
An Introduction to Logtalk

Paulo Moura
Logtalk author and maintainer

https://logtalk.org/ pmoura@logtalk.org

http://logtalk.org
mailto:pmoura@logtalk.org

Logtalk
• Declarative object-oriented logic programming language

• Currently implemented as a trans-compiler to Prolog

• Designed to extend and leverage Prolog with a strong
emphasis on portability

• Focused in code encapsulation and code reuse
mechanisms and improved predicate semantics

• Comprehensive ecosystem

2

Presentation outline

• History and numbers

• Objects in a Prolog world (and why)

• Logtalk design goals

• Logtalk architecture

• Logtalk overview and quick tour

• Logtalk as a portable Prolog application

• Logtalk programming support

3

A bit of history...

• Project started in January 1998

• First version for registered users in July 1998

• First public beta in October 1998

• First stable version (2.0) in February 1999

• Third generation (3.0) in January 2015

4

Logtalk in numbers

major release number
third generation of Logtalk

minor release number

• Compiler + runtime: ~19500 lines of Prolog code + ~1500 lines
of Logtalk code (excluding layout and comments)

• Third generation: 70 releases (release early, release often mantra)

• Current version: Logtalk 3.70.0

• ~1000 downloads/month (so many earthlings, so little time)

5

Logtalk distribution

• Full sources (compiler/runtime, Prolog integration support, documentation,
libraries, developer tools, examples, ports, utilities, ...)

• macOS (.pkg), Linux (.rpm), Debian (.deb), and Windows
(.exe) installers

• Handbook (user manual, reference manual, libraries and tools documentation,
FAQ, glossary)

• ~200 programming examples

• Coding support (text editing services and code publishing)

6

Logtalk users and applications

• Academic users (research; undergraduate, master, and phd thesis)

• Industrial users (both startups and established companies)

• Some industry and users sponsorship

• Wide range of applications using multiple backends

• Applications where software engineering principles are key

7

Objects in Prolog?!?

We’re being invaded!
8

Objects have identifiers and
dynamic state!

:- module(broadcast, [...]).

:- dynamic(listener/4).

...

assert_listener(Templ, Listener, Module, TheGoal) :-

	 asserta(listener(Templ, Listener, Module, TheGoal)).

retract_listener(Templ, Listener, Module, TheGoal) :-

	 retractall(listener(Templ, Listener, Module, TheGoal)).

Identifier!

Dynamic
state!

• It seems Prolog modules are there first:

9

Objects inherit lots of stuff
I don’t need!

:- module(aggregate, [...]).

:- use_module(library(ordsets)).

:- use_module(library(pairs)).

:- use_module(library(error)).

:- use_module(library(lists)).

:- use_module(library(apply)).

...

Just import everything
from each module!

• Objects are not necessarily tied to hierarchies. But how
about typical Prolog module code?

10

Objects are dynamically
created!

| ?- foo:assertz(bar).

yes

Dynamically creates
module foo if it doesn’t exist!

• Only if really necessary. Objects can be (and often are)
static, simply loaded from source files... but, guess what,
Prolog modules are there first:

11

Why not stick to modules?

Prolog modules key characteristics:

• Designed as a simple solution to to hide auxiliary predicates

• Based on a predicate prefixing compilation mechanism

• Reuse based on import/export semantics

• Default importing of module exported predicates when
loading a module file

• Strongly biased towards implicit predicate qualification

12

Why not stick to modules?

Prolog modules fail to:

• enforce encapsulation (in most implementations, you can call any module
predicate using explicit qualification)

• implement predicate namespaces (due to the import semantics and
current practice, module predicate names are often prefixed... with the module
name or its abbreviation!)

• provide a clean separation between loading and importing
(avoiding import conflicts)

• provide portability for libraries and tools

13

Why not stick to modules?

Prolog modules fail to:

• provide a standard mechanism for predicate import conflicts
(being fixed, however, in recent versions of some Prolog compilers)

• support separating interface from implementation (the ISO Prolog
standard proposes a solution that only allows a single implementation for
interface!)

• provide the same semantics for both implicit and explicit
qualified calls to meta-predicates

• provide a clear distinction between declaring a predicate and
defining a predicate (and thus clear CWA semantics)

14

Why not simply improve
module systems?

• No one wants to break backward compatibility

• An ISO Prolog standard that ignores current practice, tries to
do better, and fails

• Improvements perceived as alien to Prolog traditions (not to
mention the reinvention of the wheel)

• Good enough mentality (also few users working on large applications)

• Instant holy wars when discussing modules

15

Logtalk�
design goals

Which object-oriented features to
adopt or invent?

