

Logtalk APIs

Contents

	Libraries
	arbitrary
	arbitrary

	assertions
	assertions

	assertions(Mode)

	assertions_messages

	assignvars
	assignvars

	assignvarsp

	base64
	base64

	base64url

	cbor
	cbor

	cbor(StringRepresentation)

	code_metrics
	cc_metric

	code_metric

	code_metrics

	code_metrics_messages

	code_metrics_utilities

	coupling_metric

	dit_metric

	doc_metric

	halstead_metric

	halstead_metric(Stroud)

	noc_metric

	nor_metric

	size_metric

	upn_metric

	core
	core_messages

	expanding

	forwarding

	logtalk

	monitoring

	user

	coroutining
	coroutining

	csv
	csv

	csv(Header,Separator,IgnoreQuotes)

	csv_guess_questions

	csv_protocol

	dates
	date

	datep

	time

	timep

	dead_code_scanner
	dead_code_scanner

	dead_code_scanner_messages

	debug_messages
	debug_messages

	debugger
	debugger

	debugger_messages

	debuggerp

	dump_trace

	dependents
	observer

	subject

	diagrams
	d2_graph_language

	diagram(Format)

	diagrams

	diagrams(Format)

	directory_dependency_diagram

	directory_dependency_diagram(Format)

	directory_diagram(Format)

	directory_load_diagram

	directory_load_diagram(Format)

	dot_graph_language

	entity_diagram

	entity_diagram(Format)

	file_dependency_diagram

	file_dependency_diagram(Format)

	file_diagram(Format)

	file_load_diagram

	file_load_diagram(Format)

	graph_language_protocol

	graph_language_registry

	inheritance_diagram

	inheritance_diagram(Format)

	library_dependency_diagram

	library_dependency_diagram(Format)

	library_diagram(Format)

	library_load_diagram

	library_load_diagram(Format)

	mermaid_graph_language

	modules_diagram_support

	uses_diagram

	uses_diagram(Format)

	xref_diagram

	xref_diagram(Format)

	dictionaries
	avltree

	bintree

	dictionaryp

	rbtree

	dif
	dif

	doclet
	doclet

	edcg
	edcg

	events
	after_event_registry

	before_event_registry

	event_registry

	event_registryp

	monitor

	monitorp

	expand_library_alias_paths
	expand_library_alias_paths

	expecteds
	either

	expected

	expected(Expected)

	fcube
	fcube

	flags
	flags

	flags_validator

	format
	format

	genint
	genint

	genint_core

	gensym
	gensym

	gensym_core

	git
	git

	git_protocol

	grammars
	blank_grammars(Format)

	ip_grammars(Format)

	number_grammars(Format)

	sequence_grammars

	heaps
	heap(Order)

	heapp

	maxheap

	minheap

	help
	help

	help_info_support

	hierarchies
	class_hierarchy

	class_hierarchyp

	hierarchyp

	proto_hierarchy

	proto_hierarchyp

	hook_flows
	hook_pipeline(Pipeline)

	hook_set(Set)

	hook_objects
	backend_adapter_hook

	default_workflow_hook

	grammar_rules_hook

	identity_hook

	object_wrapper_hook

	object_wrapper_hook(Protocol)

	object_wrapper_hook(Name,Relations)

	print_goal_hook

	prolog_module_hook(Module)

	suppress_goal_hook

	write_to_file_hook(File)

	write_to_file_hook(File,Options)

	write_to_stream_hook(Stream)

	write_to_stream_hook(Stream,Options)

	html
	html

	html5

	xhtml11

	ids
	ids

	ids(Representation,Bytes)

	intervals
	interval

	intervalp

	iso8601
	iso8601

	issue_creator
	issue_creator

	java
	java

	java(Reference)

	java(Reference,ReturnValue)

	java_access_protocol

	java_hook

	java_utils_protocol

	json
	json

	json(StringRepresentation)

	json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_protocol

	json_lines
	json_lines

	json_lines(StringRepresentation)

	json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_lines_protocol

	lgtdoc
	lgtdoc

	lgtdoc_messages

	lgtdocp

	lgtunit
	automation_report

	coverage_report

	lgtunit

	lgtunit_messages

	minimal_output

	tap_output

	tap_report

	xunit_net_v2_output

	xunit_net_v2_report

	xunit_output

	xunit_report

	library
	cloning

	counters

	streamvars

	listing
	listing

	logging
	logger

	logging

	loggingp

	loops
	loop

	loopp

	meta
	meta

	metap

	meta_compiler
	meta_compiler

	metagol
	metagol

	metagol_example_protocol

	mutations
	default_atom_mutations

	default_compound_mutations

	default_float_mutations

	default_integer_mutations

	default_list_mutations

	mutations

	mutations_store

	nested_dictionaries
	navltree

	nbintree

	nested_dictionary_protocol

	nrbtree

	optionals
	maybe

	optional

	optional(Optional)

	options
	options

	options_protocol

	os
	os

	os_types

	osp

	packs
	pack_protocol

	packs

	packs_common

	packs_messages

	packs_specs_hook

	registries

	registry_loader_hook

	registry_protocol

	pddl_parser
	pddl

	read_file

	ports_profiler
	ports_profiler

	queues
	queue

	queuep

	random
	backend_random

	fast_random

	pseudo_random_protocol

	random

	random_protocol

	sampling_protocol

	reader
	reader

	recorded_database
	recorded_database

	recorded_database_core

	redis
	redis

	sets
	set

	set(Type)

	setp

	statistics
	population

	sample

	statistics

	statisticsp

	term_io
	term_io

	term_io_protocol

	timeout
	timeout

	toychr
	toychrdb

	tsv
	tsv

	tsv(Header)

	tsv_protocol

	tutor
	tutor

	types
	atom

	atomic

	callable

	character

	characterp

	comparingp

	compound

	difflist

	float

	integer

	list

	list(Type)

	listp

	natural

	number

	numberlist

	numberlistp

	pairs

	term

	termp

	type

	varlist

	varlistp

	ulid
	ulid

	ulid(Representation)

	ulid_protocol

	ulid_types

	union_find
	union_find

	union_find_protocol

	uuid
	uuid

	uuid(Representation)

	uuid_protocol

	verdi_neruda
	a_star_interpreter(W)

	benchmark_generators

	best_first

	bfs_interpreter

	bup_interpreter

	counter

	databasep

	debug_expansion(Mode)

	demodb

	dfs_interpreter

	flatting

	heuristic_expansion(Mode)

	iddfs_interpreter(Increment)

	interpreterp

	magic

	magic_expansion(Mode)

	rule_expansion(Mode)

	shell

	shell(Interpreters)

	shell_expansion(Mode)

	wrapper
	wrapper

	xml_parser
	xml

	zippers
	zipperp

	zlist

	Directories
	contributions/flags/
	flags

	flags_validator

	contributions/iso8601/
	iso8601

	contributions/pddl_parser/
	pddl

	read_file

	contributions/verdi_neruda/
	a_star_interpreter(W)

	benchmark_generators

	best_first

	bfs_interpreter

	bup_interpreter

	counter

	databasep

	debug_expansion(Mode)

	demodb

	dfs_interpreter

	flatting

	heuristic_expansion(Mode)

	iddfs_interpreter(Increment)

	interpreterp

	magic

	magic_expansion(Mode)

	rule_expansion(Mode)

	shell

	shell(Interpreters)

	shell_expansion(Mode)

	contributions/xml_parser/
	xml

	core/
	core_messages

	expanding

	forwarding

	logtalk

	monitoring

	user

	library/
	cloning

	counters

	streamvars

	library/arbitrary/
	arbitrary

	library/assignvars/
	assignvars

	assignvarsp

	library/base64/
	base64

	base64url

	library/cbor/
	cbor

	cbor(StringRepresentation)

	library/coroutining/
	coroutining

	library/csv/
	csv

	csv(Header,Separator,IgnoreQuotes)

	csv_guess_questions

	csv_protocol

	library/dates/
	date

	datep

	time

	timep

	library/dependents/
	observer

	subject

	library/dictionaries/
	avltree

	bintree

	dictionaryp

	rbtree

	library/dif/
	dif

	library/edcg/
	edcg

	library/events/
	after_event_registry

	before_event_registry

	event_registry

	event_registryp

	monitor

	monitorp

	library/expand_library_alias_paths/
	expand_library_alias_paths

	library/expecteds/
	either

	expected

	expected(Expected)

	library/format/
	format

	library/genint/
	genint

	genint_core

	library/gensym/
	gensym

	gensym_core

	library/git/
	git

	git_protocol

	library/grammars/
	blank_grammars(Format)

	ip_grammars(Format)

	number_grammars(Format)

	sequence_grammars

	library/heaps/
	heap(Order)

	heapp

	maxheap

	minheap

	library/hierarchies/
	class_hierarchy

	class_hierarchyp

	hierarchyp

	proto_hierarchy

	proto_hierarchyp

	library/hook_flows/
	hook_pipeline(Pipeline)

	hook_set(Set)

	library/hook_objects/
	backend_adapter_hook

	default_workflow_hook

	grammar_rules_hook

	identity_hook

	object_wrapper_hook

	object_wrapper_hook(Protocol)

	object_wrapper_hook(Name,Relations)

	print_goal_hook

	prolog_module_hook(Module)

	suppress_goal_hook

	write_to_file_hook(File)

	write_to_file_hook(File,Options)

	write_to_stream_hook(Stream)

	write_to_stream_hook(Stream,Options)

	library/html/
	html

	html5

	xhtml11

	library/ids/
	ids

	ids(Representation,Bytes)

	library/intervals/
	interval

	intervalp

	library/java/
	java

	java(Reference)

	java(Reference,ReturnValue)

	java_access_protocol

	java_hook

	java_utils_protocol

	library/json/
	json

	json(StringRepresentation)

	json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_protocol

	library/json_lines/
	json_lines

	json_lines(StringRepresentation)

	json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_lines_protocol

	library/listing/
	listing

	library/logging/
	logger

	logging

	loggingp

	library/loops/
	loop

	loopp

	library/meta/
	meta

	metap

	library/meta_compiler/
	meta_compiler

	library/mutations/
	default_atom_mutations

	default_compound_mutations

	default_float_mutations

	default_integer_mutations

	default_list_mutations

	mutations

	mutations_store

	library/nested_dictionaries/
	navltree

	nbintree

	nested_dictionary_protocol

	nrbtree

	library/optionals/
	maybe

	optional

	optional(Optional)

	library/options/
	options

	options_protocol

	library/os/
	os

	os_types

	osp

	library/queues/
	queue

	queuep

	library/random/
	backend_random

	fast_random

	pseudo_random_protocol

	random

	random_protocol

	sampling_protocol

	library/reader/
	reader

	library/recorded_database/
	recorded_database

	recorded_database_core

	library/redis/
	redis

	library/sets/
	set

	set(Type)

	setp

	library/statistics/
	population

	sample

	statistics

	statisticsp

	library/term_io/
	term_io

	term_io_protocol

	library/timeout/
	timeout

	library/tsv/
	tsv

	tsv(Header)

	tsv_protocol

	library/types/
	atom

	atomic

	callable

	character

	characterp

	comparingp

	compound

	difflist

	float

	integer

	list

	list(Type)

	listp

	natural

	number

	numberlist

	numberlistp

	pairs

	term

	termp

	type

	varlist

	varlistp

	library/ulid/
	ulid

	ulid(Representation)

	ulid_protocol

	ulid_types

	library/union_find/
	union_find

	union_find_protocol

	library/uuid/
	uuid

	uuid(Representation)

	uuid_protocol

	library/zippers/
	zipperp

	zlist

	ports/fcube/
	fcube

	ports/metagol/
	metagol

	metagol_example_protocol

	ports/toychr/
	toychrdb

	tools/assertions/
	assertions

	assertions(Mode)

	assertions_messages

	tools/code_metrics/
	cc_metric

	code_metric

	code_metrics

	code_metrics_messages

	code_metrics_utilities

	coupling_metric

	dit_metric

	doc_metric

	halstead_metric

	halstead_metric(Stroud)

	noc_metric

	nor_metric

	size_metric

	upn_metric

	tools/dead_code_scanner/
	dead_code_scanner

	dead_code_scanner_messages

	tools/debug_messages/
	debug_messages

	tools/debugger/
	debugger

	debugger_messages

	debuggerp

	dump_trace

	tools/diagrams/
	d2_graph_language

	diagram(Format)

	diagrams

	diagrams(Format)

	directory_dependency_diagram

	directory_dependency_diagram(Format)

	directory_diagram(Format)

	directory_load_diagram

	directory_load_diagram(Format)

	dot_graph_language

	entity_diagram

	entity_diagram(Format)

	file_dependency_diagram

	file_dependency_diagram(Format)

	file_diagram(Format)

	file_load_diagram

	file_load_diagram(Format)

	graph_language_protocol

	graph_language_registry

	inheritance_diagram

	inheritance_diagram(Format)

	library_dependency_diagram

	library_dependency_diagram(Format)

	library_diagram(Format)

	library_load_diagram

	library_load_diagram(Format)

	mermaid_graph_language

	modules_diagram_support

	uses_diagram

	uses_diagram(Format)

	xref_diagram

	xref_diagram(Format)

	tools/doclet/
	doclet

	tools/help/
	help

	help_info_support

	tools/issue_creator/
	issue_creator

	tools/lgtdoc/
	lgtdoc

	lgtdoc_messages

	lgtdocp

	tools/lgtunit/
	automation_report

	coverage_report

	lgtunit

	lgtunit_messages

	minimal_output

	tap_output

	tap_report

	xunit_net_v2_output

	xunit_net_v2_report

	xunit_output

	xunit_report

	tools/packs/
	pack_protocol

	packs

	packs_common

	packs_messages

	packs_specs_hook

	registries

	registry_loader_hook

	registry_protocol

	tools/ports_profiler/
	ports_profiler

	tools/tutor/
	tutor

	tools/wrapper/
	wrapper

	Entities
	Categories
	arbitrary

	assertions_messages

	best_first

	class_hierarchy

	code_metric

	code_metrics_messages

	code_metrics_utilities

	core_messages

	counters

	csv_guess_questions

	dead_code_scanner_messages

	debugger_messages

	diagram(Format)

	directory_diagram(Format)

	file_diagram(Format)

	flags

	flatting

	genint_core

	gensym_core

	help_info_support

	html

	lgtdoc_messages

	lgtunit_messages

	library_diagram(Format)

	listing

	logging

	monitor

	mutations

	observer

	options

	os_types

	packs_common

	packs_messages

	proto_hierarchy

	read_file

	recorded_database_core

	statistics

	subject

	ulid_types

	Objects
	a_star_interpreter(W)

	after_event_registry

	assertions

	assertions(Mode)

	assignvars

	atom

	atomic

	automation_report

	avltree

	backend_adapter_hook

	backend_random

	base64

	base64url

	before_event_registry

	benchmark_generators

	bfs_interpreter

	bintree

	blank_grammars(Format)

	bup_interpreter

	callable

	cbor

	cbor(StringRepresentation)

	cc_metric

	character

	code_metrics

	compound

	coroutining

	counter

	coupling_metric

	coverage_report

	csv

	csv(Header,Separator,IgnoreQuotes)

	d2_graph_language

	date

	dead_code_scanner

	debug_expansion(Mode)

	debug_messages

	debugger

	default_atom_mutations

	default_compound_mutations

	default_float_mutations

	default_integer_mutations

	default_list_mutations

	default_workflow_hook

	demodb

	dfs_interpreter

	diagrams

	diagrams(Format)

	dif

	difflist

	directory_dependency_diagram

	directory_dependency_diagram(Format)

	directory_load_diagram

	directory_load_diagram(Format)

	dit_metric

	doc_metric

	doclet

	dot_graph_language

	dump_trace

	edcg

	either

	entity_diagram

	entity_diagram(Format)

	event_registry

	expand_library_alias_paths

	expected

	expected(Expected)

	fast_random

	fcube

	file_dependency_diagram

	file_dependency_diagram(Format)

	file_load_diagram

	file_load_diagram(Format)

	float

	format

	genint

	gensym

	git

	grammar_rules_hook

	graph_language_registry

	halstead_metric

	halstead_metric(Stroud)

	heap(Order)

	help

	heuristic_expansion(Mode)

	hook_pipeline(Pipeline)

	hook_set(Set)

	html5

	iddfs_interpreter(Increment)

	identity_hook

	ids

	ids(Representation,Bytes)

	inheritance_diagram

	inheritance_diagram(Format)

	integer

	interval

	ip_grammars(Format)

	iso8601

	issue_creator

	java

	java(Reference)

	java(Reference,ReturnValue)

	java_hook

	json

	json(StringRepresentation)

	json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_lines

	json_lines(StringRepresentation)

	json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	lgtdoc

	lgtunit

	library_dependency_diagram

	library_dependency_diagram(Format)

	library_load_diagram

	library_load_diagram(Format)

	list

	list(Type)

	logger

	logtalk

	loop

	magic

	magic_expansion(Mode)

	maxheap

	maybe

	mermaid_graph_language

	meta

	meta_compiler

	metagol

	minheap

	minimal_output

	modules_diagram_support

	mutations_store

	natural

	navltree

	nbintree

	noc_metric

	nor_metric

	nrbtree

	number

	number_grammars(Format)

	numberlist

	object_wrapper_hook

	object_wrapper_hook(Protocol)

	object_wrapper_hook(Name,Relations)

	optional

	optional(Optional)

	os

	packs

	packs_specs_hook

	pairs

	pddl

	population

	ports_profiler

	print_goal_hook

	prolog_module_hook(Module)

	queue

	random

	rbtree

	reader

	recorded_database

	redis

	registries

	registry_loader_hook

	rule_expansion(Mode)

	sample

	sequence_grammars

	set

	set(Type)

	shell

	shell(Interpreters)

	shell_expansion(Mode)

	size_metric

	streamvars

	suppress_goal_hook

	tap_output

	tap_report

	term

	term_io

	time

	timeout

	toychrdb

	tsv

	tsv(Header)

	tutor

	type

	ulid

	ulid(Representation)

	union_find

	upn_metric

	user

	uses_diagram

	uses_diagram(Format)

	uuid

	uuid(Representation)

	varlist

	wrapper

	write_to_file_hook(File)

	write_to_file_hook(File,Options)

	write_to_stream_hook(Stream)

	write_to_stream_hook(Stream,Options)

	xhtml11

	xml

	xref_diagram

	xref_diagram(Format)

	xunit_net_v2_output

	xunit_net_v2_report

	xunit_output

	xunit_report

	zlist

	Protocols
	assignvarsp

	characterp

	class_hierarchyp

	cloning

	comparingp

	csv_protocol

	databasep

	datep

	debuggerp

	dictionaryp

	event_registryp

	expanding

	flags_validator

	forwarding

	git_protocol

	graph_language_protocol

	heapp

	hierarchyp

	interpreterp

	intervalp

	java_access_protocol

	java_utils_protocol

	json_lines_protocol

	json_protocol

	lgtdocp

	listp

	loggingp

	loopp

	metagol_example_protocol

	metap

	monitoring

	monitorp

	nested_dictionary_protocol

	numberlistp

	options_protocol

	osp

	pack_protocol

	proto_hierarchyp

	pseudo_random_protocol

	queuep

	random_protocol

	registry_protocol

	sampling_protocol

	setp

	statisticsp

	term_io_protocol

	termp

	timep

	tsv_protocol

	ulid_protocol

	union_find_protocol

	uuid_protocol

	varlistp

	zipperp

	Predicates
	(/)/2

	(//)/2

	(<)/2

	(<=)/2

	(=:=)/2

	(=<)/2

	(=>)/2

	(=\=)/2

	=~= / 2

	(>)/2

	(>=)/2

	absolute_file_name/2

	activate_debug_handler/1

	activate_monitor/0

	active_debug_handler/1

	add/1

	add/2

	add/3

	addDependent/1

	after/2

	after/3

	all/0

	all/1

	all_files/0

	all_files/1

	all_libraries/0

	all_libraries/1

	all_score/1

	ancestor/1

	ancestors/1

	apis/0

	apis/1

	append/2

	append/3

	apply/2

	apply/4

	approximately_equal/2

	approximately_equal/3

	arbitrary/1

	arbitrary/2

	archive/1

	arithmetic_mean/2

	array_list/2

	array_to_list/2

	array_to_terms/2

	array_to_terms/3

	as_curly_bracketed/2

	as_dictionary/2

	as_difflist/2

	as_heap/2

	as_list/2

	as_nested_dictionary/2

	as_set/2

	ask_question/5

	assertion/1

	assertion/2

	assignable/1

	assignable/2

	available/0

	available/1

	available/2

	average/2

	average_deviation/3

	before/2

	before/3

	bench_goal/1

	benchmark/2

	benchmark/3

	benchmark/4

	benchmark_reified/3

	bernoulli/2

	beta/3

	between/3

	between/4

	binomial/3

	bit//1

	bits//1

	blank//0

	blanks//0

	body_pred/1

	branch/2

	built_in_directive/4

	built_in_flag/2

	built_in_method/4

	built_in_non_terminal/4

	built_in_predicate/4

	calendar_month/3

	call_with_timeout/2

	call_with_timeout/3

	cat/2

	change_directory/1

	changed/0

	changed/1

	chebyshev_distance/3

	chebyshev_norm/2

	check/1

	check/2

	check/3

	check_option/1

	check_options/1

	chi_squared/2

	chr_is/2

	chr_no_spy/1

	chr_nospy/0

	chr_notrace/0

	chr_option/2

	chr_spy/1

	chr_trace/0

	circular_uniform_cartesian/3

	circular_uniform_polar/3

	class/1

	classes/1

	clause/5

	clause_location/6

	clean/0

	clean/1

	clean/2

	clone/1

	clone/3

	clone/4

	coefficient_of_variation/2

	command_line_arguments/1

	commit_author/2

	commit_date/2

	commit_hash/2

	commit_hash_abbreviated/2

	commit_log/3

	commit_message/2

	compile_aux_clauses/1

	compile_predicate_heads/4

	compile_predicate_indicators/3

	completion/2

	completions/2

	connect/1

	connect/3

	console/1

	contains/2

	control//0

	control_construct/4

	controls//0

	copy_file/2

	counter/2

	cover/1

	cpu_time/1

	current/2

	data/0

	data/1

	data/2

	date/4

	date/5

	date/6

	date/7

	date_string/3

	date_time/7

	days_in_month/3

	deactivate_debug_handler/0

	debug/0

	debug_handler/1

	debug_handler/3

	debugging/0

	debugging/1

	decide/1

	decide/2

	decode_exception/2

	decode_exception/3

	decompile_predicate_heads/4

	decompile_predicate_indicators/4

	decompose_file_name/3

	decompose_file_name/4

	decrement_counter/1

	default_option/1

	default_options/1

	define_log_file/2

	defined/4

	defined_flag/6

	del_monitors/0

	del_monitors/4

	del_spy_points/4

	delete/0

	delete/1

	delete/2

	delete/3

	delete/4

	delete_all_after/2

	delete_all_after_and_unzip/2

	delete_all_before/2

	delete_all_before_and_unzip/2

	delete_and_next/2

	delete_and_previous/2

	delete_and_unzip/2

	delete_directory/1

	delete_directory_and_contents/1

	delete_directory_contents/1

	delete_file/1

	delete_in/4

	delete_matches/3

	delete_max/4

	delete_min/4

	dependents/1

	dependents/2

	dependents/3

	depth/2

	descendant/1

	descendant_class/1

	descendant_classes/1

	descendant_instance/1

	descendant_instances/1

	descendants/1

	describe/1

	describe/2

	description/1

	deterministic/1

	deterministic/2

	diagram_description/1

	diagram_name_suffix/1

	dif/1

	dif/2

	digit//1

	digits//1

	directories/1

	directories/2

	directories/3

	directory/1

	directory/2

	directory/3

	directory_exists/1

	directory_files/2

	directory_files/3

	directory_score/2

	dirichlet/2

	disable/1

	disable/2

	disable_logging/1

	disconnect/1

	disjoint/2

	disjoint_sets/2

	doc_goal/1

	dot//1

	dowhile/2

	drop/3

	during/2

	easter_day/3

	edge/6

	edge_case/2

	either/3

	empty/1

	enable/1

	enable/2

	enable_logging/1

	enabled/1

	enabled/2

	ensure_directory/1

	ensure_file/1

	entity/1

	entity/2

	entity_info_pair_score_hook/3

	entity_info_score_hook/2

	entity_predicates_weights_hook/2

	entity_prefix/2

	entity_score/2

	enumerate/2

	environment_variable/2

	epsilon/1

	equal/2

	erase/1

	essentially_equal/3

	euclidean_distance/3

	euclidean_norm/2

	exclude/3

	execution_context/7

	expand_library_path/2

	expected/1

	expecteds/2

	explain//1

	exponential/2

	extension/1

	extensions/1

	failed_test_reason//1

	false/1

	fcube/0

	file/1

	file/2

	file_exists/1

	file_footer/3

	file_header/3

	file_modification_time/2

	file_permission/2

	file_score/2

	file_size/2

	file_to_bytes/2

	file_to_bytes/3

	file_to_chars/2

	file_to_chars/3

	file_to_codes/2

	file_to_codes/3

	file_to_terms/2

	file_to_terms/3

	file_type_extension/2

	files/1

	files/2

	files/3

	filter/2

	find/4

	find/5

	findall_member/4

	findall_member/5

	finished_by/2

	finishes/2

	fisher/3

	flag_group_chk/1

	flag_groups/1

	flat_map/2

	flatten/2

	float//1

	fold_left/4

	fold_left_1/3

	fold_right/4

	fold_right_1/3

	fordownto/3

	fordownto/4

	fordownto/5

	foreach/3

	foreach/4

	format/2

	format/3

	format_entity_score//2

	format_object/1

	format_to_atom/3

	format_to_chars/3

	format_to_chars/4

	format_to_codes/3

	format_to_codes/4

	forto/3

	forto/4

	forto/5

	forward/1

	forward/2

	forward/3

	fractile/3

	freeze/2

	from_generator/2

	from_generator/3

	from_generator/4

	from_goal/2

	from_goal/3

	from_goal/4

	frozen/2

	full_device_path/1

	func_test/3

	functional/0

	gamma/3

	generate/1

	generate/2

	generate/8

	genint/2

	gensym/2

	geometric/2

	geometric_mean/2

	get/1

	get_field/2

	get_flag_value/2

	get_seed/1

	gnu/0

	goal_expansion/2

	graph_footer/5

	graph_header/5

	ground/1

	group_by_key/2

	group_consecutive_by_key/2

	group_sorted_by_key/2

	guess_arity/2

	guess_separator/2

	gumbel/3

	hamming_distance/3

	handbook/0

	handbook/1

	harmonic_mean/2

	head/2

	head_pred/1

	help/0

	hex_digit//1

	hex_digits//1

	home/1

	hypergeometric/4

	ibk/3

	if_empty/1

	if_expected/1

	if_expected_or_else/2

	if_present/1

	if_present_or_else/2

	if_unexpected/1

	include/3

	increase/1

	increment/0

	increment_counter/1

	init/0

	init_log_file/2

	inorder/2

	insert/3

	insert/4

	insert_after/3

	insert_all/3

	insert_before/3

	insert_in/4

	install/1

	install/2

	install/3

	install/4

	installed/0

	installed/1

	installed/3

	installed/4

	instance/1

	instance/2

	instances/1

	integer//1

	internal_os_path/2

	intersect/2

	intersection/2

	intersection/3

	intersection/4

	invoke/1

	invoke/2

	ipv4//1

	ipv6//1

	is_absolute_file_name/1

	is_alpha/1

	is_alphanumeric/1

	is_ascii/1

	is_bin_digit/1

	is_control/1

	is_dec_digit/1

	is_empty/0

	is_end_of_line/1

	is_expected/0

	is_false/1

	is_hex_digit/1

	is_layout/1

	is_letter/1

	is_lower_case/1

	is_newline/1

	is_null/1

	is_object/1

	is_octal_digit/1

	is_period/1

	is_present/0

	is_punctuation/1

	is_quote/1

	is_true/1

	is_unexpected/0

	is_upper_case/1

	is_void/1

	is_vowel/1

	is_white_space/1

	iterator_element/2

	join/3

	join_all/3

	jump/3

	jump_all/3

	jump_all_block/3

	key/2

	keys/2

	keys_values/3

	keysort/2

	kurtosis/2

	language_object/2

	last/2

	leaf/1

	leaf_class/1

	leaf_classes/1

	leaf_instance/1

	leaf_instances/1

	leap_year/1

	learn/0

	learn/1

	learn/2

	learn/3

	learn_seq/2

	learn_with_timeout/4

	leash/1

	leashing/1

	least_common_multiple/2

	leaves/1

	length/2

	libraries/1

	libraries/2

	libraries/3

	library/0

	library/1

	library/2

	library_score/2

	license/1

	line_to_chars/2

	line_to_chars/3

	line_to_codes/2

	line_to_codes/3

	lint/0

	lint/1

	lint/2

	list/0

	list_to_array/2

	listing/0

	listing/1

	loaded_file/1

	loaded_file_property/2

	log/3

	log_event/2

	log_file/2

	logging/1

	logging/3

	logistic/3

	lognormal/3

	logseries/2

	logtalk_packs/0

	logtalk_packs/1

	lookup/2

	lookup/3

	lookup_in/3

	lower_upper/2

	magic/2

	magicise/4

	make_directory/1

	make_directory_path/1

	make_set/3

	man/1

	manhattan_distance/3

	manhattan_norm/2

	manuals/0

	map/2

	map/3

	map/4

	map/5

	map/6

	map/7

	map/8

	map_element/2

	map_reduce/5

	max/2

	max/3

	max_clauses/1

	max_inv_preds/1

	max_size/1

	maybe/0

	maybe/1

	maybe/2

	maybe_call/1

	maybe_call/2

	mean_deviation/2

	median/2

	median_deviation/2

	meets/2

	member/2

	memberchk/2

	merge/3

	message_hook/4

	message_prefix_file/6

	message_prefix_stream/4

	message_tokens//2

	met_by/2

	meta_type/3

	metarule/6

	metarule_next_id/1

	min/2

	min/3

	min_clauses/1

	min_max/3

	modes/2

	module_property/2

	monitor/1

	monitor/4

	monitor_activated/0

	monitored/1

	monitors/1

	msort/2

	msort/3

	mutation/3

	name/1

	name_of_day/3

	name_of_month/3

	natural//1

	new/1

	new/2

	new/3

	new_line//0

	new_lines//0

	next/2

	next/3

	next/4

	nextto/3

	node/7

	nodebug/0

	nolog/3

	nologall/0

	non_blank//1

	non_blanks//1

	normal/3

	normal_element/2

	normalize_range/2

	normalize_range/4

	normalize_scalar/2

	normalize_unit/2

	nospy/1

	nospy/3

	nospy/4

	nospyall/0

	note/2

	note/3

	notrace/0

	now/3

	nth0/3

	nth0/4

	nth1/3

	nth1/4

	null/1

	null_device_path/1

	number//1

	number_of_tests/1

	numbervars/1

	numbervars/3

	occurrences/2

	occurrences/3

	occurs/2

	of/2

	of_expected/2

	of_unexpected/2

	one_or_more//0

	one_or_more//1

	one_or_more//2

	operating_system_machine/1

	operating_system_name/1

	operating_system_release/1

	operating_system_type/1

	option/2

	option/3

	or/2

	or_else/2

	or_else_call/2

	or_else_fail/1

	or_else_get/2

	or_else_throw/1

	or_else_throw/2

	orphaned/0

	orphaned/2

	outdated/0

	outdated/1

	outdated/2

	outdated/4

	outdated/5

	output_file_name/2

	overlapped_by/2

	overlaps/2

	parent/1

	parenthesis/2

	parents/1

	parse/2

	parse/3

	parse_domain/2

	parse_domain/3

	parse_problem/2

	parse_problem/3

	partial_map/4

	partition/3

	partition/4

	partition/5

	partition/6

	path_concat/3

	permutation/2

	pid/1

	pin/0

	pin/1

	pinned/1

	plus/3

	poisson/2

	port/5

	portray_clause/1

	postorder/2

	power/2

	power_sequence/4

	powerset/2

	pp/1

	pprint/1

	predicate/2

	predicate_info_pair_score_hook/4

	predicate_info_score_hook/3

	predicate_mode_score_hook/3

	predicate_mode_score_hook/5

	predicates/2

	prefix/0

	prefix/1

	prefix/2

	prefix/3

	preorder/2

	previous/2

	previous/3

	previous/4

	print_flags/0

	print_flags/1

	print_message/3

	print_message_token/4

	print_message_tokens/3

	product/2

	product/3

	program_to_clauses/2

	proper_prefix/2

	proper_prefix/3

	proper_suffix/2

	proper_suffix/3

	prove/2

	prove/3

	provides/2

	question_hook/6

	question_prompt_stream/4

	quick_check/1

	quick_check/2

	quick_check/3

	random/1

	random/3

	random_node/1

	random_tree/1

	randomize/1

	randseq/4

	randset/4

	range/2

	rdirectories/1

	rdirectories/2

	rdirectory/1

	rdirectory/2

	rdirectory/3

	rdirectory_score/2

	read_file/2

	read_file/3

	read_file_by_line/2

	read_file_by_line/3

	read_from_atom/2

	read_from_chars/2

	read_from_codes/2

	read_only_device_path/1

	read_stream/2

	read_stream/3

	read_stream_by_line/2

	read_stream_by_line/3

	read_term_from_atom/3

	read_term_from_chars/3

	read_term_from_chars/4

	read_term_from_codes/3

	read_term_from_codes/4

	readme/1

	readme/2

	recorda/2

	recorda/3

	recorded/2

	recorded/3

	recordz/2

	recordz/3

	relative_standard_deviation/2

	removeDependent/1

	remove_duplicates/2

	rename_file/2

	replace/3

	replace_sub_atom/4

	rescale/3

	reset/0

	reset/1

	reset_counter/1

	reset_counters/0

	reset_flags/0

	reset_flags/1

	reset_genint/0

	reset_genint/1

	reset_gensym/0

	reset_gensym/1

	reset_monitor/0

	reset_seed/0

	restore/1

	restore/2

	reverse/2

	rewind/2

	rewind/3

	rlibraries/1

	rlibraries/2

	rlibrary/1

	rlibrary/2

	rlibrary_score/2

	rule/2

	rule/3

	rule/4

	run/0

	run/1

	run/2

	run_test_sets/1

	same_length/2

	same_length/3

	save/0

	save/1

	save/2

	scalar_product/3

	scan_left/4

	scan_left_1/3

	scan_right/4

	scan_right_1/3

	search/1

	select/3

	select/4

	selectchk/3

	selectchk/4

	send/3

	sequence/3

	sequence/4

	sequence/5

	sequential_occurrences/2

	sequential_occurrences/3

	serve/3

	set/1

	set/4

	set_element/2

	set_field/2

	set_flag_value/2

	set_flag_value/3

	set_monitor/4

	set_seed/1

	set_spy_point/4

	set_write_max_depth/1

	setup/0

	shell/1

	shell/2

	shell_command/1

	shrink/3

	shrink_sequence/3

	shrinker/1

	sign//1

	singletons/2

	size/2

	skewness/2

	sleep/1

	softmax/2

	softmax/3

	sort/2

	sort/3

	sort/4

	source_file_extension/1

	space//0

	spaces//0

	split/3

	split/4

	spy/1

	spy/3

	spy/4

	spy_point/4

	spying/1

	spying/3

	spying/4

	standard_cauchy/3

	standard_deviation/2

	standard_exponential/1

	standard_gamma/2

	standard_normal/1

	standard_t/2

	start/0

	start_redirect_to_file/2

	started_by/2

	starts/2

	stop/0

	stop_redirect_to_file/0

	stream_to_bytes/2

	stream_to_bytes/3

	stream_to_chars/2

	stream_to_chars/3

	stream_to_codes/2

	stream_to_codes/3

	stream_to_terms/2

	stream_to_terms/3

	subclass/1

	subclasses/1

	sublist/2

	subsequence/3

	subsequence/4

	subset/2

	substitute/4

	subsumes/2

	subterm/2

	subtract/3

	succ/2

	suffix/2

	suffix/3

	sum/2

	superclass/1

	superclasses/1

	suspend_monitor/0

	swap/2

	swap_consecutive/2

	symdiff/3

	tab//0

	tabs//0

	take/3

	temporary_directory/1

	term_expansion/2

	terms_to_array/2

	test/1

	time_stamp/1

	timeout/1

	timestamp/2

	timestamp/8

	today/3

	tolerance_equal/4

	top/3

	top_next/5

	trace/0

	trace_event/2

	transpose/2

	triangular/4

	true/1

	type/1

	unexpected/1

	unexpecteds/2

	uniform/1

	uniform/3

	uninstall/0

	uninstall/1

	uninstall/2

	union/3

	union/4

	union_all/3

	unpin/0

	unpin/1

	unzip/2

	update/0

	update/1

	update/2

	update/3

	update/4

	update/5

	update_in/4

	update_in/5

	uuid_null/1

	uuid_v1/2

	uuid_v4/1

	valid/1

	valid/2

	valid/3

	valid_date/3

	valid_option/1

	valid_options/1

	validate/1

	value/1

	value/3

	value_reference/2

	values/2

	variables/2

	variance/2

	variant/2

	varnumbers/2

	varnumbers/3

	verify_commands_availability/0

	version/6

	versions/3

	void/1

	void_element/1

	von_mises/3

	wald/3

	wall_time/1

	weibull/3

	weighted_mean/3

	welcome/0

	when/2

	whiledo/2

	white_space//0

	white_spaces//0

	with_output_to/2

	without//2

	working_directory/1

	write_file/3

	write_max_depth/1

	write_stream/3

	write_term_to_atom/3

	write_term_to_chars/3

	write_term_to_chars/4

	write_term_to_codes/3

	write_term_to_codes/4

	write_to_atom/2

	write_to_chars/2

	write_to_codes/2

	z_normalization/2

	zero_or_more//0

	zero_or_more//1

	zero_or_more//2

	zip/2

	zip/3

	zip_at_index/4

Indices and tables

	Index

	Search Page

Generated on Thu Oct 30 11:29:22 WET 2025

Libraries

To load any library (including developer tools, ports, and contributions), use the goal logtalk_load(library_name(loader)). To run the library tests, use the goal logtalk_load(library_name(tester)). To load an entity, always load the loader file of the library that includes it to ensure that all required dependencies are also loaded and that any required flags are used. The loading goal can be found in the entity documentation.

arbitrary

	arbitrary

assertions

	assertions

	assertions(Mode)

	assertions_messages

assignvars

	assignvars

	assignvarsp

base64

	base64

	base64url

cbor

	cbor

	cbor(StringRepresentation)

code_metrics

	cc_metric

	code_metric

	code_metrics

	code_metrics_messages

	code_metrics_utilities

	coupling_metric

	dit_metric

	doc_metric

	halstead_metric

	halstead_metric(Stroud)

	noc_metric

	nor_metric

	size_metric

	upn_metric

core

	core_messages

	expanding

	forwarding

	logtalk

	monitoring

	user

coroutining

	coroutining

csv

	csv

	csv(Header,Separator,IgnoreQuotes)

	csv_guess_questions

	csv_protocol

dates

	date

	datep

	time

	timep

dead_code_scanner

	dead_code_scanner

	dead_code_scanner_messages

debug_messages

	debug_messages

debugger

	debugger

	debugger_messages

	debuggerp

	dump_trace

dependents

	observer

	subject

diagrams

	d2_graph_language

	diagram(Format)

	diagrams

	diagrams(Format)

	directory_dependency_diagram

	directory_dependency_diagram(Format)

	directory_diagram(Format)

	directory_load_diagram

	directory_load_diagram(Format)

	dot_graph_language

	entity_diagram

	entity_diagram(Format)

	file_dependency_diagram

	file_dependency_diagram(Format)

	file_diagram(Format)

	file_load_diagram

	file_load_diagram(Format)

	graph_language_protocol

	graph_language_registry

	inheritance_diagram

	inheritance_diagram(Format)

	library_dependency_diagram

	library_dependency_diagram(Format)

	library_diagram(Format)

	library_load_diagram

	library_load_diagram(Format)

	mermaid_graph_language

	modules_diagram_support

	uses_diagram

	uses_diagram(Format)

	xref_diagram

	xref_diagram(Format)

dictionaries

	avltree

	bintree

	dictionaryp

	rbtree

dif

	dif

doclet

	doclet

edcg

	edcg

events

	after_event_registry

	before_event_registry

	event_registry

	event_registryp

	monitor

	monitorp

expand_library_alias_paths

	expand_library_alias_paths

expecteds

	either

	expected

	expected(Expected)

fcube

	fcube

flags

	flags

	flags_validator

format

	format

genint

	genint

	genint_core

gensym

	gensym

	gensym_core

git

	git

	git_protocol

grammars

	blank_grammars(Format)

	ip_grammars(Format)

	number_grammars(Format)

	sequence_grammars

heaps

	heap(Order)

	heapp

	maxheap

	minheap

help

	help

	help_info_support

hierarchies

	class_hierarchy

	class_hierarchyp

	hierarchyp

	proto_hierarchy

	proto_hierarchyp

hook_flows

	hook_pipeline(Pipeline)

	hook_set(Set)

hook_objects

	backend_adapter_hook

	default_workflow_hook

	grammar_rules_hook

	identity_hook

	object_wrapper_hook

	object_wrapper_hook(Protocol)

	object_wrapper_hook(Name,Relations)

	print_goal_hook

	prolog_module_hook(Module)

	suppress_goal_hook

	write_to_file_hook(File)

	write_to_file_hook(File,Options)

	write_to_stream_hook(Stream)

	write_to_stream_hook(Stream,Options)

html

	html

	html5

	xhtml11

ids

	ids

	ids(Representation,Bytes)

intervals

	interval

	intervalp

iso8601

	iso8601

issue_creator

	issue_creator

java

	java

	java(Reference)

	java(Reference,ReturnValue)

	java_access_protocol

	java_hook

	java_utils_protocol

json

	json

	json(StringRepresentation)

	json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_protocol

json_lines

	json_lines

	json_lines(StringRepresentation)

	json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_lines_protocol

lgtdoc

	lgtdoc

	lgtdoc_messages

	lgtdocp

lgtunit

	automation_report

	coverage_report

	lgtunit

	lgtunit_messages

	minimal_output

	tap_output

	tap_report

	xunit_net_v2_output

	xunit_net_v2_report

	xunit_output

	xunit_report

library

	cloning

	counters

	streamvars

listing

	listing

logging

	logger

	logging

	loggingp

loops

	loop

	loopp

meta

	meta

	metap

meta_compiler

	meta_compiler

metagol

	metagol

	metagol_example_protocol

mutations

	default_atom_mutations

	default_compound_mutations

	default_float_mutations

	default_integer_mutations

	default_list_mutations

	mutations

	mutations_store

nested_dictionaries

	navltree

	nbintree

	nested_dictionary_protocol

	nrbtree

optionals

	maybe

	optional

	optional(Optional)

options

	options

	options_protocol

os

	os

	os_types

	osp

packs

	pack_protocol

	packs

	packs_common

	packs_messages

	packs_specs_hook

	registries

	registry_loader_hook

	registry_protocol

pddl_parser

	pddl

	read_file

ports_profiler

	ports_profiler

queues

	queue

	queuep

random

	backend_random

	fast_random

	pseudo_random_protocol

	random

	random_protocol

	sampling_protocol

reader

	reader

recorded_database

	recorded_database

	recorded_database_core

redis

	redis

sets

	set

	set(Type)

	setp

statistics

	population

	sample

	statistics

	statisticsp

term_io

	term_io

	term_io_protocol

timeout

	timeout

toychr

	toychrdb

tsv

	tsv

	tsv(Header)

	tsv_protocol

tutor

	tutor

types

	atom

	atomic

	callable

	character

	characterp

	comparingp

	compound

	difflist

	float

	integer

	list

	list(Type)

	listp

	natural

	number

	numberlist

	numberlistp

	pairs

	term

	termp

	type

	varlist

	varlistp

ulid

	ulid

	ulid(Representation)

	ulid_protocol

	ulid_types

union_find

	union_find

	union_find_protocol

uuid

	uuid

	uuid(Representation)

	uuid_protocol

verdi_neruda

	a_star_interpreter(W)

	benchmark_generators

	best_first

	bfs_interpreter

	bup_interpreter

	counter

	databasep

	debug_expansion(Mode)

	demodb

	dfs_interpreter

	flatting

	heuristic_expansion(Mode)

	iddfs_interpreter(Increment)

	interpreterp

	magic

	magic_expansion(Mode)

	rule_expansion(Mode)

	shell

	shell(Interpreters)

	shell_expansion(Mode)

wrapper

	wrapper

xml_parser

	xml

zippers

	zipperp

	zlist

 category

arbitrary

Adds predicates for generating and shrinking random values for selected types to the library type object. User extensible.

