments. For example, call/1-N and findall/3 are
built-in meta-predicates.

metaclass The class of a class, when interpreted as an instance. Metaclass instances are themselves classes.
Metaclasses are optional, except for the root class, and can be shared by several classes.

method The predicate definition used to answer a message sent to an object. Logtalk supports both static
binding and dynamic binding to find which method to run to answer a message.

325

The Logtalk Handbook, Release v3.34.0

module A Prolog entity characterized by an identity and a set of predicate directives and clauses. Prolog
modules are usually static although some Prolog systems allow the creation of dynamic modules at
runtime. Prolog modules can be seen as prototypes.

monitor Any object, implementing the monitoring built-in protocol, that is notified by the runtime when a
spied event occurs. The spied events can be set by the monitor itself or by any other object.

multifile predicate A predicate whose clauses can be defined in multiple entities and source files. The object
or category holding the directive without an entity prefix qualifying the predicate holds the multifile
predicate primary declaration, which consists of both a scope directive and a multifile/1 directive for the
predicate.

object An entity characterized by an identity and a set of predicate directives and clauses. Logtalk objects
can be either static or dynamic. Logtalk objects can play the role of classes, instances, or prototypes.
The role or roles an object plays are a function of its relations with other objects.

object database The set of predicates locally defined inside an object.

parameter An argument of a parametric object or a parametric category identifier. Parameters are logical
variables implicitly shared by all the entity predicate clauses.

parameter variable A variable used as parameter in a parametric object or a parametric category using the
syntax _ParameterName_. Occurrences of parameter variables in entity clauses are implicitly unified
with the corresponding entity parameters.

parametric category See parametric entity.

parametric entity An object or category whose identifier is a compound term possibly containing free vari-
ables that can be used to parameterize the entity predicates. Parameters are logical variables implicitly
shared by all the entity clauses. Note that the identifier of a parametric entity is its functor, irrespective
of the possible values of its arguments (e.g. foo(bar) and foo(baz) are different parameterizations of
the same parametric entity, foo/1).

parametric object See parametric entity.

parametric object proxy A compound term (usually represented as a plain Prolog fact) with the same name
and number of arguments as the identifier of a parametric object.

parent A prototype that is extended by another prototype.

polymorphism Different objects (and categories) can provide different implementations of the same pred-
icate. The predicate declaration can be inherited from a common ancestor, also known as subtype
polymorphism. Logtalk implements single dispatch on the receiver of a message, which can be de-
scribed as single-argument polymorphism. As message lookup only uses the predicate functor, multiple
predicate implementations for different types of arguments are possible, also known as ad hoc polymor-
phism. Parametric objects and categories enable implementation of parametric polymorphism by using
one of more parameters to pass object identifiers that can be used to parameterize generic predicate
definitions.

predicate Predicates describe what is true about the application domain. A predicate is identified by its
predicate indicator, i.e. by its name and number of arguments using the notation Name/Arity. When
predicates defined in objects or categories they are also referred to as methods.

predicate alias An alternative functor (Name/Arity) for a predicate. Predicate aliases can be defined for
any inherited predicate using the alias/2 directive and for predicates listed in uses/2 and use_module/2
directives. Predicate aliases can be used to solve inheritance conflicts and to improve code clarity by
using alternative names that are more meaningful in the calling context.

predicate declaration A predicate declaration is composed by a set of predicate directives, which must
include ar least a scope directive.

326 Chapter 5. Glossary

https://logtalk.org/library/monitoring_0.html#monitoring-0

The Logtalk Handbook, Release v3.34.0

predicate definition The set of clauses for a predicate, contained in an object or category. Predicate defini-
tions can be overriden or specialized in descendant entities.

predicate directive A directive that specifies a predicate property that affects how predicates are called or
compiled.

predicate scope container The object that inherits a predicate declaration from an imported category or an
implemented protocol.

predicate scope directive A directive that declares a predicate by specifying its visibility as public, protected,
or private.

primary predicate declaration See multifile predicate.

private inheritance All public and protected predicates are inherited as private predicates. See also public
inheritance and protected inheritance.

private predicate A predicate that can only be called from the object that contains its scope directive.

profiler A program that collects data about other program performance.

protected inheritance All public predicates are inherited as protected. No scope change for protected or
private predicates. See also public inheritance and private inheritance.

protected predicate A predicate that can only be called from the object containing its scope directive or from
an object that inherits the predicate.

protocol An entity that contains predicate declarations. A predicate is declared using a scope directive. It
may be further specified by additional predicate directives. Protocols support the separation between
interface and implementation, can be implemented by both objects and categories, and can be extended
by other protocols. A protocol should be functionally-cohesive, specifying a single functionality. Also
known as interface.

prototype A self-describing object that may extend or be extended by other objects. An object with no
instantiation or specialization relations with other objects is always interpreted as a prototype.

public inheritance All inherited predicates maintain their declared scope. See also protected inheritance
and private inheritance.