• Code encapsulation

➡ objects (including parametric objects)

➡ protocols (aka interfaces; separate interface from implementation)

➡ categories (fine-grained units of code reuse)

• Code reuse

➡ message sending (decoupling between messages and methods)

➡ inheritance (taxonomic knowledge is pervasive)

➡ composition (mix-and-match)

17

Declarative OOP
• Code encapsulation and reuse patterns

• Objects as units of encapsulation

• Objects encapsulate predicate declarations and definitions

• Object as theories

• Objects, protocols (interfaces), and categories as first-
class entities

• Entity relations define reuse patterns and the roles played
by the participating entities

• Prototype, parent, class, instance, metaclass, subclass,
superclass, or ancestor are just roles that an object can play

18

Design goals

• Extend Prolog with code encapsulation and reuse features
(based on an interpretation of object-oriented concepts in the context of
logic programming)

• Multi-paradigm language (integrating predicates, objects, events, and
threads)

• Support for both prototypes and classes (with “prototype” and
“class” being object roles and object relations interpreted as patterns of code
reuse)

• Compatibility with most Prolog compilers and the ISO
Prolog Core standard

19

Back-end Prolog compiler

Abstraction layer (Prolog adapter files)

Logtalk

Logtalk Architecture

20

Prolog

Prolog + Modules

Logtalk

Logtalk versus Prolog

21

Supported Prolog compilers

• Runs out-of-the box using:

B-Prolog, Ciao Prolog, CxProlog, ECLiPSe, GNU Prolog, JIProlog,
XVM, Qu Prolog, Quintus Prolog, SICStus Prolog, SWI-Prolog, Tau
Prolog, Trealla Prolog, XSB, YAP

• Older versions also supported:

Lean Prolog, IF/Prolog, K-Prolog, Open Prolog, ALS Prolog, Amzi!
Prolog, BinProlog, LPA MacProlog, LPA WinProlog, Prolog II+

22

Logtalk�
overview

Logtalk for Prolog programmers

• Prolog syntax plus a few operators and directives for a smooth
learning curve

• Can use most Prolog implementations as a back-end compiler
(allows use of most Prolog compiler specific features and libraries)

• Easy porting of Prolog applications

• Unmatched portability (leaves Prolog modules in the dust)

• Private, protected, and public object predicates (encapsulation is
enforced, unlike in most Prolog module systems)

• Static and dynamic object predicates

• Static and dynamic objects

24

Logtalk for object-oriented
programmers

• Prototypes and classes (object roles, not distinct entities)

• Parametric objects

• Multiple object hierarchies

• Multiple inheritance and multiple instantiation

• Private, protected, and public inheritance (generalized to protocols and
categories)

• Protocols (aka interfaces; can be implemented by both prototypes and classes)

• Categories (fine-grained units of code reuse; can be imported by both prototypes
and classes; can be used for hot patching)

• Static binding and dynamic binding (with predicate lookup caching)

25

Other interesting features

• Extended support for DCGs

• High-level multi-threading programming

• Event-driven programming

• Reflection (both structural and behavioral)

• Message printing and question asking mechanisms

• Dependable term-expansion mechanism

• Lambda expressions

• Coinduction

• Top of class developer tools

26

A quick tour�
on Logtalk programming

Defining objects

:- object(list).

	 :- public(append/3).

	 append([], L, L).

	 append([H| T], L, [H| T2]) :-

	 	append(T, L, T2).

	 :- public(member/2).

	 member(H, [H| _]).

	 member(H, [_| T]) :-

	 	member(H, T).

:- end_object.

28

Sending messages

?- list::append(L1, L2, [1, 2, 3]).

L1 = [], L2 = [1, 2, 3];

L1 = [1], L2 = [2, 3];

L2 = [1, 2], L2 = [3];

L3 = [1, 2, 3], L2 = []

yes

?- list::member(X, [a, b, c]).

X = a;

X = b;

X = c

yes

29

Defining and implementing
protocols

:- protocol(listp).

 :- public([

 append/3, member/2, ...

]).

 ...

:- end_protocol.

:- object(list,

 implements(listp)).

 append([], L, L).

 ...

:- end_object.

30

Object hierarchies: prototypes

:- object(state_space).

 :- public(initial_state/1).

 :- public(next_state/2).

 :- public(goal_state/1).

 ...

:- end_object.

:- object(heuristic_state_space,

 extends(state_space)).

 :- public(heuristic/2).

 ...

:- end_object.

31

Object hierarchies: classes
:- object(person,

 instantiates(class),

 specializes(object)).

 :- public(name/1).

 :- public(age/1).

 ...

:- end_object.

:- object(paulo,

 instantiates(person)).

 name('Paulo Moura').

 age(41).

 ...

:- end_object.

32

Parametric objects

:- object(rectangle(_Width_, _Height_)).

 :- public([width /1, height/1, area/1, ...]).

 ...

 width(_Width_).

 height(_Height_).

 area(Area) :-

 Area is _Width_ * _Height_.

 …

:- end_object.

33

Parameters are
logical variables,
shared by all object

predicates.

Using parametric objects

| ?- rectangle(3, 4)::area(Area).

Area = 12

yes

% Prolog facts as parametric object proxies (i.e. possible

% instantiations of a parametric object identifier)

rectangle(1, 2).

rectangle(2, 3).

rectangle(3, 4).

| ?- findall(Area, {rectangle(_, _)}::area(Area), Areas).