Availability:

logtalk_load(arbitrary(loader))

Author: Paulo Moura

Version: 2:35:1

Date: 2024-08-13

Compilation flags:

static

Complements:

type

Uses:

fast_random

integer

list

type

Remarks:

	Logtalk specific types: entity, object, protocol, category, entity_identifier, object_identifier, protocol_identifier, category_identifier, event, predicate.

	Prolog module related types (when the backend compiler supports modules): module, module_identifier, qualified_callable.

	Prolog base types: term, var, nonvar, atomic, atom, number, integer, float, compound, callable, ground.

	Atom derived types: non_quoted_atom, non_empty_atom, non_empty_atom(CharSet), boolean, character, in_character, char, operator_specifier, hex_char.

	Atom derived parametric types: atom(CharSet), atom(CharSet,Length), non_empty_atom(CharSet), character(CharSet), in_character(CharSet), char(CharSet).

	Number derived types: positive_number, negative_number, non_positive_number, non_negative_number.

	Float derived types: positive_float, negative_float, non_positive_float, non_negative_float, probability.

	Integer derived types: positive_integer, negative_integer, non_positive_integer, non_negative_integer, byte, in_byte, character_code, in_character_code, code, operator_priority, hex_code.

	Integer derived parametric types: character_code(CharSet), in_character_code(CharSet), code(CharSet).

	List types (compound derived types): list, non_empty_list, partial_list, list_or_partial_list, list(Type), list(Type,Length), list(Type,Min,Max), list(Type,Length,Min,Max), non_empty_list(Type), codes, chars.

	Difference list types (compound derived types): difference_list, difference_list(Type).

	List and difference list types length: The types that do not take a fixed length generate lists with a length in the [0,MaxSize] interval ([1,MaxSize] for non-empty list types).

	Predicate and non-terminal indicator types arity: These types generate indicators with an arity in the [0,MaxSize] interval.

	Other compound derived types: compound(Name,Types), predicate_indicator, non_terminal_indicator, predicate_or_non_terminal_indicator, clause, grammar_rule, pair, pair(KeyType,ValueType).

	Other types: Object::Closure, between(Type,Lower,Upper), property(Type,LambdaExpression), one_of(Type,Set), var_or(Type), ground(Type), types(Types), types_frequency(Pairs), transform(Type,Closure), constrain(Type,Closure).

	Type Object::Closure notes: Allows calling public object predicates as generators and shrinkers. The Closure closure is extended with either a single argument, the generated arbitrary value, or with two arguments, when shrinking a value.

	Type compound(Name,Types) notes: Generate a random compound term with the given name with a random argument for each type.

	Type types_frequency(Pairs) notes: Generate a random term for one of the types in a list of Type-Frequency pairs. The type is randomly selected taking into account the types frequency.

	Type transform(Type,Closure) notes: Generate a random term by transforming the term generated for the given type using the given closure.

	Type constrain(Type,Closure) notes: Generate a random term for the given type that satisfy the given closure.

	Registering new types: Add clauses for the arbitrary/1-2 multifile predicates and optionally for the shrinker/1 and shrink/3 multifile predicates. The clauses must have a bound first argument to avoid introducing spurious choice-points.

	Shrinking values: The shrink/3 should either succeed or fail but never throw an exception.

	Character sets: ascii_identifier, ascii_printable, ascii_full, byte, unicode_bmp, unicode_full.

	Default character sets: The default character set when using a parameterizable type that takes a character set parameter depends on the type.

	Default character sets: Entity, predicate, and non-terminal identifier types plus compound and callable types default to an ascii_identifier functor. Character and character code types default to ascii_full. Other types default to ascii_printable.

	Caveats: The type argument (and any type parameterization) to the predicates is not type-checked (or checked for consistency) for performance reasons.

	Unicode limitations: Currently, correct character/code generation is only ensured for XVM and SWI-Prolog as other backends do not provide support for querying a Unicode code point category.

Inherited public predicates:

(none)

	Public predicates

	arbitrary/1

	arbitrary/2

	shrinker/1

	shrink/3

	shrink_sequence/3

	edge_case/2

	get_seed/1

	set_seed/1

	max_size/1

	Protected predicates

	Private predicates

	Operators

Public predicates

arbitrary/1

Table of defined types for which an arbitrary value can be generated. A new type can be registered by defining a clause for this predicate and adding a clause for the arbitrary/2 multifile predicate.

Compilation flags:

static, multifile

Template:

arbitrary(Type)

Mode and number of proofs:

arbitrary(?callable) - zero_or_more

arbitrary/2

Generates an arbitrary term of the specified type. Fails if the type is not supported. A new generator can be defined by adding a clause for this predicate and registering it via the arbitrary/1 predicate.

Compilation flags:

static, multifile

Template:

arbitrary(Type,Term)

Meta-predicate template:

arbitrary(::,*)

Mode and number of proofs:

arbitrary(@callable,-term) - zero_or_one

shrinker/1

Table of defined types for which a shrinker is provided. A new shrinker can be registered by defining a clause for this predicate and adding a definition for the shrink/3 multifile predicate.

Compilation flags:

static, multifile

Template:

shrinker(Type)

Mode and number of proofs:

shrinker(?callable) - zero_or_more

shrink/3

Shrinks a value to a smaller value if possible. Must generate a finite number of solutions. Fails if the type is not supported. A new shrinker can be defined by adding a clause for this predicate and registering it via the shrinker/1 predicate.

Compilation flags:

static, multifile

Template:

shrink(Type,Large,Small)

Mode and number of proofs:

shrink(@callable,@term,-term) - zero_or_more

shrink_sequence/3

Shrinks a value repeatedly until shrinking is no longer possible returning the sequence of values (ordered from larger to smaller value). Fails if the type is not supported.

Compilation flags:

static

Template:

shrink_sequence(Type,Value,Sequence)

Mode and number of proofs:

shrink_sequence(@callable,@term,-list(term)) - zero_or_one

edge_case/2

Table of type edge cases. Fails if the given type have no defined edge cases. New edge cases for existing or new types can be added by defining a clause for this multifile predicate.

Compilation flags:

static, multifile

Template:

edge_case(Type,Term)

Mode and number of proofs:

edge_case(?callable,?term) - zero_or_more

get_seed/1

Gets the current random generator seed. Seed should be regarded as an opaque ground term.

Compilation flags:

static

Template:

get_seed(Seed)

Mode and number of proofs:

get_seed(-ground) - one

set_seed/1

Sets the random generator seed to a given value returned by calling the get_seed/1 predicate.

Compilation flags:

static

Template:

set_seed(Seed)

Mode and number of proofs:

set_seed(+ground) - one

max_size/1

User defined maximum size for types where its meaningful and implicit. When not defined, defaults to 42. When multiple definitions exist, the first valid one found is used.

Compilation flags:

static, multifile

Template:

max_size(Size)

Mode and number of proofs:

max_size(?positive_integer) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

assertions

Proxy object for simplifying the use of the assertion meta-predicates.

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-04-03

Compilation flags:

static, context_switching_calls

Extends:

public assertions(_)

Remarks:

(none)

Inherited public predicates:

 assertion/1 assertion/2 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

assertions(Mode)

A simple assertions framework. Can be used as a hook object for either suppressing assertions (production mode) or expanding them with file context information (debug mode).

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:2:2

Date: 2022-07-04

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	assertion/1

	assertion/2

	Protected predicates

	Private predicates

	Operators

Public predicates

assertion/1

Checks that an assertion is true. Uses the structured message printing mechanism for printing the results using a silent message for assertion success and a error message for assertion failure.

Compilation flags:

static

Template:

assertion(Goal)

Meta-predicate template:

assertion(0)

Mode and number of proofs:

assertion(@callable) - one

assertion/2

Checks that an assertion is true. Uses the structured message printing mechanism for printing the results using a silent message for assertion success and a error message for assertion failure. The context argument can be used to e.g. pass location data.

Compilation flags:

static

Template:

assertion(Context,Goal)

Meta-predicate template:

assertion(*,0)

Mode and number of proofs:

assertion(@term,@callable) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

assertions_messages

Assertions framework default message translations.

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:2:0

Date: 2018-02-20

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

assignvars

Assignable variables (supporting backtracable assignment of non-variable terms).

Availability:

logtalk_load(assignvars(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:7:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Implements:

public assignvarsp

Remarks:

(none)

Inherited public predicates:

 (<=)/2 (=>)/2 assignable/1 assignable/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

assignvarsp

Assignable variables (supporting backtracable assignment of non-variable terms) protocol.

Availability:

logtalk_load(assignvars(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:0:1

Date: 2019-06-10

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	assignable/1

	assignable/2

	(<=)/2

	(=>)/2

	Protected predicates

	Private predicates

	Operators

	op(100,xfx,<=)

	op(100,xfx,=>)

Public predicates

assignable/1

Makes Variable an assignable variable. Initial state will be empty.

Compilation flags:

static

Template:

assignable(Variable)

Mode and number of proofs:

assignable(--assignvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

assignable/2

Makes Variable an assignable variable and sets its initial state to Value.

Compilation flags:

static

Template:

assignable(Variable,Value)

Mode and number of proofs:

assignable(--assignvar,@nonvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

Value is not instantiated:

instantiation_error

(<=)/2

Sets the state of the assignable variable Variable to Value (initializing the variable if needed).

Compilation flags:

static

Template:

Variable<=Value

Mode and number of proofs:

(?assignvar)<=(@nonvar) - one

Exceptions:

Value is not instantiated:

instantiation_error

(=>)/2

Unifies Value with the current state of the assignable variable Variable.

Compilation flags:

static

Template:

Variable=>Value

Mode and number of proofs:

+assignvar=> ?nonvar - zero_or_one

Exceptions:

Variable is not instantiated:

instantiation_error

Protected predicates

(none)

Private predicates

(none)

Operators

op(100,xfx,<=)

Scope:

public

op(100,xfx,=>)

Scope:

public

See also

assignvars

 object

base64

Base64 parser and generator.

Availability:

logtalk_load(base64(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2021-03-22

Compilation flags:

static, context_switching_calls

Uses:

reader

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the Base64 data from the given source (atom(Atom), chars(List), codes(List), stream(Stream), or file(Path) into a list of bytes.

Compilation flags:

static

Template:

parse(Source,Bytes)

Mode and number of proofs:

parse(++compound,--list(byte)) - one_or_error

generate/2

Generates Base64 in the representation specified in the first argument (atom(Atom), chars(List), codes(List), stream(Stream), or file(Path) for the list of bytes in the second argument.

Compilation flags:

static

Template:

generate(Sink,Bytes)

Mode and number of proofs:

generate(+compound,+list(byte)) - one_or_error

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

base64url

Base64URL parser and generator.

Availability:

logtalk_load(base64(loader))

Author: Paulo Moura

Version: 0:9:0

Date: 2021-03-10

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the Base64URL data from the given source (atom(Atom), chars(List), or codes(List) into a URL (using the same format as the source).

Compilation flags:

static

Template:

parse(Source,URL)

Mode and number of proofs:

parse(++compound,--types([atom,chars,codes])) - one_or_error

generate/2

Generates Base64URL data in the representation specified in the first argument (atom(Atom), chars(List), or codes(List) for the given URL (given in the same format as the sink).

Compilation flags:

static

Template:

generate(Sink,URL)

Mode and number of proofs:

generate(+compound,+types([atom,chars,codes])) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

cbor

Concise Binary Object Representation (CBOR) format exporter and importer. Uses atoms to represent decoded CBOR strings.

Availability:

logtalk_load(cbor(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-03-04

Compilation flags:

static, context_switching_calls

Extends:

public cbor(atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

cbor(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding CBOR strings. Possible values are atom (default), chars, and codes.

Concise Binary Object Representation (CBOR) format exporter and importer.

Availability:

logtalk_load(cbor(loader))

Author: Paulo Moura

Version: 0:11:1

Date: 2021-12-06

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses a list of bytes in the CBOR format returning the corresponding term representation. Throws an error when parsing is not possible (usually due to an invalid byte sequence).

Compilation flags:

static

Template:

parse(Bytes,Term)

Mode and number of proofs:

parse(@list(byte),-ground) - one_or_error

generate/2

Generates a list of bytes in the CBOR format representing the given term. Throws an error when generating is not possible (usually due to a term that have no CBOR corresponding representation).

Compilation flags:

static

Template:

generate(Term,Bytes)

Mode and number of proofs:

generate(@ground,-list(byte)) - one_or_error

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

cc_metric

Cyclomatic complexity metric. All defined predicates that are not called or updated are counted as graph connected components (the reasoning being that these predicates can be considered entry points). The score is represented by a non-negative integer.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:5:2

Date: 2024-05-15

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metric

Core predicates for computing source code metrics.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:13:0

Date: 2025-10-06

Compilation flags:

static

Extends:

public code_metrics_utilities

public options

Uses:

list

logtalk

os

type

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	entity/1

	file/2

	file/1

	directory/2

	directory/1

	rdirectory/2

	rdirectory/1

	library/2

	library/1

	rlibrary/2

	rlibrary/1

	all/1

	all/0

	entity_score/2

	library_score/2

	rlibrary_score/2

	file_score/2

	directory_score/2

	rdirectory_score/2

	all_score/1

	format_entity_score//2

	Protected predicates

	process_entity/2

	process_file/2

	process_directory/2

	process_rdirectory/2

	process_library/2

	process_rlibrary/2

	process_all/1

	sub_directory/2

	sub_library/2

	Private predicates

	Operators

Public predicates

entity/1

Scans an entity and prints its metric score.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+term) - zero_or_one

file/2

Prints metric scores for all the entities defined in a loaded source file using the given options.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - zero_or_one

file/1

Prints metric scores for all the entities defined in a loaded source file using default options.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - zero_or_one

directory/2

Scans a directory and prints metric scores for all entities defined in its loaded source files using the given options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Scans a directory and prints metric scores for all entities defined in its loaded source files using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

rdirectory/2

Recursive version of the directory/1 predicate using the given options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Recursive version of the directory/1 predicate using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

library/2

Prints metrics scores for all loaded entities from a given library using the given options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Prints metrics scores for all loaded entities from a given library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rlibrary/2

Recursive version of the library/1 predicate using the given options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Recursive version of the library/1 predicate using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

all/1

Scans all loaded entities and prints their metric scores using the given options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list(compound)) - one

all/0

Scans all loaded entities and prints their metric scores using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

entity_score/2

Score is a term that represents the metric score associated with a loaded entity. Fails if the metric does not apply.

Compilation flags:

static

Template:

entity_score(Entity,Score)

Mode and number of proofs:

entity_score(@entity_identifier,-ground) - zero_or_one

library_score/2

Score is a term that represents the metric score associated with a loaded library source files. Fails if the metric does not apply.

Compilation flags:

static

Template:

library_score(Library,Score)

Mode and number of proofs:

library_score(@atom,-ground) - zero_or_one

rlibrary_score/2

Score is a term that represents the metric score associated with loaded source files from a library and its sub-libraries. Fails if the metric does not apply.

Compilation flags:

static

Template:

rlibrary_score(Library,Score)

Mode and number of proofs:

rlibrary_score(@atom,-ground) - zero_or_one

file_score/2

Score is a term that represents the metric score associated with a loaded source file. Fails if the metric does not apply.

Compilation flags:

static

Template:

file_score(File,Score)

Mode and number of proofs:

file_score(@atom,-ground) - zero_or_one

directory_score/2

Score is a term that represents the metric score associated with loaded source files from a directory. Fails if the metric does not apply.

Compilation flags:

static

Template:

directory_score(Directory,Score)

Mode and number of proofs:

directory_score(@atom,-ground) - zero_or_one

rdirectory_score/2

Score is a term that represents the metric score associated with loaded source files from a directory and its sub-directories. Fails if the metric does not apply.

Compilation flags:

static

Template:

rdirectory_score(Directory,Score)

Mode and number of proofs:

rdirectory_score(@atom,-ground) - zero_or_one

all_score/1

Score is a term that represents the metric score associated with all loaded source files. Fails if the metric does not apply.

Compilation flags:

static

Template:

all_score(Score)

Mode and number of proofs:

all_score(-ground) - zero_or_one

format_entity_score//2

Formats the entity score for pretty printing.

Compilation flags:

static

Template:

format_entity_score(Entity,Score)

Mode and number of proofs:

format_entity_score(@entity_identifier,+ground) - one

Protected predicates

process_entity/2

Processes an entity of the given kind.

Compilation flags:

static

Template:

process_entity(Kind,Entity)

Mode and number of proofs:

process_entity(+atom,@entity_identifier) - one

process_file/2

Processes a source file using the given options.

Compilation flags:

static

Template:

process_file(Path,Options)

Mode and number of proofs:

process_file(+atom,+list(compound)) - one

process_directory/2

Processes a directory of source files using the given options.

Compilation flags:

static

Template:

process_directory(Path,Options)

Mode and number of proofs:

process_directory(+atom,+list(compound)) - one

process_rdirectory/2

Recursively process a directory of source files using the given options.

Compilation flags:

static

Template:

process_rdirectory(Path,Options)

Mode and number of proofs:

process_rdirectory(+atom,+list(compound)) - one

process_library/2

Processes a library of source files using the given options.

Compilation flags:

static

Template:

process_library(Library,Options)

Mode and number of proofs:

process_library(+atom,+list(compound)) - one

process_rlibrary/2

Recursively process a library of source files using the given options.

Compilation flags:

static

Template:

process_rlibrary(Library,Options)

Mode and number of proofs:

process_rlibrary(+atom,+list(compound)) - one

process_all/1

Processes all loaded source code using the given options.

Compilation flags:

static

Template:

process_all(Options)

Mode and number of proofs:

process_all(+list(compound)) - one

sub_directory/2

Enumerates, by backtracking, all directory sub-directories containing loaded files.

Compilation flags:

static

Template:

sub_directory(Directory,SubDirectory)

Mode and number of proofs:

sub_directory(+atom,-atom) - one

sub_library/2

Enumerates, by backtracking, all library sub-libraries.

Compilation flags:

static

Template:

sub_library(Library,SubLibrary)

Mode and number of proofs:

sub_library(+atom,-atom) - one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

code_metrics

Helper object to apply all loaded code metrics.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:1:0

Date: 2017-12-31

Compilation flags:

static, context_switching_calls

Imports:

public code_metric

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metrics_messages

Message translations for the code_metrics tool.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:8:0

Date: 2022-05-05

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metrics_utilities

Internal predicates for analyzing source code.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh

Version: 0:7:0

Date: 2024-03-28

Compilation flags:

static

Uses:

list

logtalk

Remarks:

	Usage: This is meant to be imported by any metric added to the system.

	Predicate Scope: This is meant for internal use by metrics only. As such, all provided predicates are protected.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	ancestor/4

	current_entity/1

	declares_predicate/2

	defines_predicate/2

	defines_predicate/3

	entity_calls/3

	entity_kind/2

	entity_property/2

	entity_updates/3

	not_excluded_file/3

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

ancestor/4

True if Entity descends from Ancestor, and EntityKind and AncestorKind unify with their respective entity types.

Compilation flags:

static

Template:

ancestor(EntityKind,Entity,AncestorKind,Ancestor)

Mode and number of proofs:

ancestor(?entity,?entity_identifier,?entity,?entity_identifier) - zero_or_more

current_entity/1

True if Entity is a currently loaded entity.

Compilation flags:

static

Template:

current_entity(Entity)

Mode and number of proofs:

current_entity(?entity_identifier) - zero_or_more

declares_predicate/2

True if Entity declares Predicate internally.

Compilation flags:

static

Template:

declares_predicate(Entity,Predicate)

Mode and number of proofs:

declares_predicate(?entity_identifier,?predicate_indicator) - zero_or_more

defines_predicate/2

True if Entity defines an implementation of Predicate internally. Auxiliary predicates are excluded from results.

Compilation flags:

static

Template:

defines_predicate(Entity,Predicate)

Mode and number of proofs:

defines_predicate(?entity_identifier,?predicate_indicator) - zero_or_more

defines_predicate/3

Same as defines_predicate/2, except Property is unified with a property of the predicate.

Compilation flags:

static

Template:

defines_predicate(Entity,Predicate,Property)

Mode and number of proofs:

defines_predicate(?entity_identifier,?predicate_indicator,?term) - zero_or_more

entity_calls/3

True if a predicate Caller within Entity makes a Call.

Compilation flags:

static

Template:

entity_calls(Entity,Caller,Call)

Mode and number of proofs:

entity_calls(?entity_identifier,?predicate_indicator,?predicate_indicator) - zero_or_one

entity_kind/2

True if Kind defines Entity and is one of category, protocol, or object.

Compilation flags:

static

Template:

entity_kind(Entity,Kind)

Mode and number of proofs:

entity_kind(+entity_identifier,-entity) - zero_or_one

entity_property/2

True if Property is a valid property of Entity. Entity can be either a category, a protocol, or an object.

Compilation flags:

static

Template:

entity_property(Entity,Property)

Mode and number of proofs:

entity_property(+entity_identifier,-term) - zero_or_more

entity_updates/3

True if a predicate Updater within Entity makes a dynamic update to Updated (by using e.g. the asserta/1 or retract/1 predicates).

Compilation flags:

static

Template:

entity_updates(Entity,Updater,Updated)

Mode and number of proofs:

entity_updates(+entity_identifier,?predicate_indicator,?predicate_indicator) - zero_or_one

not_excluded_file/3

True if the file is not being excluded.

Compilation flags:

static

Template:

not_excluded_file(ExcludedFiles,Path,Basename)

Mode and number of proofs:

not_excluded_file(+list(atom),+atom,+atom) - zero_or_one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coupling_metric

Computes entity efferent coupling, afferent coupling, and instability.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:14:0

Date: 2024-03-27

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

Remarks:

	Efferent coupling (Ce): Number of entities that an entity depends on.

	Afferent coupling (Ca): Number of entities that depend on an entity.

	Instability (I): Computed as Ce / (Ce + Ca). Measures the entity resilience to change. Ranging from 0 to 1, with 0 indicating a maximally stable entity and 1 indicating a maximally unstable entity. Ideally, an entity is either maximally stable or maximally unstable.

	Abstractness (A): Computed as the ratio between the number of static predicates with scope directives without a local definition and the number of static predicates with scope directives. Measures the rigidity of an entity. Ranging from 0 to 1, with 0 indicating a fully concrete entity and 1 indicating a fully abstract entity.

	Entity score: Represented as the compound term ce_ca_i_a(Ce,Ca,I,A).

	Dependencies count: Includes direct entity relations plus calls or dynamic updates to predicates in external objects or categories.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dit_metric

Analyzes the depth of inheritance for objects, protocols, and categories.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh

Version: 0:6:1

Date: 2024-03-28

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

numberlist

Remarks:

	Depth: The depth is the maximum length of a node to the root entity. Lower scores are generally better.

	Inheritance: A level of inheritance defined by either one of specialization, instantiation, extension, importation, or implementation.

	Scoring: The maximum path length is determined for each entity in question.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

doc_metric

Entity and entity predicates documentation score.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

numberlist

Remarks:

	Score range: Score is a integer percentage where a 100% score means that all expected documentation information is present.

	Score weights: The score is split by default between 20% for the entity documentation and 80% for the entity predicates documentation, Can be customized using the predicate entity_predicates_weights_hook/2.

	Score customization: The individual scores of entity info/1 pairs and predicate info/2 pairs can be customized using the entity_info_pair_score_hook/3 and predicate_info_pair_score_hook/4 predicates.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	entity_predicates_weights_hook/2

	entity_info_score_hook/2

	entity_info_pair_score_hook/3

	predicate_mode_score_hook/3

	predicate_mode_score_hook/5

	predicate_info_score_hook/3

	predicate_info_pair_score_hook/4

	Protected predicates

	Private predicates

	Operators

Public predicates

entity_predicates_weights_hook/2

Relative weight between entity documentation and predicates documentation in percentage. The sum of the two values must be equal to 100.

Compilation flags:

dynamic, multifile

Template:

entity_predicates_weights_hook(EntityWeight,PredicatesWeight)

Mode and number of proofs:

entity_predicates_weights_hook(?integer,?integer) - zero_or_one

entity_info_score_hook/2

Maximum score for entity info/1 directives.

Compilation flags:

dynamic, multifile

Template:

entity_info_score_hook(Entity,MaximumScore)

Mode and number of proofs:

entity_info_score_hook(?term,?integer) - zero_or_one

entity_info_pair_score_hook/3

Score for relevant entity info/1 directive pairs. If defined, the entity_info_score_hook/2 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

entity_info_pair_score_hook(Pair,Entity,Score)

Mode and number of proofs:

entity_info_pair_score_hook(?callable,?term,?integer) - zero_or_more

predicate_mode_score_hook/3

Maximum score for predicate mode/2 directives.

Compilation flags:

dynamic, multifile

Template:

predicate_mode_score_hook(Entity,Predicate,MaximumScore)

Mode and number of proofs:

predicate_mode_score_hook(?term,?term,?integer) - zero_or_more

predicate_mode_score_hook/5

Score for a predicate mode/2 directive. If defined, the predicate_mode_score_hook/3 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

predicate_mode_score_hook(Template,Solutions,Entity,Predicate,Score)

Mode and number of proofs:

predicate_mode_score_hook(?term,?term,?term,?term,?integer) - zero_or_one

predicate_info_score_hook/3

Maximum score for predicate info/2 directives.

Compilation flags:

dynamic, multifile

Template:

predicate_info_score_hook(Entity,Predicate,MaximumScore)

Mode and number of proofs:

predicate_info_score_hook(?term,?term,?integer) - zero_or_one

predicate_info_pair_score_hook/4

Score for a predicate info/2 directive pairs. If defined, the predicate_info_score_hook/3 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

predicate_info_pair_score_hook(Pair,Entity,Predicate,Score)

Mode and number of proofs:

predicate_info_pair_score_hook(?callable,?term,?term,?integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

halstead_metric

Computes Halstead complexity numbers for an entity using a Stroud of 18.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2018-06-08

Compilation flags:

static, context_switching_calls

Extends:

public halstead_metric(18)

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

halstead_metric(Stroud)

	Stroud - Coefficient for computing the time required to program.

Computes Halstead complexity numbers for an entity.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2025-01-04

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

numberlist

pairs

Remarks:

	Definition of operators: Predicates declared, user-defined, and called are interpreted as operators. Built-in predicates and built-in control constructs are ignored.

	Definition of operands: Predicate arguments are abstracted and interpreted as operands. Note that this definition of operands is a significant deviation from the original definition, which used syntactic literals.

	Pn: Number of distinct predicates (declared, defined, called, or updated).

	PAn: Number of predicate arguments (assumed distinct).

	Cn: Number of predicate calls/updates + number of clauses.

	CAn: Number of predicate call/update arguments + number of clause head arguments.

	EV: Entity vocabulary: EV = Pn + PAn.

	EL: Entity length: EL = Cn + CAn.

	V: Volume: V = EL * log2(EV).

	D: Difficulty: D = (Pn/2) * (CAn/An).

	E: Effort: E = D * V.

	T: Time required to program: T = E/k seconds (k is the Stroud number; defaults to 18).

	B: Number of delivered bugs: B = V/3000.

	Entity score: Represented as the compound term pn_pan_cn_can_ev_el_v_d_e_t_b/11.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

noc_metric

Number of entity clauses metric. The score is represented using the compound term number_of_clauses(Total, User).

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:14:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

nor_metric

Number of entity rules metric. The score is represented using the compound term number_of_rules(Total, User).

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:5:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

size_metric

Source code size metric. Returned scores are upper bounds and based solely in source file sizes (expressed in bytes).

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:7:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

os

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

upn_metric

Number of unique predicates nodes metric. The nodes include called and updated predicates independently of where they are defined. The score is represented by a non-negative integer.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:6:2

Date: 2024-05-15

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

core_messages

Logtalk core (compiler and runtime) default message tokenization.

Availability:

built_in

Author: Paulo Moura

Version: 1:144:0

Date: 2025-09-30

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

expanding

Term and goal expansion protocol.

Availability:

built_in

Author: Paulo Moura

Version: 1:1:0

Date: 2016-07-12

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	goal_expansion/2

	term_expansion/2

	Protected predicates

	Private predicates

	Operators

Public predicates

goal_expansion/2

Defines a goal expansion. Called recursively until a fixed point is reached on goals found while compiling a source file (except for goals wrapped using the {}/1 compiler bypass control construct).

Compilation flags:

static

Template:

goal_expansion(Goal,ExpandedGoal)

Mode and number of proofs:

goal_expansion(+callable,-callable) - zero_or_one

term_expansion/2

Defines a term expansion. Called until it succeeds on all terms read while compiling a source file (except for terms skipped by using the conditional compilation directives or wrapped using the {}/1 compiler bypass control construct).

Compilation flags:

static

Template:

term_expansion(Term,ExpandedTerms)

Mode and number of proofs:

term_expansion(+term,-term) - zero_or_one

term_expansion(+term,-list(term)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

forwarding

Message forwarding protocol.

Availability:

built_in

Author: Paulo Moura

Version: 1:0:1

Date: 2025-05-15

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	forward/1

	Protected predicates

	Private predicates

	Operators

Public predicates

forward/1

User-defined message forwarding handler, automatically called (if defined) by the runtime for any message that the receiving object does not understand.

Compilation flags:

static

Template:

forward(Message)

Mode and number of proofs:

forward(+callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

logtalk

Built-in object providing message printing, debugging, library, source file, and hacking methods.

Availability:

built_in

Author: Paulo Moura

Version: 3:3:0

Date: 2025-10-06

Compilation flags:

static, built_in, context_switching_calls, threaded

Dependencies:

(none)

Remarks:

	Default message kinds: silent, silent(Key), banner, help, comment, comment(Key), information, information(Key), warning, warning(Key), error, error(Key), debug, debug(Key), question, and question(Key).

	Printing of silent messages: By default, silent messages are not printed. These messages are only useful when intercepted.

	Printing of banner and comment messages: By default, banner and comment messages are only printed when the report flag is turned on.

	Printing of help, information, and question messages: These messages are always printed by default as they provide requested output.

	Printing of warning messages: By default, warning messages are not printed when the report flag is turned off.

	Printing of error messages: These messages are always printed by default.

	Printing of debug messages: By default, debug messages are only printed when the debug flag is turned on. The compiler suppresses debug message printing goals when compiling in optimized mode.

	Meta messages: A meta message is a message that have another message as argument and is typically used for debugging messages. Meta messages avoid the need of defining tokenizer rules for every message but can be intercepted as any other message.

	Meta message @Message: By default, the message is printed as passed to the write/1 predicate followed by a newline.

	Meta message Key-Value: By default, the message is printed as “Key: Value” followed by a newline. The key is printed as passed to the write/1 predicate while the value is printed as passed to the writeq/1 predicate.

	Meta message Format+Arguments: By default, the message is printed as passed to the format/2 predicate.

	Meta message List: By default, the list items are printed indented one per line. The items are preceded by a dash and can be @Message, Key-Value, or Format+Arguments messages. If that is not the case, the item is printed as passed to the writeq/1 predicate.

	Meta message Title::List: By default, the title is printed followed by a newline and the indented list items, one per line. The items are printed as in the List meta message.

	Meta message [Stream,Prefix]>>Goal: By default, call user-defined Goal in the context of user. The use of a lambda expression allows passing the message stream and prefix. Printing the prefix is delegated to the goal.

	Meta message [Stream]>>Goal: By default, call user-defined Goal in the context of user. The use of a lambda expression allows passing the message stream.

	Message tokens: at_same_line, tab(Expression), nl, flush, Format-Arguments, term(Term,Options), ansi(Attributes,Format,Arguments), begin(Kind,Variable), and end(Variable).

	Multi-threading applications: Predicates calling methods such as print_message/3, ask_question/5, or compile_aux_clauses/1 may need to be declared synchronized in order to avoid race conditions.

Inherited public predicates:

(none)

	Public predicates

	print_message/3

	print_message_tokens/3

	print_message_token/4

	message_tokens//2

	message_prefix_stream/4

	message_prefix_file/6

	message_hook/4

	ask_question/5

	question_hook/6

	question_prompt_stream/4

	trace_event/2

	debug_handler/1

	active_debug_handler/1

	activate_debug_handler/1

	deactivate_debug_handler/0

	debug_handler/3

	expand_library_path/2

	loaded_file/1

	loaded_file_property/2

	file_type_extension/2

	compile_aux_clauses/1

	entity_prefix/2

	compile_predicate_heads/4

	compile_predicate_indicators/3

	decompile_predicate_heads/4

	decompile_predicate_indicators/4

	execution_context/7

	Protected predicates

	Private predicates

	active_debug_handler_/1

	Operators

Public predicates

print_message/3

Prints a message of the given kind for the specified component.

Compilation flags:

static

Template:

print_message(Kind,Component,Message)

Mode and number of proofs:

print_message(+nonvar,+nonvar,+nonvar) - one

print_message_tokens/3

Print the messages tokens to the given stream, prefixing each line with the specified atom.

Compilation flags:

static

Template:

print_message_tokens(Stream,Prefix,Tokens)

Mode and number of proofs:

print_message_tokens(@stream_or_alias,+atom,@list(nonvar)) - one

print_message_token/4

User-defined hook predicate for printing a message token (see this object remarks).

Compilation flags:

dynamic, multifile

Template:

print_message_token(Stream,Prefix,Token,Tokens)

Mode and number of proofs:

print_message_token(@stream_or_alias,@atom,@nonvar,@list(nonvar)) - zero_or_one

message_tokens//2

User-defined hook grammar rule for converting a message into a list of tokens (see this object remarks).

Compilation flags:

dynamic, multifile

Template:

message_tokens(Message,Component)

Mode and number of proofs:

message_tokens(+nonvar,+nonvar) - zero_or_one

message_prefix_stream/4

Message line prefix and output stream to be used when printing a message given its kind and component.

Compilation flags:

dynamic, multifile

Template:

message_prefix_stream(Kind,Component,Prefix,Stream)

Mode and number of proofs:

message_prefix_stream(?nonvar,?nonvar,?atom,?stream_or_alias) - zero_or_more

message_prefix_file/6

Message line prefix and output file to be used when printing a message given its kind and component.

Compilation flags:

dynamic, multifile

Template:

message_prefix_file(Kind,Component,Prefix,File,Mode,Options)

Mode and number of proofs:

message_prefix_file(?nonvar,?nonvar,?atom,?atom,?atom,?list(compound)) - zero_or_more

message_hook/4

User-defined hook predicate for intercepting message printing calls.

Compilation flags:

dynamic, multifile

Template:

message_hook(Message,Kind,Component,Tokens)

Mode and number of proofs:

message_hook(+nonvar,+nonvar,+nonvar,+list(nonvar)) - zero_or_one

ask_question/5

Asks a question and reads the answer until the check predicate is true.

Compilation flags:

static

Template:

ask_question(Kind,Component,Question,Check,Answer)

Meta-predicate template:

ask_question(*,*,*,1,*)

Mode and number of proofs:

ask_question(+nonvar,+nonvar,+nonvar,+callable,-term) - one

question_hook/6

User-defined hook predicate for intercepting question asking calls.

Compilation flags:

dynamic, multifile

Template:

question_hook(Question,Kind,Component,Tokens,Check,Answer)

Meta-predicate template:

question_hook(*,*,*,*,1,*)

Mode and number of proofs:

question_hook(+nonvar,+nonvar,+nonvar,+list(nonvar),+callable,-term) - zero_or_one

question_prompt_stream/4

Prompt and input stream to be used when asking a question given its kind and component.

Compilation flags:

dynamic, multifile

Template:

question_prompt_stream(Kind,Component,Prompt,Stream)

Mode and number of proofs:

question_prompt_stream(?nonvar,?nonvar,?atom,?stream_or_alias) - zero_or_more

trace_event/2

Trace event handler. The runtime calls all trace event handlers using a failure-driven loop before calling the debug event handler.

Compilation flags:

dynamic, multifile

Template:

trace_event(Event,ExecutionContext)

Mode and number of proofs:

trace_event(@callable,@execution_context) - zero

Remarks:

	Unification events: Generated after a successful unification with a fact - fact(Entity,Fact,Clause,File,Line) - or a rule head - rule(Entity,Head,Clause,File,Line).

	Goal events: Generated when calling a goal: top_goal(Goal,CompiledGoal) or goal(Goal,CompiledGoal).

debug_handler/1

Enumerates, by backtracking, all declared debug handler providers. Define a clause for this predicate to declare a new debug handler provider.

Compilation flags:

static, multifile

Template:

debug_handler(Provider)

Mode and number of proofs:

debug_handler(?object_identifier) - zero_or_more

debug_handler(?category_identifier) - zero_or_more

active_debug_handler/1

Current active debug handler provider if any. There is at most one active debug handler provider at any given moment.

Compilation flags:

static

Template:

active_debug_handler(Provider)

Mode and number of proofs:

active_debug_handler(?category_identifier) - zero_or_one

active_debug_handler(?category_identifier) - zero_or_one

activate_debug_handler/1

Activates the given debug handler provider. There is at most one active debug handler provider at any given moment. Fails if the object or category is not declared as a debug handler provider.

Compilation flags:

static

Template:

activate_debug_handler(Provider)

Mode and number of proofs:

activate_debug_handler(@object_identifier) - zero_or_one

activate_debug_handler(@category_identifier) - zero_or_one

deactivate_debug_handler/0

Deactivates the current debug handler provider if any.

Compilation flags:

static

Mode and number of proofs:

deactivate_debug_handler - one

debug_handler/3

Debug event handler. Called by the runtime when the given provider is active.