public predicate A predicate that can be called from any object.

scratch directory The directory used to save the intermediate Prolog files generated by the compiler when
compiling source files.

self The object that received the message under processing.

sender An object that sends a message to other object. When a message is sent from within a category, the
sender is the object importing the category.

settings file A source file, compiled and loaded automatically by default at Logtalk startup, mainly defining
default values for compiler flags that override the defaults found on the backend Prolog compiler
adapter files.

singleton method A method defined in an instance itself. Singleton methods are supported in Logtalk and
can also be found in other object-oriented programming languages.

source file A text file defining Logtalk and/or Prolog code. Multiple Logtalk entities may be defined in a
single source file. Plain Prolog code may be intermixed with Logtalk entity definitions. Depending on
the used backend Prolog compiler, the text encoding may be specified using an encoding/1 directive as
the first term in the first line in the file.

source file directive A directive that affects how a source file is compiled.

327

The Logtalk Handbook, Release v3.34.0

specialization A class is specialized by defining a new class that inherit its predicates and possibly add new
ones.

static binding Compile time lookup of a predicate declaration and predicate definition when compiling a
message sending call (or a super call). Dynamic binding is used whenever static binding is not possible
(e.g. due to the predicate being dynamic or due to lack of enough information at compilation time).
Also known as early binding. See also dynamic binding.

static entity See entity.

steadfastness A predicate definition is steadfast when it still generates only correct answers when called
with unexpected arguments. Typically, a predicate may not be steadfast when output argument unifi-
cations can occur before a cut in a predicate clause.

subclass A class that is a specialization, direct or indirectly, of another class.

super call Call of an inherited (or imported) predicate definition. Mainly used when redefining an inherited
(or imported) predicate to call the overridden definition while making additional calls. Super calls
preserve self and may require dynamic binding if the predicate is dynamic.

superclass A class from which another class is a specialization (directly or indirectly via another class). A
class may have multiple superclasses.

synchronized predicate A synchronized predicate is protected by a mutex ensuring that, in a multi-
threaded application, it can only be called by a single thread at a time.

template method See abstract method.

tester file A source file whose main purpose is to load and a run a set of unit tests.

this The object that contains the predicate clause under execution. When the predicate clause is contained
in a category, this is a reference to the object importing the category for which the predicate clause is
being executed.

threaded engine A computing thread running a goal whose solutions can be lazily and concurrently com-
puted and retrieved. A threaded engine also supports a term queue that allows passing arbitrary terms
to the engine. This queue can be used to pass e.g. data and new goals to the engine.

visible predicate A predicate that is within scope, a locally defined predicate, a built-in method, a Logtalk
built-in predicate, or a Prolog built-in predicate.

328 Chapter 5. Glossary

BIBLIOGRAPHY

[Alexiev93] Mutable Object State for Object-Oriented Logic Programming: A Survey Alexiev, V. Technical
Report TR 93-15, Department of Computing Science, University of Alberta, Canada

[Belli_et_al_92] Object-oriented programming in Prolog: rationale and a case study Belli, F., Jack, O., Naish,
L. Technical Report 92/2, Department of Electrical and Electronics Engineering, University of
Paderborn, Germany URL: http://www.cs.mu.oz.au/~lee/papers/oolp/

[Block89] An Extended Frame Language Block, F. P., Chan, N. C. Proceedings OOPLSLA 89(10):151-157,
ACM

[Bobrow_et_al_88] Common Lisp Object System Specification Bobrow, D. G., Michiel, L. G., Gabriel, R. P.,
Keene, S. E., Kiczales, G., Moon, D. A. ACM SIGPLAN Notices(23)

[Bratko90] Prolog Programming for Artificial Intelligence Bratko, I. Addison Wesley, 2º edition, 1990

[Champaux92] A comparative Study of Object-Oriented Analysis Methods Champaux, D., Faure, P. Journal
of Object-Oriented Programming, Vol. 5, N.1, 1992

[Clocksin87] Programming in Prolog Clocksin, W.F., Mellish, C.S. Springer-Verlag, New York, 1987

[Cointe87] Metaclasses are First Class: the ObjVlisp Model Cointe, P. Proceedings OOPLSLA 87(10):156-
167, ACM

[Cordes91] The Literate Programming Paradigm Cordes, D., Brown, M. IEEE Computer, June 1991:52-61

[Covington94] ISO Prolog: A Summary of the Draft Proposed Standard Covington, M. A. URL: ftp://ai.uga.
edu/pub/prolog.standard/

[Cox86] Object-Oriented Programming: An Evolutionary Approach Cox, Brad J. Addison-Wesley Publish-
ing Company, Don Mills, Ontario

[Davison89] Polka: A Parlog Object oriented language Davison, A. Ph.D. Thesis, Imperial College, London,
1989

[Davison92] A survey of logic programming-based object oriented languages Davison, A. Tech Report 92/3,
Dept. of Computer Science, University of Melbourne, Australia URL: http://www.cs.mu.oz.au/
tr_db/mu_92_03.ps.gz