Areas = [2, 6, 12]

yes

34

Categories

• Dual concept of protocols (functional cohesion)

• Fine-grained units of code reuse (that don’t make sense as stand-alone
entities)

• Can contain both interface and implementation

• Can be (virtually) imported by any object (classes, instances, or
prototypes)

• Can hot patch existing objects (as in Objective-C)

• Provide runtime transparency (for descendant objects)

• Can declare and use dynamic predicates (each importing object will
have its own set of clauses; enables a category to define and manage object state)

35

Categories

• Can be extended (as with protocols, try to not break functional cohesion!)

• Compilation units, independently compiled from importing
objects or implemented protocols (enabling incremental compilation)

• Allows an object to be updated by simply updating the
imported categories, without any need to recompile it or to
access its source code

• Can be dynamically created and abolished at runtime (just like
objects or protocols)

36

Defining and importing categories

:- category(engine).

 :- public(capacity/1).

 :- public(cylinders/1).

 :- public(horsepower_rpm/2).

 ...

:- end_category.

:- object(car,

 imports(engine)).

 ...

:- end_object.

37

Complementing existing objects
(hot patching)

:- object(employee).

 ...

:- end_object.

:- category(logging

 complements(employee)).

 ...

:- end_category.

38

Event-driven programming

39

• Allows minimization of object coupling

• Provides a mechanism for building reflexive applications

• Provides a mechanism for easily defining method (predicate)
pre- and post-conditions

• Implemented by the language runtime at the message
sending mechanism level

Events

40

• An event corresponds to sending a message

• Described by the tuple (Event, Object, Message, Sender)

• before events and after events

• Independence between the two types of events

• All events are automatically generated by the message sending
mechanism

• The events watched at any moment can be dynamically
changed at runtime

Monitors

41

• Monitors are objects automatically notified whenever registered
events occur

• Any object can act as a monitor

• Define event handlers (before/3 and after/3)

• Unlimited number of monitors for each event

• The monitor status of an object can be dynamically changed in
runtime

• The events handlers never affect the term that represents the
monitored message

Monitor semantics

42

• All before event handlers must succeed, so that the message
processing can start

• All after event handlers must succeed so that the message itself
succeeds; failure of any handler forces backtracking over the
message execution (handler failure never leads to backtracking over the preceding
handlers)

Defining events and monitors
% setup employee as a monitor for any message sent to itself

:- initialization(define_events(before,employee,_,_,employee)).

:- object(employee).

 ...

:- end_object.

:- category(logging,

 implements(monitoring),		 % event handler protocol

 complements(employee)).

 % define a "before" event handler for the object

 before(This, Message, Sender) :-

 this(This),

 write('Received message '), writeq(Message),

 write(' from '), writeq(Sender), nl.

 ...

:- end_category.

43

Logtalk as a portable
Prolog application

The good...

• Plain portable Prolog implementation (no foreign code)

• Supports most Prolog compilers

• Free, open source (Apache License 2.0)

• Portable libraries (yes, they do exist!)

• Portable tools (ditto!)

• Competitive features (compared with both Prolog modules
and OOP languages)

• Competitive performance (close to plain Prolog when using
static binding)

45

... the bad...

• Some features are only available with some backend
Prolog compilers (e.g. Unicode, threads)

• Limited feature set due to the lack of Prolog
standardization

46

... and the ugly!

• Testing new releases across all supported Prolog
compilers and all supported operating-systems is time
consuming (better automation is possible, however)

• Poor support for reflection in too many Prolog
compilers (predicate properties, compiler version,
environment information, ...)

47

Programming Support

• Coding

• Code publishing

• Developer tools

• Deployment tools

Coding

• Syntax highlight

• Auto-indentation

• Code completion

• Code folding

• Snippets

Publishing Logtalk Source Code

• Source code repositories

• Web pages (e.g. wikis, blogs)

• Papers

50

Programming Tools

• Tutor (explains compiler errors and warnings)

• Linter (one of the best; only SICStus Prolog compares)

• Debugger (extended version of the traditional procedure box model
with unification and exception ports)

• Unit test framework (best in class)

• Diagrams (library, entity, directory, file, xref, …)

• Documenting tools

51

Programming Tools

• Ports profiler

• Dead code scanner

• Code metrics

• Make (supports multiple targets)

• Porting

• Version management

• Support for selected backend Prolog tools

52

Deployment Tools

• Logtalk and Logtalk applications can be precompiled to
relocatable Prolog code

• Support for selected backend Prolog compilers

53

Ive got you under my skin

Ive got you deep in the heart of me

So deep in my heart, that you’re really a part of me

Ive got you under my skin

Ive tried so not to give in

Ive said to myself this affair never will go so well

But why should I try to resist, when baby will I know than well

That Ive got you under my skin

Id sacrifice anything come what might

For the sake of having you near

In spite of a warning voice that comes in the night

And repeats, repeats in my ear

Don’t you know you fool, you never can win

Use your mentality, wake up to reality

But each time I do, just the thought of you

Makes me stop before I begin

Cause Ive got you under my skin

That’s all folks!

Please don’t forget to buy the nice t-shirt!

http://www.lyricsfreak.com/f/frank+sinatra/ive+got+you+under+my+skin_20055638.html#
http://www.lyricsfreak.com/f/frank+sinatra/ive+got+you+under+my+skin_20055638.html#