Compilation flags:

static, multifile

Template:

debug_handler(Provider,Event,ExecutionContext)

Mode and number of proofs:

debug_handler(+object_identifier,+callable,+execution_context) - zero_or_more

debug_handler(+category_identifier,+callable,+execution_context) - zero_or_more

Remarks:

	Unification events: Generated after a successful unification with a fact - fact(Entity,Fact,Clause,File,Line) - or a rule head - rule(Entity,Head,Clause,File,Line).

	Goal events: Generated when calling a goal: top_goal(Goal,CompiledGoal) or goal(Goal,CompiledGoal).

expand_library_path/2

Expands a library alias (an atom) or a compound term (using library notation) into its absolute path. Uses a depth bound to prevent loops.

Compilation flags:

static

Template:

expand_library_path(LibraryAlias,AbsolutePath)

Mode and number of proofs:

expand_library_path(+atom,?atom) - zero_or_one

expand_library_path(+callable,?atom) - zero_or_one

loaded_file/1

Enumerates, by backtracking, all loaded files, returning their full paths.

Compilation flags:

static

Template:

loaded_file(Path)

Mode and number of proofs:

loaded_file(?atom) - zero_or_more

loaded_file_property/2

Enumerates, by backtracking, loaded file properties.

Compilation flags:

static

Template:

loaded_file_property(Path,Property)

Mode and number of proofs:

loaded_file_property(?atom,?compound) - zero_or_more

Remarks:

	Property basename/1: Basename of the file (includes the file extension, if any).

	Property directory/1: Directory of the file (ending with a slash).

	Property mode/1: Compilation mode of the file (possible values are optimal, normal, and debug).

	Property flags/1: Explicit flags used for compiling the file.

	Property text_properties/1: List of the file text properties (encoding/1 and bom/1). Empty if no encoding/1 directive is present and the stream used for reading the file does not have a bom/1 (or equivalent) property.

	Property target/1: Full path of the generated intermediate Prolog file.

	Property modified/1: File modification time stamp (should be regarded as an opaque but otherwise comparable term).

	Property parent/1: Full path of the parent file that loaded the file.

	Property includes/2: Full path of a file included by the file and the line of the include/1 directive.

	Property includes/1: Full path of a file included by the file.

	Property library/1: Library alias for the library that includes the file.

	Property object/3: Identifier for an object defined in the file and the start and end lines of its definition.

	Property object/1: Identifier for an object defined in the file.

	Property protocol/3: Identifier for a protocol defined in the file and the start and end lines of its definition.

	Property protocol/1: Identifier for a protocol defined in the file.

	Property category/3: Identifier for a category defined in the file and the start and end lines of its definition.

	Property category/1: Identifier for a category defined in the file.

file_type_extension/2

Enumerates, by backtracking, all defined file type extensions. The defined types are: source, object, logtalk, prolog, and tmp. The source type returns both logtalk and prolog type extensions.

Compilation flags:

static

Template:

file_type_extension(Type,Extension)

Mode and number of proofs:

file_type_extension(?atom,?atom) - zero_or_more

compile_aux_clauses/1

Compiles a list of auxiliary clauses. Can only be called during source file compilation, usually from term_expansion/2 or goal_expansion/2 hook predicate definitions.

Compilation flags:

static

Template:

compile_aux_clauses(Clauses)

Mode and number of proofs:

compile_aux_clauses(@list(clause)) - one

entity_prefix/2

Converts between an entity identifier and the entity prefix that is used for its compiled code. When none of the arguments is instantiated, it returns the identifier and the prefix of the entity under compilation, if any.

Compilation flags:

static

Template:

entity_prefix(Entity,Prefix)

Mode and number of proofs:

entity_prefix(?entity_identifier,?atom) - zero_or_one

compile_predicate_heads/4

Compiles clause heads. The heads are compiled in the context of the entity under compilation when the entity argument is not instantiated.

Compilation flags:

static

Template:

compile_predicate_heads(Heads,Entity,CompiledHeads,ExecutionContext)

Mode and number of proofs:

compile_predicate_heads(@list(callable),?entity_identifier,-list(callable),@execution_context) - zero_or_one

compile_predicate_heads(@conjunction(callable),?entity_identifier,-conjunction(callable),@execution_context) - zero_or_one

compile_predicate_heads(@callable,?entity_identifier,-callable,@execution_context) - zero_or_one

compile_predicate_indicators/3

Compiles predicate indicators. The predicate are compiled in the context of the entity under compilation when the entity argument is not instantiated.

Compilation flags:

static

Template:

compile_predicate_indicators(PredicateIndicators,Entity,CompiledPredicateIndicators)

Mode and number of proofs:

compile_predicate_indicators(@list(predicate_indicator),?entity_identifier,-list(predicate_indicator)) - zero_or_one

compile_predicate_indicators(@conjunction(predicate_indicator),?entity_identifier,-conjunction(predicate_indicator)) - zero_or_one

compile_predicate_indicators(@predicate_indicator,?entity_identifier,-predicate_indicator) - zero_or_one

decompile_predicate_heads/4

Decompiles clause heads. All compiled clause heads must belong to the same entity, which must be loaded.

Compilation flags:

static

Template:

decompile_predicate_heads(CompiledHeads,Entity,Type,Heads)

Mode and number of proofs:

decompile_predicate_heads(@list(callable),-entity_identifier,-atom,-list(callable)) - zero_or_one

decompile_predicate_heads(@conjunction(callable),-entity_identifier,-atom,-conjunction(callable)) - zero_or_one

decompile_predicate_heads(@callable,-entity_identifier,-atom,-callable) - zero_or_one

decompile_predicate_indicators/4

Decompiles predicate indicators. All compiled predicate indicators must belong to the same entity, which must be loaded.

Compilation flags:

static

Template:

decompile_predicate_indicators(CompiledPredicateIndicators,Entity,Type,PredicateIndicators)

Mode and number of proofs:

decompile_predicate_indicators(@list(predicate_indicator),-entity_identifier,-atom,-list(predicate_indicator)) - zero_or_one

decompile_predicate_indicators(@conjunction(predicate_indicator),-entity_identifier,-atom,-conjunction(predicate_indicator)) - zero_or_one

decompile_predicate_indicators(@predicate_indicator,-entity_identifier,-atom,-predicate_indicator) - zero_or_one

execution_context/7

Execution context term data. Execution context terms should be considered opaque terms subject to change without notice.

Compilation flags:

static

Template:

execution_context(ExecutionContext,Entity,Sender,This,Self,MetaCallContext,CoinductionStack)

Mode and number of proofs:

execution_context(?nonvar,?entity_identifier,?object_identifier,?object_identifier,?object_identifier,@list(callable),@list(callable)) - zero_or_one

Protected predicates

(none)

Private predicates

active_debug_handler_/1

Current active debug handler provider. There is at most one active debug handler provider at any given moment.

Compilation flags:

dynamic

Template:

active_debug_handler_(Provider)

Mode and number of proofs:

active_debug_handler_(?entity_identifier) - zero_or_one

Operators

(none)

 protocol

monitoring

Event handlers protocol. The handlers are automatically called by the runtime for messages sent using the ::/2 control construct from objects or categories compiled with the events flag set to allow.

Availability:

built_in

Author: Paulo Moura

Version: 1:2:0

Date: 2018-11-29

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	before/3

	after/3

	Protected predicates

	Private predicates

	Operators

Public predicates

before/3

Event handler for before events. A before event handler may prevent a method from being looked up or called by failing.

Compilation flags:

static

Template:

before(Object,Message,Sender)

Mode and number of proofs:

before(?term,?term,?term) - zero_or_more

after/3

Event handler for after events. An after event handler may prevent a method from succeeding by failing.

Compilation flags:

static

Template:

after(Object,Message,Sender)

Mode and number of proofs:

after(?term,?term,?term) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

user

Pseudo-object representing the plain Prolog database. Can be used as a monitor by defining before/3 and after/3 predicates. Can be used as a hook object by defining term_expansion/2 and goal_expansion/2 multifile and dynamic predicates.

Availability:

built_in

Author: Paulo Moura

Version: 1:6:0

Date: 2024-11-11

Compilation flags:

static, built_in, context_switching_calls, dynamic_declarations, threaded

Implements:

public expanding

public forwarding

public monitoring

Uses:

user

Remarks:

(none)

Inherited public predicates:

 after/3 before/3 forward/1 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coroutining

Coroutining predicates.

Availability:

logtalk_load(coroutining(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2021-12-17

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: ECLiPSe, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	dif/2

	dif/1

	freeze/2

	frozen/2

	when/2

	Protected predicates

	Private predicates

	Operators

Public predicates

dif/2

Sets a constraint that is true iff the two terms are different.

Compilation flags:

static

Template:

dif(Term1,Term2)

Mode and number of proofs:

dif(+term,+term) - zero_or_one

dif/1

Sets a set of constraints that are true iff all terms in a list are different.

Compilation flags:

static

Template:

dif(Terms)

Mode and number of proofs:

dif(+list(term)) - zero_or_one

freeze/2

Delays the execution of a goal until a variable is bound.

Compilation flags:

static

Template:

freeze(Variable,Goal)

Meta-predicate template:

freeze(*,0)

Mode and number of proofs:

freeze(+term,+callable) - zero_or_more

frozen/2

Unifies Goal with the goal delayed by Variable. When no goals are frozen on Variable, Goal is unified with true.

Compilation flags:

static

Template:

frozen(Variable,Goal)

Mode and number of proofs:

frozen(@var,--callable) - one

when/2

Calls Goal when Condition becomes true. The portable conditions are: nonvar/1, ground/1, (,)/2, and (;)/2.

Compilation flags:

static

Template:

when(Condition,Goal)

Meta-predicate template:

when(*,0)

Mode and number of proofs:

when(+callable,+callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

csv

CSV files reading and writing predicates using the options Header - keep, Separator - comma, and IgnoreQuotes - false.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila

Version: 1:0:0

Date: 2021-02-02

Compilation flags:

static, context_switching_calls

Extends:

public csv(keep,comma,false)

Remarks:

(none)

Inherited public predicates:

 guess_arity/2 guess_separator/2 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

csv(Header,Separator,IgnoreQuotes)

	Header - Header handling option with possible values missing, skip, and keep (default).

	Separator - Separator handling option with possible values comma (default for non .tsv and non .tab files or when no file name extension is available), tab (default for .tsv and .tab files), semicolon, and colon.

	IgnoreQuotes - Double-quotes handling option to ignore (true) or preserve (false; default) double quotes surrounding data.

CSV file and stream reading and writing predicates.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila and Paulo Moura

Version: 2:1:0

Date: 2023-11-15

Compilation flags:

static, context_switching_calls

Implements:

public csv_protocol

Uses:

list

logtalk

os

reader

type

Remarks:

(none)

Inherited public predicates:

 guess_arity/2 guess_separator/2 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

csv_guess_questions

Support for asking questions when guessing the separator and the record arity of CSV files.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila

Version: 1:0:0

Date: 2021-02-03

Compilation flags:

static

Provides:

logtalk::message_tokens//2

logtalk::question_prompt_stream/4

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

csv_protocol

CSV file and stream reading and writing protocol.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila and Paulo Moura

Version: 2:0:1

Date: 2025-05-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Type-checking: Some of the predicate file and stream argument type-checking exceptions depend on the Prolog backend compliance with standards.

Inherited public predicates:

(none)

	Public predicates

	read_file/3

	read_stream/3

	read_file/2

	read_stream/2

	read_file_by_line/3

	read_stream_by_line/3

	read_file_by_line/2

	read_stream_by_line/2

	write_file/3

	write_stream/3

	guess_separator/2

	guess_arity/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/3

Reads a CSV file saving the data as clauses for the specified object predicate. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Object,Predicate)

Mode and number of proofs:

read_file(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream/3

Reads a CSV stream saving the data as clauses for the specified object predicate. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Object,Predicate)

Mode and number of proofs:

read_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file/2

Reads a CSV file returning the data as a list of rows, each row a list of fields. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Rows)

Mode and number of proofs:

read_file(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream/2

Reads a CSV stream returning the data as a list of rows, each row a list of fields. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Rows)

Mode and number of proofs:

read_stream(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

read_file_by_line/3

Reads a CSV file saving the data as clauses for the specified object predicate. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Object,Predicate)

Mode and number of proofs:

read_file_by_line(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream_by_line/3

Reads a CSV stream saving the data as clauses for the specified object predicate. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Object,Predicate)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file_by_line/2

Reads a CSV file returning the data as a list of rows, each row a list of fields. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Rows)

Mode and number of proofs:

read_file_by_line(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream_by_line/2

Reads a CSV stream returning the data as a list of rows, each row a list of fields. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Rows)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

write_file/3

Writes a CSV file with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_file(File,Object,Predicate)

Mode and number of proofs:

write_file(+atom,+object_identifier,+predicate_indicator) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

write_stream/3

Writes a CSV stream with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_stream(Stream,Object,Predicate)

Mode and number of proofs:

write_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an input stream:

permission_error(output,stream,Stream)

Stream is a binary stream:

permission_error(output,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

guess_separator/2

Guesses the separator used in a given file, asking the user to confirm.

Compilation flags:

static

Template:

guess_separator(File,Separator)

Mode and number of proofs:

guess_separator(+atom,-atom) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

guess_arity/2

Guesses the arity of records in a given file, asking the user to confirm.

Compilation flags:

static

Template:

guess_arity(File,Arity)

Mode and number of proofs:

guess_arity(+atom,-number) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

date

Date predicates.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2014-09-27

Compilation flags:

static, context_switching_calls

Implements:

public datep

Uses:

os

Remarks:

(none)

Inherited public predicates:

 days_in_month/3 leap_year/1 name_of_day/3 name_of_month/3 today/3 valid/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

datep

Date protocol.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2005-03-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	today/3

	leap_year/1

	name_of_day/3

	name_of_month/3

	days_in_month/3

	valid/3

	Protected predicates

	Private predicates

	Operators

Public predicates

today/3

Returns current date.

Compilation flags:

static

Template:

today(Year,Month,Day)

Mode and number of proofs:

today(-integer,-integer,-integer) - one

leap_year/1

True if the argument is a leap year.

Compilation flags:

static

Template:

leap_year(Year)

Mode and number of proofs:

leap_year(+integer) - zero_or_one

name_of_day/3

Name and short name of day.

Compilation flags:

static

Template:

name_of_day(Index,Name,Short)

Mode and number of proofs:

name_of_day(?integer,?atom,?atom) - zero_or_more

name_of_month/3

Name and short name of month.

Compilation flags:

static

Template:

name_of_month(Index,Name,Short)

Mode and number of proofs:

name_of_month(?integer,?atom,?atom) - zero_or_more

days_in_month/3

Number of days in a month.

Compilation flags:

static

Template:

days_in_month(Month,Year,Days)

Mode and number of proofs:

days_in_month(?integer,+integer,?integer) - zero_or_more

valid/3

True if the arguments represent a valid date.

Compilation flags:

static

Template:

valid(Year,Month,Day)

Mode and number of proofs:

valid(@integer,@integer,@integer) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

date, timep

 object

time

Time predicates.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2014-09-27

Compilation flags:

static, context_switching_calls

Implements:

public timep

Uses:

os

Remarks:

(none)

Inherited public predicates:

 cpu_time/1 now/3 valid/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

datep

 protocol

timep

Time protocol.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	now/3

	cpu_time/1

	valid/3

	Protected predicates

	Private predicates

	Operators

Public predicates

now/3

Returns current time.

Compilation flags:

static

Template:

now(Hours,Mins,Secs)

Mode and number of proofs:

now(-integer,-integer,-integer) - one

cpu_time/1

Returns the current cpu time.

Compilation flags:

static

Template:

cpu_time(Time)

Mode and number of proofs:

cpu_time(-number) - one

valid/3

True if the arguments represent a valid time value.

Compilation flags:

static

Template:

valid(Hours,Mins,Secs)

Mode and number of proofs:

valid(+integer,+integer,+integer) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

time, datep

 object

dead_code_scanner

A tool for detecting likely dead code in compiled Logtalk entities and Prolog modules compiled as objects.

Availability:

logtalk_load(dead_code_scanner(loader))

Author: Barry Evans and Paulo Moura

Version: 0:15:2

Date: 2024-10-21

Compilation flags:

static, context_switching_calls

Imports:

public options

Uses:

list

logtalk

os

type

Remarks:

	Dead code: A predicate or non-terminal that is not called (directly or indirectly) by any scoped predicate or non-terminal. These predicates and non-terminals are not used, cannot be called without breaking encapsulation, and are thus considered dead code.

	Known issues: Use of local meta-calls with goal arguments only know at runtime can result in false positives. Calls from non-standard meta-predicates may be missed if the meta-calls are not optimized.

	Requirements: Source files must be compiled with the source_data flag turned on. To avoid false positives do to meta-calls, compilation of source files with the optimized flag turned on is also advised.

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	entity/1

	file/2

	file/1

	directory/2

	directory/1

	rdirectory/2

	rdirectory/1

	library/2

	library/1

	rlibrary/2

	rlibrary/1

	all/1

	all/0

	predicates/2

	predicate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

entity/1

Scans a loaded entity for dead code. Fails if the entity does not exist.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - zero_or_one

file/2

Scans all entities in a loaded source file for dead code using the given options. The file can be given by name, basename, full path, or using library notation. Fails if the file is not loaded.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - zero_or_one

file/1

Scans all entities in a loaded source file for dead code using default options. The file can be given by name, basename, full path, or using library notation. Fails if the file is not loaded.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - zero_or_one

directory/2

Scans all entities in all loaded files from a given directory for dead code using the given options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Scans all entities in all loaded files from a given directory for dead code using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

rdirectory/2

Scans all entities in all loaded files from a given directory and its sub-directories for dead code using the given options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Scans all entities in all loaded files from a given directory and its sub-directories for dead code using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

library/2

Scans all entities in all loaded files from a given library for dead code using the given options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Scans all entities in all loaded files from a given library for dead code using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rlibrary/2

Scans all entities in all loaded files in a loaded library and its sub-libraries for dead code using the given options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Scans all entities in all loaded files in a loaded library and its sub-libraries for dead code using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

all/1

Scans all entities for dead code using the given options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list(compound)) - one

all/0

Scans all entities for dead code using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

predicates/2

Returns an ordered set of local predicates (and non-terminals) that are not used, directly or indirectly, by scoped predicates for a loaded entity.

Compilation flags:

static

Template:

predicates(Entity,Predicates)

Mode and number of proofs:

predicates(+entity_identifier,-list(predicate_indicator)) - one

predicate/2

Enumerates, by backtracking, local predicates (and non-terminals) that are not used, directly or indirectly, by scoped predicates for a loaded entity.

Compilation flags:

static

Template:

predicate(Entity,Predicate)

Mode and number of proofs:

predicate(+entity_identifier,?predicate_indicator) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

dead_code_scanner_messages

Logtalk dead_code_scanner tool default message translations.

Availability:

logtalk_load(dead_code_scanner(loader))

Author: Barry Evans and Paulo Moura

Version: 0:8:0

Date: 2024-05-07

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

debug_messages

Supports selective enabling and disabling of debug and debug(Group) messages.

Availability:

logtalk_load(debug_messages(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

Remarks:

	Limitations: Debug messages are suppressed by the compiler when the optimize flag is turned on and thus cannot be enabled in this case.

Inherited public predicates:

(none)

	Public predicates

	enable/1

	disable/1

	enabled/1

	enable/2

	disable/2

	enabled/2

	Protected predicates

	Private predicates

	enabled_/1

	enabled_/2

	Operators

Public predicates

enable/1

Enables all debug and debug(Group) messages for the given component.

Compilation flags:

static

Template:

enable(Component)

Mode and number of proofs:

enable(@term) - one

disable/1

Disables all debug and debug(Group) messages for the given component.

Compilation flags:

static

Template:

disable(Component)

Mode and number of proofs:

disable(@term) - one

enabled/1

Enumerates by backtracking the components with enabled debug and debug(Group) messages.

Compilation flags:

static

Template:

enabled(Component)

Mode and number of proofs:

enabled(?term) - zero_or_more

enable/2

Enables debug(Group) messages for the given component and group.

Compilation flags:

static

Template:

enable(Component,Group)

Mode and number of proofs:

enable(@term,@term) - one

disable/2

Disables debug(Group) messages for the given component and group.

Compilation flags:

static

Template:

disable(Component,Group)

Mode and number of proofs:

disable(@term,@term) - one

enabled/2

Enumerates by backtracking the enabled debug(Group) messages for each component.

Compilation flags:

static

Template:

enabled(Component,Group)

Mode and number of proofs:

enabled(?term,?term) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

enabled_/1

Table of components with currently enabled debug and debug(Group) messages.

Compilation flags:

dynamic

Template:

enabled_(Component)

Mode and number of proofs:

enabled_(?term) - zero_or_more

enabled_/2

Table of currently enabled debug(Group) per component.

Compilation flags:

dynamic

Template:

enabled_(Component,Group)

Mode and number of proofs:

enabled_(?term,?term) - zero_or_more

Operators

(none)

 object

debugger

Command-line debugger based on an extended procedure box model supporting execution tracing and spy points.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 7:12:2

Date: 2025-09-05

Compilation flags:

static, context_switching_calls

Implements:

public debuggerp

Provides:

logtalk::debug_handler/1

logtalk::debug_handler/3

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 debug/0 debugging/0 debugging/1 leash/1 leashing/1 log/3 logging/3 nodebug/0 nolog/3 nologall/0 nospy/1 nospy/3 nospy/4 nospyall/0 notrace/0 reset/0 set_write_max_depth/1 spy/1 spy/3 spy/4 spying/1 spying/3 spying/4 trace/0 write_max_depth/1

	Public predicates

	Protected predicates

	Private predicates

	debugging_/0

	tracing_/0

	explicit_tracing_/0

	skipping_/0

	skipping_unleashed_/1

	quasi_skipping_/0

	leaping_/1

	leashing_/1

	invocation_number_/1

	jump_to_invocation_number_/1

	zap_to_port_/1

	write_max_depth_/1

	log_point_/3

	clause_breakpoint_/2

	predicate_breakpoint_/3

	entity_predicate_breakpoint_/4

	context_breakpoint_/4

	conditional_breakpoint_/3

	triggered_breakpoint_/4

	triggered_breakpoint_enabled_/2

	file_line_hit_count_/3

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

debugging_/0

True iff debug is on.

Compilation flags:

dynamic

Mode and number of proofs:

debugging_ - zero_or_one

tracing_/0

True iff tracing is on.

Compilation flags:

dynamic

Mode and number of proofs:

tracing_ - zero_or_one

explicit_tracing_/0

True iff tracing is on due to a call to the trace/0 predicate.

Compilation flags:

dynamic

Mode and number of proofs:

explicit_tracing_ - zero_or_one

skipping_/0

True iff skipping.

Compilation flags:

dynamic

Mode and number of proofs:

skipping_ - zero_or_one

skipping_unleashed_/1

True iff skipping (a goal with invocation number N) but showing intermediate ports as unleashed.

Compilation flags:

dynamic

Template:

skipping_unleashed_(N)

Mode and number of proofs:

skipping_unleashed_(?integer) - zero_or_one

quasi_skipping_/0

True iff quasi-skipping.

Compilation flags:

dynamic

Mode and number of proofs:

quasi_skipping_ - zero_or_one

leaping_/1

True iff leaping in tracing or debugging mode.

Compilation flags:

dynamic

Template:

leaping_(Mode)

Mode and number of proofs:

leaping_(?atom) - zero_or_one

leashing_/1

Table of currently leashed ports.

Compilation flags:

dynamic

Template:

leashing_(Port)

Mode and number of proofs:

leashing_(?atom) - zero_or_more

invocation_number_/1

Current call stack invocation number.

Compilation flags:

dynamic

Template:

invocation_number_(N)

Mode and number of proofs:

invocation_number_(?integer) - zero_or_one

jump_to_invocation_number_/1

Invocation number to jump to.

Compilation flags:

dynamic

Template:

jump_to_invocation_number_(N)

Mode and number of proofs:

jump_to_invocation_number_(?integer) - zero_or_one

zap_to_port_/1

Port to zap to.

Compilation flags:

dynamic

Template:

zap_to_port_(Port)

Mode and number of proofs:

zap_to_port_(?integer) - zero_or_one

write_max_depth_/1

Current term write maximum depth.

Compilation flags:

dynamic

Template:

write_max_depth_(MaxDepth)

Mode and number of proofs:

write_max_depth_(?non_negative_integer) - zero_or_one

log_point_/3

Table of log points.

Compilation flags:

dynamic

Template:

log_point_(Entity,Line,Message)

Mode and number of proofs:

log_point_(?object_identifier,?integer,?atom) - zero_or_more

log_point_(?category_identifier,?integer,?atom) - zero_or_more

clause_breakpoint_/2

Table of clause breakpoints.

Compilation flags:

dynamic

Template:

clause_breakpoint_(Entity,Line)

Mode and number of proofs:

clause_breakpoint_(?object_identifier,?integer) - zero_or_more

clause_breakpoint_(?category_identifier,?integer) - zero_or_more

predicate_breakpoint_/3

Table of predicate breakpoints.

Compilation flags:

dynamic

Template:

predicate_breakpoint_(Functor,Arity,Original)

Mode and number of proofs:

predicate_breakpoint_(?atom,?integer,?predicate_indicator) - zero_or_more

predicate_breakpoint_(?atom,?integer,?non_terminal_indicator) - zero_or_more

entity_predicate_breakpoint_/4

Table of entity predicate breakpoints.

Compilation flags:

dynamic

Template:

entity_predicate_breakpoint_(Entity,Functor,Arity,Original)

Mode and number of proofs:

entity_predicate_breakpoint_(?callable,?atom,?integer,?qualified_predicate_indicator) - zero_or_more

entity_predicate_breakpoint_(?callable,?atom,?integer,?qualified_non_terminal_indicator) - zero_or_more

context_breakpoint_/4

Table of context breakpoints.

Compilation flags:

dynamic

Template:

context_breakpoint_(Sender,This,Self,Goal)

Mode and number of proofs:

context_breakpoint_(?object_identifier,?object_identifier,?object_identifier,?callable) - zero_or_more

conditional_breakpoint_/3

Table of conditional breakpoints.

Compilation flags:

dynamic

Template:

conditional_breakpoint_(Entity,Line,Condition)

Mode and number of proofs:

conditional_breakpoint_(?object_identifier,?integer,?callable) - zero_or_more

conditional_breakpoint_(?category_identifier,?integer,?callable) - zero_or_more

triggered_breakpoint_/4

Table of defined triggered breakpoints.

Compilation flags:

dynamic

Template:

triggered_breakpoint_(Entity,Line,TriggerEntity,TriggerLine)

Mode and number of proofs:

triggered_breakpoint_(?object_identifier,?integer,?object_identifier,?integer) - zero_or_more

triggered_breakpoint_(?object_identifier,?integer,?category_identifier,?integer) - zero_or_more

triggered_breakpoint_(?category_identifier,?integer,?object_identifier,?integer) - zero_or_more

triggered_breakpoint_(?category_identifier,?integer,?category_identifier,?integer) - zero_or_more

triggered_breakpoint_enabled_/2

Table of enabled triggered breakpoints.

Compilation flags:

dynamic

Template:

triggered_breakpoint_enabled_(Entity,Line)

Mode and number of proofs:

triggered_breakpoint_enabled_(?object_identifier,?integer) - zero_or_more

triggered_breakpoint_enabled_(?category_identifier,?integer) - zero_or_more

file_line_hit_count_/3

Table of file and line hit counts (successful unifications with clause heads).

Compilation flags:

dynamic

Template:

file_line_hit_count_(File,Line,Count)

Mode and number of proofs:

file_line_hit_count_(?atom,?integer,?integer) - zero_or_one

Operators

(none)

 category

debugger_messages

Logtalk debugger tool default message translations.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 3:9:0

Date: 2025-09-03

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::question_prompt_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

debuggerp

Debugger protocol.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 3:6:0

Date: 2025-09-05

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Debugger help: Type the character h (condensed help) or the character ? (extended help) at a leashed port.

	Predicate breakpoint: Specified as a ground term Functor/Arity.

	Non-terminal breakpoint: Specified as a ground term Functor//Arity.

	Entity predicate breakpoint: Specified as a term Entity::Functor/Arity. Entity must be an object or category and may not be ground if parametric.

	Entity non-terminal breakpoint: Specified as a term Entity::Functor//Arity. Entity must be an object or category and may not be ground if parametric.

	Clause breakpoint: Specified as an Entity-Line term with both Entity and Line bound. Line must be the first source file line of an entity clause.

	Conditional breakpoint: Specified using Entity and Line for the clause head and a condition. Line must be the first source file line of an entity clause.

	Hit count breakpoint: Specified using Entity and Line for the clause head and an unification count expression as a condition. Line must be the first source file line of an entity clause.

	Triggered breakpoint: Specified using Entity and Line for the clause head and another breakpoint as a condition. Line must be the first source file line of an entity clause.

	Context breakpoint: Specified as a (Sender, This, Self, Goal) tuple.

	Log point: Specified using Entity and Line for the clause head and a message.

	Leash port shorthands: none - [], loose - [fact,rule,call], half - [fact,rule,call,redo], tight - [fact,rule,call,redo,fail,exception], and full - [fact,rule,call,exit,redo,fail,exception].

Inherited public predicates:

(none)

	Public predicates

	reset/0

	debug/0

	nodebug/0

	debugging/0

	debugging/1

	trace/0

	notrace/0

	leash/1

	leashing/1

	spy/1

	spying/1

	nospy/1

	spy/3

	spying/3

	nospy/3

	spy/4

	spying/4

	nospy/4

	nospyall/0

	log/3

	logging/3

	nolog/3

	nologall/0

	write_max_depth/1

	set_write_max_depth/1

	Protected predicates

	Private predicates

	Operators

Public predicates

reset/0

Resets all debugging settings (including breakpoints, log points, and leashed ports) and turns off debugging.

Compilation flags:

static

Mode and number of proofs:

reset - one

See also:

nospyall/0

debug/0

Starts debugging for all defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

debug - one

nodebug/0

Stops debugging for all defined breakpoints. Also turns off tracing. Does not remove defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

nodebug - one

See also:

reset/0

debugging/0

Reports current debugging settings, including breakpoints and log points.

Compilation flags:

static

Mode and number of proofs:

debugging - one

debugging/1

Enumerates, by backtracking, all entities compiled in debug mode.

Compilation flags:

static

Template:

debugging(Entity)

Mode and number of proofs:

debugging(?entity_identifier) - zero_or_more

trace/0

Starts tracing all calls compiled in debug mode.

Compilation flags:

static

Mode and number of proofs:

trace - one

notrace/0

Stops tracing of calls compiled in debug mode. Debugger will still stop at defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

notrace - one

leash/1

Sets the debugger leash ports using an abbreviation (none, loose, half, tight, or full) or a list of ports (valid ports are fact, rule, call, exit, redo, fail, and exception).

Compilation flags:

static

Template:

leash(Ports)

Mode and number of proofs:

leash(+atom) - one

leash(+list(atom)) - one

leashing/1

Enumerates, by backtracking, all leashed ports (valid ports are fact, rule, call, exit, redo, fail, and exception).

Compilation flags:

static

Template:

leashing(Port)

Mode and number of proofs:

leashing(?atom) - zero_or_more

spy/1

Sets a predicate or clause breakpoint (removing any existing log point or breakpoint defined for the same location, or a list of breakpoints. Fails if a breakpoint is invalid.

Compilation flags:

static

Template:

spy(Breakpoint)

Mode and number of proofs:

spy(@spy_point) - zero_or_one

spy(@list(spy_point)) - zero_or_one

spying/1

Enumerates, by backtracking, all defined predicate and clause breakpoints.

Compilation flags:

static

Template:

spying(Breakpoint)

Mode and number of proofs:

spying(?spy_point) - zero_or_more

nospy/1

Removes all matching predicate and clause breakpoints.

Compilation flags:

static

Template:

nospy(Breakpoint)

Mode and number of proofs:

nospy(@var) - one

nospy(@spy_point) - one

nospy(@list(spy_point)) - one

spy/3

Sets a conditional or triggered breakpoint (removing any existing log point or breakpoint defined for the same location) at a clause head. The condition can be a unification count expression, a lambda expression, or another breakpoint. Fails if the breakpoint is invalid.

Compilation flags:

static

Template:

spy(Entity,Line,Condition)

Mode and number of proofs:

spy(+atom,+integer,@callable) - zero_or_one

Remarks:

	Unification count expression conditions: >(Count), >=(Count), =:=(Count), =<(Count), <(Count), mod(M), and Count.

	Lambda expression conditions: [Count,N,Goal]>>Condition and [Goal]>>Condition where Count is the unification count, N is the invocation number, and Goal is the goal that unified with the clause head; Condition is called in the context of user.

	Triggered breakpoint conditions: Entity-Line.

spying/3

Enumerates, by backtracking, all conditional and triggered breakpoints.

Compilation flags:

static

Template:

spying(Entity,Line,Condition)

Mode and number of proofs:

spying(?atom,?integer,?callable) - zero_or_more

nospy/3

Removes all matching conditional and triggered breakpoints.

Compilation flags:

static

Template:

nospy(Entity,Line,Condition)

Mode and number of proofs:

nospy(@term,@term,@term) - one

spy/4

Sets a context breakpoint.

Compilation flags:

static

Template:

spy(Sender,This,Self,Goal)

Mode and number of proofs:

spy(@term,@term,@term,@term) - one

spying/4

Enumerates, by backtracking, all defined context breakpoints.

Compilation flags:

static

Template:

spying(Sender,This,Self,Goal)

Mode and number of proofs:

spying(?term,?term,?term,?term) - zero_or_more

nospy/4

Removes all matching context breakpoints.

Compilation flags:

static

Template:

nospy(Sender,This,Self,Goal)

Mode and number of proofs:

nospy(@term,@term,@term,@term) - one

nospyall/0

Removes all breakpoints and log points.

Compilation flags:

static

Mode and number of proofs:

nospyall - one

See also:

reset/0

log/3

Sets a log point (removing any existing breakpoint defined for the same location) at a clause head. Fails if the log point is invalid.

Compilation flags:

static

Template:

log(Entity,Line,Message)

Mode and number of proofs:

log(@object_identifier,+integer,+atom) - zero_or_one

log(@category_identifier,+integer,+atom) - zero_or_one

logging/3

Enumerates, by backtracking, all defined log points.

Compilation flags:

static

Template:

logging(Entity,Line,Message)

Mode and number of proofs:

logging(?object_identifier,?integer,?atom) - zero_or_more

logging(?category_identifier,?integer,?atom) - zero_or_more

nolog/3

Removes all matching log points.

Compilation flags:

static

Template:

nolog(Entity,Line,Message)

Mode and number of proofs:

nolog(@var_or(object_identifier),@var_or(integer),@var_or(atom)) - one

nolog(@var_or(category_identifier),@var_or(integer),@var_or(atom)) - one

nologall/0

Removes all log points.

Compilation flags:

static

Mode and number of proofs:

nologall - one

See also:

reset/0

write_max_depth/1

Current term write maximum depth. When not defined, the backend default is used.

Compilation flags:

static

Template:

write_max_depth(MaxDepth)

Mode and number of proofs:

write_max_depth(?non_negative_integer) - zero_or_one

set_write_max_depth/1

Sets the default term maximum write depth. For most backends, a value of zero means that the whole term is written.

Compilation flags:

static

Template:

set_write_max_depth(MaxDepth)

Mode and number of proofs:

set_write_max_depth(+non_negative_integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

debugger

 object

dump_trace

Simple solution for redirecting a debugger trace to a file.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2021-11-12

Compilation flags:

static, context_switching_calls

Uses:

debugger

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	start_redirect_to_file/2

	stop_redirect_to_file/0

	Protected predicates

	Private predicates

	Operators

Public predicates

start_redirect_to_file/2

Starts redirecting debugger trace messages to a file.

Compilation flags:

static

Template:

start_redirect_to_file(File,Goal)

Meta-predicate template:

start_redirect_to_file(*,0)

Mode and number of proofs:

start_redirect_to_file(+atom,+callable) - zero_or_more

stop_redirect_to_file/0

Stops redirecting debugger trace messages to a file.

Compilation flags:

static

Mode and number of proofs:

stop_redirect_to_file - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

observer

Smalltalk dependent protocol.

Availability:

logtalk_load(dependents(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2003-02-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	update/1

	Protected predicates

	Private predicates

	Operators

Public predicates

update/1

Called when an observed object is updated.

Compilation flags:

static

Template:

update(Change)

Mode and number of proofs:

update(?nonvar) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

subject

 category

subject

Smalltalk dependent handling predicates.

Availability:

logtalk_load(dependents(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2003-02-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	changed/0

	changed/1

	dependents/1

	addDependent/1

	removeDependent/1

	Protected predicates

	Private predicates

	dependent_/1

	Operators

Public predicates

changed/0

Receiver changed in some way. Notify all dependents.

Compilation flags:

static

Mode and number of proofs:

changed - one

changed/1

Receiver changed as specified in the argument. Notify all dependents.

Compilation flags:

static

Template:

changed(Change)

Mode and number of proofs:

changed(?nonvar) - one

dependents/1

Returns a list of all dependent objects.

Compilation flags:

static

Template:

dependents(Dependents)

Mode and number of proofs:

dependents(-list) - one

addDependent/1

Adds a new dependent object.

Compilation flags:

static

Template:

addDependent(Dependent)

Mode and number of proofs:

addDependent(@object) - one

removeDependent/1

Removes a dependent object.

Compilation flags:

static

Template:

removeDependent(Dependent)

Mode and number of proofs:

removeDependent(?object) - zero_or_more

Protected predicates

(none)

Private predicates

dependent_/1

Table of dependent objects.

Compilation flags:

dynamic

Template:

dependent_(Dependent)

Mode and number of proofs:

dependent_(?object) - zero_or_more

Operators

(none)

See also

observer

 object

d2_graph_language

Predicates for generating graph files in the DOT language (version 2.36.0 or later).

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

diagram(Format)

	Format - Graph language file format.

Common predicates for generating diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:16:0

Date: 2025-10-27

Compilation flags:

static

Extends:

public options

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Uses:

graph_language_registry

list

logtalk

modules_diagram_support

os

pairs

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	libraries/3

	libraries/2

	libraries/1

	all_libraries/1

	all_libraries/0

	rlibrary/2

	rlibrary/1

	library/2

	library/1

	directories/3

	directories/2

	rdirectory/3

	rdirectory/2

	rdirectory/1

	directory/3

	directory/2

	directory/1

	files/3

	files/2

	files/1

	all_files/1

	all_files/0

	format_object/1

	diagram_description/1

	diagram_name_suffix/1

	Protected predicates

	diagram_caption/3

	output_rlibrary/3

	output_library/3

	output_rdirectory/3

	output_externals/1

	output_files/2

	output_file/4

	output_sub_diagrams/1

	reset/0

	output_node/6

	node/6

	edge/5

	output_edges/1

	save_edge/5

	output_missing_externals/1

	not_excluded_file/4

	output_file_path/4

	locate_library/2

	locate_directory/2

	locate_file/5

	ground_entity_identifier/3

	filter_file_extension/3

	filter_external_file_extension/3

	add_link_options/3

	supported_editor_url_scheme_prefix/1

	omit_path_prefix/3

	add_node_zoom_option/4

	message_diagram_description/1

	Private predicates

	node_/6

	node_path_/2

	edge_/5

	Operators

Public predicates

libraries/3

Creates a diagram for a set of libraries using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

libraries(Project,Libraries,Options)

Mode and number of proofs:

libraries(+atom,+list(atom),+list(compound)) - one

libraries/2

Creates a diagram for a set of libraries using the default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

libraries(Project,Libraries)

Mode and number of proofs:

libraries(+atom,+list(atom)) - one

libraries/1

Creates a diagram for a set of libraries using the default options. The prefix libraries is used for the diagram file name.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

all_libraries/1

Creates a diagram for all loaded libraries using the specified options.

Compilation flags:

static

Template:

all_libraries(Options)

Mode and number of proofs:

all_libraries(+list(compound)) - one

all_libraries/0

Creates a diagram for all loaded libraries using default options.

Compilation flags:

static

Mode and number of proofs:

all_libraries - one

rlibrary/2

Creates a diagram for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Creates a diagram for a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

library/2

Creates a diagram for a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Creates a diagram for a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

directories/3

Creates a diagram for a set of directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directories(Project,Directories,Options)

Mode and number of proofs:

directories(+atom,+list(atom),+list(compound)) - one

directories/2

Creates a diagram for a set of directories using the default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directories(Project,Directories)

Mode and number of proofs:

directories(+atom,+list(atom)) - one

rdirectory/3

Creates a diagram for a directory and its sub-directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+atom,+list(compound)) - one

rdirectory/2

Creates a diagram for a directory and its sub-directories using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory)

Mode and number of proofs:

rdirectory(+atom,+atom) - one

rdirectory/1

Creates a diagram for a directory and its sub-directories using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/3

Creates a diagram for a directory using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Project,Directory,Options)

Mode and number of proofs:

directory(+atom,+atom,+list(compound)) - one

directory/2

Creates a diagram for a directory using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Project,Directory)

Mode and number of proofs:

directory(+atom,+atom) - one

directory/1

Creates a diagram for a directory using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/3

Creates a diagram for a set of files using the specified options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

files(Project,Files,Options)

Mode and number of proofs:

files(+atom,+list(atom),+list(compound)) - one

files/2

Creates a diagram for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

files(Project,Files)

Mode and number of proofs:

files(+atom,+list(atom)) - one

files/1

Creates a diagram for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The prefix files is used for the diagram file name.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

all_files/1

Creates a diagram for all loaded files using the specified options.