[Davison93] The deductive and object oriented features of BeBOP Davison, A. Tech Report 93/6, Dept. of
Computer Science, University of Melbourne, Australia URL:http://www.cs.mu.oz.au/tr_db/mu_
93_06.ps.gz

[Delzanno97] Logic and Object-Oriented Programming in Linear Logic Delzanno, G. Ph.D. Thesis, University
of Pisa, Italy URL:http://www.mpi-sb.mpg.de/~delzanno/

[Dony90] Exception Handling and Object-Oriented Programming: Towards a Synthesis Dony, C. Proceed-
ings OOPLSLA 90:322-330, ACM

329

http://www.cs.mu.oz.au/~lee/papers/oolp/
ftp://ai.uga.edu/pub/prolog.standard/
ftp://ai.uga.edu/pub/prolog.standard/
http://www.cs.mu.oz.au/tr_db/mu_92_03.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_92_03.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_93_06.ps.gz
http://www.cs.mu.oz.au/tr_db/mu_93_06.ps.gz
http://www.mpi-sb.mpg.de/~delzanno/

The Logtalk Handbook, Release v3.34.0

[Fornarino_et_al_89] An Original Object-Oriented Approach for Relation Management Fornarino, M., Pinna,
A.-M.,Trousse, B. Proceedings of the 4th Portuguese Conference on Artificial Intelligence Lecture
Notes in Artificial Intelligence, Springer-Verlag (390):13-26

[Fromherz93] OL(P): Object Layer for Prolog Fromherz, M. URL: ftp://parcftp.xerox.com/ftp/pub/ol/

[Fukunaga86] An Experience with a Prolog-based Object-Oriented Language Fukunaga, K., Hirose, S. Pro-
ceedings OOPLSLA 86, 21(11):224-231, ACM

[Goldberg83] Smalltalk-80 The language and its implementation Goldberg, A., Robson, D. Addison-Wesley
Series in Computer Science

[Joy_et_al_00] The Java Language Specification, Second Edition Joy, B., Steele, G., Gosling, J., Bracha, G.
Addison-Wesley, 2000

[ISO95] ISO/IEC DIS 13211-1 - Programming Language Prolog Part 1: General Core Joint Technical
Committee ISO/IEC JTC 1 URL: https://www.iso.org/standard/21413.html

[Knuth84] Literate Programming Knuth, D. E. Computer Journal, May 84, 27(2):97-111

[Lieberman86] Using Prototypical Objects to Implement Shared Behaviour in Object Oriented Systems
Lieberman, H. Proceedings OOPLSLA 86:189-214, ACM

[Maes87] Concepts and Experiments in Computational Reflection Maes, P. Proceedings OOPLSLA 87, ACM

[McCabe92] Logic and Objects McCabe, F. G. Prentice Hall Series in Computer Science

[Moon86] Object-Oriented Programming in Flavors Moon, D. Proceedings OOPLSLA 86:1-8, ACM

[Moss94] Prolog++ The Power of Object-Oriented and Logic Programming Moss, C. Addison-Wesley In-
ternational Series in Logic Programming, 1994

[Moura94] Logtalk: Programação Orientada para Objectos em Prolog Moura, P., Costa, E. 2ª Conferência e
Exposição Portuguesa de Tecnologia Orientada por Objectos 3i Consultores, Lisboa

[Moura99] Porting Prolog: Notes on porting a Prolog program to 22 Prolog compilers or the relevance of
the ISO Prolog standard Moura, P. ALP Newsletter, Vol. 12/2, May 1999

[Moura00] Logtalk 2.6 Documentation Moura, P. Technical Report DMI 2000/1 University of Beira Interior,
Portugal

[Razek92] Combining Objects and Relations Razek, G. Comunications of the ACM, 27(12):66-70

[Rumbaugh87] Relations as Semantic Constructs in an Object-Oriented Language Rumbaugh, J. Proceedings
OOPLSLA 87:466-481, ACM

[Rumbaugh88] Controlling Propagation of Operations using Attributes on Relations Rumbaugh, J. Proceed-
ings OOPLSLA 88:285-296, ACM

[Schachte95] Efficient Object-Oriented Programming in Prolog Schachte, P., Saab, G. Logic Programming:
Formal Methods and Pratical Applications Studies in Computer Science and Artificial Intelligence,
11 Elsevier Science B.V. North-Holland, Amsterdam, 1995

[SICStus95] SICStus Prolog Manual SICStus URL: http://www.sics.se/ps/sicstus.html

[Shan_et_al_93] Is Multiple Inheritance Essential to OOP? (Panel) Shan, Y., Cargill, T., Cox, B., Cook, W.,
Loomis, M., Snyder, A. Proceedings OOPLSLA 93:360-363

[Stefik_et_al_86] Integrating Acess-Oriented Programming into a Multiparadigm Environment Stefik, M. J.,
Bobrow, D. G. , Kahn, K. M. IEEE Software, January 1986:10-18

[Stroustrup86] The C++ Programming Language Stroustrup, B. Addison-Wesley Series in Computer Sci-
ence

330 Bibliography

ftp://parcftp.xerox.com/ftp/pub/ol/
https://www.iso.org/standard/21413.html
http://www.sics.se/ps/sicstus.html

The Logtalk Handbook, Release v3.34.0

[Taenzer89] Problems in Object-Oriented Software Reuse Taenzer, D., Ganti, M., Podar, S. Proceedings of
ECOOP 89 British Computer Society Workshop Series, Cambridge University Press

[Tanzer95] Remarks on Object-Oriented Modeling of Associations Tanzer, C. Journal of Object-Oriented
Programming, February 1995, SIGS Publications

[Tanenbaum87] Operating Systems - Design and Implementation Tanenbaum, A. Prentice-Hall Software
Series, 1987

[Welsch89] Reasoning Objects with Dynamic Knowledge Bases Welsch, C., Barth, G. Proceedings of the 4th
Portuguese Conference on Artificial Intelligence(390):257-268 Lecture Notes in Artificial Intelli-
gence, Springer-Verlag, 1989

Bibliography 331

The Logtalk Handbook, Release v3.34.0

332 Bibliography

INDEX

Symbols
::/1

Control construct, 160
::/2

Control construct, 159
{}/1

Control construct, 164
^^/1

Control construct, 163
\+/1

Built-in method, 270
<</2

Control construct, 165
[]/1

Control construct, 161

A
abolish/1

Built-in method, 261
abolish_category/1

Built-in predicate, 210
abolish_events/5

Built-in predicate, 220
abolish_object/1

Built-in predicate, 210
abolish_protocol/1

Built-in predicate, 211
abstract class, 323
abstract method, 323
adapter file, 323
after/3

Built-in method, 286
alias/2

Directive, 185
always_true_or_false_goals

Flag, 92
ancestor, 323
ask_question/5

Built-in method, 302
asserta/1

Built-in method, 262
assertz/1

Built-in method, 263

B
backend Prolog compiler, 323
bagof/3

Built-in method, 281
before/3

Built-in method, 286
begin_of_file, 103
behavioral reflection, 84
black-box view, 83
built_in/0

Directive, 174
built-in method, 323
built-in predicate, 323
Built-in method

\+/1, 270
abolish/1, 261
after/3, 286
ask_question/5, 302
asserta/1, 262
assertz/1, 263
bagof/3, 281
before/3, 286
call//1-N, 288
call/1-N, 268
catch/3, 271
clause/2, 264
coinductive_success_hook/1-2, 296
context/1, 253
current_op/3, 258
current_predicate/1, 259
domain_error/2, 274
eos//0, 289
evaluation_error/1, 277
existence_error/2, 275
expand_goal/2, 294
expand_term/2, 293
findall/3, 281
findall/4, 282
forall/2, 283
forward/1, 287

333

The Logtalk Handbook, Release v3.34.0

goal_expansion/2, 295
ignore/1, 269
instantiation_error/0, 272
message_hook/4, 298
message_prefix_stream/4, 299
message_tokens//2, 298
once/1, 269
parameter/2, 254
permission_error/3, 276
phrase//1, 290
phrase/2, 290
phrase/3, 291
predicate_property/2, 260
print_message/3, 297
print_message_token/4, 301
print_message_tokens/3, 300
question_hook/6, 302
question_prompt_stream/4, 303
representation_error/1, 276
resource_error/1, 278
retract/1, 266
retractall/1, 267
self/1, 255
sender/1, 256
setof/3, 284
syntax_error/1, 279
system_error/0, 280
term_expansion/2, 293
this/1, 257
throw/1, 272
type_error/2, 273

Built-in predicate
abolish_category/1, 210
abolish_events/5, 220
abolish_object/1, 210
abolish_protocol/1, 211
category_property/2, 203
complements_object/2, 217
conforms_to_protocol/2-3, 215
create_category/4, 205
create_logtalk_flag/3, 252
create_object/4, 206
create_protocol/3, 208
current_category/1, 200
current_event/5, 221
current_logtalk_flag/2, 250
current_object/1, 201
current_protocol/1, 202
define_events/5, 222
extends_category/2-3, 213
extends_object/2-3, 212
extends_protocol/2-3, 213
implements_protocol/2-3, 214
imports_category/2-3, 217

instantiates_class/2-3, 218
logtalk_compile/1, 238
logtalk_compile/2, 239
logtalk_library_path/2, 247
logtalk_load/1, 241
logtalk_load/2, 242
logtalk_load_context/2, 249
logtalk_make/0, 244
logtalk_make/1, 245
logtalk_make_target_action/1, 246
object_property/2, 203
protocol_property/2, 204
set_logtalk_flag/2, 251
specializes_class/2-3, 219
threaded/1, 223
threaded_call/1-2, 224
threaded_cancel/1, 229
threaded_engine/1, 233
threaded_engine_create/3, 231
threaded_engine_destroy/1, 232
threaded_engine_fetch/1, 237
threaded_engine_next/2, 234
threaded_engine_next_reified/2, 235
threaded_engine_post/2, 237
threaded_engine_self/1, 234
threaded_engine_yield/1, 236
threaded_exit/1-2, 227
threaded_ignore/1, 226
threaded_notify/1, 231
threaded_once/1-2, 225
threaded_peek/1-2, 228
threaded_wait/1, 230