Compilation flags:

static

Template:

all_files(Options)

Mode and number of proofs:

all_files(+list(compound)) - one

all_files/0

Creates a diagram for all loaded files using default options.

Compilation flags:

static

Mode and number of proofs:

all_files - one

format_object/1

Returns the identifier of the object implementing the graph language currently being used. Fails if none is specified.

Compilation flags:

static

Template:

format_object(Object)

Mode and number of proofs:

format_object(-object_identifier) - zero_or_one

diagram_description/1

Returns the diagram description.

Compilation flags:

static

Template:

diagram_description(Description)

Mode and number of proofs:

diagram_description(-atom) - one

diagram_name_suffix/1

Returns the diagram name suffix.

Compilation flags:

static

Template:

diagram_name_suffix(Suffix)

Mode and number of proofs:

diagram_name_suffix(-atom) - one

Protected predicates

diagram_caption/3

Creates a diagram caption from the diagram description and the subject and its kind.

Compilation flags:

static

Template:

diagram_caption(Kind,Subject,Description)

Mode and number of proofs:

diagram_caption(+atom,+callable,-atom) - one

output_rlibrary/3

Generates diagram output for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

output_rlibrary(Library,Path,Options)

Mode and number of proofs:

output_rlibrary(+atom,+atom,+list(compound)) - one

output_library/3

Generates diagram output for a library using the specified options.

Compilation flags:

static

Template:

output_library(Library,Path,Options)

Mode and number of proofs:

output_library(+atom,+atom,+list(compound)) - one

output_rdirectory/3

Generates diagram output for a directory and its sub-directories using the specified options.

Compilation flags:

static

Template:

output_rdirectory(Project,Path,Options)

Mode and number of proofs:

output_rdirectory(+atom,+atom,+list(compound)) - one

output_externals/1

Output external nodes using the specified options depending on the value of the boolean option externals/1.

Compilation flags:

static

Template:

output_externals(Options)

Mode and number of proofs:

output_externals(+list(compound)) - one

output_files/2

Generates diagram output for a list of files using the specified options.

Compilation flags:

static

Template:

output_files(Files,Options)

Mode and number of proofs:

output_files(+list,+list(compound)) - one

output_file/4

Generates diagram output for a file using the specified options.

Compilation flags:

static

Template:

output_file(Path,Basename,Directory,Options)

Mode and number of proofs:

output_file(+atom,+atom,+atom,+list(compound)) - one

output_sub_diagrams/1

Outputs sub-diagrams using the specified options.

Compilation flags:

static

Template:

output_sub_diagrams(Options)

Mode and number of proofs:

output_sub_diagrams(+list(compound)) - one

reset/0

Resets all temporary information used when generating a diagram.

Compilation flags:

static

Mode and number of proofs:

reset - one

output_node/6

Outputs a graph node.

Compilation flags:

static

Template:

output_node(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

output_node(+nonvar,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

node/6

Enumerates, by backtracking, all saved nodes.

Compilation flags:

static

Template:

node(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

node(?nonvar,?nonvar,?nonvar,?list(compound),?atom,?list(compound)) - zero_or_more

edge/5

Enumerates, by backtracking, all saved edges.

Compilation flags:

static

Template:

edge(From,To,Labels,Kind,Options)

Mode and number of proofs:

edge(?nonvar,?nonvar,?list(nonvar),?atom,?list(compound)) - zero_or_more

output_edges/1

Outputs all edges.

Compilation flags:

static

Template:

output_edges(Options)

Mode and number of proofs:

output_edges(+list(compound)) - one

save_edge/5

Saves a graph edge.

Compilation flags:

static

Template:

save_edge(From,To,Labels,Kind,Options)

Mode and number of proofs:

save_edge(+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

output_missing_externals/1

Outputs missing external nodes (usually due to unloaded resources) that are referenced from edges.

Compilation flags:

static

Template:

output_missing_externals(Options)

Mode and number of proofs:

output_missing_externals(+list(compound)) - one

not_excluded_file/4

True when the given file is not excluded from the generated output. Excluded files may be specified by full path or by basename and with or without extension. Excluded directories may be listed by full or relative path.

Compilation flags:

static

Template:

not_excluded_file(Path,Basename,ExcludedDirectories,ExcludedFiles)

Mode and number of proofs:

not_excluded_file(+atom,+atom,+list(atom),+list(atom)) - zero_or_one

output_file_path/4

Returns the output file path.

Compilation flags:

static

Template:

output_file_path(Name,Options,Format,Path)

Mode and number of proofs:

output_file_path(+atom,+list(atom),+object_identifier,-atom) - one

locate_library/2

Locates a library given its name.

Compilation flags:

static

Template:

locate_library(Library,Path)

Mode and number of proofs:

locate_library(+atom,-atom) - one

locate_directory/2

Locates a directory given its name or full path.

Compilation flags:

static

Template:

locate_directory(Directory,Path)

Mode and number of proofs:

locate_directory(+atom,-atom) - one

locate_file/5

Locates a file given its name, basename, full path, or library notation representation.

Compilation flags:

static

Template:

locate_file(File,Basename,Extension,Directory,Path)

Mode and number of proofs:

locate_file(+atom,+atom,+atom,+atom,-atom) - one

ground_entity_identifier/3

Converts an entity identifier to a ground term.

Compilation flags:

static

Template:

ground_entity_identifier(Kind,Identifier,GroundIdentifier)

Mode and number of proofs:

ground_entity_identifier(+atom,+callable,-callable) - one

filter_file_extension/3

Filters the file name extension depending on the file_extensions/1 option.

Compilation flags:

static

Template:

filter_file_extension(Basename,Options,Name)

Mode and number of proofs:

filter_file_extension(+atom,+list(compound),-atom) - one

filter_external_file_extension/3

Filters the external file name extension depending on the file_extensions/1 option.

Compilation flags:

static

Template:

filter_external_file_extension(Path,Options,Name)

Mode and number of proofs:

filter_external_file_extension(+atom,+list(compound),-atom) - one

add_link_options/3

Adds url/1, urls/2, and tooltip/1 link options (for use by the graph language) based on the specified path to the list of options.

Compilation flags:

static

Template:

add_link_options(Path,Options,LinkingOptions)

Mode and number of proofs:

add_link_options(+atom,+list(compound),-list(compound)) - one

supported_editor_url_scheme_prefix/1

Table of prefixes for text editors that supports a URL scheme to open diagram links.

Compilation flags:

static

Template:

supported_editor_url_scheme_prefix(Prefix)

Mode and number of proofs:

supported_editor_url_scheme_prefix(?atom) - zero_or_more

omit_path_prefix/3

Removes a prefix from a path, returning the relative path, when using the option omit_path_prefixes/1. Used mainly for constructing directory and file node identifiers and captions.

Compilation flags:

static

Template:

omit_path_prefix(Path,Options,Relative)

Mode and number of proofs:

omit_path_prefix(+atom,+list(compound),-atom) - one

add_node_zoom_option/4

Adds node zoom options when using the zoom option.

Compilation flags:

static

Template:

add_node_zoom_option(Identifier,Suffix,Options,NodeOptions)

Mode and number of proofs:

add_node_zoom_option(+atom,+atom,+list(compound),-list(compound)) - one

message_diagram_description/1

Diagram description for progress messages.

Compilation flags:

static

Template:

message_diagram_description(Description)

Mode and number of proofs:

message_diagram_description(?atom) - one

Private predicates

node_/6

Table of saved nodes.

Compilation flags:

dynamic

Template:

node_(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

node_(?nonvar,?nonvar,?nonvar,?list(compound),?atom,?list(compound)) - zero_or_more

node_path_/2

Table of node paths.

Compilation flags:

dynamic

Template:

node_path_(Node,Path)

Mode and number of proofs:

node_path_(?ground,?list(ground)) - zero_or_more

edge_/5

Table of saved edges.

Compilation flags:

dynamic

Template:

edge_(From,To,Labels,Kind,Options)

Mode and number of proofs:

edge_(?nonvar,?nonvar,?list(nonvar),?atom,?list(compound)) - zero_or_more

Operators

(none)

 object

diagrams

Predicates for generating all supported diagrams for libraries, directories, and files in one step using the DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public diagrams(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 libraries/1 libraries/2 libraries/3 library/1 library/2 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

diagrams(Format)

	Format - Graph language file format.

Predicates for generating all supported diagrams for libraries, directories, or files in one step using the specified format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:8:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Uses:

list

os

Remarks:

	Common options: title/1, date/1, output_directory/1, relation_labels/1, node_type_captions/1, exclude_files/1, exclude_libraries/1, url_prefixes/1, omit_path_prefix/1, entity_url_suffix_target/2, and layout/1.

	Limitations: Some of the provided predicates only make sense for some types of diagrams. Also, fine tuning may require generating individual diagrams directly instead of as a batch using this utility object.

Inherited public predicates:

(none)

	Public predicates

	libraries/3

	libraries/2

	libraries/1

	all_libraries/1

	all_libraries/0

	rlibrary/2

	rlibrary/1

	library/2

	library/1

	directories/3

	directories/2

	rdirectory/3

	rdirectory/2

	rdirectory/1

	directory/3

	directory/2

	directory/1

	files/3

	files/2

	files/1

	all_files/1

	all_files/0

	Protected predicates

	Private predicates

	Operators

Public predicates

libraries/3

Creates all supported diagrams for a set of libraries using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

libraries(Project,Libraries,Options)

Mode and number of proofs:

libraries(+atom,+list(atom),+list(compound)) - one

libraries/2

Creates all supported diagrams for a set of libraries using the default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

libraries(Project,Libraries)

Mode and number of proofs:

libraries(+atom,+list(atom)) - one

libraries/1

Creates all supported diagrams for a set of libraries using the default options. The prefix libraries is used for the diagram file names.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

all_libraries/1

Creates all supported diagrams for all loaded libraries using the specified options.

Compilation flags:

static

Template:

all_libraries(Options)

Mode and number of proofs:

all_libraries(+list(compound)) - one

all_libraries/0

Creates all supported diagrams for all loaded libraries using default options.

Compilation flags:

static

Mode and number of proofs:

all_libraries - one

rlibrary/2

Creates all supported diagrams for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Creates all supported diagrams for a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

library/2

Creates all supported diagrams for a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Creates all supported diagrams for a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

directories/3

Creates all supported diagrams for a set of directories using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directories(Project,Directories,Options)

Mode and number of proofs:

directories(+atom,+list(atom),+list(compound)) - one

directories/2

Creates all supported diagrams for a directory using default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directories(Project,Directories)

Mode and number of proofs:

directories(+atom,+list(atom)) - one

rdirectory/3

Creates all supported diagrams for a directory and its sub-directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+atom,+list(compound)) - one

rdirectory/2

Creates all supported diagrams for a directory and its sub-directories using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory)

Mode and number of proofs:

rdirectory(+atom,+atom) - one

rdirectory/1

Creates all supported diagrams for a directory and its sub-directories using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/3

Creates all supported diagrams for a directory using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Project,Directory,Options)

Mode and number of proofs:

directory(+atom,+atom,+list(compound)) - one

directory/2

Creates all supported diagrams for a directory using default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Project,Directory)

Mode and number of proofs:

directory(+atom,+atom) - one

directory/1

Creates all supported diagrams for a directory using default options. The name of the directory is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/3

Creates all supported diagrams for a set of files using the specified options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

files(Project,Files,Options)

Mode and number of proofs:

files(+atom,+list(atom),+list(compound)) - one

files/2

Creates all supported diagrams for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

files(Project,Files)

Mode and number of proofs:

files(+atom,+list(atom)) - one

files/1

Creates all supported diagrams for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The prefix “files” is used for the diagram file names.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

all_files/1

Creates all supported diagrams for all loaded files using the specified options.

Compilation flags:

static

Template:

all_files(Options)

Mode and number of proofs:

all_files(+list(compound)) - one

all_files/0

Creates all supported diagrams for all loaded files using default options.

Compilation flags:

static

Mode and number of proofs:

all_files - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

directory_dependency_diagram

Predicates for generating directory dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public directory_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

directory_load_diagram, file_load_diagram

 object

directory_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating directory dependency diagrams. A dependency exists when an entity in one directory makes a reference to an entity in another directory.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:0:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public directory_diagram(Format)

Uses:

file_dependency_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/2

Table of directory sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Project,Directory)

Mode and number of proofs:

sub_diagram_(?atom,?atom) - zero_or_more

Operators

(none)

See also

directory_load_diagram(Format), file_load_diagram(Format), library_load_diagram(Format)

 category

directory_diagram(Format)

	Format - Graph language file format.

Common predicates for generating directory diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:13:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	remember_included_directory/1

	remember_referenced_logtalk_directory/1

	remember_referenced_prolog_directory/1

	Private predicates

	included_directory_/1

	referenced_logtalk_directory_/1

	referenced_prolog_directory_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

remember_included_directory/1

Remember included Logtalk directory in the diagram.

Compilation flags:

static

Template:

remember_included_directory(Path)

Mode and number of proofs:

remember_included_directory(+atom) - one

remember_referenced_logtalk_directory/1

Remember referenced Logtalk directory in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_directory(Path)

Mode and number of proofs:

remember_referenced_logtalk_directory(+atom) - one

remember_referenced_prolog_directory/1

Remember referenced Prolog directory in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_directory(Path)

Mode and number of proofs:

remember_referenced_prolog_directory(+atom) - one

Private predicates

included_directory_/1

Table of Logtalk directories already included in the diagram.

Compilation flags:

dynamic

Template:

included_directory_(Path)

Mode and number of proofs:

included_directory_(?atom) - zero_or_more

referenced_logtalk_directory_/1

Table of referenced Logtalk directories in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_directory_(Path)

Mode and number of proofs:

referenced_logtalk_directory_(?atom) - zero_or_more

referenced_prolog_directory_/1

Table of referenced Prolog directories in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_directory_(Path)

Mode and number of proofs:

referenced_prolog_directory_(?atom) - zero_or_more

Operators

(none)

 object

directory_load_diagram

Predicates for generating directory loading dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public directory_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

directory_dependency_diagram, file_dependency_diagram

 object

directory_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating directory loading dependency diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:0:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public directory_diagram(Format)

Uses:

file_dependency_diagram(Format)

file_load_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/2

Table of directory sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Project,Directory)

Mode and number of proofs:

sub_diagram_(?atom,?atom) - zero_or_more

Operators

(none)

See also

directory_dependency_diagram(Format), file_dependency_diagram(Format), library_dependency_diagram(Format)

 object

dot_graph_language

Predicates for generating graph files in the DOT language (version 2.36.0 or later).

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:12:0

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

entity_diagram

Predicates for generating entity diagrams in DOT format with both inheritance and cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-01

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

inheritance_diagram, uses_diagram, xref_diagram

 object

entity_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams in the specified format with both inheritance and cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:60:0

Date: 2024-12-04

Compilation flags:

static, context_switching_calls

Imports:

public diagram(Format)

Uses:

list

logtalk

modules_diagram_support

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	file/2

	file/1

	Protected predicates

	Private predicates

	included_entity_/1

	included_module_/1

	referenced_entity_/2

	referenced_module_/2

	Operators

Public predicates

file/2

Creates a diagram for all entities in a loaded source file using the specified options. The file can be specified by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - one

file/1

Creates a diagram for all entities in a loaded source file using default options. The file can be specified by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

included_entity_/1

Table of Logtalk entities already included in the diagram.

Compilation flags:

dynamic

Template:

included_entity_(Entity)

Mode and number of proofs:

included_entity_(?entity_identifier) - zero_or_more

included_module_/1

Table of Prolog modules already included in the diagram.

Compilation flags:

dynamic

Template:

included_module_(Module)

Mode and number of proofs:

included_module_(?module_identifier) - zero_or_more

referenced_entity_/2

Table of referenced Logtalk entities in the diagram.

Compilation flags:

dynamic

Template:

referenced_entity_(Referencer,Entity)

Mode and number of proofs:

referenced_entity_(?entity_identifier,?entity_identifier) - zero_or_more

referenced_module_/2

Table of referenced Logtalk entities in the diagram.

Compilation flags:

dynamic

Template:

referenced_module_(Referencer,Entity)

Mode and number of proofs:

referenced_module_(?entity_identifier,?module_identifier) - zero_or_more

Operators

(none)

See also

inheritance_diagram(Format), uses_diagram(Format), xref_diagram(Format), library_diagram(Format)

 object

file_dependency_diagram

Predicates for generating file contents dependency diagrams in DOT format. A dependency exists when an entity in one file makes a reference to an entity in another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public file_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

file_load_diagram, directory_load_diagram, library_load_diagram

 object

file_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating file contents dependency diagrams. A dependency exists when an entity in one file makes a reference to an entity in another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:28:3

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public file_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

os

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of file sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(File)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

file_load_diagram(Format), directory_load_diagram(Format), library_load_diagram(Format)

 category

file_diagram(Format)

	Format - Graph language file format.

Common predicates for generating file diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:14:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	remember_included_file/1

	remember_referenced_logtalk_file/1

	remember_referenced_prolog_file/1

	Private predicates

	included_file_/1

	referenced_logtalk_file_/1

	referenced_prolog_file_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

remember_included_file/1

Remember included Logtalk file in the diagram.

Compilation flags:

static

Template:

remember_included_file(Path)

Mode and number of proofs:

remember_included_file(+atom) - one

remember_referenced_logtalk_file/1

Remember referenced Logtalk file in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_file(Path)

Mode and number of proofs:

remember_referenced_logtalk_file(+atom) - one

remember_referenced_prolog_file/1

Remember referenced Prolog file in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_file(Path)

Mode and number of proofs:

remember_referenced_prolog_file(+atom) - one

Private predicates

included_file_/1

Table of Logtalk files already included in the diagram.

Compilation flags:

dynamic

Template:

included_file_(Path)

Mode and number of proofs:

included_file_(?atom) - zero_or_more

referenced_logtalk_file_/1

Table of referenced Logtalk files in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_file_(Path)

Mode and number of proofs:

referenced_logtalk_file_(?atom) - zero_or_more

referenced_prolog_file_/1

Table of referenced Prolog files in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_file_(Path)

Mode and number of proofs:

referenced_prolog_file_(?atom) - zero_or_more

Operators

(none)

 object

file_load_diagram

Predicates for generating file loading dependency diagrams in DOT format. A dependency exists when a file loads or includes another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public file_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

file_dependency_diagram, directory_dependency_diagram, library_dependency_diagram

 object

file_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating file loading dependency diagrams. A dependency exists when a file loads or includes another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:30:3

Date: 2024-12-05

Compilation flags:

static, context_switching_calls

Imports:

public file_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

os

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of file sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(File)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

file_dependency_diagram(Format), directory_dependency_diagram(Format), library_dependency_diagram(Format)

 protocol

graph_language_protocol

Predicates for generating graph files.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-12-30

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	output_file_name/2

	file_header/3

	file_footer/3

	graph_header/5

	graph_footer/5

	node/7

	edge/6

	Protected predicates

	Private predicates

	Operators

Public predicates

output_file_name/2

Constructs the diagram file basename by adding a graph language dependent extension to the given name.

Compilation flags:

static

Template:

output_file_name(Name,Basename)

Mode and number of proofs:

output_file_name(+atom,-atom) - one

file_header/3

Writes the output file header using the specified options.

Compilation flags:

static

Template:

file_header(Stream,Identifier,Options)

Mode and number of proofs:

file_header(+stream_or_alias,+atom,+list(compound)) - one

file_footer/3

Writes the output file footer using the specified options.

Compilation flags:

static

Template:

file_footer(Stream,Identifier,Options)

Mode and number of proofs:

file_footer(+stream_or_alias,+atom,+list(compound)) - one

graph_header/5

Writes a graph header using the specified options.

Compilation flags:

static

Template:

graph_header(Stream,Identifier,Label,Kind,Options)

Mode and number of proofs:

graph_header(+stream_or_alias,+atom,+atom,+atom,+list(compound)) - one

graph_footer/5

Writes a graph footer using the specified options.

Compilation flags:

static

Template:

graph_footer(Stream,Identifier,Label,Kind,Options)

Mode and number of proofs:

graph_footer(+stream_or_alias,+atom,+atom,+atom,+list(compound)) - one

node/7

Writes a node using the specified options.

Compilation flags:

static

Template:

node(Stream,Identifier,Label,Caption,Lines,Kind,Options)

Mode and number of proofs:

node(+stream_or_alias,+nonvar,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

edge/6

Writes an edge between two nodes using the specified options.

Compilation flags:

static

Template:

edge(Stream,Start,End,Labels,Kind,Options)

Mode and number of proofs:

edge(+stream_or_alias,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

graph_language_registry

Registry of implemented graph languages.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2020-03-25

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	language_object/2

	Protected predicates

	Private predicates

	Operators

Public predicates

language_object/2

Table of defined graph languages and their implementation objects.

Compilation flags:

static, multifile

Template:

language_object(Language,Object)

Mode and number of proofs:

language_object(?atom,?object_identifier) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

inheritance_diagram

Predicates for generating entity diagrams in DOT format with inheritance relation edges but no cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-15

Compilation flags:

static, context_switching_calls

Extends:

public inheritance_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, uses_diagram, xref_diagram

 object

inheritance_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams in the specified format with inheritance relation edges but no cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:20:0

Date: 2024-03-20

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram(Format), uses_diagram(Format), xref_diagram(Format)

 object

library_dependency_diagram

Predicates for generating library dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public library_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

library_load_diagram, file_load_diagram, entity_diagram

 object

library_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating library dependency diagrams. A dependency exists when an entity in one library makes a reference to an entity in another library.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:33:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public library_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of library sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Library)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

library_load_diagram(Format), directory_load_diagram(Format), file_load_diagram(Format), entity_diagram(Format)

 category

library_diagram(Format)

	Format - Graph language file format.

Common predicates for generating library diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:17:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	add_library_documentation_url/4

	remember_included_library/2

	remember_referenced_logtalk_library/2

	remember_referenced_prolog_library/2

	Private predicates

	included_library_/2

	referenced_logtalk_library_/2

	referenced_prolog_library_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

add_library_documentation_url/4

Adds a documentation URL when using the option url_prefixes/2.

Compilation flags:

static

Template:

add_library_documentation_url(Kind,Options,Library,NodeOptions)

Mode and number of proofs:

add_library_documentation_url(+atom,+list(compound),+atom,-list(compound)) - one

remember_included_library/2

Remember included Logtalk library in the diagram.

Compilation flags:

static

Template:

remember_included_library(Library,Path)

Mode and number of proofs:

remember_included_library(+atom,+atom) - one

remember_referenced_logtalk_library/2

Remember referenced Logtalk library in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_library(Library,Path)

Mode and number of proofs:

remember_referenced_logtalk_library(+atom,+atom) - one

remember_referenced_prolog_library/2

Remember referenced Prolog library in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_library(Library,Path)

Mode and number of proofs:

remember_referenced_prolog_library(+atom,+atom) - one

Private predicates

included_library_/2

Table of Logtalk libraries already included in the diagram.

Compilation flags:

dynamic

Template:

included_library_(Library,Path)

Mode and number of proofs:

included_library_(?atom,?atom) - zero_or_more

referenced_logtalk_library_/2

Table of referenced Logtalk libraries in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_library_(Library,Path)

Mode and number of proofs:

referenced_logtalk_library_(?atom,?atom) - zero_or_more

referenced_prolog_library_/2

Table of referenced Prolog libraries in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_library_(Library,Path)

Mode and number of proofs:

referenced_prolog_library_(?atom,?atom) - zero_or_more

Operators

(none)

See also

inheritance_diagram(Format), uses_diagram(Format), xref_diagram(Format), entity_diagram(Format)

 object

library_load_diagram

Predicates for generating library loading dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public library_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

library_dependency_diagram, file_dependency_diagram, entity_diagram

 object

library_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating library loading dependency diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:33:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public library_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of library sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Library)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

library_dependency_diagram(Format), directory_dependency_diagram(Format), file_dependency_diagram(Format), entity_diagram(Format)

 object

mermaid_graph_language

Predicates for generating graph files using Mermaid.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2025-09-25

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

modules_diagram_support

Utility predicates for supporting Prolog modules in diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 0:19:5

Date: 2022-07-08

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: ECLiPSe, SICStus Prolog, SWI-Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	module_property/2

	loaded_file_property/2

	source_file_extension/1

	Protected predicates

	Private predicates

	Operators

Public predicates

module_property/2

Access to module properties, at least exports/1, file/1, and file/2 but also declares/2, defines/2, calls/2, and provides/3 when possible.

Compilation flags:

static

Template:

module_property(Module,Property)

Mode and number of proofs:

module_property(?atom,?callable) - zero_or_more

loaded_file_property/2

Access to loaded source file properties, at least basename/1, directory/1 but also parent/1 when possible.

Compilation flags:

static

Template:

loaded_file_property(File,Property)

Mode and number of proofs:

loaded_file_property(?atom,?callable) - zero_or_more

source_file_extension/1

Valid source file extension for Prolog source files.

Compilation flags:

static

Template:

source_file_extension(Extension)

Mode and number of proofs:

source_file_extension(?atom) - one_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

uses_diagram

Predicates for generating entity diagrams in DOT format with only uses/2 and use_module/2 relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:1

Date: 2020-03-27

Compilation flags:

static, context_switching_calls

Extends:

public uses_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, inheritance_diagram, xref_diagram

 object

uses_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams with only uses/2 and use_module/2 relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:21:0

Date: 2024-03-20

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram(Format), inheritance_diagram(Format), xref_diagram(Format)

 object

xref_diagram

Predicates for generating predicate call cross-referencing diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-01

Compilation flags:

static, context_switching_calls

Extends:

public xref_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 entity/1 entity/2 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, inheritance_diagram, uses_diagram

 object

xref_diagram(Format)

	Format - Graph language file format.

Predicates for generating predicate call cross-referencing diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:85:1

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

atom

list

logtalk

modules_diagram_support

os

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	entity/2

	entity/1

	Protected predicates

	Private predicates

	included_predicate_/1

	referenced_predicate_/1

	external_predicate_/1

	Operators

Public predicates

entity/2

Creates a diagram for a single entity using the specified options.

Compilation flags:

static

Template:

entity(Entity,Options)

Mode and number of proofs:

entity(+entity_identifier,+list(compound)) - one

entity/1

Creates a diagram for a single entity using default options.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

included_predicate_/1

Table of predicates already included in the diagram for the entity under processing.

Compilation flags:

dynamic

Template:

included_predicate_(Predicate)

Mode and number of proofs:

included_predicate_(?predicate_indicator) - zero_or_more

referenced_predicate_/1

Table of referenced predicates for the entity under processing.

Compilation flags:

dynamic

Template:

referenced_predicate_(Predicate)

Mode and number of proofs:

referenced_predicate_(?predicate_indicator) - zero_or_more

external_predicate_/1

Table of external predicate references for all the entities under processing.

Compilation flags:

dynamic

Template:

external_predicate_(Reference)

Mode and number of proofs:

external_predicate_(?compound) - zero_or_more

Operators

(none)

See also

entity_diagram(Format), inheritance_diagram(Format), uses_diagram(Format)

 object

avltree

AVL tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: R.A.O’Keefe, L.Damas, V.S.Costa, Glenn Burgess, Jiri Spitz, and Jan Wielemaker; Logtalk port and additional predicates by Paulo Moura

Version: 1:4:1

Date: 2025-05-28

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

bintree, rbtree

 object

bintree

Simple binary tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: Paulo Moura and Paul Fodor

Version: 2:11:1

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	preorder/2

	inorder/2

	postorder/2

	Protected predicates

	Private predicates

	Operators

Public predicates

preorder/2

Preorder tree traversal.

Compilation flags:

static

Template:

preorder(Tree,List)

Mode and number of proofs:

preorder(@tree,-list) - one

inorder/2

Inorder tree traversal.

Compilation flags:

static

Template:

inorder(Tree,List)

Mode and number of proofs:

inorder(@tree,-list) - one

postorder/2

Postorder tree traversal.

Compilation flags:

static

Template:

postorder(Tree,List)

Mode and number of proofs:

postorder(@tree,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

avltree, rbtree

 protocol

dictionaryp

Dictionary protocol.

Availability:

logtalk_load(dictionaries(loader))

Author: Paulo Moura

Version: 2:4:0

Date: 2024-10-02

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	as_dictionary/2

	as_list/2

	as_curly_bracketed/2

	clone/3

	clone/4

	insert/4

	delete/4

	update/4

	update/5

	update/3

	empty/1

	lookup/3

	lookup/2

	intersection/2

	intersection/3

	previous/4

	next/4

	min/3

	max/3

	delete_min/4

	delete_max/4

	keys/2

	values/2

	map/2

	map/3

	apply/4

	size/2

	Protected predicates

	Private predicates

	Operators

Public predicates

as_dictionary/2

Converts a list of key-value pairs to a dictionary.

Compilation flags:

static

Template:

as_dictionary(Pairs,Dictionary)

Mode and number of proofs:

as_dictionary(@list(pairs),-dictionary) - one

as_list/2

Converts a dictionary to an ordered list (as per standard order) of key-value pairs.

Compilation flags:

static

Template:

as_list(Dictionary,Pairs)

Mode and number of proofs:

as_list(@dictionary,-list(pairs)) - one

as_curly_bracketed/2

Creates a curly-bracketed term representation of a dictionary.

Compilation flags:

static

Template:

as_curly_bracketed(Dictionary,Term)

Mode and number of proofs:

as_curly_bracketed(+dictionary,--term) - one

clone/3

Clones a dictionary using the same keys but with all values unbound and returning a list of all the pairs in the new clone.

Compilation flags:

static

Template:

clone(Dictionary,Clone,ClonePairs)

Mode and number of proofs:

clone(+dictionary,-dictionary,-list(pairs)) - one

clone/4

Clones a dictionary using the same keys but with all values unbound and returning the list of all pairs in the dictionary and in the clone.

Compilation flags:

static

Template:

clone(Dictionary,Pairs,Clone,ClonePairs)

Mode and number of proofs:

clone(+dictionary,-list(pairs),-dictionary,-list(pairs)) - one

insert/4

Inserts a key-value pair into a dictionary, returning the updated dictionary. When the key already exists, the associated value is updated.

Compilation flags:

static

Template:

insert(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

insert(+dictionary,+ground,@term,-dictionary) - one

delete/4

Deletes a matching key-value pair from a dictionary, returning the updated dictionary. Fails if it cannot find the key or if the key exists but the value does not unify.

Compilation flags:

static

Template:

delete(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete(+dictionary,@ground,?term,-dictionary) - zero_or_one

update/4

Updates the value associated with Key in a dictionary, returning the updated dictionary. Fails if it cannot find the key.

Compilation flags:

static

Template:

update(OldDictionary,Key,NewValue,NewDictionary)

Mode and number of proofs:

update(+dictionary,@ground,+term,-dictionary) - zero_or_one

update/5

Updates the value associated with a key in a dictionary, returning the updated dictionary. Fails if it cannot find the key or if the existing value does not unify.

Compilation flags:

static

Template:

update(OldDictionary,Key,OldValue,NewValue,NewDictionary)

Mode and number of proofs:

update(+dictionary,@ground,?term,+term,-dictionary) - zero_or_one

update/3

Updates the key-value pairs in a dictionary, returning the updated dictionary. Fails if it cannot find one of the keys.

Compilation flags:

static

Template:

update(OldDictionary,Pairs,NewDictionary)

Mode and number of proofs:

update(+dictionary,@list(pair),-dictionary) - zero_or_one

empty/1

True iff the dictionary is empty.

Compilation flags:

static

Template:

empty(Dictionary)

Mode and number of proofs:

empty(@dictionary) - zero_or_one

lookup/3

Lookups a matching key-value pair from a dictionary. Fails if no match is found.

Compilation flags:

static

Template:

lookup(Key,Value,Dictionary)

Mode and number of proofs:

lookup(+ground,?term,@dictionary) - zero_or_one

lookup(-ground,?term,@dictionary) - zero_or_more

lookup/2

Lookups all matching key-value pairs from a dictionary. Fails if it cannot find one of the keys or if a value for a key does not unify.

Compilation flags:

static

Template:

lookup(Pairs,Dictionary)

Mode and number of proofs:

lookup(+list(pair),@dictionary) - zero_or_one

intersection/2

True iff the values of the dictionaries common keys unify. Trivially true when there are no common keys.

Compilation flags:

static

Template:

intersection(Dictionary1,Dictionary2)

Mode and number of proofs:

intersection(+dictionary,+dictionary) - zero_or_one

intersection/3

Returns the (possibly empty) intersection between two dictionaries when the values of their common keys unify.

Compilation flags:

static

Template:

intersection(Dictionary1,Dictionary2,Intersection)

Mode and number of proofs:

intersection(+dictionary,+dictionary,-dictionary) - zero_or_one

previous/4

Returns the previous pair in a dictionary given a key. Fails if there is no previous pair.

Compilation flags:

static

Template:

previous(Dictionary,Key,Previous,Value)

Mode and number of proofs:

previous(+dictionary,+key,-key,-value) - zero_or_one

next/4

Returns the next pair in a dictionary given a key. Fails if there is no next pair.

Compilation flags:

static

Template:

next(Dictionary,Key,Next,Value)

Mode and number of proofs:

next(+dictionary,+key,-key,-value) - zero_or_one

min/3

Returns the pair with the minimum key (as per standard order) in a dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

min(Dictionary,Key,Value)

Mode and number of proofs:

min(+dictionary,-key,-value) - zero_or_one

max/3

Returns the pair with the maximum key (as per standard order) in a dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

max(Dictionary,Key,Value)

Mode and number of proofs:

max(+dictionary,-key,-value) - zero_or_one

delete_min/4

Deletes the pair with the minimum key (as per standard order) from a dictionary, returning the deleted pair and the updated dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

delete_min(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete_min(+dictionary,-key,-value,-dictionary) - zero_or_one

delete_max/4

Deletes the pair with the maximum key (as per standard order) from a dictionary, returning the deleted pair and the updated dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

delete_max(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete_max(+dictionary,-key,-value,-dictionary) - zero_or_one

keys/2

Returns a list with all the dictionary keys in ascending order (as per standard order).

Compilation flags:

static

Template:

keys(Dictionary,Keys)

Mode and number of proofs:

keys(@dictionary,-list) - one

values/2

Returns a list with all the dictionary values in ascending order of the keys (as per standard order).

Compilation flags:

static

Template:

values(Dictionary,Values)

Mode and number of proofs:

values(@dictionary,-list) - one

map/2

Maps a closure over each dictionary key-value pair. Fails if the mapped closure attempts to modify the keys.

Compilation flags:

static

Template:

map(Closure,Dictionary)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(@callable,+dictionary) - zero_or_more

map/3

Maps a closure over each dictionary key-value pair, returning the new dictionary. Fails if the mapped closure attempts to modify the keys.

Compilation flags:

static

Template:

map(Closure,OldDictionary,NewDictionary)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(@callable,+dictionary,-dictionary) - zero_or_more

apply/4

Applies a closure to a specific key-value pair, returning the new dictionary. Fails if the key cannot be found or if the mapped closure attempts to modify the key.

Compilation flags:

static

Template:

apply(Closure,OldDictionary,Key,NewDictionary)

Meta-predicate template:

apply(2,*,*,*)

Mode and number of proofs:

apply(+callable,+dictionary,+key,-dictionary) - zero_or_one

size/2

Number of dictionary entries.

Compilation flags:

static

Template:

size(Dictionary,Size)

Mode and number of proofs:

size(@dictionary,?integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

avltree, bintree, rbtree

 object

rbtree

Red-Black tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: Vitor Santos Costa; Logtalk port and additional predicates by Paulo Moura.

Version: 1:9:0

Date: 2021-04-12

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	partial_map/4

	Protected predicates

	Private predicates

	Operators

Public predicates

partial_map/4

Applies a closure to the tree pairs identified by a set of keys.

Compilation flags:

static

Template:

partial_map(Tree,Keys,Closure,NewTree)

Meta-predicate template:

partial_map(*,*,2,*)

Mode and number of proofs:

partial_map(+tree,+list,@closure,-tree) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

avltree, bintree

 object

dif

Provides dif/2 and derived predicates.

Availability:

logtalk_load(dif(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2023-10-02

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: B-Prolog, ECLiPSe, SICStus Prolog, SWI-Prolog, Trealla Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	dif/2

	dif/1

	Protected predicates

	Private predicates

	Operators

Public predicates

dif/2

Sets a constraint that is true iff the two terms are different.

Compilation flags:

static

Template:

dif(Term1,Term2)

Mode and number of proofs:

dif(+term,+term) - zero_or_one

dif/1

Sets a set of constraints that are true iff all terms in a list are different.

Compilation flags:

static

Template:

dif(Terms)

Mode and number of proofs:

dif(+list(term)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

doclet

Utility object to help automate (re)generating documentation for a project.

Availability:

logtalk_load(doclet(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2017-01-05

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_tokens//2

Uses:

logtalk

os

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	update/0

	doc_goal/1

	shell_command/1

	Protected predicates

	Private predicates

	Operators

Public predicates

update/0

Updates the project documentation, first by calling a sequence of goals and second by executing a sequence of shell commands. Fails if any goal or shell command fails.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

doc_goal/1

Table of goals, typically using the diagrams and the lgtdoc tools, used to generate the documentation. Goals are called in the order they are defined and in the context of the user pseudo-object.

Compilation flags:

static

Template:

doc_goal(Goal)

Mode and number of proofs:

doc_goal(?callable) - one_or_more

shell_command/1

Table of shell commands to convert intermediate documentation files into user-friendly documentation. Commands are executed in the order they are defined.

Compilation flags:

static

Template:

shell_command(Command)

Mode and number of proofs:

shell_command(?atom) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

lgtdocp, diagram(Format)

 object

edcg

Multiple hidden parameters: an extension to Prolog’s DCG notation. Ported to Logtalk as a hook object.

Availability:

logtalk_load(edcg(loader))

Author: Peter Van Roy; adapted to Logtalk by Paulo Moura.

Version: 1:4:2

Date: 2020-04-08

Copyright: Copyright (C) 1992 Peter Van Roy

License: MIT

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

	Usage: Compile source files with objects (or categories) defining EDCGs using the compiler option hook(edcg).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	pred_info/3

	acc_info/7

	acc_info/5

	pass_info/2

	pass_info/1

	Operators

	op(1200,xfx,-->>)

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

pred_info/3

Declares predicates that have the listed hidden parameters.

Compilation flags:

dynamic

Template:

pred_info(Name,Arity,HiddenParameters)

Mode and number of proofs:

pred_info(?atom,?integer,?list(atom)) - zero_or_more

acc_info/7

Long form for declaring accumulators.

Compilation flags:

dynamic

Template:

acc_info(Accumulator,Term,Left,Right,Joiner,LStart,RStart)

Mode and number of proofs:

acc_info(?atom,?term,?term,?term,?callable,?term,?term) - zero_or_more

acc_info/5

Short form for declaring accumulators.

Compilation flags:

dynamic

Template:

acc_info(Accumulator,Term,Left,Right,Joiner)

Mode and number of proofs:

acc_info(?atom,?term,?term,?term,?callable) - zero_or_more

pass_info/2

Long form for declaring passed arguments. Passed arguments are conceptually the same as accumulators with =/2 as the joiner function.

Compilation flags:

dynamic

Template:

pass_info(Argument,PStart)

Mode and number of proofs:

pass_info(?atom,?term) - zero_or_more

pass_info/1

Short form for declaring passed arguments. Passed arguments are conceptually the same as accumulators with =/2 as the joiner function.

Compilation flags:

dynamic

Template:

pass_info(Argument)

Mode and number of proofs:

pass_info(?atom) - zero_or_more

Operators

op(1200,xfx,-->>)

Scope:

public

 object

after_event_registry

After events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

before_event_registry, monitorp

 object

before_event_registry

Before events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

after_event_registry, monitorp

 object

event_registry

Before and after events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

event_registryp

Event registry protocol.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	monitors/1

	monitor/1

	monitored/1

	monitor/4

	set_monitor/4

	del_monitors/4

	del_monitors/0

	Protected predicates

	Private predicates

	Operators

Public predicates

monitors/1

Returns a list of all current monitors.

Compilation flags:

static

Template:

monitors(Monitors)

Mode and number of proofs:

monitors(-list(object_identifier)) - one

monitor/1

Monitor is an object playing the role of a monitor.

Compilation flags:

static

Template:

monitor(Monitor)

Mode and number of proofs:

monitor(-object_identifier) - zero_or_more

monitor(+object_identifier) - zero_or_one

monitored/1

Returns a list of all currently monitored objects.

Compilation flags:

static

Template:

monitored(Objects)

Mode and number of proofs:

monitored(-list(object_identifier)) - one

monitor/4

True if the arguments describe a currently defined monitored event.

Compilation flags:

static

Template:

monitor(Object,Message,Sender,Monitor)

Mode and number of proofs:

monitor(?object_identifier,?nonvar,?object_identifier,?object_identifier) - zero_or_more

set_monitor/4

Sets a monitor for the set of matching events.

Compilation flags:

static

Template:

set_monitor(Object,Message,Sender,Monitor)

Mode and number of proofs:

set_monitor(?object_identifier,?nonvar,?object_identifier,+object_identifier) - zero_or_one

del_monitors/4

Deletes all matching monitored events.

Compilation flags:

static

Template:

del_monitors(Object,Message,Sender,Monitor)

Mode and number of proofs:

del_monitors(?object_identifier,?nonvar,?object_identifier,?object_identifier) - one

del_monitors/0

Deletes all monitored events.

Compilation flags:

static

Mode and number of proofs:

del_monitors - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

event_registry, monitorp

 category

monitor

Monitor predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2019-03-08

Compilation flags:

static, events

Implements:

public monitorp

Remarks:

(none)

Inherited public predicates:

 activate_monitor/0 del_spy_points/4 monitor_activated/0 reset_monitor/0 set_spy_point/4 spy_point/4 suspend_monitor/0

	Public predicates

	Protected predicates

	Private predicates

	spy_point_/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

spy_point_/4

Stores current spy points.

Compilation flags:

dynamic

Template:

spy_point_(Event,Object,Message,Sender)

Mode and number of proofs:

spy_point_(?event,?object,?callable,?object) - zero_or_more

Operators

(none)

 protocol

monitorp

Monitor protocol.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	monitor_activated/0

	activate_monitor/0

	suspend_monitor/0

	reset_monitor/0

	spy_point/4

	set_spy_point/4

	del_spy_points/4

	Protected predicates

	Private predicates

	Operators

Public predicates

monitor_activated/0

True if monitor is currently active.

Compilation flags:

static

Mode and number of proofs:

monitor_activated - zero_or_one

activate_monitor/0

Activates all spy points and start monitoring.

Compilation flags:

static

Mode and number of proofs:

activate_monitor - one

suspend_monitor/0

Suspends monitoring, deactivating all spy points.

Compilation flags:

static

Mode and number of proofs:

suspend_monitor - one

reset_monitor/0

Resets monitor, deactivating and deleting all spy points.

Compilation flags:

static

Mode and number of proofs:

reset_monitor - one

spy_point/4

Current spy point.

Compilation flags:

static

Template:

spy_point(Event,Object,Message,Sender)

Mode and number of proofs:

spy_point(?event,?object,?callable,?object) - zero_or_more

set_spy_point/4

Sets a spy point.

Compilation flags:

static

Template:

set_spy_point(Event,Object,Message,Sender)

Mode and number of proofs:

set_spy_point(?event,?object,?callable,?object) - one

del_spy_points/4

Deletes all matching spy points.

Compilation flags:

static

Template:

del_spy_points(Event,Object,Message,Sender)

Mode and number of proofs:

del_spy_points(@event,@object,@callable,@object) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

monitor, event_registryp

 object

expand_library_alias_paths

Hook object for expanding library alias paths in logtalk_library_path/2 facts when compiling a source file.

Availability:

logtalk_load(expand_library_alias_paths(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2018-04-12

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

logtalk

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

either

Types and predicates for extended type-checking and handling of expected terms.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 0:7:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

arbitrary::arbitrary/1

arbitrary::arbitrary/2

Uses:

expected

expected(Expected)

random

type

Remarks:

	Type-checking support: Defines a either(ValueType, ErrorType) type for checking expected terms where the value and error terms must be of the given types.

	QuickCheck support: Defines clauses for the type::arbitrary/1-2 predicates to allow generating random values for the either(ValueType, ErrorType) type.

Inherited public predicates:

(none)

	Public predicates

	expecteds/2

	unexpecteds/2

	partition/3

	Protected predicates

	Private predicates

	Operators

Public predicates

expecteds/2

Returns the values stored in the expected terms that hold a value.

Compilation flags:

static

Template:

expecteds(Expecteds,Values)

Mode and number of proofs:

expecteds(+list(expected),-list) - one

unexpecteds/2

Returns the errors stored in the expected terms that hold an error.

Compilation flags:

static

Template:

unexpecteds(Expecteds,Errors)

Mode and number of proofs:

unexpecteds(+list(expected),-list) - one

partition/3

Retrieves and partitions the values and errors hold by the expected terms.

Compilation flags:

static

Template:

partition(Expecteds,Values,Errors)

Mode and number of proofs:

partition(+list(expected),-list,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

expected, expected(Expected), type, arbitrary

 object

expected

Constructors for expected terms. An expected term contains either a value or an error. Expected terms should be regarded as opaque terms and always used with the expected/1 object by passing the expected term as a parameter.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

Remarks:

	Type-checking support: This object also defines a type expected for use with the type library object.

Inherited public predicates:

(none)

	Public predicates

	of_unexpected/2

	of_expected/2

	from_goal/4

	from_goal/3

	from_goal/2

	from_generator/4

	from_generator/3

	from_generator/2

	Protected predicates

	Private predicates

	Operators

Public predicates

of_unexpected/2

Constructs an expected term from an error that represent that the expected value is missing.

Compilation flags:

static

Template:

of_unexpected(Error,Expected)

Mode and number of proofs:

of_unexpected(@term,--nonvar) - one

of_expected/2

Constructs an expected term from an expected value.

Compilation flags:

static

Template:

of_expected(Value,Expected)

Mode and number of proofs:

of_expected(@term,--nonvar) - one

from_goal/4

Constructs an expected term holding a value bound by calling the given goal. Otherwise returns an expected term with the unexpected goal error or failure represented by the Error argument.

Compilation flags:

static

Template:

from_goal(Goal,Value,Error,Expected)

Meta-predicate template:

from_goal(0,*,*,*)

Mode and number of proofs:

from_goal(+callable,--term,@term,--nonvar) - one

from_goal/3

Constructs an expected term holding a value bound by calling the given goal. Otherwise returns an expected term with the unexpected goal error or the atom fail representing the unexpected failure.

Compilation flags:

static

Template:

from_goal(Goal,Value,Expected)

Meta-predicate template:

from_goal(0,*,*)

Mode and number of proofs:

from_goal(+callable,--term,--nonvar) - one

from_goal/2

Constructs an expected term holding a value bound by calling the given closure. Otherwise returns an expected term holding the unexpected closure error or the atom fail representing the unexpected failure.

Compilation flags:

static

Template:

from_goal(Closure,Expected)

Meta-predicate template:

from_goal(1,*)

Mode and number of proofs:

from_goal(+callable,--nonvar) - one

from_generator/4

Constructs expected terms with the values generated by calling the given goal. On goal error or failure, returns an expected term with the unexpected goal error or failure represented by the Error argument.

Compilation flags:

static

Template:

from_generator(Goal,Value,Error,Expected)

Meta-predicate template:

from_generator(0,*,*,*)

Mode and number of proofs:

from_generator(+callable,--term,@term,--nonvar) - one_or_more

from_generator/3

Constructs expected terms with the values generated by calling the given goal. On goal error or failure, returns an expected term with, respectively, the unexpected goal error or the atom fail representing the unexpected goal failure.

Compilation flags:

static

Template:

from_generator(Goal,Value,Expected)

Meta-predicate template:

from_generator(0,*,*)

Mode and number of proofs:

from_generator(+callable,--term,--nonvar) - one_or_more

from_generator/2

Constructs expected terms with the values generated by calling the given closure. On closure error or failure, returns an expected term with, respectively, the unexpected closure error or the atom fail representing the unexpected closure failure.

Compilation flags:

static

Template:

from_generator(Closure,Expected)

Meta-predicate template:

from_generator(1,*)

Mode and number of proofs:

from_generator(+callable,--nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

expected(Expected), type

 object

expected(Expected)

Expected term predicates. Requires passing an expected term (constructed using the expected object predicates) as a parameter.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 1:5:0

Date: 2020-01-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_expected/0

	is_unexpected/0

	if_expected/1

	if_unexpected/1

	if_expected_or_else/2

	unexpected/1

	expected/1

	map/2

	flat_map/2

	either/3

	or_else/2

	or_else_get/2

	or_else_call/2

	or_else_throw/1

	or_else_fail/1

	Protected predicates

	Private predicates

	Operators

Public predicates

is_expected/0

True if the expected term holds a value. See also the if_expected/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_expected - zero_or_one

is_unexpected/0

True if the expected term holds an error. See also the if_unexpected/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_unexpected - zero_or_one

if_expected/1

Applies a closure when the expected term holds a value using the value as argument. Succeeds otherwise.

Compilation flags:

static

Template:

if_expected(Closure)

Meta-predicate template:

if_expected(1)

Mode and number of proofs:

if_expected(+callable) - zero_or_more

if_unexpected/1

Applies a closure when the expected term holds an error using the error as argument. Succeeds otherwise. Can be used to throw the exception hold by the expected term by calling it the atom throw.

Compilation flags:

static

Template:

if_unexpected(Closure)

Meta-predicate template:

if_unexpected(1)

Mode and number of proofs:

if_unexpected(+callable) - zero_or_more

if_expected_or_else/2

Applies either ExpectedClosure or UnexpectedClosure depending on the expected term holding a value or an error.

Compilation flags:

static

Template:

if_expected_or_else(ExpectedClosure,UnexpectedClosure)

Meta-predicate template:

if_expected_or_else(1,1)

Mode and number of proofs:

if_expected_or_else(+callable,+callable) - zero_or_more

unexpected/1

Returns the error hold by the expected term. Throws an error otherwise.

Compilation flags:

static

Template:

unexpected(Error)

Mode and number of proofs:

unexpected(--term) - one_or_error

Exceptions:

Expected term holds a value:

existence_error(unexpected_error,Expected)

expected/1

Returns the value hold by the expected term. Throws an error otherwise.

Compilation flags:

static

Template:

expected(Value)

Mode and number of proofs:

expected(--term) - one_or_error

Exceptions:

Expected term holds an error:

existence_error(expected_value,Expected)

map/2

When the expected term does not hold an error and mapping a closure with the expected value and the new value as additional arguments is successful, returns an expected term with the new value. Otherwise returns the same expected term.

Compilation flags:

static

Template:

map(Closure,NewExpected)

Meta-predicate template:

map(2,*)

Mode and number of proofs:

map(+callable,--nonvar) - one

flat_map/2

When the expected term does not hold an error and mapping a closure with the expected value and the new expected term as additional arguments is successful, returns the new expected term. Otherwise returns the same expected term.

Compilation flags:

static

Template:

flat_map(Closure,NewExpected)

Meta-predicate template:

flat_map(2,*)

Mode and number of proofs:

flat_map(+callable,--nonvar) - one

either/3

Applies either ExpectedClosure if the expected term holds a value or UnexpectedClosure if the expected term holds an error. Returns a new expected term if the applied closure is successful. Otherwise returns the same expected term.

Compilation flags:

static

Template:

either(ExpectedClosure,UnexpectedClosure,NewExpected)

Meta-predicate template:

either(2,2,*)

Mode and number of proofs:

either(+callable,+callable,--nonvar) - one

or_else/2

Returns the value hold by the expected term if it does not hold an error or the given default term if the expected term holds an error.

Compilation flags:

static

Template:

or_else(Value,Default)

Mode and number of proofs:

or_else(--term,@term) - one

or_else_get/2

Returns the value hold by the expected term if it does not hold an error. Otherwise applies a closure to compute the expected value. Throws an error when the expected term holds an error and a value cannot be computed.

Compilation flags:

static

Template:

or_else_get(Value,Closure)

Meta-predicate template:

or_else_get(*,1)

Mode and number of proofs:

or_else_get(--term,+callable) - one_or_error

Exceptions:

Expected term holds an unexpected error and an expected value cannot be computed:

existence_error(expected_value,Expected)

or_else_call/2

Returns the value hold by the expected term if it does not hold an error. Calls a goal deterministically otherwise.

Compilation flags:

static

Template:

or_else_call(Value,Goal)

Meta-predicate template:

or_else_call(*,0)

Mode and number of proofs:

or_else_call(--term,+callable) - zero_or_one

or_else_throw/1

Returns the value hold by the expected term if present. Throws the error hold by the expected term as an exception otherwise.

Compilation flags:

static

Template:

or_else_throw(Value)

Mode and number of proofs:

or_else_throw(--term) - one_or_error

or_else_fail/1

Returns the value hold by the expected term if it does not hold an error. Fails otherwise. Usually called to skip over expected terms holding errors.

Compilation flags:

static

Template:

or_else_fail(Value)

Mode and number of proofs:

or_else_fail(--term) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

expected

 object

fcube

FCube: An Efficient Prover for Intuitionistic Propositional Logic.

Availability:

logtalk_load(fcube(loader))

Author: Mauro Ferrari, Camillo Fiorentini, Guido Fiorino; ported to Logtalk by Paulo Moura.

Version: 5:0:1

Date: 2024-03-14

Copyright: Copyright 2012 Mauro Ferrari, Camillo Fiorentini, Guido Fiorino; Copyright 2020-2024 Paulo Moura

License: GPL-2.0-or-later

Compilation flags:

static, context_switching_calls

Uses:

integer

list

os

set

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	gnu/0

	fcube/0

	decide/1

	decide/2

	Protected predicates

	Private predicates

	Operators

	op(1200,xfy,<=>)

	op(1110,xfy,=>)

	op(1000,xfy,&&)

	op(500,fy,~)

	op(1100,xfy,v)

Public predicates

gnu/0

Prints banner with copyright and license information.

Compilation flags:

static

Mode and number of proofs:

gnu - one

fcube/0

Reads a formula and applies the prover to it, printing its counter-model.

Compilation flags:

static

Mode and number of proofs:

fcube - one

decide/1

Applies the prover to the given formula and prints its counter-model.

Compilation flags:

static

Template:

decide(Formula)

Mode and number of proofs:

decide(++compound) - one

decide/2

Applies the prover to the given formula and returns its counter-model.

Compilation flags:

static

Template:

decide(Formula,CounterModel)

Mode and number of proofs:

decide(++compound,--compound) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

op(1200,xfy,<=>)

Scope:

public

op(1110,xfy,=>)

Scope:

public

op(1000,xfy,&&)

Scope:

public

op(500,fy,~)

Scope:

public

op(1100,xfy,v)

Scope:

public

 category

flags

Implementation of persistent object flags.

Availability:

logtalk_load(flags(loader))

Author: Theofrastos Mantadelis

Version: 1:0:0

Date: 2010-11-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	get_flag_value/2

	set_flag_value/2

	set_flag_value/3

	reset_flags/0

	reset_flags/1

	flag_groups/1

	flag_group_chk/1

	print_flags/0

	print_flags/1

	defined_flag/6

	built_in_flag/2

	Protected predicates

	unsafe_set_flag_value/2

	define_flag/1

	define_flag/2

	Private predicates

	defined_flag_/6

	flag_value_/2

	validate/3

	validate_type/1

	is_validator/1

	Operators

Public predicates

get_flag_value/2

Gets or tests the value of a flag.

Compilation flags:

static

Template:

get_flag_value(Flag,Value)

Mode and number of proofs:

get_flag_value(+atom,?nonvar) - zero_or_one

set_flag_value/2

Sets the value of a flag.

Compilation flags:

static

Template:

set_flag_value(Flag,NewValue)

Mode and number of proofs:

set_flag_value(+atom,@nonvar) - one

set_flag_value/3

Sets the value of a flag, returning the old value.

Compilation flags:

static

Template:

set_flag_value(Flag,OldValue,NewValue)

Mode and number of proofs:

set_flag_value(+atom,?nonvar,@nonvar) - one

reset_flags/0

Resets all flags to their default values.

Compilation flags:

static

Mode and number of proofs:

reset_flags - one

reset_flags/1

Resets all flags in a group to their default values.

Compilation flags:

static

Template:

reset_flags(Group)

Mode and number of proofs:

reset_flags(+atom) - one

flag_groups/1

Returns a list of all flag groups.

Compilation flags:

static

Template:

flag_groups(Groups)

Mode and number of proofs:

flag_groups(-list(atom)) - one

flag_group_chk/1

Checks if a given atom is a flag group.

Compilation flags:

static

Template:

flag_group_chk(Group)

Mode and number of proofs:

flag_group_chk(+atom) - zero_or_one

print_flags/0

Prints a listing of all flags.

Compilation flags:

static

Mode and number of proofs:

print_flags - one

print_flags/1

Prints a listing of all flags in a group.

Compilation flags:

static

Template:

print_flags(Group)

Mode and number of proofs:

print_flags(+atom) - one

defined_flag/6

Gets or test the existing (visible) flag definitions.

Compilation flags:

static

Template:

defined_flag(Flag,Group,Type,DefaultValue,Description,Access)

Mode and number of proofs:

defined_flag(?atom,?atom,?nonvar,?nonvar,?atom,?atom) - zero_or_more

built_in_flag/2

True if the argument is a built-in flag type with the specified default value.

Compilation flags:

static

Template:

built_in_flag(Type,DefaultValue)

Mode and number of proofs:

built_in_flag(?atom,?nonvar) - zero_or_more

Protected predicates

unsafe_set_flag_value/2

Sets the value of a flag without performing any validation checks.

Compilation flags:

static

Template:

unsafe_set_flag_value(Flag,NewValue)

Mode and number of proofs:

unsafe_set_flag_value(+atom,@nonvar) - one

define_flag/1

Defines a new flag using default options.

Compilation flags:

static

Template:

define_flag(Flag)

Mode and number of proofs:

define_flag(+atom) - one

define_flag/2

Defines a new flag using a given set of options (for example, [group(general), type(nonvar), default(true), description(Flag), access(read_write)]).

Compilation flags:

static

Template:

define_flag(Flag,Options)

Mode and number of proofs:

define_flag(+atom,@list) - one

Private predicates

defined_flag_/6

Gets or test the existing flag definitions.

Compilation flags:

dynamic

Template:

defined_flag_(Flag,Group,Type,DefaultValue,Description,Access)

Mode and number of proofs:

defined_flag_(?atom,?atom,?nonvar,?nonvar,?atom,?atom) - zero_or_more

flag_value_/2

Table of flag values.

Compilation flags:

dynamic

Template:

flag_value_(Flag,Value)

Mode and number of proofs:

flag_value_(?atom,?nonvar) - zero_or_more

validate/3

Compilation flags:

static

validate_type/1

Compilation flags:

static

is_validator/1

Compilation flags:

static

Operators

(none)

 protocol

flags_validator

Flag validation protocol. Must be implemented by validator objects.

Availability:

logtalk_load(flags(loader))

Author: Theofrastos Mantadelis

Version: 1:0:0

Date: 2010-11-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	print_flags/0

	validate/1

	Protected predicates

	Private predicates

	Operators

Public predicates

print_flags/0

Validates the validator object itself.

Compilation flags:

static

Mode and number of proofs:

print_flags - zero_or_one

validate/1

Validates a flag value.

Compilation flags:

static

Template:

validate(Value)

Mode and number of proofs:

validate(@term) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

format

Formatted output predicates.

Availability:

logtalk_load(format(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2023-10-02

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	format/3

	format/2

	Protected predicates

	Private predicates

	Operators

Public predicates

format/3

Writes a list of arguments after a format specification to the specified output stream.

Compilation flags:

static

Template:

format(Stream,Format,Arguments)

Mode and number of proofs:

format(@stream_or_alias,+atom,@list) - zero_or_one

format(@stream_or_alias,+list(character_code),@list) - zero_or_one

format(@stream_or_alias,+list(character),@list) - zero_or_one

format/2

Writes a list of arguments after a format specification to the current output stream.

Compilation flags:

static

Template:

format(Format,Arguments)

Mode and number of proofs:

format(+atom,@list) - zero_or_one

format(+list(character_code),@list) - zero_or_one

format(+list(character),@list) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

genint

Global object for generating increasing non-negative integers for named counters. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(genint(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-21

Compilation flags:

static, context_switching_calls

Imports:

public genint_core

Remarks:

(none)

Inherited public predicates:

 genint/2 reset_genint/0 reset_genint/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

genint_core

Predicates for generating increasing non-negative integers. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(genint(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	reset_genint/0

	reset_genint/1

	genint/2

	Protected predicates

	Private predicates

	counter_/2

	Operators

Public predicates

reset_genint/0

Resets all counters.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_genint - one

reset_genint/1

Resets the given counter.

Compilation flags:

static, synchronized

Template:

reset_genint(Counter)

Mode and number of proofs:

reset_genint(+atom) - one

genint/2

Returns the next integer for a given counter.

Compilation flags:

static, synchronized

Template:

genint(Counter,Integer)

Mode and number of proofs:

genint(+atom,-non_negative_integer) - one

Protected predicates

(none)

Private predicates

counter_/2

Table of current state of counters.

Compilation flags:

dynamic

Template:

counter_(Counter,Latest)

Mode and number of proofs:

counter_(?atom,?non_negative_integer) - zero_or_more

Operators

(none)

 object

gensym

Global object for generating unique atoms. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(gensym(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2022-07-21

Compilation flags:

static, context_switching_calls

Imports:

public gensym_core

Remarks:

(none)

Inherited public predicates:

 gensym/2 reset_gensym/0 reset_gensym/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

gensym_core

Predicates for generating unique atoms. Protocol based on the gensym module of SWI-Prolog. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(gensym(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2022-07-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	reset_gensym/0

	reset_gensym/1

	gensym/2

	Protected predicates

	Private predicates

	base_/2

	Operators

Public predicates

reset_gensym/0

Resets the generator counter for all bases.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_gensym - one

reset_gensym/1

Resets the generator counter for a given base.

Compilation flags:

static, synchronized

Template:

reset_gensym(Base)

Mode and number of proofs:

reset_gensym(+atom) - one

gensym/2

Returns a new unique atom with a given base (prefix).

Compilation flags:

static, synchronized

Template:

gensym(Base,Unique)

Mode and number of proofs:

gensym(+atom,-atom) - one

Protected predicates

(none)

Private predicates

base_/2

Table of generator bases and respective counters.

Compilation flags:

dynamic

Template:

base_(Base,Counter)

Mode and number of proofs:

base_(?atom,?integer) - zero_or_more

Operators

(none)

 object

git

Predicates for accessing a git project current branch and latest commit data.

Availability:

logtalk_load(git(loader))

Author: Paulo Moura

Version: 2:1:2

Date: 2024-03-11

Compilation flags:

static, context_switching_calls

Implements:

public git_protocol

Uses:

os

user

Remarks:

(none)

Inherited public predicates:

 branch/2 commit_author/2 commit_date/2 commit_hash/2 commit_hash_abbreviated/2 commit_log/3 commit_message/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

git_protocol

Predicates for accessing a git project current branch and latest commit data.

Availability:

logtalk_load(git(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2022-01-21

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	branch/2

	commit_author/2

	commit_date/2

	commit_hash/2

	commit_hash_abbreviated/2

	commit_message/2

	commit_log/3

	Protected predicates

	Private predicates

	Operators

Public predicates

branch/2

Returns the name of the current git branch. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

branch(Directory,Branch)

Mode and number of proofs:

branch(+atom,?atom) - zero_or_one

commit_author/2

Returns the latest commit author. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_author(Directory,Author)

Mode and number of proofs:

commit_author(+atom,-atom) - zero_or_one

commit_date/2

Returns the latest commit date (strict ISO 8601 format). Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_date(Directory,Date)

Mode and number of proofs:

commit_date(+atom,-atom) - zero_or_one

commit_hash/2

Returns the latest commit hash. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_hash(Directory,Hash)

Mode and number of proofs:

commit_hash(+atom,-atom) - zero_or_one

commit_hash_abbreviated/2

Returns the latest commit abbreviated hash. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_hash_abbreviated(Directory,Hash)

Mode and number of proofs:

commit_hash_abbreviated(+atom,-atom) - zero_or_one

commit_message/2

Returns the latest commit message. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_message(Directory,Message)

Mode and number of proofs:

commit_message(+atom,-atom) - zero_or_one

commit_log/3

Returns the git latest commit log output for the given format (see e.g. https://git-scm.com/docs/pretty-formats). Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_log(Directory,Format,Output)

Mode and number of proofs:

commit_log(+atom,+atom,-atom) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

blank_grammars(Format)

Blank grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:4:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	white_space//0

	white_spaces//0

	space//0

	spaces//0

	tab//0

	tabs//0

	new_line//0

	new_lines//0

	blank//0

	blanks//0

	non_blank//1

	non_blanks//1

	control//0

	controls//0

	Protected predicates

	Private predicates

	Operators

Public predicates

white_space//0

Consumes a single space or tab.

Compilation flags:

static

Mode and number of proofs:

white_space - zero_or_one

white_spaces//0

Consumes zero or more spaces and tabs.

Compilation flags:

static

Mode and number of proofs:

white_spaces - one

space//0

Consumes a single space.

Compilation flags:

static

Mode and number of proofs:

space - zero_or_one

spaces//0

Consumes zero or more spaces.

Compilation flags:

static

Mode and number of proofs:

spaces - one

tab//0

Consumes a single tab.

Compilation flags:

static

Mode and number of proofs:

tab - zero_or_one

tabs//0

Consumes zero or more tabs.

Compilation flags:

static

Mode and number of proofs:

tabs - one

new_line//0

Consumes a single new line.

Compilation flags:

static

Mode and number of proofs:

new_line - zero_or_one

new_lines//0

Consumes zero or more new lines.

Compilation flags:

static

Mode and number of proofs:

new_lines - one

blank//0

Consumes a single space, tab, vertical tab, line feed, or new line.

Compilation flags:

static

Mode and number of proofs:

blank - zero_or_one

blanks//0

Consumes zero or more spaces, tabs, vertical tabs, line feeds, or new lines.

Compilation flags:

static

Mode and number of proofs:

blanks - one

non_blank//1

Returns a single non-blank character or character code.

Compilation flags:

static

Template:

non_blank(NonBlank)

Mode and number of proofs:

non_blank(-atomic) - zero_or_one

non_blanks//1

Returns a (possibly empty) list of non-blank characters or character codes.

Compilation flags:

static

Template:

non_blanks(NonBlanks)

Mode and number of proofs:

non_blanks(-list(atomic)) - one

control//0

Consumes a single control character or character code. Support for the null control character depends on the Prolog backend.

Compilation flags:

static

Mode and number of proofs:

control - zero_or_one

controls//0

Consumes zero or more control characters or character codes. Support for the null control character depends on the Prolog backend.

Compilation flags:

static

Mode and number of proofs:

controls - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

ip_grammars(Format)

IP address grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:2:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Uses:

number_grammars(Format)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	ipv4//1

	ipv6//1

	Protected predicates

	Private predicates

	Operators

Public predicates

ipv4//1

Parses an IPv4 network address in the format XXX.XXX.XXX.XXX where each XXX is an octet (i.e., an integer between 0 and 255).

Compilation flags:

static

Template:

ipv4(Octets)

Mode and number of proofs:

ipv4(?list(integer)) - zero_or_one

ipv6//1

Parses an IPv6 network address in the format XXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XXXX where each X is a hexadecimal digit.

Compilation flags:

static

Template:

ipv6(HexDigits)

Mode and number of proofs:

ipv6(?list(integer)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

number_grammars(Format)

Number grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	bit//1

	bits//1

	digit//1

	digits//1

	hex_digit//1

	hex_digits//1

	natural//1

	integer//1

	float//1

	number//1

	sign//1

	dot//1

	Protected predicates

	Private predicates

	Operators

Public predicates

bit//1

Parses a single bit.

Compilation flags:

static

Template:

bit(Bit)

Mode and number of proofs:

bit(?integer) - zero_or_one

bits//1

Parses a sequence of one or more bits.

Compilation flags:

static

Template:

bits(Bits)

Mode and number of proofs:

bits(?list(integer)) - zero_or_one

digit//1

Parses a single decimal digit.

Compilation flags:

static

Template:

digit(Digit)

Mode and number of proofs:

digit(?atomic) - zero_or_one

digits//1

Parses a sequence of zero of more digits.

Compilation flags:

static

Template:

digits(Digits)

Mode and number of proofs:

digits(?list(atomic)) - one

hex_digit//1

Parses a single hexa-decimal digit.

Compilation flags:

static

Template:

hex_digit(HexDigit)

Mode and number of proofs:

hex_digit(?atomic) - zero_or_one

hex_digits//1

Parses a sequence of zero or more hexa-decimal digits.

Compilation flags:

static

Template:

hex_digits(HexDigits)

Mode and number of proofs:

hex_digits(?list(atomic)) - one

natural//1

Parses a natural number (a non signed integer).

Compilation flags:

static

Template:

natural(Natural)

Mode and number of proofs:

natural(?non_negative_integer) - zero_or_one

integer//1

Parses an integer.

Compilation flags:

static

Template:

integer(Integer)

Mode and number of proofs:

integer(?integer) - zero_or_one

float//1

Parses a float.

Compilation flags:

static

Template:

float(Float)

Mode and number of proofs:

float(?float) - zero_or_one

number//1

Parses a number (an integer or a float).

Compilation flags:

static

Template:

number(Number)

Mode and number of proofs:

number(?number) - zero_or_one

sign//1

Parses a number sign (plus or minus).

Compilation flags:

static

Template:

sign(Sign)

Mode and number of proofs:

sign(?atomic) - zero_or_one

dot//1

Parses a decimal dot.

Compilation flags:

static

Template:

dot(Dot)

Mode and number of proofs:

dot(?atomic) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

sequence_grammars

Sequence grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:4:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	zero_or_more//2

	one_or_more//2

	zero_or_more//1

	one_or_more//1

	zero_or_more//0

	one_or_more//0

	without//2

	Protected predicates

	Private predicates

	Operators

Public predicates

zero_or_more//2

Eagerly collect zero or more terminals that satisfy the given closure.

Compilation flags:

static

Template:

zero_or_more(Closure,Terminals)

Meta-predicate template:

zero_or_more(1,*)

Mode and number of proofs:

zero_or_more(+callable,-list(atomic)) - one

one_or_more//2

Eagerly collect one or more terminals that satisfy the given closure.

Compilation flags:

static

Template:

one_or_more(Closure,Terminals)

Meta-predicate template:

one_or_more(1,*)

Mode and number of proofs:

one_or_more(+callable,-list(atomic)) - zero_or_one

zero_or_more//1

Eagerly collect zero or more terminals.

Compilation flags:

static

Template:

zero_or_more(Terminals)

Mode and number of proofs:

zero_or_more(-list(atomic)) - one

one_or_more//1

Eagerly collect one or more terminals.

Compilation flags:

static

Template:

one_or_more(Terminals)

Mode and number of proofs:

one_or_more(-list(atomic)) - zero_or_one

zero_or_more//0

Eagerly parse zero or more terminals.

Compilation flags:

static

Mode and number of proofs:

zero_or_more - one

one_or_more//0

Eagerly parse one or more terminals.

Compilation flags:

static

Mode and number of proofs:

one_or_more - zero_or_one

without//2

Collects input terminals until one of the stop terminals is found. The stop terminals are excluded from the collected terminals.

Compilation flags:

static

Template:

without(StopTerminals,Terminals)

Mode and number of proofs:

without(+list(atomic),-list(atomic)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

heap(Order)

Heap implementation, parameterized by the order to be used to compare keys (< or >).

Availability:

logtalk_load(heaps(loader))

Author: Richard O’Keefe; adapted to Logtalk by Paulo Moura and Victor Lagerkvist.

Version: 1:1:0

Date: 2019-05-18

Compilation flags:

static, context_switching_calls

Implements:

public heapp

Extends:

public compound

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

minheap, maxheap

 protocol

heapp

Heap protocol. Key-value pairs are represented as Key-Value.

Availability:

logtalk_load(heaps(loader))

Author: Richard O’Keefe; adapted to Logtalk by Paulo Moura and Victor Lagerkvist.

Version: 1:0:1

Date: 2010-11-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	insert/4

	insert_all/3

	delete/4

	merge/3

	empty/1

	size/2

	as_list/2

	as_heap/2

	top/3

	top_next/5

	Protected predicates

	Private predicates

	Operators

Public predicates

insert/4

Inserts the new pair into a heap, returning the updated heap.

Compilation flags:

static

Template:

insert(Key,Value,Heap,NewHeap)

Mode and number of proofs:

insert(+key,+value,+heap,-heap) - one

insert_all/3

Inserts a list of pairs into a heap, returning the updated heap.

Compilation flags:

static

Template:

insert_all(List,Heap,NewHeap)

Mode and number of proofs:

insert_all(@list(pairs),+heap,-heap) - one

delete/4

Deletes and returns the top pair in a heap returning the updated heap.

Compilation flags:

static

Template:

delete(Heap,TopKey,TopValue,NewHeap)

Mode and number of proofs:

delete(+heap,?key,?value,-heap) - zero_or_one

merge/3

Merges two heaps.

Compilation flags:

static

Template:

merge(Heap1,Heap2,NewHeap)

Mode and number of proofs:

merge(+heap,+heap,-heap) - one

empty/1

True if the heap is empty.

Compilation flags:

static

Template:

empty(Heap)

Mode and number of proofs:

empty(@heap) - zero_or_one

size/2

Returns the number of heap elements.

Compilation flags:

static

Template:

size(Heap,Size)

Mode and number of proofs:

size(+heap,?integer) - zero_or_one

as_list/2

Returns the current set of pairs in the heap as a list, sorted into ascending order of the keys.

Compilation flags:

static

Template:

as_list(Heap,List)

Mode and number of proofs:

as_list(+heap,-list) - one

as_heap/2

Constructs a heap from a list of pairs.

Compilation flags:

static

Template:

as_heap(List,Heap)

Mode and number of proofs:

as_heap(+list,-heap) - one

top/3

Returns the top pair in the heap. Fails if the heap is empty.

Compilation flags:

static

Template:

top(Heap,TopKey,TopValue)

Mode and number of proofs:

top(+heap,?key,?value) - zero_or_one

top_next/5

Returns the top pair and the next pair in the heap. Fails if the heap does not have at least two elements.

Compilation flags:

static

Template:

top_next(Heap,TopKey,TopValue,NextKey,NextValue)

Mode and number of proofs:

top_next(+heap,?key,?value,?key,?value) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

heap(Order)

 object

maxheap

Max-heap implementation. Uses standard order to compare keys.

Availability:

logtalk_load(heaps(loader))

Author: Paulo Moura.

Version: 1:0:0

Date: 2010-02-19

Compilation flags:

static, context_switching_calls

Extends:

public heap(>)

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

minheap

Min-heap implementation. Uses standard order to compare keys.

Availability:

logtalk_load(heaps(loader))

Author: Paulo Moura.

Version: 1:0:0

Date: 2010-02-19

Compilation flags:

static, context_switching_calls

Extends:

public heap(<)

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

help

Command-line help for Logtalk libraries, entities, plus built-in control constructs, predicates, non-terminals, and methods.

Availability:

logtalk_load(help(loader))

Author: Paulo Moura

Version: 0:38:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls, complements(allow)

Implements:

public forwarding

Uses:

atom

os

user

Remarks:

(none)

Inherited public predicates:

 apis/0 apis/1 forward/1 handbook/0 handbook/1 man/1

	Public predicates

	help/0

	(/)/2

	(//)/2

	completion/2

	completions/2

	built_in_directive/4

	built_in_predicate/4

	built_in_method/4

	control_construct/4

	built_in_non_terminal/4

	library/0

	library/1

	entity/1

	manuals/0

	Protected predicates

	Private predicates

	Operators

Public predicates

help/0

Prints instructions on how to use the help tool.

Compilation flags:

static

Mode and number of proofs:

help - one

(/)/2

Provides help on the Functor/Arity built-in control construct, directive, predicate, or method.

Compilation flags:

static

Template:

Functor/Arity

Mode and number of proofs:

+atom/ +integer - zero_or_one

(//)/2

Provides help on the Functor//Arity built-in non-terminal.

Compilation flags:

static

Template:

Functor//Arity

Mode and number of proofs:

+atom// +integer - zero_or_one

completion/2

Provides a completion pair, Completion-Page, for a given prefix.

Compilation flags:

static

Template:

completion(Prefix,Completion)

Mode and number of proofs:

completion(+atom,-pair) - zero_or_more

completions/2

Provides a list of completions pairs, Completion-Page, for a given prefix.

Compilation flags:

static

Template:

completions(Prefix,Completions)

Mode and number of proofs:

completions(+atom,-lists(pair)) - zero_or_more

built_in_directive/4

Provides access to the HTML documenting files describing built-in directives.

Compilation flags:

static

Template:

built_in_directive(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_directive(?atom,?integer,-atom,-atom) - zero_or_more

built_in_predicate/4

Provides access to the HTML documenting files describing built-in predicates.

Compilation flags:

static

Template:

built_in_predicate(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_predicate(?atom,?integer,-atom,-atom) - zero_or_more

built_in_method/4

Provides access to the HTML documenting files describing built-in methods.

Compilation flags:

static

Template:

built_in_method(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_method(?atom,?integer,-atom,-atom) - zero_or_more

control_construct/4

Provides access to the HTML documenting files describing built-in control constructs.

Compilation flags:

static

Template:

control_construct(Functor,Arity,Directory,Basename)

Mode and number of proofs:

control_construct(?atom,?integer,-atom,-atom) - zero_or_more

built_in_non_terminal/4

Provides access to the HTML documenting files describing built-in DCG non-terminals.

Compilation flags:

static

Template:

built_in_non_terminal(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_non_terminal(?atom,?integer,-atom,-atom) - zero_or_more

library/0

Provides help on the standard Logtalk library.

Compilation flags:

static

Mode and number of proofs:

library - one

library/1

Provides help on the standard Logtalk libraries, library predicates, and library non-terminals.

Compilation flags:

static

Template:

library(Topic)

Mode and number of proofs:

library(+atom) - zero_or_one

library(+predicate_indicator) - zero_or_one

library(+non_terminal_indicator) - zero_or_one

entity/1

Provides help on Logtalk entities (objects, protocols, or categories).

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - zero_or_one

manuals/0

Provides access to the Logtalk User and Reference manuals.

Compilation flags:

static

Mode and number of proofs:

manuals - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

help_info_support

Experimental help predicates for inline browsing of the Texinfo versions of the Handbook and APIs documentation. Currently requires Ciao Prolog, ECLiPSe, GNU Prolog, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, or YAP as the backend running on a POSIX system.

Availability:

logtalk_load(help(loader))

Author: Paulo Moura

Version: 0:9:0

Date: 2025-05-02

Compilation flags:

static

Complements:

help

Uses:

os

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	handbook/0

	handbook/1

	apis/0

	apis/1

	man/1

	Protected predicates

	Private predicates

	Operators

Public predicates

handbook/0

Opens inline the Texinfo version of the Handbook.

Compilation flags:

static

Mode and number of proofs:

handbook - one

handbook/1

Opens inline the Texinfo version of the Handbook at the given topic.

Compilation flags:

static

Template:

handbook(Topic)

Mode and number of proofs:

handbook(+atom) - one

handbook(+predicate_indicator) - one

handbook(+non_terminal_indicator) - one

apis/0

Opens inline the Texinfo version of the APIs documentation.

Compilation flags:

static

Mode and number of proofs:

apis - one

apis/1

Opens inline the Texinfo version of the APIs documentation at the given topic.

Compilation flags:

static

Template:

apis(Topic)

Mode and number of proofs:

apis(+atom) - one

apis(+predicate_indicator) - one

apis(+non_terminal_indicator) - one

man/1

Opens inline the man page of the given script.

Compilation flags:

static

Template:

man(Script)

Mode and number of proofs:

man(+atom) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

class_hierarchy

Class hierarchy predicates.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Implements:

public class_hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 class/1 classes/1 descendant/1 descendant_class/1 descendant_classes/1 descendant_instance/1 descendant_instances/1 descendants/1 instance/1 instances/1 leaf/1 leaf_class/1 leaf_classes/1 leaf_instance/1 leaf_instances/1 leaves/1 subclass/1 subclasses/1 superclass/1 superclasses/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

class_hierarchyp

Class hierarchy protocol.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Extends:

public hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 leaf/1 leaves/1

	Public predicates

	class/1

	classes/1

	instance/1

	instances/1

	subclass/1

	subclasses/1

	superclass/1

	superclasses/1

	leaf_instance/1

	leaf_instances/1

	leaf_class/1

	leaf_classes/1

	descendant_instance/1

	descendant_instances/1

	descendant_class/1

	descendant_classes/1

	Protected predicates

	Private predicates

	Operators

Public predicates

class/1

Returns, by backtracking, all object classes.

Compilation flags:

static

Template:

class(Class)

Mode and number of proofs:

class(?object) - zero_or_more

classes/1

List of all object classes.

Compilation flags:

static

Template:

classes(Classes)

Mode and number of proofs:

classes(-list) - one

instance/1

Returns, by backtracking, all class instances.

Compilation flags:

static

Template:

instance(Instance)

Mode and number of proofs:

instance(?object) - zero_or_more

instances/1

List of all class instances.

Compilation flags:

static

Template:

instances(Instances)

Mode and number of proofs:

instances(-list) - one

subclass/1

Returns, by backtracking, all class subclasses.

Compilation flags:

static

Template:

subclass(Subclass)

Mode and number of proofs:

subclass(?object) - zero_or_more

subclasses/1

List of all class subclasses.

Compilation flags:

static

Template:

subclasses(Subclasses)

Mode and number of proofs:

subclasses(-list) - one

superclass/1

Returns, by backtracking, all class superclasses.