C
call//1-N

Built-in method, 288
call/1-N

Built-in method, 268
catch/3

Built-in method, 271
category, 323
category/1-4

Directive, 174
category_property/2

Built-in predicate, 203
class, 323
clause/2

Built-in method, 264
clean

Flag, 94
closed-world assumption, 323
closure, 323
code_prefix

Flag, 93

334 Index

The Logtalk Handbook, Release v3.34.0

coinduction
Flag, 123

coinductive predicate, 323
coinductive/1

Directive, 185
coinductive_success_hook/1-2

Built-in method, 296
complementing category, 323
complements

Flag, 92
complements_object/2

Built-in predicate, 217
component, 323
conforms_to_protocol/2-3

Built-in predicate, 215
context/1

Built-in method, 253
context_switching_calls

Flag, 93
Control construct

::/1, 160
::/2, 159
{}/1, 164
^^/1, 163
<</2, 165
[]/1, 161

create_category/4
Built-in predicate, 205

create_logtalk_flag/3
Built-in predicate, 252

create_object/4
Built-in predicate, 206

create_protocol/3
Built-in predicate, 208

current_category/1
Built-in predicate, 200

current_event/5
Built-in predicate, 221

current_logtalk_flag/2
Built-in predicate, 250

current_object/1
Built-in predicate, 201

current_op/3
Built-in method, 258

current_predicate/1
Built-in method, 259

current_protocol/1
Built-in predicate, 202

D
debug

Flag, 94
define_events/5

Built-in predicate, 222

Directive
alias/2, 185
built_in/0, 174
category/1-4, 174
coinductive/1, 185
discontiguous/1, 186
dynamic/0, 175
dynamic/1, 187
elif/1, 171
else/0, 172
encoding/1, 167
end_category/0, 176
end_object/0, 176
end_protocol/0, 177
endif/0, 173
if/1, 171
include/1, 167
info/1, 177
info/2, 188
initialization/1, 168
meta_non_terminal/1, 190
meta_predicate/1, 189
mode/2, 191
multifile/1, 191
object/1-5, 178
op/3, 169
private/1, 193
protected/1, 194
protocol/1-2, 182
public/1, 194
set_logtalk_flag/2, 169
synchronized/1, 195
threaded/0, 183
use_module/2, 198
uses/1, 183
uses/2, 196

directive, 324
discontiguous/1

Directive, 186
doclet file, 324
doclet object, 324
domain_error/2

Built-in method, 274
duplicated_clauses

Flag, 92
duplicated_directives

Flag, 91
dynamic binding, 324
dynamic entity, 324
dynamic/0

Directive, 175
dynamic/1

Directive, 187
dynamic_declarations

Index 335

The Logtalk Handbook, Release v3.34.0

Flag, 92

E
early binding, 324
elif/1

Directive, 171
else/0

Directive, 172
encapsulation, 324
encoding/1

Directive, 167
encoding_directive

Flag, 123
end_category/0

Directive, 176
end_object/0

Directive, 176
end_of_file, 103
end_protocol/0

Directive, 177
endif/0

Directive, 173
engines

Flag, 123
entity, 324
entity directive, 324
eos//0

Built-in method, 289
evaluation_error/1

Built-in method, 277
event, 324
events

Flag, 92
existence_error/2

Built-in method, 275
expand_goal/2

Built-in method, 294
expand_term/2

Built-in method, 293
extends_category/2-3

Built-in predicate, 213
extends_object/2-3

Built-in predicate, 212
extends_protocol/2-3

Built-in predicate, 213

F
findall/3

Built-in method, 281
findall/4

Built-in method, 282
Flag

always_true_or_false_goals, 92
clean, 94

code_prefix, 93
coinduction, 123
complements, 92
context_switching_calls, 93
debug, 94
duplicated_clauses, 92
duplicated_directives, 91
dynamic_declarations, 92
encoding_directive, 123
engines, 123
events, 92
hook, 94
lambda_variables, 92
missing_directives, 91
modules, 123
naming, 92
optimize, 93
portability, 91
prolog_compatible_version, 123
prolog_compiler, 93
prolog_conformance, 123
prolog_dialect, 123
prolog_loader, 93
prolog_version, 123
redefined_built_ins, 92
relative_to, 94
reload, 94
report, 93
scratch_directory, 93
settings_file, 122
singleton_variables, 92
source_data, 93
steadfastness, 91
suspicious_calls, 92
tabling, 123
threads, 123
trivial_goal_fails, 91
undefined_predicates, 91
underscore_variables, 92
unicode, 123
unknown_entities, 91
unknown_predicates, 91
version_data, 91

forall/2
Built-in method, 283

forward/1
Built-in method, 287

G
goal_expansion/2

Built-in method, 295
grammar rule, 324
grammar rule non-terminal, 324
grammar rule terminal, 324