Compilation flags:

static

Template:

superclass(Superclass)

Mode and number of proofs:

superclass(?object) - zero_or_more

superclasses/1

List of all class superclasses.

Compilation flags:

static

Template:

superclasses(Superclasses)

Mode and number of proofs:

superclasses(-list) - one

leaf_instance/1

Returns, by backtracking, all class leaf instances.

Compilation flags:

static

Template:

leaf_instance(Leaf)

Mode and number of proofs:

leaf_instance(?object) - zero_or_more

leaf_instances/1

List of all class leaf instances.

Compilation flags:

static

Template:

leaf_instances(Leaves)

Mode and number of proofs:

leaf_instances(-list) - one

leaf_class/1

Returns, by backtracking, all class leaf subclasses.

Compilation flags:

static

Template:

leaf_class(Leaf)

Mode and number of proofs:

leaf_class(?object) - zero_or_more

leaf_classes/1

List of all class leaf leaf subclasses.

Compilation flags:

static

Template:

leaf_classes(Leaves)

Mode and number of proofs:

leaf_classes(-list) - one

descendant_instance/1

Returns, by backtracking, all class descendant instances.

Compilation flags:

static

Template:

descendant_instance(Descendant)

Mode and number of proofs:

descendant_instance(?object) - zero_or_more

descendant_instances/1

List of all class descendant instances.

Compilation flags:

static

Template:

descendant_instances(Descendants)

Mode and number of proofs:

descendant_instances(-list) - one

descendant_class/1

Returns, by backtracking, all class descendant subclasses.

Compilation flags:

static

Template:

descendant_class(Descendant)

Mode and number of proofs:

descendant_class(?object) - zero_or_more

descendant_classes/1

List of all class descendant subclasses.

Compilation flags:

static

Template:

descendant_classes(Descendants)

Mode and number of proofs:

descendant_classes(-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

class_hierarchy

 protocol

hierarchyp

Common hierarchy protocol for prototype and class hierarchies.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	ancestor/1

	ancestors/1

	leaf/1

	leaves/1

	descendant/1

	descendants/1

	Protected predicates

	Private predicates

	Operators

Public predicates

ancestor/1

Returns, by backtracking, all object ancestors.

Compilation flags:

static

Template:

ancestor(Ancestor)

Mode and number of proofs:

ancestor(?object) - zero_or_more

ancestors/1

List of all object ancestors.

Compilation flags:

static

Template:

ancestors(Ancestors)

Mode and number of proofs:

ancestors(-list) - one

leaf/1

Returns, by backtracking, all object leaves.

Compilation flags:

static

Template:

leaf(Leaf)

Mode and number of proofs:

leaf(?object) - zero_or_more

leaves/1

List of all object leaves.

Compilation flags:

static

Template:

leaves(Leaves)

Mode and number of proofs:

leaves(-list) - one

descendant/1

Returns, by backtracking, all object descendants.

Compilation flags:

static

Template:

descendant(Descendant)

Mode and number of proofs:

descendant(?object) - zero_or_more

descendants/1

List of all object descendants.

Compilation flags:

static

Template:

descendants(Descendants)

Mode and number of proofs:

descendants(-list) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

proto_hierarchy

Prototype hierarchy predicates.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Implements:

public proto_hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 extension/1 extensions/1 leaf/1 leaves/1 parent/1 parents/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

proto_hierarchyp

Prototype hierarchy protocol.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Extends:

public hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 leaf/1 leaves/1

	Public predicates

	parent/1

	parents/1

	extension/1

	extensions/1

	Protected predicates

	Private predicates

	Operators

Public predicates

parent/1

Returns, by backtracking, all object parents.

Compilation flags:

static

Template:

parent(Parent)

Mode and number of proofs:

parent(?object) - zero_or_more

parents/1

List of all object parents.

Compilation flags:

static

Template:

parents(Parents)

Mode and number of proofs:

parents(-list) - one

extension/1

Returns, by backtracking, all object direct descendants.

Compilation flags:

static

Template:

extension(Extension)

Mode and number of proofs:

extension(?object) - zero_or_more

extensions/1

List of all object direct descendants.

Compilation flags:

static

Template:

extensions(Extensions)

Mode and number of proofs:

extensions(-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

proto_hierarchy

 object

hook_pipeline(Pipeline)

	Pipeline - List of hook objects.

Use a pipeline (represented using a list) of hook objects to expand terms and goals. The expansion results from a hook object are passed to the next hook object in the pipeline.

Availability:

logtalk_load(hook_flows(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-09-27

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files that should be expanded using the pipeline of hook objects using the compiler option hook(hook_pipeline(Pipeline)).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

hook_set(Set)

 object

hook_set(Set)

	Set - Set (list) of hook objects.

Use a set (represented using a list) of hook objects to expand terms and goals. The hook objects are tried in sequence until one of them succeeds in expanding the current term (goal) into a different term (goal).

Availability:

logtalk_load(hook_flows(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-09-27

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files that should be expanded using the set of hook objects using the compiler option hook(hook_set(Set)).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

hook_pipeline(Pipeline)

 object

backend_adapter_hook

This hook object applies the expansion rules defined in the Prolog backend adapter file.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-17

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

default_workflow_hook

Use this object as the default hook object to restore the default expansion pipeline semantics used by the compiler.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2020-03-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

grammar_rules_hook

This hook object expands grammar rules into clauses.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-14

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

identity_hook

Use this object as a file specific hook object to prevent any (other) user-defined expansion rules to be applied when compiling the file.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-15

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook

Use this object to wrap the contents of a plain Prolog file in an object named after the file. The wrapper sets the context_switching_calls flag to allow, enabling calling of the wrapped predicates using the <</2 control construct.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2020-10-30

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook(Protocol), object_wrapper_hook(Name,Relations), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook(Protocol)

Use this object to wrap the contents of a plain Prolog file in an object named after the file that implements the given protocol.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-11-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook, object_wrapper_hook(Name,Relations), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook(Name,Relations)

Use this object to wrap the contents of a plain Prolog file in an object with the given name and object entity relations (a list).

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-02-03

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook, object_wrapper_hook(Protocol), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

print_goal_hook

Use this object to easily print entity predicate goals before, after, or before and after calling them.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-03-14

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Mark a goal to be printed by prefixing it with an operator. Printing uses a comment message.

	To print goal before calling it: - Goal.

	To print goal after calling it: + Goal.

	To print goal before and after calling it: * Goal.

	Operators: This hook object uses the standard - and + prefix operators and also defines a global * prefix operator with the same type and priority.

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), suppress_goal_hook

 object

prolog_module_hook(Module)

This hook object applies the expansion rules defined in a Prolog module (e.g., user).

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-17

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

suppress_goal_hook

Use this object to easily suppress a goal in a clause body.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-05-04

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Mark a goal to be suppressed by prefixing it with the -- operator.

	Operators: This hook object uses the -- prefix operator declared by Logtalk for use in mode/2 directives.

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook

 object

write_to_file_hook(File)

This hook object writes term-expansion results to a file in canonical format. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-06

Compilation flags:

static, context_switching_calls

Extends:

public write_to_file_hook(File,[quoted(true),ignore_ops(true)])

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_file_hook(File,Options), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

write_to_file_hook(File,Options)

This hook object writes term-expansion results to a file using a list of write_term/3 options. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-06

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_file_hook(File), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

write_to_stream_hook(Stream)

This hook object writes term-expansion results to a stream in canonical format. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-16

Compilation flags:

static, context_switching_calls

Extends:

public write_to_stream_hook(Stream,[quoted(true),ignore_ops(true)])

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_file_hook(File,Options), write_to_file_hook(File), print_goal_hook, suppress_goal_hook

 object

write_to_stream_hook(Stream,Options)

This hook object writes term-expansion results to a stream using a list of write_term/3 options. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-16

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream), write_to_file_hook(File,Options), write_to_file_hook(File), print_goal_hook, suppress_goal_hook

 category

html

HTML generation.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 0:3:0

Date: 2021-03-30

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/2

	void_element/1

	normal_element/2

	Protected predicates

	Private predicates

	doctype/1

	Operators

Public predicates

generate/2

Generates HTML content using the representation specified in the first argument (stream(Stream) or file(Path)) for the term in the second argument.

Compilation flags:

static

Template:

generate(Sink,Term)

Mode and number of proofs:

generate(+compound,++term) - one_or_error

void_element/1

Enumerates, by backtracking, all void elements.

Compilation flags:

static

Template:

void_element(Element)

Mode and number of proofs:

void_element(?atom) - zero_or_more

normal_element/2

Enumerates, by backtracking, all normal elements. The value of the Display argument is either inline or block.

Compilation flags:

static

Template:

normal_element(Element,Display)

Mode and number of proofs:

normal_element(?atom,?atom) - zero_or_more

Protected predicates

(none)

Private predicates

doctype/1

Doctype text.

Compilation flags:

static

Template:

doctype(DocType)

Mode and number of proofs:

doctype(?atom) - one

Operators

(none)

 object

html5

HTML content generation using the HTML 5 doctype.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 1:0:0

Date: 2021-03-29

Compilation flags:

static, context_switching_calls

Imports:

public html

Remarks:

(none)

Inherited public predicates:

 generate/2 normal_element/2 void_element/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

xhtml11

XHTML content generation using the XHTML 1.1 doctype.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 1:0:0

Date: 2021-03-29

Compilation flags:

static, context_switching_calls

Imports:

public html

Remarks:

(none)

Inherited public predicates:

 generate/2 normal_element/2 void_element/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

ids

Generator of random identifiers represented as atoms with 160 bits (20 bytes) of randomness.

Availability:

logtalk_load(ids(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2025-06-03

Compilation flags:

static, context_switching_calls

Extends:

public ids(atom,20)

Remarks:

(none)

Inherited public predicates:

 generate/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ids(Representation,Bytes), uuid, ulid

 object

ids(Representation,Bytes)

	Representation - Text representation for the identifier. Possible values are atom, chars, and codes.

	Bytes - Number of bytes of randomness.

Generator of random identifiers.

Availability:

logtalk_load(ids(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Uses:

base64

fast_random

list

os

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/1

	Protected predicates

	Private predicates

	Operators

Public predicates

generate/1

Generate a random identifier.

Compilation flags:

static

Template:

generate(Identifier)

Mode and number of proofs:

generate(--textids) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ids, uuid, ulid

 object

interval

Basic temporal interval relations. An interval is represented by a compound term, i/2, with two ground arguments, the start and end points.

Availability:

logtalk_load(intervals(loader))

Author: Paulo Moura

Version: 1:2:1

Date: 2022-01-15

Compilation flags:

static, context_switching_calls

Implements:

public intervalp

Aliases:

intervalp before/2 as b/2

intervalp after/2 as bi/2

intervalp meets/2 as m/2

intervalp met_by/2 as mi/2

intervalp overlaps/2 as o/2

intervalp overlapped_by/2 as oi/2

intervalp starts/2 as s/2

intervalp started_by/2 as si/2

intervalp during/2 as d/2

intervalp contains/2 as di/2

intervalp finishes/2 as f/2

intervalp finished_by/2 as fi/2

intervalp equal/2 as eq/2

Remarks:

(none)

Inherited public predicates:

 after/2 before/2 contains/2 during/2 equal/2 finished_by/2 finishes/2 meets/2 met_by/2 new/3 overlapped_by/2 overlaps/2 started_by/2 starts/2 valid/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

intervalp

Basic temporal interval relations protocol (based on James F. Allen Interval Algebra work).

Availability:

logtalk_load(intervals(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2014-04-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/3

	valid/1

	before/2

	after/2

	meets/2

	met_by/2

	overlaps/2

	overlapped_by/2

	starts/2

	started_by/2

	during/2

	contains/2

	finishes/2

	finished_by/2

	equal/2

	Protected predicates

	Private predicates

	Operators

Public predicates

new/3

Constructs a new interval given start and end points. The start point must strictly precede the end point.

Compilation flags:

static

Template:

new(Start,End,Interval)

Mode and number of proofs:

new(@ground,@ground,-interval) - zero_or_one

valid/1

True if Interval is a valid interval.

Compilation flags:

static

Template:

valid(Interval)

Mode and number of proofs:

valid(@interval) - zero_or_one

before/2

True if Interval1 takes place before Interval2.

Compilation flags:

static

Template:

before(Interval1,Interval2)

Mode and number of proofs:

before(@interval,@interval) - zero_or_one

after/2

True if Interval1 takes place after Interval2.

Compilation flags:

static

Template:

after(Interval1,Interval2)

Mode and number of proofs:

after(@interval,@interval) - zero_or_one

meets/2

True if Interval1 meets Interval2.

Compilation flags:

static

Template:

meets(Interval1,Interval2)

Mode and number of proofs:

meets(@interval,@interval) - zero_or_one

met_by/2

True if Interval1 is met by Interval2.

Compilation flags:

static

Template:

met_by(Interval1,Interval2)

Mode and number of proofs:

met_by(@interval,@interval) - zero_or_one

overlaps/2

True if Interval1 overlaps with Interval2.

Compilation flags:

static

Template:

overlaps(Interval1,Interval2)

Mode and number of proofs:

overlaps(@interval,@interval) - zero_or_one

overlapped_by/2

True if Interval1 is overlapped by Interval2.

Compilation flags:

static

Template:

overlapped_by(Interval1,Interval2)

Mode and number of proofs:

overlapped_by(@interval,@interval) - zero_or_one

starts/2

True if Interval1 starts Interval2.

Compilation flags:

static

Template:

starts(Interval1,Interval2)

Mode and number of proofs:

starts(@interval,@interval) - zero_or_one

started_by/2

True if Interval1 is started by Interval2.

Compilation flags:

static

Template:

started_by(Interval1,Interval2)

Mode and number of proofs:

started_by(@interval,@interval) - zero_or_one

during/2

True if Interval1 occurs during Interval2.

Compilation flags:

static

Template:

during(Interval1,Interval2)

Mode and number of proofs:

during(@interval,@interval) - zero_or_one

contains/2

True if Interval1 contains Interval2.

Compilation flags:

static

Template:

contains(Interval1,Interval2)

Mode and number of proofs:

contains(@interval,@interval) - zero_or_one

finishes/2

True if Interval1 finishes Interval2.

Compilation flags:

static

Template:

finishes(Interval1,Interval2)

Mode and number of proofs:

finishes(@interval,@interval) - zero_or_one

finished_by/2

True if Interval1 is finished by Interval2.

Compilation flags:

static

Template:

finished_by(Interval1,Interval2)

Mode and number of proofs:

finished_by(@interval,@interval) - zero_or_one

equal/2

True if Interval1 is equal to Interval2.

Compilation flags:

static

Template:

equal(Interval1,Interval2)

Mode and number of proofs:

equal(@interval,@interval) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

interval

 object

iso8601

ISO 8601 (and European civil calendar) compliant library of date predicates.

Availability:

logtalk_load(iso8601(loader))

Author: Daniel L. Dudley

Version: 1:0:3

Date: 2019-10-09

Compilation flags:

static, context_switching_calls

Uses:

os

Remarks:

	Scope: This object currently provides a powerful, versatile and efficient set of date-handling predicates, which–thanks to Logtalk–may be used as is on a wide range of Prolog compilers. Besides taking time to familiarize oneself with each predicate, the user should take note of the following information.

	Validation of dates: Date parts are not validated–that is the caller’s responsibility! However, not being quite heartless yet, we do provide a predicate for this purpose.

	Date arithmetic: Many of the examples illustrate a simplified method of doing date arithmetic. Note, however, that we do not generally recommend this practice–it is all too easy to make mistakes. The safest way of finding the day difference between two dates is to first convert the dates to their Julian day numbers and then subtract one from the other. Similarly, the safe way to add or subtract a day offset to a particular date is to first convert the date to its Julian day number, add or subtract the day offset, and then convert the result to its corresponding date.

	BC years: ISO 8601 specifies that the Gregorian calendar be used, yet requires that years prior to 1 AD be handled arithmetically, i.e., the year we know as 1 BC is year 0, 2 BC is year -1, 3 BC is year -2 and so on. We do not follow ISO 8601 with regard to the handling of BC years. Our date predicates will accept and interpret an input year 0 as 1 BC; however, a negative year, Year, should always be interpreted as abs(Year) =:= Year BC. We believe that the average person will find our handling of BC years more user-friendly than the ISO 8601 one, but we encourage feedback from users with a view to a possible change in future versions.

	Week numbers: It is possible for a day (date) to have a week number that belongs to another year. Up to three of the first days of a calendar year may belong to the last week (number) of the prior calendar year, and up to three days of the last days of a calendar year may belong to the first week (number) of the next calendar year. It for this reason that the Week parameter in date/6-7 is a compound term, namely week(WeekNo,ActualYear).

	Computation of Gregorian Easter Sunday: The algorithm is based upon the “Gaussian rule”. Proleptic use is limited to years > 1582 AD, that is, after the introduction of the Gregorian calendar.

	Some Christian feast day offsets from Easter Sunday: Carnival Monday: -48 days, Mardi Gras (Shrove Tuesday): -47 days, Ash Wednesday: -46 days, Palm Sunday: -7 days, Easter Friday: -2 days, Easter Saturday: -1 day, Easter Monday: +1 day, Ascension of Christ: +39 days, Whitsunday: +49 days, Whitmonday: +50 days, Feast of Corpus Christi: +60 days.

Inherited public predicates:

(none)

	Public predicates

	date/4

	date/5

	date/6

	date/7

	date_string/3

	valid_date/3

	leap_year/1

	calendar_month/3

	easter_day/3

	Protected predicates

	Private predicates

	Operators

Public predicates

date/4

Get the system date and/or its Julian Day # or convert a Julian Day # to/from given date parts.

Compilation flags:

static

Template:

date(JD,Year,Month,Day)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer) - zero_or_one

Examples:

Current date (i.e., today)

date(JD,Year,Month,Day)

JD=2453471,Year=2005,Month=4,Day=10

Convert a date to its Julian day number

date(JD,2000,2,29)

JD=2451604

Convert a Julian day number to its date

date(2451604,Year,Month,Day)

Year=2000,Month=2,Day=29

What is the date of day # 60 in year 2000?

date(JD,2000,1,60)

JD=2451604

What is the Julian of the 1st day prior to 2000-1-1?

date(JD,2000,1,0)

JD=2451544

What is the Julian of the 60th day prior to 2000-1-1?

date(JD,2000,1,-59)

JD=2451485

Illegal date is auto-adjusted (see also next query)

date(JD,1900,2,29)

JD=2415080

This is the correct date!

date(2415080,Year,Month,Day)

Year=1900,Month=3,Day=1

date/5

Ditto date/4 + get/check its day-of-week #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer) - zero_or_one

Examples:

Get the Julian and the day-of-week # of a date

date(JD,2000,2,29,DoW)

JD=2451604,DoW=2

Check the validity of a given date (day-of-week is 2, not 4)

date(_,2002,3,5,4)

no

Get the Julian day of a given date if it is a Sunday

date(JD,2004,2,29,7)

JD=2453065

Get the date and day-of-week # of a Julian

date(2451545,Year,Month,Day,DoW)

Year=2000,Month=1,Day=1,DoW=6

date/6

Ditto date/5 + get/check its week #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW,Week)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Week - Compound term, week(WeekNo,ActualYear), of a day.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer,?compound) - zero_or_one

Examples:

Get the day-of-week and week number of a date

date(_,2000,1,1,DoW,Week)

DoW=6,Week=week(52,1999)

Get the week number and year of this week

date(_,_,_,_,_,Week)

Week=week(7,2004)

Get the Julian number and the week of a date if it is a Sunday

date(JD,2004,2,29,7,Week)

JD=2453065,Week=week(9,2004)

Get the day-of-week and week of a Julian day number

date(2453066,_,_,_,DoW,Week)

DoW=1,Week=week(10,2004)

Check that given date data matches

date(_,2004,3,1,1,week(10,2004))

yes

What is the date of a day of week (default is 1) in given week # and year?

date(_,Year,Month,Day,DoW,week(26,2004))

Year=2004,Month=6,Day=21,DoW=1

Ditto for Sunday

date(_,Year,Month,Day,7,week(1,2005))

Year=2005,Month=1,Day=9

Ditto for Tuesday in following week

date(_,Year,Month,Day,9,week(1,2005))

Year=2005,Month=1,Day=11

Ditto for Thursday in the prior week

date(_,Year,Month,Day,4,week(0,2005))

Year=2004,Month=12,Day=30

Ditto for Tuesday two weeks prior

date(_,Year,Month,Day,2,week(-1,2005))

Year=2004,Month=12,Day=21

Ditto for Saturday

date(_,Year,Month,Day,6,week(53,2004))

Year=2005,Month=1,Day=1

Ditto for Monday (note automatic compensation of nonexistent week number)

date(_,Year,Month,Day,1,week(60,2004))

Year=2005,Month=2,Day=14

date/7

Ditto date/6 + get/check its day-of-year #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW,Week,DoY)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Week - Compound term, week(WeekNo,ActualYear), of a day.

DoY - Day of year (NB! calendar year, not week # year).

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer,?compound,?integer) - zero_or_one

Examples:

Get the date and day-of-year of a Julian number

date(2451649,Year,Month,Day,_,_,DoY)

Year=2000,Month=4,Day=14,DoY=105

Get the Julian number, week number and day-of-year of a date, confirming that it is a Sunday

date(JD,2004,2,29,7,Week,DoY)

JD=2453065,Week=week(9,2004),DoY=60

Confirm that a date is, in fact, a specific day-of-year

date(_,2004,3,1,_,_,61)

yes

Get the Julian number, week day and day-of-year of a date

date(JD,2004,10,18,DoW,_,DoY)

JD=2453297,DoW=1,DoY=292

Get today’s day-of-year

date(_,_,_,_,_,_,DoY)

DoY=54

Get all missing date data (excl. Julian number) for the 60th calendar day of 2004

date(_,2004,Month,Day,DoW,Week,60)

Month=2,Day=29,DoW=7,Week=week(9,2004)

Match given date data and, if true, return the missing data (excl. Julian number)

date(_,2004,3,Day,DoW,Week,61)

Day=1,DoW=1,Week=week(10,2004)

Ditto (the 61st day-of-year cannot be both day 1 and 2 of the month)

date(_,2004,_,2,_,_,61)

no

date_string/3

Conversion between an ISO 8601 compliant date string and its components (truncated and expanded date representations are currently unsupported). Note that date components are not validated; that is the caller’s responsibility!

Compilation flags:

static

Template:

date_string(Format,Components,String)

Format - ISO 8601 format.

Components - When bound and String is free, either a Julian number or a [Year,Month,Day] term; it binds to the system day/date if free When free and String is bound, it binds to an integer list representing the numeric elements of String.

String - ISO 8601 formatted string correspondent to Components.

Mode and number of proofs:

date_string(+atom,+integer,?atom) - zero_or_one

date_string(+atom,?list,?atom) - zero_or_one

Examples:

Date, complete, basic (section 5.2.1.1)

date_string('YYYYMMDD',[2004,2,29],String)

String='20040229'

Date, complete, basic (section 5.2.1.1)

date_string('YYYYMMDD',Components,'20040229')

Components=[2004,2,29]

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',[2003,12,16],String)

String='2003-12-16'

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',Components,'2003-12-16')

Components=[2003,12,16]

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',_,String)

String='2004-02-17'

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',Components,'2004-02-17')

Components=[2004,2,17]

Date, reduced, month (section 5.2.1.2 a)

date_string('YYYY-MM',[2004,9,18],String)

String='2004-09'

Date, reduced, month (section 5.2.1.2 a)

date_string('YYYY-MM',Components,'2004-09')

Components=[2004,9]

Date, reduced, year (section 5.2.1.2 b)

date_string('YYYY',[1900,7,24],String)

String='1900'

Date, reduced, year (section 5.2.1.2 b)

date_string('YYYY',Components,'1900')

Components=[1900]

Date, reduced, century (section 5.2.1.2 c)

date_string('YY',2456557,String)

String='20'

Date, reduced, century (section 5.2.1.2 c)

date_string('YY',Components,'20')

Components=[20]

Date, ordinal, complete (section 5.2.2.1)

date_string('YYYYDDD',[2005,3,25],String)

String='2005084'

Date, ordinal, complete (section 5.2.2.1)

date_string('YYYYDDD',Components,'2005084')

Components=[2005,84]

Date, ordinal, extended (section 5.2.2.1)

date_string('YYYY-DDD',[1854,12,4],String)

String='1854-338'

Date, ordinal, extended (section 5.2.2.1)

date_string('YYYY-DDD',Components,'1854-338')

Components=[1854,338]

Week, complete, basic (section 5.2.3.1)

date_string('YYYYWwwD',[2000,1,2],String)

String='1999W527'

Week, complete, basic (section 5.2.3.1)

date_string('YYYYWwwD',Components,'1999W527')

Components=[1999,52,7]

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',[2003,12,29],String)

String='2004-W01-1'

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',Components,'2004-W01-1')

Components=[2004,1,1]

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',2453167,String)

String='2004-W24-4'

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',Components,'2004-W24-4')

Components=[2004,24,4]

Week, reduced, basic (section 5.2.3.2)

date_string('YYYYWww',[2004,2,29],String)

String='2004W09'

Week, reduced, basic (section 5.2.3.2)

date_string('YYYYWww',Components,'2004W09')

Components=[2004,9]

Week, reduced, extended (section 5.2.3.2)

date_string('YYYY-Www',[2004,2,29],String)

String='2004-W09'

Week, reduced, extended (section 5.2.3.2)

date_string('YYYY-Www',Components,'2004-W09')

Components=[2004,9]

valid_date/3

Validate a given date in the Gregorian calendar.

Compilation flags:

static

Template:

valid_date(Year,Month,Day)

Mode and number of proofs:

valid_date(+integer,+integer,+integer) - zero_or_one

Examples:

Yes, the recent millennium was a leap year

valid_date(2000,2,29)

yes

2004 was also a leap year

valid_date(2004,2,29)

yes

Only 30 days in April

valid_date(2004,4,31)

no

1 BC was a leap year

valid_date(-1,2,29)

yes

leap_year/1

Succeed if given year is a leap year in the Gregorian calendar.

Compilation flags:

static

Template:

leap_year(Year)

Year - The Gregorian calendar year to investigate. If free, it binds to the system year.

Mode and number of proofs:

leap_year(?integer) - zero_or_one

Examples:

No, the prior centenary was not a leap year

leap_year(1900)

no

The recent millennium

leap_year(2000)

yes

This year

leap_year(Year)

Year=2004

This year (equivalent to prior query)

leap_year(_)

yes

Next centennial

leap_year(2100)

no

Year 0, equivalent to 1 BC

leap_year(0)

yes

1 BC

leap_year(-1)

yes

4 BC

leap_year(-4)

no

5 BC

leap_year(-5)

yes

calendar_month/3

Compute a calendar month.

Compilation flags:

static

Template:

calendar_month(Year,Month,Calendar)

Year - The calendar year.

Month - The calendar month.

Calendar - A compound term, m/3, composed of three main arguments specifying year, month, and a list of week and week day numbers (calendar body).

Mode and number of proofs:

calendar_month(?integer,?integer,-compound) - zero_or_one

Examples:

Compute the calendar of March, 2005

calendar_month(2005,3,Calendar)

Calendar=m(2005,3,[w(9,[0,1,2,3,4,5,6]),w(10,[7,8,9,10,11,12,13]),w(11,[14,15,16,17,18,19,20]),w(12,[21,22,23,24,25,26,27]),w(13,[28,29,30,31,0,0,0]),w(0,[0,0,0,0,0,0,0])])

easter_day/3

Compute a Gregorian Easter Sunday.

Compilation flags:

static

Template:

easter_day(Year,Month,Day)

Year - Integer specifying the year to be investigated.

Month - Month in which Easter Sunday falls for given year.

Day - Day of month in which Easter Sunday falls for given year.

Mode and number of proofs:

easter_day(?integer,-integer,-integer) - zero_or_one

Examples:

Compute Easter Sunday for a particular year

easter_day(2006,Month,Day)

Month=4,Day=16

Compute Easter Sunday for the current year

easter_day(Year,Month,Day)

Year=2005,Month=3,Day=27

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

issue_creator

Support for automatically creating bug report issues for failed tests in GitHub or GitLab servers.

Availability:

logtalk_load(issue_creator(loader))

Author: Paulo Moura

Version: 0:12:1

Date: 2025-03-03

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

git

os

term_io

user

Remarks:

	Usage: This tool is automatically loaded and used from the logtalk_tester automation script when using its -b option. See the script man page for details.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

java

Abstract interface to JPL API utility predicates.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:8:0

Date: 2023-03-15

Compilation flags:

static, context_switching_calls

Implements:

public java_utils_protocol

Uses:

user

Remarks:

(none)

Inherited public predicates:

 array_list/2 array_to_list/2 array_to_terms/2 array_to_terms/3 decode_exception/2 decode_exception/3 false/1 is_false/1 is_null/1 is_object/1 is_true/1 is_void/1 iterator_element/2 list_to_array/2 map_element/2 null/1 set_element/2 terms_to_array/2 true/1 value_reference/2 void/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java(Reference), java_hook

 object

java(Reference)

	Reference - Either a class name or a Java reference to an object.

Minimal abstraction of the JPL API for calling Java from Logtalk using familiar message-sending syntax and a forward/1 handler to resolve methods.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:0:1

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public java(Reference,_)

Remarks:

	Usage: Send to this object any valid message as listed in the JavaDocs for the given reference.

Inherited public predicates:

 forward/1 get_field/2 invoke/1 invoke/2 new/1 new/2 set_field/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java, java_hook

 object

java(Reference,ReturnValue)

	Reference - Either a class name or a Java reference to an object.

	ReturnValue - Value returned by a method call (possibly the Java value void).

Minimal abstraction of the JPL API for calling Java from Logtalk using familiar message-sending syntax and a forward/1 handler to resolve methods.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:4:0

Date: 2023-03-13

Compilation flags:

static, context_switching_calls

Implements:

public forwarding

public java_access_protocol

Remarks:

	Usage: Send to this object any valid message as listed in the JavaDocs for the given reference.

Inherited public predicates:

 forward/1 get_field/2 invoke/1 invoke/2 new/1 new/2 set_field/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference), java, java_hook

 protocol

java_access_protocol

Protocol for a minimal abstraction for calling Java from Logtalk using familiar message-sending syntax.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:2:1

Date: 2023-03-16

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	get_field/2

	set_field/2

	new/2

	new/1

	invoke/1

	invoke/2

	Protected predicates

	Private predicates

	Operators

Public predicates

get_field/2

Gets the value of a class or object field.

Compilation flags:

static

Template:

get_field(Field,Value)

Mode and number of proofs:

get_field(+atom,?nonvar) - zero_or_one

set_field/2

Sets the value of a class or object field.

Compilation flags:

static

Template:

set_field(Field,Value)

Mode and number of proofs:

set_field(+atom,+nonvar) - one

new/2

Creates a new instance using the specified parameter values.

Compilation flags:

static

Template:

new(Parameters,Instance)

Mode and number of proofs:

new(+list(nonvar),-reference) - one

new/1

Creates a new instance using default parameter values.

Compilation flags:

static

Template:

new(Instance)

Mode and number of proofs:

new(-reference) - one

invoke/1

Invokes a method. This is a more efficient compared with relying on the forward/1 handler to resolve methods.

Compilation flags:

static

Template:

invoke(Method)

Mode and number of proofs:

invoke(@nonvar) - one

invoke/2

Invokes a method. This is a more efficient compared with relying on the forward/1 handler to resolve methods.

Compilation flags:

static

Template:

invoke(Functor,Arguments)

Mode and number of proofs:

invoke(@nonvar,@list) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

java_hook

Hook object to optimize messages to the java/1-2 objects that otherwise would trigger the forward/1 handler.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files with messages to the java/1-2 objects using the compiler option hook(java_hook).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java(Reference)

 protocol

java_utils_protocol

Abstract interface to Java utility predicates.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:6:0

Date: 2023-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	value_reference/2

	true/1

	false/1

	void/1

	null/1

	is_true/1

	is_false/1

	is_void/1

	is_null/1

	is_object/1

	terms_to_array/2

	array_to_terms/3

	array_to_terms/2

	array_to_list/2

	list_to_array/2

	array_list/2

	iterator_element/2

	map_element/2

	set_element/2

	decode_exception/2

	decode_exception/3

	Protected predicates

	Private predicates

	Operators

Public predicates

value_reference/2

Returns an opaque term that represents the Java value with the given name.

Compilation flags:

static

Template:

value_reference(Value,Reference)

Mode and number of proofs:

value_reference(?atom,--ground) - one_or_more

true/1

Returns an opaque term that represents the Java value true.

Compilation flags:

static

Template:

true(Reference)

Mode and number of proofs:

true(--ground) - one

false/1

Returns an opaque term that represents the Java value false.

Compilation flags:

static

Template:

false(Reference)

Mode and number of proofs:

false(--ground) - one

void/1

Returns an opaque term that represents the Java value void.

Compilation flags:

static

Template:

void(Reference)

Mode and number of proofs:

void(--ground) - one

null/1

Returns an opaque term that represents the Java value null.

Compilation flags:

static

Template:

null(Reference)

Mode and number of proofs:

null(--ground) - one

is_true/1

True when the argument is the Java value true. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_true(Reference)

Mode and number of proofs:

is_true(@term) - zero_or_one

is_false/1

True when the argument is the Java value false. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_false(Reference)

Mode and number of proofs:

is_false(@term) - zero_or_one

is_void/1

True when the argument is the Java value void. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_void(Reference)

Mode and number of proofs:

is_void(@term) - zero_or_one

is_null/1

True when the argument is the Java value null. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_null(Reference)

Mode and number of proofs:

is_null(@term) - zero_or_one

is_object/1

True when the argument is a reference to a Java object. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_object(Reference)

Mode and number of proofs:

is_object(@term) - zero_or_one

terms_to_array/2

Converts a list of ground Prolog terms to an array (a Java reference).

Compilation flags:

static

Template:

terms_to_array(Terms,Array)

Mode and number of proofs:

terms_to_array(++list(ground),-array) - one

array_to_terms/3

Converts an array (a Java reference) to a list of ground Prolog terms returning also its length. The array elements must be atoms, integers, floats, or compound terms. Fails otherwise.

Compilation flags:

static

Template:

array_to_terms(Array,Terms,Length)

Mode and number of proofs:

array_to_terms(+array,-list(ground),-integer) - one

array_to_terms/2

Converts an array (a Java reference) to a list of ground Prolog terms. The array elements must be atoms, integers, floats, or ground compound terms. Fails otherwise.

Compilation flags:

static

Template:

array_to_terms(Array,Terms)

Mode and number of proofs:

array_to_terms(+array,-list(term)) - one

array_to_list/2

Converts an array (a Java reference) to a list of Java references or their values.

Compilation flags:

static

Template:

array_to_list(Array,List)

Mode and number of proofs:

array_to_list(+array,-list) - one

list_to_array/2

Converts a list of Java references or values to an array (a Java reference).

Compilation flags:

static

Template:

list_to_array(List,Array)

Mode and number of proofs:

list_to_array(+list,-array) - one

array_list/2

Converts between an array (a Java reference) and a list of Java references or their values. Deprecated. Use the array_to_list/2 and list_to_array/2 predicates instead.

Compilation flags:

static

Template:

array_list(Array,List)

Mode and number of proofs:

array_list(+array,-list) - one

array_list(-array,+list) - one

iterator_element/2

Enumerates, by backtracking, all iterator elements.

Compilation flags:

static

Template:

iterator_element(Iterator,Element)

Mode and number of proofs:

iterator_element(+iterator,-element) - zero_or_more

map_element/2

Enumerates, by backtracking, all map elements.

Compilation flags:

static

Template:

map_element(Map,Element)

Mode and number of proofs:

map_element(+iterator,-element) - zero_or_more

set_element/2

Enumerates, by backtracking, all set elements.

Compilation flags:

static

Template:

set_element(Set,Element)

Mode and number of proofs:

set_element(+iterator,-element) - zero_or_more

decode_exception/2

Decodes an exception into its corresponding cause. Fails if the exception is not a Java exception.

Compilation flags:

static

Template:

decode_exception(Exception,Cause)

Mode and number of proofs:

decode_exception(+callable,-atom) - zero_or_one

decode_exception/3

Decodes an exception into its corresponding cause and a stack trace. Fails if the exception is not a Java exception.

Compilation flags:

static

Template:

decode_exception(Exception,Cause,StackTrace)

Mode and number of proofs:

decode_exception(+callable,-atom,-list(atom)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

json

JSON parser and generator. Uses curly terms for parsed JSON objects, dashes for parsed JSON pairs, and atoms for parsed JSON strings.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 1:1:0

Date: 2022-11-14

Compilation flags:

static, context_switching_calls

Extends:

public json(curly,dash,atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON parser and generator. Uses curly terms for parsed JSON objects and dashes for parsed JSON pairs.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-11-14

Compilation flags:

static, context_switching_calls

Extends:

public json(curly,dash,StringRepresentation)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	ObjectRepresentation - Object representation to be used when decoding JSON objects. Possible values are curly (default) and list.

	PairRepresentation - Pair representation to be used when decoding JSON objects. Possible values are dash (default), equal, and colon.

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON parser and generator.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 0:13:0

Date: 2024-07-16

Compilation flags:

static, context_switching_calls

Implements:

public json_protocol

Uses:

reader

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

json_protocol

JSON parser and generator protocol.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 0:11:0

Date: 2022-11-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the JSON contents read from the given source (codes(List), stream(Stream), line(Stream), file(Path), chars(List), or atom(Atom)) into a term. Fails if the JSON contents cannot be parsed.

Compilation flags:

static

Template:

parse(Source,Term)

Mode and number of proofs:

parse(++compound,--term) - one_or_error

generate/2

Generates the content using the representation specified in the first argument (codes(List), stream(Stream), file(Path), chars(List), or atom(Atom)) for the term in the second argument. Fails if this term cannot be processed.

Compilation flags:

static

Template:

generate(Sink,Term)

Mode and number of proofs:

generate(+compound,++term) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

json_lines

JSON Lines parser and generator. Uses curly terms for parsed JSON objects, dashes for parsed JSON pairs, and atoms for parsed JSON strings.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Extends:

public json_lines(curly,dash,atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json_lines(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON Lines parser and generator. Uses curly terms for parsed JSON objects and dashes for parsed JSON pairs.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Extends:

public json_lines(curly,dash,StringRepresentation)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	ObjectRepresentation - Object representation to be used when decoding JSON objects. Possible values are curly (default) and list.

	PairRepresentation - Pair representation to be used when decoding JSON objects. Possible values are dash (default), equal, and colon.

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON Lines parser and generator.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Implements:

public json_lines_protocol

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

json_lines_protocol

JSON Lines parser and generator protocol.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the JSON Lines contents read from the given source (file(Path), stream(Stream), line(Stream), codes(Codes), chars(Chars), or atom(Atom)) into a list of ground terms.

Compilation flags:

static

Template:

parse(Source,Terms)

Mode and number of proofs:

parse(++compound,--list(ground)) - one_or_error

Exceptions:

Source is a variable:

instantiation_error

Source is neither a variable nor a valid source:

domain_error(json_lines_source,Source)

generate/2

Generates the content using the representation specified in the first argument (file(Path), stream(Stream), codes(Codes), chars(Chars), or atom(Atom)) for the list of ground terms in the second argument.

Compilation flags:

static

Template:

generate(Sink,Terms)

Mode and number of proofs:

generate(+compound,++list(ground)) - one_or_error

Exceptions:

Sink is a variable:

instantiation_error

Terms is a variable:

instantiation_error

Terms is neither a variable nor a list:

type_error(list,Terms)

Term is a non-ground element of the list Terms:

instantiation_error

Term is an element of the list Terms but not a valid JSON term:

domain_error(json_term,Term)

Sink cannot be generated:

domain_error(json_lines_sink,Sink)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

lgtdoc

Documenting tool. Generates XML documenting files for loaded entities and for library, directory, entity, and predicate indexes.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 11:2:1

Date: 2025-10-07

Compilation flags:

static, context_switching_calls

Implements:

public lgtdocp

Imports:

public options

Uses:

date

list

logtalk

os

type

user

varlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 check_option/1 check_options/1 default_option/1 default_options/1 directories/1 directories/2 directory/1 directory/2 file/1 file/2 files/1 files/2 fix_option/2 fix_options/2 libraries/1 libraries/2 library/1 library/2 merge_options/2 option/2 option/3 rdirectories/1 rdirectories/2 rdirectory/1 rdirectory/2 rlibraries/1 rlibraries/2 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	library_entity_/4

	directory_entity_/4

	type_entity_/4

	predicate_entity_/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

library_entity_/4

Table of documented entities per library.

Compilation flags:

dynamic

Template:

library_entity_(Library,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

library_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

directory_entity_/4

Table of documented entities per directory.

Compilation flags:

dynamic

Template:

directory_entity_(Directory,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

directory_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

type_entity_/4

Table of documented entities per type.

Compilation flags:

dynamic

Template:

type_entity_(Type,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

type_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

predicate_entity_/4

Table of public predicates for all documented entities.

Compilation flags:

dynamic

Template:

predicate_entity_(Predicate,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

predicate_entity_(?predicate_indicator,?nonvar,?nonvar,?entity_identifier) - zero_or_more

Operators

(none)

 category

lgtdoc_messages

Logtalk documentation tool default message translations.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 4:0:1

Date: 2024-12-02

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

lgtdocp

Documenting tool protocol.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2024-03-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Compiling files for generating XML documentation: All source files must be compiled with the source_data flag turned on.

	xml_spec(Specification) option: XML documenting files specification format. Possible option values are dtd (DTD specification; default) and xsd (XML Schema specification).

	xml_spec_reference(Reference) option: Reference to the XML specification file in XML documenting files. Possible values are local (default; DTD/XSD file in same folder as XML files), web (logtalk.org website DTD/XSD file), and standalone (no reference to specification files).

	entity_xsl_file(File) option: XSLT file to use with generated XML documenting files. Default is logtalk_entity_to_xml.xsl, allowing the XML files to be viewed by opening them with a browser supporting XSLT (after running the lgt2xml.sh script on the output directory).

	index_xsl_file(File) option: XSLT file to use with generated XML documenting files. Default is logtalk_index_to_xml.xsl, allowing the XML files to be viewed by opening them with a browser supporting XSLT (after running the lgt2xml.sh script on the output directory).

	xml_docs_directory(Directory) option: Directory where the XML documenting files will be generated. The default value is ./xml_docs, a sub-directory of the source files directory.

	bom(Boolean) option: Defines if a BOM should be added to the generated XML documenting files.

	encoding(Encoding) option: Encoding to be used for the generated XML documenting files.

	omit_path_prefixes(Prefixes) option: List of path prefixes (atoms) to omit when writing directory paths. The default value is to omit the home directory.

	exclude_files(List) option: List of files to exclude when generating the XML documenting files.

	exclude_paths(List) option: List of relative library paths to exclude when generating the XML documenting files (default is []). All sub-directories of the excluded directories are also excluded.

	exclude_prefixes(List) option: List of path prefixes to exclude when generating the XML documenting files (default is []).

	exclude_entities(List) option: List of entities to exclude when generating the XML documenting files (default is []).

	sort_predicates(Boolean) option: Sort entity predicates (default is false).

	Known issues: Some options may depend on the used XSL processor. Most XSL processors support DTDs but only some of them support XML Schemas. Some processors (e.g., fop2) reject reference to a DTD.

Inherited public predicates:

(none)

	Public predicates

	rlibraries/2

	rlibraries/1

	rlibrary/2

	rlibrary/1

	libraries/2

	libraries/1

	library/2

	library/1

	rdirectories/2

	rdirectories/1

	rdirectory/2

	rdirectory/1

	directories/2

	directories/1

	directory/2

	directory/1

	files/2

	files/1

	file/2

	file/1

	all/1

	all/0

	Protected predicates

	Private predicates

	Operators

Public predicates

rlibraries/2

Creates XML documenting files for all entities in all given libraries and their sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibraries(Libraries,Options)

Mode and number of proofs:

rlibraries(+list(atom),+list) - one

rlibraries/1

Creates XML documenting files for all entities in all given libraries and their sub-libraries using default options.

Compilation flags:

static

Template:

rlibraries(Libraries)

Mode and number of proofs:

rlibraries(+list(atom)) - one

rlibrary/2

Creates XML documenting files for all entities in a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list) - one

Examples:

Generate XML documenting files for all tool entities for later conversion to Markdown files

rlibrary(tools,[xslfile('lgtmd.xsl')])

yes

rlibrary/1

Creates XML documenting files for all entities in a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

Examples:

Generate XML documenting files for all tool entities for direct viewing in a browser (after indexing using the lgt2xml script)

rlibrary(tools)

yes

libraries/2

Creates XML documenting files for all entities in all given libraries using the specified options.

Compilation flags:

static

Template:

libraries(Libraries,Options)

Mode and number of proofs:

libraries(+list(atom),+list) - one

libraries/1

Creates XML documenting files for all entities in all given libraries using default options.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

library/2

Creates XML documenting files for all entities in a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list) - one

Examples:

Generate XML documenting files for all library entities for later conversion to PDF A4 files

library(library,[xslfile('logtalk_entity_to_pdf_a4.xsl')])

yes

library/1

Creates XML documenting files for all entities in a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rdirectories/2

Creates XML documenting files for all entities in all given directories and their sub-directories using the specified options.

Compilation flags:

static

Template:

rdirectories(Directories,Options)

Mode and number of proofs:

rdirectories(+list(atom),+list) - one

rdirectories/1

Creates XML documenting files for all entities in all given directories and their sub-directories using default options.

Compilation flags:

static

Template:

rdirectories(Directories)

Mode and number of proofs:

rdirectories(+list(atom)) - one

rdirectory/2

Creates XML documenting files for all entities in a directory and its sub-directories using the specified options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list) - one

Examples:

Generate XML documenting files for all entities in the tools directory for later conversion to Markdown files

rdirectory('./tools',[xslfile('lgtmd.xsl')])

yes

rdirectory/1

Creates XML documenting files for all entities in a directory and its sub-directories using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

Examples:

Generate XML documenting files for all entities in the tools directory for direct viewing in a browser (after indexing using the lgt2xml script)

rdirectory('./tools')

yes

directories/2

Creates XML documenting files for all entities in all given directories using the specified options.

Compilation flags:

static

Template:

directories(Directories,Options)

Mode and number of proofs:

directories(+list(atom),+list) - one

directories/1

Creates XML documenting files for all entities in all given directories using default options.

Compilation flags:

static

Template:

directories(Directories)

Mode and number of proofs:

directories(+list(atom)) - one

directory/2

Creates XML documenting files for all entities in a directory using the specified options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list) - one

Examples:

Generate XML documenting files for all the entities in the current directory for later conversion to PDF A4 files

directory('.',[xslfile('logtalk_entity_to_pdf_a4.xsl')])

yes

directory/1

Creates XML documenting files for all entities in a directory using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/2

Creates XML documenting files for all entities in loaded source files using the specified options. The files can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

files(Files,Options)

Mode and number of proofs:

files(+list(atom),+list) - one

files/1

Creates XML documenting files for all entities in loaded source files using default options. The files can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

file/2

Creates XML documenting files for all entities in a loaded source file using the specified options. The file can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list) - one

file/1

Creates XML documenting files for all entities in a loaded source file using default options. The file can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

all/1

Creates XML documenting files for all loaded entities using the specified options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list) - one

all/0

Creates XML documenting files for all loaded entities using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

lgtdoc

 object

automation_report

Intercepts unit test execution messages and generates a *.totals files for parsing by the logtalk_tester.sh automation shell script.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

user

Remarks:

	Usage: Automatically loaded by the logtalk_tester.sh shell script.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coverage_report

Intercepts unit test execution messages and generates a coverage_report.xml file with a test suite code coverage results.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 3:2:0

Date: 2023-04-11

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(coverage_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	timestamp_/6

	object_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

timestamp_/6

Cache of the starting tests timestamp.

Compilation flags:

dynamic

Template:

timestamp_(Year,Month,Day,Hours,Minutes,Seconds)

Mode and number of proofs:

timestamp_(-integer,-integer,-integer,-integer,-integer,-integer) - one

object_file_/2

Cache of test object - file pairs.

Compilation flags:

dynamic

Template:

object_file_(Object,File)

Mode and number of proofs:

object_file_(?object_identifier,?atom) - zero_or_more

Operators

(none)

 object

lgtunit

A unit test framework supporting predicate clause coverage, determinism testing, input/output testing, property-based testing, and multiple test dialects.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 22:3:0

Date: 2025-10-20

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public lgtunit_messages

Provides:

logtalk::trace_event/2

Uses:

fast_random

list

logtalk

os

type

user

Remarks:

	Usage: Define test objects as extensions of the lgtunit object and compile their source files using the compiler option hook(lgtunit).

	Portability: Deterministic unit tests are currently not available when using Quintus Prolog as the backend compiler.

	Known issues: Parameter variables cannot currently be used in the definition of test options.

Inherited public predicates:

 failed_test_reason//1 goal_expansion/2 term_expansion/2

	Public predicates

	cover/1

	run/0

	run/1

	run/2

	run_test_sets/1

	test/1

	number_of_tests/1

	deterministic/1

	deterministic/2

	assertion/1

	assertion/2

	quick_check/3

	quick_check/2

	quick_check/1

	benchmark/2

	benchmark_reified/3

	benchmark/3

	benchmark/4

	variant/2

	approximately_equal/2

	approximately_equal/3

	essentially_equal/3

	tolerance_equal/4

	=~= / 2

	epsilon/1

	Protected predicates

	run_tests/0

	run_tests/1

	run_test_set/0

	run_quick_check_tests/5

	condition/0

	setup/0

	cleanup/0

	make/1

	note/1

	file_path/2

	suppress_text_output/0

	suppress_binary_output/0

	set_text_input/3

	set_text_input/2

	set_text_input/1

	check_text_input/2

	check_text_input/1

	text_input_assertion/3

	text_input_assertion/2

	clean_text_input/0

	set_binary_input/3

	set_binary_input/2

	set_binary_input/1

	check_binary_input/2

	check_binary_input/1

	binary_input_assertion/3

	binary_input_assertion/2

	clean_binary_input/0

	set_text_output/3

	set_text_output/2

	set_text_output/1

	check_text_output/3

	check_text_output/2

	check_text_output/1

	text_output_assertion/4

	text_output_assertion/3

	text_output_assertion/2

	text_output_contents/3

	text_output_contents/2

	text_output_contents/1

	clean_text_output/0

	set_binary_output/3

	set_binary_output/2

	set_binary_output/1

	check_binary_output/2

	check_binary_output/1

	binary_output_assertion/3

	binary_output_assertion/2

	binary_output_contents/2

	binary_output_contents/1

	clean_binary_output/0

	create_text_file/3

	create_text_file/2

	create_binary_file/2

	check_text_file/3

	check_text_file/2

	text_file_assertion/4

	text_file_assertion/3

	check_binary_file/2

	binary_file_assertion/3

	clean_file/1

	clean_directory/1

	closed_input_stream/2

	closed_output_stream/2

	stream_position/1

	test/2

	Private predicates

	running_test_sets_/0

	test/3

	auxiliary_predicate_counter_/1

	test_/2

	selected_test_/1

	skipped_/1

	passed_/3

	failed_/3

	flaky_/1

	fired_/3

	covered_/4

	Operators

	op(700,xfx,=~=)

Public predicates

cover/1

Declares entities being tested for which code coverage information should be collected.

Compilation flags:

static

Template:

cover(Entity)

Mode and number of proofs:

cover(?entity_identifier) - zero_or_more

run/0

Runs the unit tests, writing the results to the current output stream.

Compilation flags:

static

Mode and number of proofs:

run - one

run/1

Runs a unit test or a list of unit tests, writing the results to the current output stream. Runs the global setup and cleanup steps when defined. Fails when given a partial list of tests or when one of the test identifiers is not valid.

Compilation flags:

static

Template:

run(Tests)

Mode and number of proofs:

run(++callable) - zero_or_one

run(++list(callable)) - zero_or_one

run/2

Runs the unit tests, writing the results to the specified file. Mode can be either write (to create a new file) or append (to add results to an existing file).

Compilation flags:

static

Template:

run(File,Mode)

Mode and number of proofs:

run(+atom,+atom) - one

run_test_sets/1

Runs two or more test sets as a unified set generating a single code coverage report if one is requested. When there is a single test set, it is equivalent to sending the message run/0 to the test set. Trivially succeeds when the argument is an empty list.

Compilation flags:

static

Template:

run_test_sets(TestObjects)

Mode and number of proofs:

run_test_sets(+list(object)) - one

Exceptions:

TestObjects is a partial list or a list with an element which is a variable:

instantiation_error

TestObjects is neither a partial list nor a list:

type_error(list(object),TestObjects)

An element TestObject of the TestObjects list is not an existing object:

existence_error(object,TestObject)

test/1

Enumerates, by backtracking, the identifiers of all defined unit tests.

Compilation flags:

static

Template:

test(Identifier)

Mode and number of proofs:

test(?callable) - zero_or_more

number_of_tests/1

Number of defined unit tests.

Compilation flags:

static

Template:

number_of_tests(NumerOfTests)

Mode and number of proofs:

number_of_tests(?integer) - zero_or_one

deterministic/1

True if the goal succeeds once without leaving choice-points.

Compilation flags:

static

Template:

deterministic(Goal)

Meta-predicate template:

deterministic(0)

Mode and number of proofs:

deterministic(+callable) - zero_or_one

deterministic/2

Reified version of the deterministic/1 predicate. True if the goal succeeds. Returns a boolean value (true or false) indicating if the goal succeeded without leaving choice-points.

Compilation flags:

static

Template:

deterministic(Goal,Deterministic)

Meta-predicate template:

deterministic(0,*)

Mode and number of proofs:

deterministic(+callable,--atom) - zero_or_one

assertion/1

True if the assertion goal succeeds. Throws an error using the assertion goal as argument if the assertion goal throws an error or fails.

Compilation flags:

static

Template:

assertion(Assertion)

Meta-predicate template:

assertion(::)

Mode and number of proofs:

assertion(@callable) - one

Exceptions:

Assertion goal fails:

assertion_failure(Assertion)

Assertion goal throws Error:

assertion_error(Assertion,Error)

assertion/2

True if the assertion goal succeeds. Throws an error using the description as argument if the assertion goal throws an error or fails. The description argument helps to distinguish between different assertions in the same test body.

Compilation flags:

static

Template:

assertion(Description,Assertion)

Meta-predicate template:

assertion(*,0)

Mode and number of proofs:

assertion(+nonvar,@callable) - one

Exceptions:

Assertion goal fails:

assertion_failure(Description)

Assertion goal throws Error:

assertion_error(Description,Error)

quick_check/3

Reified version of the quick_check/2 predicate. Reports passed(SequenceSeed,Discarded,Labels), failed(Goal,SequenceSeed,TestSeed), error(Error,Goal,SequenceSeed,TestSeed), or broken(Why,Culprit). Goal is the failed test.

Compilation flags:

static

Template:

quick_check(Template,Result,Options)

Meta-predicate template:

quick_check(::,*,::)

Mode and number of proofs:

quick_check(@callable,-callable,++list(compound)) - one

Remarks:

	SequenceSeed argument: Can be used to re-run the same exact sequence of pseudo-random tests by using the rs/1 option after changes to the code being tested.

	TestSeed argument: Can be used to re-run the test that failed by using the rs/1 option after changes to the code being tested.

	Discarded argument: Number of generated tests that were discarded for failing to comply a pre-condition specified using the pc/1 option.

	Labels argument: List of pairs Label-N where N is the number of generated tests that are classified as Label by a closure specified using the l/1 option.

	broken(Why,Culprit) result: This result signals a broken setup. For example, an invalid template, a broken pre-condition or label goal, or broken test generation.

quick_check/2

Generates and runs random tests for a predicate given its mode template and a set of options. Fails when a generated test fails printing the test. Also fails on an invalid option, printing the option.

Compilation flags:

static

Template:

quick_check(Template,Options)

Meta-predicate template:

quick_check(::,::)

Mode and number of proofs:

quick_check(@callable,++list(compound)) - zero_or_one

Remarks:

	Number of tests: Use the n(NumberOfTests) option to specify the number of random tests. Default is 100.

	Maximum number of shrink operations: Use the s(MaxShrinks) option to specify the number of shrink operations when a counter example is found. Default is 64.

	Type edge cases: Use the ec(Boolean) option to specify if type edge cases are tested (before generating random tests). Default is true.

	Starting seed: Use the rs(Seed) option to specify the random generator starting seed to be used when generating tests. No default. Seeds should be regarded as opaque terms.

	Test generation filtering: Use the pc/1 option to specify a pre-condition closure for filtering generated tests (extended with the test arguments; no default).

	Generated tests classification: Use the l/1 option to specify a label closure for classifying the generated tests (extended with the test arguments plus the labels argument; no default). The labelling predicate can return a single test label or a list of test labels.

	Verbose test generation: Use the v(Boolean) option to specify verbose reporting of generated random tests. Default is false.

	Progress bar: Use the pb(Boolean,Tick) option to print a progress bar for the executed tests, advancing at every Tick tests. Default is false. Only applies when the verbose option is false.

quick_check/1

Generates and runs random tests using default options for a predicate given its mode template. Fails when a generated test fails printing the test.

Compilation flags:

static

Template:

quick_check(Template)

Mode and number of proofs:

quick_check(@callable) - zero_or_one

benchmark/2

Benchmarks a goal and returns the total execution time in seconds. Uses CPU clock. Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Time)

Meta-predicate template:

benchmark(0,*)

Mode and number of proofs:

benchmark(+callable,-float) - one

benchmark_reified/3

Benchmarks a goal and returns the total execution time in seconds plus its result (success, failure, or error(Error)). Uses CPU clock.

Compilation flags:

static

Template:

benchmark_reified(Goal,Time,Result)

Meta-predicate template:

benchmark_reified(0,*,*)

Mode and number of proofs:

benchmark_reified(+callable,-float,-callable) - one

benchmark/3

Benchmarks a goal by repeating it the specified number of times and returning the total execution time in seconds. Uses CPU clock. Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Repetitions,Time)

Meta-predicate template:

benchmark(0,*,*)

Mode and number of proofs:

benchmark(@callable,+positive_integer,-float) - one

benchmark/4

Benchmarks a goal by repeating it the specified number of times and returning the total execution time in seconds using the given clock (cpu or wall). Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Repetitions,Clock,Time)

Meta-predicate template:

benchmark(0,*,*,*)

Mode and number of proofs:

benchmark(@callable,+positive_integer,+atom,-float) - one

variant/2

True when the two arguments are a variant of each other. I.e. if is possible to rename the term variables to make them identical. Useful for checking expected test results that contain variables.

Compilation flags:

static

Template:

variant(Term1,Term2)

Mode and number of proofs:

variant(@term,@term) - zero_or_one

approximately_equal/2

Compares two numbers for approximate equality given the epsilon arithmetic constant value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * epsilon. Type-checked.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2)

Mode and number of proofs:

approximately_equal(+number,+number) - zero_or_one

approximately_equal/3

Compares two numbers for approximate equality given a user-defined epsilon value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * Epsilon. Type-checked.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

approximately_equal(+number,+number,+number) - zero_or_one

Remarks:

	Epsilon range: Epsilon should be the epsilon arithmetic constant value or a small multiple of it. Only use a larger value if a greater error is expected.

	Comparison with essential equality: For the same epsilon value, approximate equality is weaker requirement than essential equality.

essentially_equal/3

Compares two numbers for essential equality given an epsilon value using the de facto standard formula abs(Number1 - Number2) =< min(abs(Number1), abs(Number2)) * Epsilon. Type-checked.

Compilation flags:

static

Template:

essentially_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

essentially_equal(+number,+number,+number) - zero_or_one

Remarks:

	Comparison with approximate equality: For the same epsilon value, essential equality is a stronger requirement than approximate equality.

tolerance_equal/4

Compares two numbers for close equality given relative and absolute tolerances using the de facto standard formula abs(Number1 - Number2) =< max(RelativeTolerance * max(abs(Number1), abs(Number2)), AbsoluteTolerance). Type-checked.

Compilation flags:

static

Template:

tolerance_equal(Number1,Number2,RelativeTolerance,AbsoluteTolerance)

Mode and number of proofs:

tolerance_equal(+number,+number,+number,+number) - zero_or_one

=~= / 2

Compares two numbers (or lists of numbers) for approximate equality using 100*epsilon for the absolute error and, if that fails, 99.999% accuracy for the relative error. But these precision values may not be adequate for all cases. Type-checked.

Compilation flags:

static

Template:

=~=(Number1,Number2)

Mode and number of proofs:

=~=(+number,+number) - zero_or_one

=~=(+list(number),+list(number)) - zero_or_one

epsilon/1

Returns the value of epsilon used in the definition of the (=~=)/2 predicate.

Compilation flags:

static

Template:

epsilon(Epsilon)

Mode and number of proofs:

epsilon(-float) - one

Protected predicates

run_tests/0

Runs all defined unit tests.

Compilation flags:

static

Mode and number of proofs:

run_tests - one

run_tests/1

Runs all the tests defined in the given file.

Compilation flags:

static

Template:

run_tests(File)

Mode and number of proofs:

run_tests(+atom) - one

run_test_set/0

Runs a test set as part of running two or more test sets as a unified set.

Compilation flags:

static

Mode and number of proofs:

run_test_set - one

run_quick_check_tests/5

Runs a QuickCheck test using the given options. Returns the starting seed used to generate the random tests, the number of discarded tests, and the test label statistics.

Compilation flags:

static

Template:

run_quick_check_tests(Template,Options,Seed,Discarded,Labels)

Meta-predicate template:

run_quick_check_tests(::,::,*,*,*)

Mode and number of proofs:

run_quick_check_tests(@callable,+list,--nonvar,--number,--list(pair)) - one_or_error

condition/0

Verifies conditions for running the tests. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

condition - zero_or_one

setup/0

Setup environment before running the test set. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

setup - zero_or_one

cleanup/0

Cleanup environment after running the test set. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

cleanup - zero_or_one

make/1

Make target for automatically running the test set when calling the logtalk_make/1 built-in predicate. No default. Possible values are all and check.

Compilation flags:

static

Template:

make(Target)

Mode and number of proofs:

make(?atom) - zero_or_one

note/1

Note to be printed after the test results. Defaults to the empty atom.

Compilation flags:

static

Template:

note(Note)

Mode and number of proofs:

note(?atom) - zero_or_one

file_path/2

Returns the absolute path for a file path that is relative to the tests object path. When the file path is already an absolute path, it is expanded to resolve any remaining relative file path parts.

Compilation flags:

static

Template:

file_path(File,Path)

Mode and number of proofs:

file_path(+atom,-atom) - one

See also:

clean_file/1

clean_directory/1

suppress_text_output/0

Suppresses text output. Useful to avoid irrelevant text output from predicates being tested to clutter the test logs.

Compilation flags:

static

Mode and number of proofs:

suppress_text_output - one

suppress_binary_output/0

Suppresses binary output. Useful to avoid irrelevant binary output from predicates being tested to clutter the test logs.

Compilation flags:

static

Mode and number of proofs:

suppress_binary_output - one

set_text_input/3

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for reading referenced by the given alias and using the additional options. If no eof_action/1 option is specified, its value will be the default used by the backend compiler.

Compilation flags:

static

Template:

set_text_input(Alias,Contents,Options)

Mode and number of proofs:

set_text_input(+atom,+atom,+list(stream_option)) - one

set_text_input(+atom,+list(atom),+list(stream_option)) - one

See also:

text_input_assertion/3

check_text_input/2

clean_text_input/0

set_text_input/2

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for reading referenced by the given alias and using the default end-of-file action for the used backend compiler.

Compilation flags:

static

Template:

set_text_input(Alias,Contents)

Mode and number of proofs:

set_text_input(+atom,+atom) - one

set_text_input(+atom,+list(atom)) - one

See also:

text_input_assertion/3

check_text_input/2

clean_text_input/0

set_text_input/1

Creates a temporary file, in the same directory as the tests object, with the given text contents, opens it for reading using the default end-of-file action for the used backend compiler, and sets the current input stream to the file.

Compilation flags:

static

Template:

set_text_input(Contents)

Mode and number of proofs:

set_text_input(+atom) - one

set_text_input(+list(atom)) - one

See also:

text_input_assertion/2

check_text_input/1

clean_text_input/0

check_text_input/2

Checks that the temporary file (referenced by the given alias) being read have the expected text contents.

Compilation flags:

static

Template:

check_text_input(Alias,Contents)

Mode and number of proofs:

check_text_input(+atom,+atom) - zero_or_one

See also:

set_text_input/2

set_text_input/2

text_input_assertion/3

clean_text_input/0

check_text_input/1

Checks that the temporary file being read have the expected text contents.

Compilation flags:

static

Template:

check_text_input(Contents)

Mode and number of proofs:

check_text_input(+atom) - zero_or_one

See also:

set_text_input/1

text_input_assertion/2

clean_text_input/0

text_input_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) being read have the expected text contents.

Compilation flags:

static

Template:

text_input_assertion(Alias,Contents,Assertion)

Mode and number of proofs:

text_input_assertion(+atom,+atom,--callable) - one

See also:

set_text_input/3

check_text_input/2

clean_text_input/0

text_input_assertion/2

Returns an assertion for checking that the temporary file being read have the expected text contents.

Compilation flags:

static

Template:

text_input_assertion(Contents,Assertion)

Mode and number of proofs:

text_input_assertion(+atom,--callable) - one

See also:

set_text_input/1

check_text_input/1

clean_text_input/0

clean_text_input/0

Cleans the temporary file used when testing text input.

Compilation flags:

static

Mode and number of proofs:

clean_text_input - one

See also:

set_text_input/3

set_text_input/2

set_text_input/1

set_binary_input/3

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading referenced by the given alias and using the additional options. If no eof_action/1 option is specified, its value will be the default used by the backend compiler.

Compilation flags:

static

Template:

set_binary_input(Alias,Bytes,Options)

Mode and number of proofs:

set_binary_input(+atom,+list(byte),+list(stream_option)) - one

See also:

binary_input_assertion/3

check_binary_input/2

clean_binary_input/0

set_binary_input/2

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading referenced by the given alias and using the default end-of-file action for the used backend compiler.

Compilation flags:

static

Template:

set_binary_input(Alias,Bytes)

Mode and number of proofs:

set_binary_input(+atom,+list(byte)) - one

See also:

binary_input_assertion/3

check_binary_input/2

clean_binary_input/0

set_binary_input/1

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading using the default end-of-file action for the used backend compiler, and sets the current input stream to the file.

Compilation flags:

static

Template:

set_binary_input(Bytes)

Mode and number of proofs:

set_binary_input(+list(byte)) - one

See also:

binary_input_assertion/2

check_binary_input/1

clean_binary_input/0

check_binary_input/2

Checks that the temporary file (referenced by the given alias) being read have the expected binary contents.

Compilation flags:

static

Template:

check_binary_input(Alias,Bytes)

Mode and number of proofs:

check_binary_input(+atom,+list(byte)) - zero_or_one

See also:

set_binary_input/3

set_binary_input/2

binary_input_assertion/3

clean_binary_input/0

check_binary_input/1

Checks that the temporary file being read have the expected binary contents.

Compilation flags:

static

Template:

check_binary_input(Bytes)

Mode and number of proofs:

check_binary_input(+list(byte)) - zero_or_one

See also:

binary_input_assertion/2

set_binary_input/1

clean_binary_input/0

binary_input_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) being read have the expected binary contents.

Compilation flags:

static

Template:

binary_input_assertion(Alias,Bytes,Assertion)

Mode and number of proofs:

binary_input_assertion(+atom,+list(byte),--callable) - one

See also:

check_binary_input/2

set_binary_input/3

set_binary_input/2

clean_binary_input/0

binary_input_assertion/2

Returns an assertion for checking that the temporary file being read have the expected binary contents.

Compilation flags:

static

Template:

binary_input_assertion(Bytes,Assertion)

Mode and number of proofs:

binary_input_assertion(+list(byte),--callable) - one

See also:

check_binary_input/1

set_binary_input/1

clean_binary_input/0

clean_binary_input/0

Cleans the temporary file used when testing binary input.

Compilation flags:

static

Mode and number of proofs:

clean_binary_input - one

See also:

set_binary_input/3

set_binary_input/2

set_binary_input/1

set_text_output/3

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for writing referenced by the given alias and using the additional options.

Compilation flags:

static

Template:

set_text_output(Alias,Contents,Options)

Mode and number of proofs:

set_text_output(+atom,+atom,+list(stream_option)) - one

set_text_output(+atom,+list(atom),+list(stream_option)) - one

See also:

text_output_assertion/4

check_text_output/3

clean_text_output/0

set_text_output/2

Creates a temporary file, in the same directory as the tests object, with the given text contents, and referenced by the given alias.

Compilation flags:

static

Template:

set_text_output(Alias,Contents)

Mode and number of proofs:

set_text_output(+atom,+atom) - one

set_text_output(+atom,+list(atom)) - one

See also:

text_output_assertion/3

check_text_output/2

clean_text_output/0

set_text_output/1

Creates a temporary file, in the same directory as the tests object, with the given text contents, and sets the current output stream to the file.

Compilation flags:

static

Template:

set_text_output(Contents)

Mode and number of proofs:

set_text_output(+atom) - one

set_text_output(+list(atom)) - one

See also:

text_output_assertion/2

check_text_output/1

clean_text_output/0

check_text_output/3

Checks that the temporary file (open with the given options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Alias,Contents,Options)

Mode and number of proofs:

check_text_output(+atom,+atom,+list(stream_option)) - zero_or_one

See also:

set_text_output/3

text_output_assertion/4

clean_text_output/0

check_text_output/2

Checks that the temporary file (open with default options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Alias,Contents)

Mode and number of proofs:

check_text_output(+atom,+atom) - zero_or_one

See also:

set_text_output/2

text_output_assertion/3

clean_text_output/0

check_text_output/1

Checks that the temporary file being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Contents)

Mode and number of proofs:

check_text_output(+atom) - zero_or_one

See also:

set_text_output/1

text_output_assertion/2

clean_text_output/0

text_output_assertion/4

Returns an assertion for checking that the temporary file (open with the given options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Alias,Contents,Options,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,+atom,+list(stream_option),--callable) - one

See also:

set_text_output/3

check_text_output/3

clean_text_output/0

text_output_assertion/3

Returns an assertion for checking that the temporary file (open with default options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Alias,Contents,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,+atom,--callable) - one

See also:

set_text_output/2

check_text_output/2

clean_text_output/0

text_output_assertion/2

Returns an assertion for checking that the temporary file (open with default options in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Contents,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,--callable) - one

See also:

set_text_output/1

check_text_output/1

clean_text_output/0

text_output_contents/3

Returns the contents of the temporary file (open with the given options and alias in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Alias,Contents,Options)

Mode and number of proofs:

text_output_contents(+atom,-list(character),+list(stream_option)) - one

text_output_contents/2

Returns the contents of the temporary file (open with default options and alias in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Alias,Contents)

Mode and number of proofs:

text_output_contents(+atom,-list(character)) - one

text_output_contents/1

Returns the contents of the temporary file (open with default options in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Contents)

Mode and number of proofs:

text_output_contents(-list(character)) - one

clean_text_output/0

Cleans the temporary file used when testing text output.

Compilation flags:

static

Mode and number of proofs:

clean_text_output - one

See also:

set_text_output/3

set_text_output/2

set_text_output/1

set_binary_output/3

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for writing referenced by the given alias and using the additional options.

Compilation flags:

static

Template:

set_binary_output(Alias,Contents,Options)

Mode and number of proofs:

set_binary_output(+atom,+list(byte),+list(stream_option)) - one

See also:

binary_output_assertion/3

check_binary_output/2

clean_binary_output/0

set_binary_output/2

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for writing referenced with the given alias.

Compilation flags:

static

Template:

set_binary_output(Alias,Bytes)

Mode and number of proofs:

set_binary_output(+atom,+list(byte)) - one

See also:

binary_output_assertion/3

check_binary_output/2

clean_binary_output/0

set_binary_output/1

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and sets the current output stream to the file.

Compilation flags:

static

Template:

set_binary_output(Bytes)

Mode and number of proofs:

set_binary_output(+list(byte)) - one

See also:

binary_output_assertion/2

check_binary_output/1

clean_binary_output/0

check_binary_output/2

Checks that the temporary file (referenced by the given alias) have the expected binary contents.

Compilation flags:

static

Template:

check_binary_output(Alias,Bytes)

Mode and number of proofs:

check_binary_output(+atom,+list(byte)) - zero_or_one

See also:

set_binary_output/3

set_binary_output/2

binary_output_assertion/3

clean_binary_output/0

check_binary_output/1

Checks that the temporary file (open in the same directory as the tests object) have the expected binary contents.

Compilation flags:

static

Template:

check_binary_output(Bytes)

Mode and number of proofs:

check_binary_output(+list(byte)) - zero_or_one

See also:

set_binary_output/1

binary_output_assertion/2

clean_binary_output/0

binary_output_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) have the expected binary contents.

Compilation flags:

static

Template:

binary_output_assertion(Alias,Bytes,Assertion)

Mode and number of proofs:

binary_output_assertion(+atom,+list(byte),--callable) - one

See also:

set_binary_output/2

check_binary_output/2

clean_binary_output/0

binary_output_assertion/2

Returns an assertion for checking that the temporary file (open in the same directory as the tests object) have the expected binary contents.

Compilation flags:

static

Template:

binary_output_assertion(Bytes,Assertion)

Mode and number of proofs:

binary_output_assertion(+list(byte),--callable) - one

See also:

set_binary_output/1

check_binary_output/1

clean_binary_output/0

binary_output_contents/2

Returns the binary contents of the temporary file (referenced by the given alias) being written.

Compilation flags:

static

Template:

binary_output_contents(Alias,Bytes)

Mode and number of proofs:

binary_output_contents(+atom,-list(byte)) - one

binary_output_contents/1

Returns the binary contents of the temporary file being written.

Compilation flags:

static

Template:

binary_output_contents(Bytes)

Mode and number of proofs:

binary_output_contents(-list(byte)) - one

clean_binary_output/0

Cleans the temporary file used when testing binary output.

Compilation flags:

static

Mode and number of proofs:

clean_binary_output - one

See also:

set_binary_output/3

set_binary_output/2

set_binary_output/1

create_text_file/3

Creates a text file with the given contents. The file is open for writing using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_text_file(File,Contents,Options)

Mode and number of proofs:

create_text_file(+atom,+atom,+list(stream_option)) - one

create_text_file(+atom,+list(atom),+list(stream_option)) - one

create_text_file/2

Creates a text file with the given contents. The file is open for writing using default options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_text_file(File,Contents)

Mode and number of proofs:

create_text_file(+atom,+atom) - one

create_text_file(+atom,+list(atom)) - one

create_binary_file/2

Creates a binary file with the given contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_binary_file(File,Bytes)

Mode and number of proofs:

create_binary_file(+atom,+list(byte)) - one

check_text_file/3

Checks that the contents of a text file match the expected contents. The file is open for reading using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_text_file(File,Contents,Options)

Mode and number of proofs:

check_text_file(+atom,+atom,+list(stream_option)) - zero_or_one

See also:

text_file_assertion/4

check_text_file/2

Checks that the contents of a text file (open for reading using default options) match the expected contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_text_file(File,Contents)

Mode and number of proofs:

check_text_file(+atom,+atom) - zero_or_one

See also:

text_file_assertion/3

text_file_assertion/4

Returns an assertion for checking that the given file have the expected text contents. The file is open for reading using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

text_file_assertion(File,Contents,Options,Assertion)

Mode and number of proofs:

text_file_assertion(+atom,+atom,+list(stream_option),--callable) - one

See also:

check_text_file/3

text_file_assertion/3

Returns an assertion for checking that the given file have the expected text contents. The file is open for reading using default options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

text_file_assertion(File,Contents,Assertion)

Mode and number of proofs:

text_file_assertion(+atom,+atom,--callable) - one

See also:

check_text_file/2

check_binary_file/2

Checks the contents of a binary file match the expected contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_binary_file(File,Bytes)

Mode and number of proofs:

check_binary_file(+atom,+list(byte)) - zero_or_one

See also:

binary_file_assertion/3

binary_file_assertion/3

Returns an assertion for checking that the given file have the expected binary contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

binary_file_assertion(File,Bytes,Assertion)

Mode and number of proofs:

binary_file_assertion(+atom,+list(byte),--callable) - one

See also:

check_binary_file/2

clean_file/1

Closes any existing stream associated with the file and deletes the file if it exists. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

clean_file(File)

Mode and number of proofs:

clean_file(+atom) - one

See also:

clean_directory/1

file_path/2

clean_directory/1

Deletes an empty directory if it exists. Relative directory paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

clean_directory(Directory)

Mode and number of proofs:

clean_directory(+atom) - one

See also:

clean_file/1

file_path/2

closed_input_stream/2

Opens a temporary file in the same directory as the tests object with the given options for reading, closes it, and returns its stream handle.

Compilation flags:

static

Template:

closed_input_stream(Stream,Options)

Mode and number of proofs:

closed_input_stream(-stream,+list(stream_option)) - one

closed_output_stream/2

Opens a temporary file in the same directory as the tests object with the given options for writing, closes it, and returns its stream handle.

Compilation flags:

static

Template:

closed_output_stream(Stream,Options)

Mode and number of proofs:

closed_output_stream(-stream,+list(stream_option)) - zero_or_one

stream_position/1

Returns a syntactically valid stream position by opening a temporary file in the same directory as the tests object.

Compilation flags:

static

Template:

stream_position(Position)

Mode and number of proofs:

stream_position(-stream_position) - one

test/2

Table of defined tests.

Compilation flags:

static

Template:

test(Identifier,Test)

Mode and number of proofs:

test(?callable,?compound) - zero_or_more

Private predicates

running_test_sets_/0

Internal flag used when running two or more test sets as a unified set.

Compilation flags:

dynamic

Mode and number of proofs:

running_test_sets_ - zero_or_one

test/3

Compiled unit tests. The list of variables is used to ensure variable sharing between a test with its test options.

Compilation flags:

static

Template:

test(Identifier,Variables,Outcome)

Mode and number of proofs:

test(?callable,?list(variable),?nonvar) - zero_or_more

auxiliary_predicate_counter_/1

Counter for generating unique auxiliary predicate names.

Compilation flags:

dynamic

Template:

auxiliary_predicate_counter_(Counter)

Mode and number of proofs:

auxiliary_predicate_counter_(?integer) - one_or_more

test_/2

Table of compiled tests.

Compilation flags:

dynamic

Template:

test_(Identifier,Test)

Mode and number of proofs:

test_(?callable,?compound) - zero_or_more

selected_test_/1

Table of selected tests for execution.

Compilation flags:

dynamic

Template:

selected_test_(Identifier)

Mode and number of proofs:

selected_test_(?callable) - zero_or_more

skipped_/1

Counter for skipped tests.

Compilation flags:

dynamic

Template:

skipped_(Counter)

Mode and number of proofs:

skipped_(?integer) - zero_or_one

passed_/3

Counter and total time for passed tests.

Compilation flags:

dynamic

Template:

passed_(Counter,CPUTime,WallTime)

Mode and number of proofs:

passed_(?integer,-float,-float) - zero_or_one

failed_/3

Counter and total time for failed tests.

Compilation flags:

dynamic

Template:

failed_(Counter,CPUTime,WallTime)

Mode and number of proofs:

failed_(?integer,-float,-float) - zero_or_one

flaky_/1

Counter for failed tests that are marked as flaky.

Compilation flags:

dynamic

Template:

flaky_(Counter)

Mode and number of proofs:

flaky_(?integer) - zero_or_one

fired_/3

Fired clauses when running the unit tests.

Compilation flags:

dynamic

Template:

fired_(Entity,Predicate,Clause)

Mode and number of proofs:

fired_(?entity_identifier,?predicate_indicator,?integer) - zero_or_more

covered_/4

Auxiliary predicate for collecting statistics on clause coverage.

Compilation flags:

dynamic

Template:

covered_(Entity,Predicate,Covered,Total)

Mode and number of proofs:

covered_(?entity_identifier,?callable,?integer,?integer) - zero_or_more

Operators

op(700,xfx,=~=)

Scope:

public

 category

lgtunit_messages

Logtalk unit test framework default message translations.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 12:2:0

Date: 2025-10-20

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	failed_test_reason//1

	Protected predicates

	Private predicates

	Operators

Public predicates

failed_test_reason//1

Used to rewrite a term representing the reason why a term failed into a list of tokens.

Compilation flags:

static

Template:

failed_test_reason(Reason)

Mode and number of proofs:

failed_test_reason(@nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

minimal_output

Intercepts unit test execution messages and outputs a minimal report.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 3:0:0

Date: 2021-05-27

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(minimal_output)).

	Limitations: Cannot be used when the test objects also intercept lgtunit messages.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

tap_output

Intercepts unit test execution messages and outputs a report using the TAP format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(tap_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	generating_/0

	partial_/1

	test_count_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

generating_/0

Flag to detect report in progress when processing two or more test sets as a unified set.

Compilation flags:

dynamic

Mode and number of proofs:

generating_ - zero_or_one

partial_/1

Cache of total of tests per test set.

Compilation flags:

dynamic

Template:

partial_(Count)

Mode and number of proofs:

partial_(?integer) - zero_or_more

test_count_/1

Test counter.

Compilation flags:

dynamic

Template:

test_count_(Count)

Mode and number of proofs:

test_count_(?integer) - zero_or_one

Operators

(none)

 object

tap_report

Intercepts unit test execution messages and generates a tap_report.txt file using the TAP output format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(tap_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	partial_/1

	test_count_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

partial_/1

Cache of total of tests per test set.

Compilation flags:

dynamic

Template:

partial_(Count)

Mode and number of proofs:

partial_(?integer) - zero_or_more

test_count_/1

Test counter.

Compilation flags:

dynamic

Template:

test_count_(Count)

Mode and number of proofs:

test_count_(?integer) - zero_or_one

Operators

(none)

 object

xunit_net_v2_output

Intercepts unit test execution messages and outputs a report using the xUnit.net v2 XML format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_net_v2_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_net_v2_report

Intercepts unit test execution messages and generates a xunit_report.xml file using the xUnit.net v2 XML format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_net_v2_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_output

Intercepts unit test execution messages and outputs a report using the xUnit XML format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:1

Date: 2025-04-11

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_report

Intercepts unit test execution messages and generates a xunit_report.xml file using the xUnit XML format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 protocol

cloning

Object cloning protocol.