336 Index

The Logtalk Handbook, Release v3.34.0

H
hook

Flag, 94
hook object, 324
hook predicate, 324
hot patching, 324

I
identity, 324
if/1

Directive, 171
ignore/1

Built-in method, 269
implements_protocol/2-3

Built-in predicate, 214
imports_category/2-3

Built-in predicate, 217
include/1

Directive, 167
info/1

Directive, 177
info/2

Directive, 188
inheritance, 324
initialization/1

Directive, 168
instance, 325
instantiates_class/2-3

Built-in predicate, 218
instantiation, 325
instantiation_error/0

Built-in method, 272
interface, 325

L
lambda expression, 325
lambda free variable, 325
lambda parameter, 325
lambda_variables

Flag, 92
late binding, 325
library, 325
library alias, 325
library notation, 325
loader file, 325
local predicate, 325
logtalk_compile/1

Built-in predicate, 238
logtalk_compile/2

Built-in predicate, 239
logtalk_library_path/2

Built-in predicate, 247
logtalk_load/1

Built-in predicate, 241

logtalk_load/2
Built-in predicate, 242

logtalk_load_context/2
Built-in predicate, 249

logtalk_make/0
Built-in predicate, 244

logtalk_make/1
Built-in predicate, 245

logtalk_make_target_action/1
Built-in predicate, 246

M
message, 325
message lookup, 325
message to self, 325
message_hook/4

Built-in method, 298
message_prefix_stream/4

Built-in method, 299
message_tokens//2

Built-in method, 298
meta_non_terminal/1

Directive, 190
meta_predicate/1

Directive, 189
meta-argument, 325
meta-interpreter, 325
meta-predicate, 325
metaclass, 325
method, 325
missing_directives

Flag, 91
mode/2

Directive, 191
module, 326
modules

Flag, 123
monitor, 326
multifile predicate, 326
multifile/1

Directive, 191

N
naming

Flag, 92

O
object, 326
object database, 326
object/1-5

Directive, 178
object_property/2

Built-in predicate, 203
once/1

Index 337

The Logtalk Handbook, Release v3.34.0

Built-in method, 269
op/3

Directive, 169
optimize

Flag, 93

P
parameter, 326
parameter variable, 326
parameter/2

Built-in method, 254
parametric category, 326
parametric entity, 326
parametric object, 326
parametric object proxy, 326
parent, 326
permission_error/3

Built-in method, 276
phrase//1

Built-in method, 290
phrase/2

Built-in method, 290
phrase/3

Built-in method, 291
polymorphism, 326
portability

Flag, 91
predicate, 326
predicate alias, 326
predicate declaration, 326
predicate definition, 327
predicate directive, 327
predicate scope container, 327
predicate scope directive, 327
predicate_property/2

Built-in method, 260
primary predicate declaration, 327
print_message/3

Built-in method, 297
print_message_token/4

Built-in method, 301
print_message_tokens/3

Built-in method, 300
private inheritance, 327
private predicate, 327
private/1

Directive, 193
profiler, 327
prolog_compatible_version

Flag, 123
prolog_compiler

Flag, 93
prolog_conformance

Flag, 123

prolog_dialect
Flag, 123

prolog_loader
Flag, 93

prolog_version
Flag, 123

protected inheritance, 327
protected predicate, 327
protected/1

Directive, 194
protocol, 327
protocol/1-2

Directive, 182
protocol_property/2

Built-in predicate, 204
prototype, 327
public inheritance, 327
public predicate, 327
public/1

Directive, 194

Q
question_hook/6

Built-in method, 302
question_prompt_stream/4

Built-in method, 303

R
redefined_built_ins

Flag, 92
reflection, 83
relative_to

Flag, 94
reload

Flag, 94
report

Flag, 93
representation_error/1

Built-in method, 276
resource_error/1

Built-in method, 278
retract/1

Built-in method, 266
retractall/1

Built-in method, 267

S
scratch directory, 327
scratch_directory

Flag, 93
self, 327
self/1

Built-in method, 255
sender, 327

338 Index

The Logtalk Handbook, Release v3.34.0

sender/1
Built-in method, 256

set_logtalk_flag/2
Built-in predicate, 251
Directive, 169

setof/3
Built-in method, 284

settings file, 327
settings_file

Flag, 122
singleton method, 327
singleton_variables

Flag, 92
source file, 327
source file directive, 327
source_data

Flag, 93
specialization, 328
specializes_class/2-3

Built-in predicate, 219
static binding, 328
static entity, 328
steadfastness, 328
steadfastness

Flag, 91
structural reflection, 83
subclass, 328
super call, 328
superclass, 328
suspicious_calls

Flag, 92
synchronized predicate, 328
synchronized/1

Directive, 195
syntax_error/1

Built-in method, 279
system_error/0

Built-in method, 280

T
tabling

Flag, 123
template method, 328
term_expansion/2

Built-in method, 293
tester file, 328
this, 328
this/1

Built-in method, 257
threaded engine, 328
threaded/0

Directive, 183
threaded/1

Built-in predicate, 223

threaded_call/1-2
Built-in predicate, 224

threaded_cancel/1
Built-in predicate, 229

threaded_engine/1
Built-in predicate, 233

threaded_engine_create/3
Built-in predicate, 231

threaded_engine_destroy/1
Built-in predicate, 232

threaded_engine_fetch/1
Built-in predicate, 237

threaded_engine_next/2
Built-in predicate, 234

threaded_engine_next_reified/2
Built-in predicate, 235

threaded_engine_post/2
Built-in predicate, 237

threaded_engine_self/1
Built-in predicate, 234

threaded_engine_yield/1
Built-in predicate, 236

threaded_exit/1-2
Built-in predicate, 227

threaded_ignore/1
Built-in predicate, 226

threaded_notify/1
Built-in predicate, 231

threaded_once/1-2
Built-in predicate, 225

threaded_peek/1-2
Built-in predicate, 228

threaded_wait/1
Built-in predicate, 230

threads
Flag, 123

throw/1
Built-in method, 272

transparent-box view, 83
trivial_goal_fails

Flag, 91
type_error/2

Built-in method, 273

U
undefined_predicates

Flag, 91
underscore_variables

Flag, 92
unicode

Flag, 123
unknown_entities

Flag, 91
unknown_predicates

Index 339

The Logtalk Handbook, Release v3.34.0

Flag, 91
use_module/2

Directive, 198
uses/1

Directive, 183
uses/2

Directive, 196

V
version_data

Flag, 91
visible predicate, 328

340 Index

	User Manual
	Declarative object-oriented programming
	Main features
	Integration of logic and object-oriented programming
	Integration of event-driven and object-oriented programming
	Support for component-based programming
	Support for both prototype and class-based systems
	Support for multiple object hierarchies
	Separation between interface and implementation
	Private, protected and public inheritance
	Private, protected and public object predicates
	Parametric objects
	High level multi-threading programming support
	Smooth learning curve
	Compatibility with most Prolog systems and the ISO standard
	Performance
	Logtalk scope

	Nomenclature
	Smalltalk nomenclature
	C++ nomenclature
	Java nomenclature

	Messages
	Operators used in message sending
	Sending a message to an object
	Delegating a message to an object
	Sending a message to self
	Broadcasting
	Calling imported and inherited predicates
	Message sending and event generation
	Message sending performance

	Objects
	Objects, prototypes, classes, and instances
	Defining a new object
	Parametric objects
	Finding defined objects
	Creating a new object in runtime
	Abolishing an existing object
	Object directives
	Object relationships
	Object properties
	Built-in objects

	Protocols
	Defining a new protocol
	Finding defined protocols
	Creating a new protocol in runtime
	Abolishing an existing protocol
	Protocol directives
	Protocol relationships
	Protocol properties
	Implementing protocols
	Built-in protocols

	Categories
	Defining a new category
	Hot patching
	Finding defined categories
	Creating a new category in runtime
	Abolishing an existing category
	Category directives
	Category relationships
	Category properties
	Importing categories
	Calling category predicates
	Parametric categories
	Built-in categories

	Predicates
	Reserved predicate names
	Declaring predicates
	Defining predicates
	Definite clause grammar rules
	Built-in methods
	Predicate properties
	Finding declared predicates
	Calling Prolog predicates
	Defining Prolog multifile predicates
	Asserting and retracting Prolog predicates

	Inheritance
	Protocol inheritance
	Implementation inheritance
	Public, protected, and private inheritance
	Composition versus multiple inheritance

	Event-driven programming
	Definitions
	Event generation
	Communicating events to monitors
	Performance concerns
	Monitor semantics
	Activation order of monitors
	Event handling

	Multi-threading programming
	Enabling multi-threading support
	Enabling objects to make multi-threading calls
	Multi-threading built-in predicates
	One-way asynchronous calls
	Asynchronous calls and synchronized predicates
	Synchronizing threads through notifications
	Threaded engines
	Multi-threading performance

	Error handling
	Generating errors
	Type-checking
	Compiler warnings and errors
	Runtime errors

	Reflection
	Structural reflection
	Behavioral reflection

	Writing and running applications
	Writing applications
	Compiling and running applications

	Printing messages and asking questions
	Printing messages
	Message tokenization
	Meta-messages
	Intercepting messages
	Asking questions
	Intercepting questions

	Term and goal expansion
	Defining expansions
	Expanding grammar rules
	Hook objects
	Bypassing expansions
	Combining multiple expansions
	Using Prolog defined expansions

	Documenting
	Documenting directives
	Processing and viewing documenting files
	Inline formatting in comments text
	Diagrams

	Debugging
	Compiling source files in debug mode
	Procedure box model
	Defining spy points
	Tracing program execution
	Debugging using spy points
	Debugging commands
	Context-switching calls
	Debugging messages
	Using the term-expansion mechanism for debugging
	Ports profiling
	Debug and trace events

	Performance
	Source code compilation modes
	Local predicate calls
	Calls to imported or inherited predicates
	Calls to module predicates
	Messages
	Automatic expansion of built-in meta-predicates
	Inlining
	Generated code simplification and optimizations
	Size of the generated code
	Debug mode overhead
	Other considerations

	Installing Logtalk
	Hardware and software requirements
	Logtalk installers
	Source distribution
	Distribution overview

	Prolog integration and migration
	Source files with both Prolog code and Logtalk code
	Encapsulating plain Prolog code in objects
	Converting Prolog modules into objects
	Compiling Prolog modules as objects
	Dealing with proprietary Prolog directives and predicates
	Calling Prolog module predicates

	Reference Manual
	Grammar
	Entities
	Object definition
	Category definition
	Protocol definition
	Entity relations
	Entity identifiers
	Source file names
	Terms
	Directives
	Clauses and goals
	Lambda expressions
	Entity properties
	Predicate properties
	Compiler flags

	Control constructs
	Message sending
	Message delegation
	Calling imported and inherited predicates
	Calling external predicates
	Context switching calls

	Directives
	Source file directives
	Conditional compilation directives
	Entity directives
	Predicate directives

	Built-in predicates
	Enumerating objects, categories and protocols
	Enumerating objects, categories and protocols properties
	Creating new objects, categories and protocols
	Abolishing objects, categories and protocols
	Objects, categories, and protocols relations
	Event handling
	Multi-threading
	Multi-threading engines
	Compiling and loading source files
	Flags

	Built-in methods
	Execution context
	Reflection
	Database
	Meta-calls
	Error handling
	All solutions
	Event handling
	Message forwarding
	Definite clause grammar rules
	Term and goal expansion
	Coinduction hooks
	Message printing
	Question asking

	Tutorial
	List predicates
	Defining a list object
	Defining a list protocol
	Summary

	Dynamic object attributes
	Defining a category
	Importing the category
	Summary

	A reflective class-based system
	Defining the base classes
	Summary

	Profiling programs
	Messages as events
	Profilers as monitors
	Summary

	FAQ
	General
	Why are all versions of Logtalk numbered 2.x or 3.x?
	Why do I need a Prolog compiler to use Logtalk?
	Is the Logtalk implementation based on Prolog modules?
	Does the Logtalk implementation use term-expansion?

	Compatibility
	What are the backend Prolog compiler requirements to run Logtalk?
	Can I use constraint-based packages with Logtalk?
	Can I use Logtalk objects and Prolog modules at the same time?

	Installation
	The integration scripts/shortcuts are not working!
	I get errors when starting up Logtalk after upgrading to the latest version!

	Portability
	Are my Logtalk applications portable across Prolog compilers?
	Are my Logtalk applications portable across operating systems?

	Programming
	Should I use prototypes or classes in my application?
	Can I use both classes and prototypes in the same application?
	Can I mix classes and prototypes in the same hierarchy?
	Can I use a protocol or a category with both prototypes and classes?
	What support is provided in Logtalk for defining and using components?
	What support is provided in Logtalk for reflective programming?

	Troubleshooting
	Using compiler options on calls to the Logtalk compiling and loading predicates do not work!
	Gecko-based browsers (e.g. Firefox) show non-rendered HTML entities when browsing XML documenting files!
	Compiling a source file results in errors or warnings but the Logtalk compiler reports a successful compilation with zero errors and zero warnings!

	Usability
	Is there a shortcut for compiling and loading source files?
	Is there an equivalent directive to the ensure_loaded/1 Prolog directive?
	Are there shortcuts for the make functionality?

	Deployment
	Can I create standalone applications with Logtalk?

	Performance
	Is Logtalk implemented as a meta-interpreter?
	What kind of code Logtalk generates when compiling objects? Dynamic code? Static code?
	How about message-sending performance? Does Logtalk use static binding or dynamic binding?
	Which Prolog-dependent factors are most crucial for good Logtalk performance?
	How does Logtalk performance compare with plain Prolog and with Prolog modules?

	Licensing
	What’s the Logtalk distribution license?
	Can Logtalk be used in commercial applications?
	What’s the final license for a combination of Logtalk with a Prolog compiler?

	Support
	Are there professional consulting, training and supporting services?

	Glossary
	Bibliography
	Index