Availability:

logtalk_load(library(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2010-09-14

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	clone/1

	Protected predicates

	Private predicates

	Operators

Public predicates

clone/1

Clones an object, returning the identifier of the new object if none is given.

Compilation flags:

static

Template:

clone(Clone)

Mode and number of proofs:

clone(?object) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

counters

Named integer counters. Counter names can be any nonvar term.

Availability:

logtalk_load(library(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2022-02-11

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	counter/2

	increment_counter/1

	decrement_counter/1

	reset_counter/1

	reset_counters/0

	Protected predicates

	Private predicates

	counter_/2

	Operators

Public predicates

counter/2

True if Counter is a counter with value Value.

Compilation flags:

static

Template:

counter(Counter,Value)

Mode and number of proofs:

counter(?nonvar,?integer) - zero_or_more

increment_counter/1

Increments the named counter.

Compilation flags:

static

Template:

increment_counter(Counter)

Mode and number of proofs:

increment_counter(+nonvar) - one

decrement_counter/1

Decrements the named counter.

Compilation flags:

static

Template:

decrement_counter(Counter)

Mode and number of proofs:

decrement_counter(+nonvar) - one

reset_counter/1

Resets the named counter to zero. Creates the counter if it does not exist.

Compilation flags:

static

Template:

reset_counter(Counter)

Mode and number of proofs:

reset_counter(+nonvar) - one

reset_counters/0

Resets all existing named counters to zero.

Compilation flags:

static

Mode and number of proofs:

reset_counters - one

Protected predicates

(none)

Private predicates

counter_/2

Table of named counters.

Compilation flags:

dynamic

Template:

counter_(Counter,Value)

Mode and number of proofs:

counter_(?nonvar,?integer) - zero_or_more

Operators

(none)

 object

streamvars

Stream variables (supporting logical, backtracable, adding and retrieving of terms).

Availability:

logtalk_load(library(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:3:0

Date: 2019-06-15

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/1

	new/2

	(<=)/2

	(=>)/2

	Protected predicates

	Private predicates

	Operators

	op(100,xfx,<=)

	op(100,xfx,=>)

Public predicates

new/1

Makes Variable a stream variable. Initial state will be empty.

Compilation flags:

static

Template:

new(Variable)

Mode and number of proofs:

new(--streamvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

new/2

Makes Variable a stream variable and sets its initial state to Value.

Compilation flags:

static

Template:

new(Variable,Value)

Mode and number of proofs:

new(--streamvar,@nonvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

(<=)/2

Sets the state of the stream variable Variable to Value (initializing the variable if needed).

Compilation flags:

static

Template:

Variable<=Value

Mode and number of proofs:

(?streamvar)<=(@nonvar) - one

(=>)/2

Unifies Value with the current state of the stream variable Variable.

Compilation flags:

static

Template:

Variable=>Value

Mode and number of proofs:

+streamvar=> ?nonvar - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

op(100,xfx,<=)

Scope:

public

op(100,xfx,=>)

Scope:

public

 category

listing

Listing predicates.

Availability:

logtalk_load(listing(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2024-01-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	listing/0

	listing/1

	portray_clause/1

	Protected predicates

	Private predicates

	Operators

Public predicates

listing/0

Lists all clauses of all visible dynamic predicates to the current output stream.

Compilation flags:

static

Mode and number of proofs:

listing - one

listing/1

Lists all clauses of a visible dynamic predicate or non-terminal to the current output stream. When the argument is a clause head, lists all matching clauses.

Compilation flags:

static

Template:

listing(Spec)

Mode and number of proofs:

listing(+predicate_indicator) - one_or_error

listing(+non_terminal_indicator) - one_or_error

listing(+callable) - one_or_error

Exceptions:

Spec is not ground:

instantiation_error

Spec is ground but not a valid predicate indicator:

type_error(predicate_indicator,Spec)

Spec is ground but not a valid non-terminal indicator:

type_error(non_terminal_indicator,Spec)

Spec is a predicate indicator but not a visible predicate:

existence_error(predicate,Spec)

Spec is a non-terminal indicator but not a visible non-terminal:

existence_error(non_terminal,Spec)

Spec is a callable term with a Functor/Arity indicator but not a visible predicate:

existence_error(predicate,Functor/Arity)

Spec is a predicate indicator of a visible predicate but not a dynamic predicate:

permission_error(access,predicate,Spec)

Spec is a non-terminal indicator of a visible non-terminal but not a dynamic non-terminal:

permission_error(access,non_terminal,Spec)

Spec is a callable term for a visible predicate with a Functor/Arity indicator but not a dynamic predicate:

permission_error(access,predicate,Functor/Arity)

portray_clause/1

Pretty prints a clause to the current output stream.

Compilation flags:

static

Template:

portray_clause(Clause)

Mode and number of proofs:

portray_clause(+clause) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

logger

Global logger object for logging events to files.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static, context_switching_calls

Implements:

public loggingp

Remarks:

(none)

Inherited public predicates:

 define_log_file/2 disable_logging/1 enable_logging/1 init_log_file/2 log_event/2 log_file/2 logging/1

	Public predicates

	Protected predicates

	Private predicates

	log_file_/2

	logging_to_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

log_file_/2

Table of log files.

Compilation flags:

dynamic

Template:

log_file_(Alias,File)

Mode and number of proofs:

log_file_(?atom,?nonvar) - zero_or_more

logging_to_file_/2

Table of logging file status for log files.

Compilation flags:

dynamic

Template:

logging_to_file_(Alias,Status)

Mode and number of proofs:

logging_to_file_(?atom,?atom) - zero_or_more

Operators

(none)

 category

logging

Logging events to files category.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static

Implements:

public loggingp

Remarks:

(none)

Inherited public predicates:

 define_log_file/2 disable_logging/1 enable_logging/1 init_log_file/2 log_event/2 log_file/2 logging/1

	Public predicates

	Protected predicates

	Private predicates

	log_file_/2

	logging_to_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

log_file_/2

Table of log files.

Compilation flags:

dynamic

Template:

log_file_(Alias,File)

Mode and number of proofs:

log_file_(?atom,?nonvar) - zero_or_more

logging_to_file_/2

Table of logging file status for log files.

Compilation flags:

dynamic

Template:

logging_to_file_(Alias,Status)

Mode and number of proofs:

logging_to_file_(?atom,?atom) - zero_or_more

Operators

(none)

 protocol

loggingp

Logging events to files protocol.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	log_file/2

	define_log_file/2

	init_log_file/2

	log_event/2

	logging/1

	enable_logging/1

	disable_logging/1

	Protected predicates

	Private predicates

	Operators

Public predicates

log_file/2

Access to the table of log files.

Compilation flags:

static

Template:

log_file(Alias,File)

Mode and number of proofs:

log_file(?atom,?atom) - zero_or_more

define_log_file/2

Defines a log file with alias Alias and file name File. If the log file already exists, its contents are kept. Logging is enabled by default.

Compilation flags:

static

Template:

define_log_file(Alias,File)

Mode and number of proofs:

define_log_file(+atom,+atom) - one

init_log_file/2

Initializes a new log file with alias Alias and file name File. If the log file already exists, its contents are erased. Logging is enabled by default.

Compilation flags:

static

Template:

init_log_file(Alias,File)

Mode and number of proofs:

init_log_file(+atom,+atom) - one

log_event/2

Logs an event Event to a log file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

log_event(Alias,Event)

Mode and number of proofs:

log_event(+atom,+nonvar) - zero_or_one

logging/1

True if logging to file with alias Alias is enabled.

Compilation flags:

static

Template:

logging(Alias)

Mode and number of proofs:

logging(+atom) - zero_or_one

enable_logging/1

Enables logging to file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

enable_logging(Alias)

Mode and number of proofs:

enable_logging(+atom) - zero_or_one

disable_logging/1

Disables logging to file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

disable_logging(Alias)

Mode and number of proofs:

disable_logging(+atom) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

logging

 object

loop

Loop control structures predicates.

Availability:

logtalk_load(loops(loader))

Author: Paulo Moura

Version: 1:4:1

Date: 2020-12-20

Compilation flags:

static, context_switching_calls

Implements:

public loopp

Remarks:

(none)

Inherited public predicates:

 dowhile/2 fordownto/3 fordownto/4 fordownto/5 foreach/3 foreach/4 forto/3 forto/4 forto/5 whiledo/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

loopp

Loop control constructs protocol.

Availability:

logtalk_load(loops(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2017-03-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	whiledo/2

	dowhile/2

	foreach/3

	foreach/4

	forto/3

	forto/4

	forto/5

	fordownto/3

	fordownto/4

	fordownto/5

	Protected predicates

	Private predicates

	Operators

Public predicates

whiledo/2

While Condition is true do Action.

Compilation flags:

static

Template:

whiledo(Condition,Action)

Meta-predicate template:

whiledo(0,0)

Mode and number of proofs:

whiledo(+callable,@callable) - zero_or_one

dowhile/2

Do Action while Condition is true.

Compilation flags:

static

Template:

dowhile(Action,Condition)

Meta-predicate template:

dowhile(0,0)

Mode and number of proofs:

dowhile(@callable,+callable) - zero_or_one

foreach/3

For each Element in List call Goal.

Compilation flags:

static

Template:

foreach(Element,List,Goal)

Meta-predicate template:

foreach(*,*,0)

Mode and number of proofs:

foreach(@var,+list(term),@callable) - zero_or_one

foreach/4

For each Element in List at position Index call Goal. Index starts at 1.

Compilation flags:

static

Template:

foreach(Element,Index,List,Goal)

Meta-predicate template:

foreach(*,*,*,0)

Mode and number of proofs:

foreach(@var,@var,+list(term),@callable) - zero_or_one

forto/3

Calls Goal counting up from First to Last. Increment is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

forto(First,Last,Goal)

Meta-predicate template:

forto(*,*,0)

Mode and number of proofs:

forto(+number,+number,@callable) - zero_or_one

forto/4

Calls Goal counting up from First to Last and binding Count to each successive value. Increment is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

forto(Count,First,Last,Goal)

Meta-predicate template:

forto(*,*,*,0)

Mode and number of proofs:

forto(@var,+number,+number,@callable) - zero_or_one

forto/5

Calls Goal counting up from First to Last and binding Count to each successive value. For convenience, First, Last, and Increment can be arithmetic expressions (uses Increment absolute value). Fails iff Goal fails.

Compilation flags:

static

Template:

forto(Count,First,Last,Increment,Goal)

Meta-predicate template:

forto(*,*,*,*,0)

Mode and number of proofs:

forto(@var,+number,+number,+number,@callable) - zero_or_one

fordownto/3

Calls Goal counting down from First to Last. Decrement is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(First,Last,Goal)

Meta-predicate template:

fordownto(*,*,0)

Mode and number of proofs:

fordownto(+number,+number,@callable) - zero_or_one

fordownto/4

Calls Goal counting down from First to Last and binding Count to each successive value. Decrement is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(Count,First,Last,Goal)

Meta-predicate template:

fordownto(*,*,*,0)

Mode and number of proofs:

fordownto(@var,+number,+number,@callable) - zero_or_one

fordownto/5

Calls Goal counting down from First to Last and binding Count to each successive value. For convenience, First, Last, and Decrement can be arithmetic expressions (uses Decrement absolute value). Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(Count,First,Last,Decrement,Goal)

Meta-predicate template:

fordownto(*,*,*,*,0)

Mode and number of proofs:

fordownto(@var,+number,+number,+number,@callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

loop

 object

meta

Some useful meta-predicates.

Availability:

logtalk_load(meta(loader))

Author: Paulo Moura

Version: 5:2:0

Date: 2016-10-06

Compilation flags:

static, context_switching_calls

Implements:

public metap

Aliases:

metap map/2 as succeeds/2

metap map/2 as maplist/2

metap map/3 as maplist/3

metap map/4 as maplist/4

metap map/5 as maplist/5

metap map/6 as maplist/6

metap map/7 as maplist/7

metap map/8 as maplist/8

metap include/3 as filter/3

metap fold_left/4 as foldl/4

metap fold_left_1/3 as foldl1/3

metap fold_right/4 as foldr/4

metap fold_right_1/3 as foldr1/3

metap scan_left/4 as scanl/4

metap scan_left_1/3 as scanl1/3

metap scan_right/4 as scanr/4

metap scan_right_1/3 as scanr1/3

Remarks:

(none)

Inherited public predicates:

 exclude/3 findall_member/4 findall_member/5 fold_left/4 fold_left_1/3 fold_right/4 fold_right_1/3 include/3 map/2 map/3 map/4 map/5 map/6 map/7 map/8 map_reduce/5 partition/4 partition/6 scan_left/4 scan_left_1/3 scan_right/4 scan_right_1/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

meta_compiler

 protocol

metap

Useful meta-predicates protocol.

Availability:

logtalk_load(meta(loader))

Author: Paulo Moura

Version: 6:1:0

Date: 2015-12-23

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	include/3

	exclude/3

	findall_member/4

	findall_member/5

	partition/4

	partition/6

	fold_left/4

	fold_left_1/3

	scan_left/4

	scan_left_1/3

	fold_right/4

	fold_right_1/3

	scan_right/4

	scan_right_1/3

	map/2

	map/3

	map/4

	map/5

	map/6

	map/7

	map/8

	map_reduce/5

	Protected predicates

	Private predicates

	Operators

Public predicates

include/3

Returns a list of all list elements that satisfy a predicate.

Compilation flags:

static

Template:

include(Closure,List,Included)

Meta-predicate template:

include(1,*,*)

Mode and number of proofs:

include(+callable,+list,-list) - one

exclude/3

Returns a list of all list elements that fail to satisfy a predicate.

Compilation flags:

static

Template:

exclude(Closure,List,Excluded)

Meta-predicate template:

exclude(1,*,*)

Mode and number of proofs:

exclude(+callable,+list,-list) - one

findall_member/4

Finds all members of a list that satisfy a given test.

Compilation flags:

static

Template:

findall_member(Member,List,Test,Result)

Meta-predicate template:

findall_member(*,*,0,*)

Mode and number of proofs:

findall_member(@term,+list,@callable,-list) - one

findall_member/5

Finds all members of a list that satisfy a given test appending the given tail to the result.

Compilation flags:

static

Template:

findall_member(Member,List,Test,Result,Tail)

Meta-predicate template:

findall_member(*,*,0,*,*)

Mode and number of proofs:

findall_member(@term,+list,@callable,-list,+list) - one

partition/4

Partition a list of elements in two lists using a predicate.

Compilation flags:

static

Template:

partition(Closure,List,Included,Excluded)

Meta-predicate template:

partition(1,*,*,*)

Mode and number of proofs:

partition(+callable,+list,-list,-list) - one

partition/6

Partitions a list in lists with values less, equal, and greater than a given value using a comparison predicate with the same argument order as compare/3.

Compilation flags:

static

Template:

partition(Closure,List,Value,Less,Equal,Greater)

Meta-predicate template:

partition(3,*,*,*,*,*)

Mode and number of proofs:

partition(+callable,+list,@term,-list,-list,-list) - one

fold_left/4

List folding (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator.

Compilation flags:

static

Template:

fold_left(Closure,Accumulator,List,Result)

Meta-predicate template:

fold_left(3,*,*,*)

Mode and number of proofs:

fold_left(+callable,?term,+list,?term) - zero_or_more

fold_left_1/3

List folding (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator. The initial value of the accumulator is the list first element. Fails for empty lists.

Compilation flags:

static

Template:

fold_left_1(Closure,List,Result)

Meta-predicate template:

fold_left_1(3,*,*)

Mode and number of proofs:

fold_left_1(+callable,+list,?term) - zero_or_more

scan_left/4

List scanning (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator.

Compilation flags:

static

Template:

scan_left(Closure,Accumulator,List,Results)

Meta-predicate template:

scan_left(3,*,*,*)

Mode and number of proofs:

scan_left(+callable,?term,+list,?list) - zero_or_more

scan_left_1/3

List scanning (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator. The accumulator is initialized with the list first element. Fails for empty lists.

Compilation flags:

static

Template:

scan_left_1(Closure,List,Results)

Meta-predicate template:

scan_left_1(3,*,*)

Mode and number of proofs:

scan_left_1(+callable,+list,?list) - zero_or_more

fold_right/4

List folding (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator.

Compilation flags:

static

Template:

fold_right(Closure,Accumulator,List,Result)

Meta-predicate template:

fold_right(3,*,*,*)

Mode and number of proofs:

fold_right(+callable,?term,+list,?term) - zero_or_more

fold_right_1/3

List folding (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator. The initial value of the accumulator is the list first element. Fails for empty lists.

Compilation flags:

static

Template:

fold_right_1(Closure,List,Result)

Meta-predicate template:

fold_right_1(3,*,*)

Mode and number of proofs:

fold_right_1(+callable,+list,?term) - zero_or_more

scan_right/4

List scanning (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator.

Compilation flags:

static

Template:

scan_right(Closure,Accumulator,List,Results)

Meta-predicate template:

scan_right(3,*,*,*)

Mode and number of proofs:

scan_right(+callable,?term,+list,?list) - zero_or_more

scan_right_1/3

List scanning (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator. The accumulator is initialized with the list first element. Fails for empty lists.

Compilation flags:

static

Template:

scan_right_1(Closure,List,Results)

Meta-predicate template:

scan_right_1(3,*,*)

Mode and number of proofs:

scan_right_1(+callable,+list,?list) - zero_or_more

map/2

True if the predicate succeeds for each list element.

Compilation flags:

static

Template:

map(Closure,List)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(+callable,?list) - zero_or_more

map/3

List mapping predicate taken arguments from two lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(+callable,?list,?list) - zero_or_more

map/4

List mapping predicate taken arguments from three lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3)

Meta-predicate template:

map(3,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list) - zero_or_more

map/5

List mapping predicate taken arguments from four lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4)

Meta-predicate template:

map(4,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list) - zero_or_more

map/6

List mapping predicate taken arguments from five lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5)

Meta-predicate template:

map(5,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list) - zero_or_more

map/7

List mapping predicate taken arguments from six lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5,List6)

Meta-predicate template:

map(6,*,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list,?list) - zero_or_more

map/8

List mapping predicate taken arguments from seven lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5,List6,List7)

Meta-predicate template:

map(7,*,*,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list,?list,?list) - zero_or_more

map_reduce/5

Map a list and apply a fold left (reduce) to the resulting list.

Compilation flags:

static

Template:

map_reduce(Map,Reduce,Accumulator,List,Result)

Meta-predicate template:

map_reduce(2,3,*,*,*)

Mode and number of proofs:

map_reduce(+callable,+callable,+term,?list,?term) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

meta

 object

meta_compiler

Compiler for the meta object meta-predicates. Generates auxiliary predicates in order to avoid meta-call overheads.

Availability:

logtalk_load(meta_compiler(loader))

Author: Paulo Moura

Version: 0:16:0

Date: 2024-10-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

gensym

list

logtalk

user

Remarks:

	Usage: Compile source files with calls to the meta object meta-predicates using the compiler option hook(meta_compiler).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	generated_predicate_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

generated_predicate_/1

Table of generated auxiliary predicates.

Compilation flags:

dynamic

Template:

generated_predicate_(Predicate)

Mode and number of proofs:

generated_predicate_(?predicate_indicator) - zero_or_more

Operators

(none)

See also

meta

 object

metagol

Inductive logic programming (ILP) system based on meta-interpretive learning.

Availability:

logtalk_load(metagol(loader))

Author: Metagol authors; adapted to Logtalk by Paulo Moura.

Version: 0:24:4

Date: 2024-03-15

Copyright: Copyright 2016 Metagol authors; Copyright 2018-2024 Paulo Moura

License: BSD-3-Clause

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_tokens//2

logtalk::message_prefix_stream/4

Uses:

coroutining

integer

list

logtalk

meta

timeout

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	learn/3

	learn/2

	learn_seq/2

	learn_with_timeout/4

	program_to_clauses/2

	pprint/1

	metarule/6

	head_pred/1

	body_pred/1

	ibk/3

	func_test/3

	functional/0

	min_clauses/1

	max_clauses/1

	max_inv_preds/1

	metarule_next_id/1

	timeout/1

	Protected predicates

	pprint_clause/1

	pprint_clauses/1

	compiled_pred_call/2

	body_pred_call/2

	type/3

	Private predicates

	Operators

Public predicates

learn/3

Learns from a set of positive examples and a set of negative examples and returns the learned program.

Compilation flags:

static

Template:

learn(PositiveExamples,NegativeExamples,Program)

Mode and number of proofs:

learn(@list(example),@list(example),-list(term)) - zero_or_more

learn/2

Learns from a set of positive examples and a set of negative examples and pretty prints the learned program.

Compilation flags:

static

Template:

learn(PositiveExamples,NegativeExamples)

Mode and number of proofs:

learn(@list(example),@list(example)) - zero_or_more

learn_seq/2

Learns from a sequence of examples represented as a list of PositiveExamples/NegativeExamples elements and returns the learned program.

Compilation flags:

static

Template:

learn_seq(Examples,Program)

Mode and number of proofs:

learn_seq(@list(example),-list(clause)) - zero_or_one

learn_with_timeout/4

Learns from a set of positive examples and a set of negative examples and returns the learned program constrained by the given timeout or its default value.

Compilation flags:

static

Template:

learn_with_timeout(PositiveExamples,NegativeExamples,Program,Timeout)

Mode and number of proofs:

learn_with_timeout(@list(example),@list(example),-list(term),+number) - zero_or_one_or_error

learn_with_timeout(@list(example),@list(example),-list(term),-number) - zero_or_one_or_error

Exceptions:

Learning does not complete in the allowed time:

timeout(learn(PositiveExamples,NegativeExamples,Program))

program_to_clauses/2

Converts a learned program into a list of clauses.

Compilation flags:

static

Template:

program_to_clauses(Program,Clauses)

Mode and number of proofs:

program_to_clauses(@list(term),-list(clause)) - one

pprint/1

Pretty prints a learned program.

Compilation flags:

static

Template:

pprint(Program)

Mode and number of proofs:

pprint(@list(term)) - one

metarule/6

Compilation flags:

static

head_pred/1

Compilation flags:

static

body_pred/1

Compilation flags:

dynamic

ibk/3

Compilation flags:

static

func_test/3

Compilation flags:

static

functional/0

Compilation flags:

dynamic

min_clauses/1

Compilation flags:

dynamic

max_clauses/1

Compilation flags:

dynamic

max_inv_preds/1

Compilation flags:

dynamic

metarule_next_id/1

Compilation flags:

dynamic

timeout/1

Compilation flags:

dynamic

Protected predicates

pprint_clause/1

Compilation flags:

static

pprint_clauses/1

Compilation flags:

static

compiled_pred_call/2

Compilation flags:

dynamic

body_pred_call/2

Compilation flags:

dynamic

type/3

Compilation flags:

dynamic

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

metagol_example_protocol

Convenient learning predicates for use in examples and unit tests.

Availability:

logtalk_load(metagol(loader))

Author: Paulo Moura.

Version: 0:1:1

Date: 2024-03-15

License: BSD-3-Clause

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	learn/1

	learn/0

	Protected predicates

	Private predicates

	Operators

Public predicates

learn/1

Learns and returns set of clauses.

Compilation flags:

static

Template:

learn(Clauses)

Mode and number of proofs:

learn(-list(clause)) - zero_or_more

learn/0

Learns and prints a set of clauses.

Compilation flags:

static

Mode and number of proofs:

learn - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

default_atom_mutations

Default atom mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

type

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_compound_mutations

Default compound mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_float_mutations

Default float mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_integer_mutations

Default integer mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_list_mutations

Default list mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 category

mutations

Adds mutations support to the library type object.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-11-23

Compilation flags:

static

Complements:

type

Uses:

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	mutation/3

	Protected predicates

	Private predicates

	Operators

Public predicates

mutation/3

Returns a random mutation of a term into another term of the same type. The input Term is assume to be valid for the given Type.

Compilation flags:

static

Template:

mutation(Type,Term,Mutation)

Mode and number of proofs:

mutation(@callable,@term,-term) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

mutations_store

Stores mutation definitions for selected types. User extensible by defining objects or categories defining clauses for the mutation/3 predicate and using this object as a hook object for their compilation.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

fast_random

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	mutation/3

	counter/2

	Protected predicates

	Private predicates

	mutation/4

	counter_/2

	Operators

Public predicates

mutation/3

Returns a random mutation of a term into another term of the same type. The input Term is assumed to be valid for the given Type.

Compilation flags:

static

Template:

mutation(Type,Term,Mutation)

Mode and number of proofs:

mutation(@callable,@term,-term) - one

counter/2

Table of the number of mutations available per type.

Compilation flags:

static

Template:

counter(Type,N)

Mode and number of proofs:

counter(?callable,?positive_integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

mutation/4

Returns a random mutation of a term into another term of the same type using mutator N. The input Term is assume to be valid for the given Type.

Compilation flags:

static, multifile

Template:

mutation(Type,N,Term,Mutation)

Mode and number of proofs:

mutation(?callable,?positive_integer,@term,-term) - zero_or_more

counter_/2

Internal counter for the number of mutations available for a given type.

Compilation flags:

dynamic

Template:

counter_(Type,N)

Mode and number of proofs:

counter_(?callable,?positive_integer) - zero_or_more

Operators

(none)

See also

type

 object

navltree

Nested dictionary implementation based on the AVL tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private avltree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

nrbtree, nbintree

 object

nbintree

Nested dictionary implementation based on the simple binary tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private bintree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

nrbtree, navltree

 protocol

nested_dictionary_protocol

Nested dictionary protocol.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura

Version: 0:1:0

Date: 2021-04-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/1

	empty/1

	as_nested_dictionary/2

	as_curly_bracketed/2

	lookup_in/3

	update_in/4

	update_in/5

	insert_in/4

	delete_in/4

	Protected predicates

	Private predicates

	Operators

Public predicates

new/1

Create an empty (nested) dictionary.

Compilation flags:

static

Template:

new(Dictionary)

Mode and number of proofs:

new(--dictionary) - one

empty/1

True iff the dictionary is empty.

Compilation flags:

static

Template:

empty(Dictionary)

Mode and number of proofs:

empty(@dictionary) - zero_or_one

as_nested_dictionary/2

Creates a (nested) dictionary term from a curly-brackted term representation.

Compilation flags:

static

Template:

as_nested_dictionary(Term,Dictionary)

Mode and number of proofs:

as_nested_dictionary(++term,--dictionary) - one_or_error

as_curly_bracketed/2

Creates a a curly-brackted term representation from a (nested) dictionary.

Compilation flags:

static

Template:

as_curly_bracketed(Dictionary,Term)

Mode and number of proofs:

as_curly_bracketed(+dictionary,--term) - one_or_error

lookup_in/3

Lookup a chain of keys in a nested dictionary. Unifies Value with Dictionary when Keys is the empty list.

Compilation flags:

static

Template:

lookup_in(Keys,Value,Dictionary)

Mode and number of proofs:

lookup_in(++list(ground),?term,+dictionary) - zero_or_more

update_in/4

Updates the value found by traversing through the nested keys.

Compilation flags:

static

Template:

update_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

update_in(+dictionary,++list(ground),++term,--dictionary) - zero_or_one

update_in/5

Updates the value found by traversing through the nested keys, only succeeding if the value found after traversal matches the old value.

Compilation flags:

static

Template:

update_in(OldDictionary,Keys,OldValue,NewValue,NewDictionary)

Mode and number of proofs:

update_in(+dictionary,++list(ground),?term,++term,--dictionary) - zero_or_one

insert_in/4

Inserts a key-value pair into a dictionary by traversing through the nested keys. When the key already exists, the associated value is updated.

Compilation flags:

static

Template:

insert_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

insert_in(+dictionary,++list(ground),++term,--dictionary) - zero_or_one

delete_in/4

Deletes a matching key-value pair from a dictionary by traversing through the nested keys, returning the updated dictionary.

Compilation flags:

static

Template:

delete_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

delete_in(+dictionary,++list(ground),?term,--dictionary) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

navltree, nbintree, nrbtree

 object

nrbtree

Nested dictionary implementation based on the red-black tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private rbtree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

navltree, nbintree

 object

maybe

Types and predicates for type-checking and handling optional terms. Inspired by Haskell.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 0:7:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

arbitrary::arbitrary/1

arbitrary::arbitrary/2

Uses:

optional

optional(Optional)

random

type

Remarks:

	Type-checking support: Defines type maybe(Type) for checking optional terms where the value hold by the optional term must be of the given type.

	QuickCheck support: Defines clauses for the arbitrary::arbitrary/1-2 predicates to allow generating random values for the maybe(Type) type.

Inherited public predicates:

(none)

	Public predicates

	cat/2

	Protected predicates

	Private predicates

	Operators

Public predicates

cat/2

Returns the values stored in the non-empty optional terms.

Compilation flags:

static

Template:

cat(Optionals,Values)

Mode and number of proofs:

cat(+list(optional),-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

optional, optional(Optional), type, arbitrary

 object

optional

Constructors for optional terms. An optional term is either empty or holds a value. Optional terms should be regarded as opaque terms and always used with the optional/1 object by passing the optional term as a parameter.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

Remarks:

	Type-checking support: This object also defines a type optional for use with the type library object.

Inherited public predicates:

(none)

	Public predicates

	empty/1

	of/2

	from_goal/3

	from_goal/2

	from_generator/3

	from_generator/2

	Protected predicates

	Private predicates

	Operators

Public predicates

empty/1

Constructs an empty optional term.

Compilation flags:

static

Template:

empty(Optional)

Mode and number of proofs:

empty(--nonvar) - one

of/2

Constructs an optional term holding the given value.

Compilation flags:

static

Template:

of(Value,Optional)

Mode and number of proofs:

of(@term,--nonvar) - one

from_goal/3

Constructs an optional term holding a value bound by calling the given goal. Returns an empty optional term if the goal fails or throws an error.

Compilation flags:

static

Template:

from_goal(Goal,Value,Optional)

Meta-predicate template:

from_goal(0,*,*)

Mode and number of proofs:

from_goal(+callable,--term,--nonvar) - one

from_goal/2

Constructs an optional term holding a value bound by calling the given closure. Returns an empty optional term if the closure fails or throws an error.

Compilation flags:

static

Template:

from_goal(Closure,Optional)

Meta-predicate template:

from_goal(1,*)

Mode and number of proofs:

from_goal(+callable,--nonvar) - one

from_generator/3

Constructs optional terms with the values generated by calling the given goal. On goal error or failure, returns an empty optional.

Compilation flags:

static

Template:

from_generator(Goal,Value,Optional)

Meta-predicate template:

from_generator(0,*,*)

Mode and number of proofs:

from_generator(+callable,--term,--nonvar) - one_or_more

from_generator/2

Constructs optional terms with the values generated by calling the given closure. On closure error or failure, returns an empty optional.

Compilation flags:

static

Template:

from_generator(Closure,Optional)

Meta-predicate template:

from_generator(1,*)

Mode and number of proofs:

from_generator(+from_generator,--nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

optional(Optional), type

 object

optional(Optional)

Optional term handling predicates. Requires passing an optional term (constructed using the optional object predicates) as a parameter.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 1:7:0

Date: 2019-11-26

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_empty/0

	is_present/0

	if_empty/1

	if_present/1

	if_present_or_else/2

	filter/2

	map/2

	flat_map/2

	or/2

	get/1

	or_else/2

	or_else_get/2

	or_else_call/2

	or_else_fail/1

	or_else_throw/2

	Protected predicates

	Private predicates

	Operators

Public predicates

is_empty/0

True if the optional term is empty. See also the if_empty/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_empty - zero_or_one

is_present/0

True if the optional term holds a value. See also the if_present/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_present - zero_or_one

if_empty/1

Calls a goal if the optional term is empty. Succeeds otherwise.

Compilation flags:

static

Template:

if_empty(Goal)

Meta-predicate template:

if_empty(0)

Mode and number of proofs:

if_empty(+callable) - zero_or_more

if_present/1

Applies a closure to the value hold by the optional term if not empty. Succeeds otherwise.

Compilation flags:

static

Template:

if_present(Closure)

Meta-predicate template:

if_present(1)

Mode and number of proofs:

if_present(+callable) - zero_or_more

if_present_or_else/2

Applies a closure to the value hold by the optional term if not empty. Otherwise calls the given goal.

Compilation flags:

static

Template:

if_present_or_else(Closure,Goal)

Meta-predicate template:

if_present_or_else(1,0)

Mode and number of proofs:

if_present_or_else(+callable,+callable) - zero_or_more

filter/2

Returns the optional term when it is not empty and the value it holds satisfies a closure. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

filter(Closure,NewOptional)

Meta-predicate template:

filter(1,*)

Mode and number of proofs:

filter(+callable,--nonvar) - one

map/2

When the optional term is not empty and mapping a closure with the value it holds and the new value as additional arguments is successful, returns an optional term with the new value. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

map(Closure,NewOptional)

Meta-predicate template:

map(2,*)

Mode and number of proofs:

map(+callable,--nonvar) - one

flat_map/2

When the optional term is not empty and mapping a closure with the value it holds and the new optional term as additional arguments is successful, returns the new optional term. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

flat_map(Closure,NewOptional)

Meta-predicate template:

flat_map(2,*)

Mode and number of proofs:

flat_map(+callable,--nonvar) - one

or/2

Returns the same optional term if not empty. Otherwise calls closure to generate a new optional term. Fails if optional term is empty and calling the closure fails or throws an error.

Compilation flags:

static

Template:

or(NewOptional,Closure)

Meta-predicate template:

or(*,1)

Mode and number of proofs:

or(--term,@callable) - zero_or_one

get/1

Returns the value hold by the optional term if not empty. Throws an error otherwise.

Compilation flags:

static

Template:

get(Value)

Mode and number of proofs:

get(--term) - one_or_error

Exceptions:

Optional is empty:

existence_error(optional_term,Optional)

or_else/2

Returns the value hold by the optional term if not empty or the given default value if the optional term is empty.

Compilation flags:

static

Template:

or_else(Value,Default)

Mode and number of proofs:

or_else(--term,@term) - one

or_else_get/2

Returns the value hold by the optional term if not empty. Applies a closure to compute the value otherwise. Throws an error when the optional term is empty and the value cannot be computed.

Compilation flags:

static

Template:

or_else_get(Value,Closure)

Meta-predicate template:

or_else_get(*,1)

Mode and number of proofs:

or_else_get(--term,+callable) - one_or_error

Exceptions:

Optional is empty and the term cannot be computed:

existence_error(optional_term,Optional)

or_else_call/2

Returns the value hold by the optional term if not empty or calls a goal deterministically if the optional term is empty.

Compilation flags:

static

Template:

or_else_call(Value,Goal)

Meta-predicate template:

or_else_call(*,0)

Mode and number of proofs:

or_else_call(--term,+callable) - zero_or_one

or_else_fail/1

Returns the value hold by the optional term if not empty. Fails otherwise. Usually called to skip over empty optional terms.

Compilation flags:

static

Template:

or_else_fail(Value)

Mode and number of proofs:

or_else_fail(--term) - zero_or_one

or_else_throw/2

Returns the value hold by the optional term if not empty. Throws the given error otherwise.

Compilation flags:

static

Template:

or_else_throw(Value,Error)

Mode and number of proofs:

or_else_throw(--term,@nonvar) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

optional

 category

options

Options processing predicates. Options are represented by compound terms where the functor is the option name.

Availability:

logtalk_load(options(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2022-01-03

Compilation flags:

static

Implements:

public options_protocol

Uses:

list

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

options_protocol

Options protocol.

Availability:

logtalk_load(options(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2022-01-03

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	check_option/1

	check_options/1

	valid_option/1

	valid_options/1

	default_option/1

	default_options/1

	option/2

	option/3

	Protected predicates

	merge_options/2

	fix_options/2

	fix_option/2

	Private predicates

	Operators

Public predicates

check_option/1

Succeeds if the option is valid. Throws an error otherwise.

Compilation flags:

static

Template:

check_option(Option)

Mode and number of proofs:

check_option(@term) - one_or_error

Exceptions:

Option is a variable:

instantiation_error

Option is neither a variable nor a compound term:

type_error(compound,Option)

Option is a compound term but not a valid option:

domain_error(option,Option)

check_options/1

Succeeds if all the options in a list are valid. Throws an error otherwise.

Compilation flags:

static

Template:

check_options(Options)

Mode and number of proofs:

check_options(@term) - one_or_error

Exceptions:

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

valid_option/1

Succeeds if the option is valid.

Compilation flags:

static

Template:

valid_option(Option)

Mode and number of proofs:

valid_option(@term) - zero_or_one

valid_options/1

Succeeds if all the options in a list are valid.

Compilation flags:

static

Template:

valid_options(Options)

Mode and number of proofs:

valid_options(@term) - one

default_option/1

Enumerates, by backtracking, the default options.

Compilation flags:

static

Template:

default_option(Option)

Mode and number of proofs:

default_option(?compound) - zero_or_more

default_options/1

Returns a list of the default options.

Compilation flags:

static

Template:

default_options(Options)

Mode and number of proofs:

default_options(-list(compound)) - one

option/2

True iff Option unifies with the first occurrence of the same option in the Options list.

Compilation flags:

static

Template:

option(Option,Options)

Mode and number of proofs:

option(+compound,+list(compound)) - zero_or_one

option/3

True iff Option unifies with the first occurrence of the same option in the Options list or, when that is not the case, if Option unifies with Default.

Compilation flags:

static

Template:

option(Option,Options,Default)

Mode and number of proofs:

option(+compound,+list(compound),+compound) - zero_or_one

Protected predicates

merge_options/2

Merges the user options with the default options, returning the final list of options. Calls the fix_options/2 predicate to preprocess the options after merging. Callers must ensure, if required, that the user options are valid.

Compilation flags:

static

Template:

merge_options(UserOptions,Options)

Mode and number of proofs:

merge_options(+list(compound),-list(compound)) - one

fix_options/2

Fixes a list of options, returning the list of options.

Compilation flags:

static

Template:

fix_options(Options,FixedOptions)

Mode and number of proofs:

fix_options(+list(compound),-list(compound)) - one

fix_option/2

Fixes an option.

Compilation flags:

static

Template:

fix_option(Option,FixedOption)

Mode and number of proofs:

fix_option(+compound,-compound) - zero_or_one

Private predicates

(none)

Operators

(none)

See also

options

 object

os

Portable operating-system access predicates.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:101:2

Date: 2024-12-01

Compilation flags:

static, context_switching_calls

Implements:

public osp

Uses:

list

Aliases:

osp absolute_file_name/2 as expand_path/2

Remarks:

	File path expansion: To ensure portability, all file paths are expanded before being handed to the backend Prolog system.

	Exception terms: Currently, there is no standardization of the exception terms thrown by the different backend Prolog systems.

	B-Prolog portability: The wall_time/1 predicate is not supported.

	CxProlog portability: The date_time/7 predicate returns zeros for all arguments.

	JIProlog portability: The file_permission/2 and command_line_arguments/1 predicates are not supported.

	Quintus Prolog: The pid/1 and shell/2 predicates are not supported.

	XSB portability: The command_line_arguments/1 predicate is not supported.

Inherited public predicates:

 absolute_file_name/2 change_directory/1 command_line_arguments/1 copy_file/2 cpu_time/1 date_time/7 decompose_file_name/3 decompose_file_name/4 delete_directory/1 delete_directory_and_contents/1 delete_directory_contents/1 delete_file/1 directory_exists/1 directory_files/2 directory_files/3 ensure_directory/1 ensure_file/1 environment_variable/2 file_exists/1 file_modification_time/2 file_permission/2 file_size/2 full_device_path/1 internal_os_path/2 is_absolute_file_name/1 make_directory/1 make_directory_path/1 null_device_path/1 operating_system_machine/1 operating_system_name/1 operating_system_release/1 operating_system_type/1 path_concat/3 pid/1 read_only_device_path/1 rename_file/2 shell/1 shell/2 sleep/1 temporary_directory/1 time_stamp/1 wall_time/1 working_directory/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

os_types

 category

os_types

A set of operating-system related types.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2021-02-12

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

os

Remarks:

	Provided types: This category adds file, file(Extensions), file(Extensions,Permissions), directory, directory(Permissions), and environment_variable types for type-checking when using the type library object.

	Type file: For checking if a term is an atom and an existing file.

	Type file(Extensions): For checking if a term is an atom and an existing file with one of the listed extensions (specified as '.ext').

	Type file(Extensions,Permissions): For checking if a term is an atom and an existing file with one of the listed extensions (specified as '.ext') and listed permissions ({read, write, execute}).

	Type directory: For checking if a term is an atom and an existing directory.

	Type directory(Permissions): For checking if a term is an atom and an existing directory with the listed permissions ({read, write, execute}).

	Type environment_variable: For checking if a term is an atom and an existing environment variable.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

osp, os, type

 protocol

osp

Portable operating-system access protocol.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:41:0

Date: 2025-05-19

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Error handling: Predicates that require a file or directory to exist throw an error when that is not the case. But the exact exception term is currently backend Prolog compiler dependent.

	CPU and wall time accuracy: Depends on the backend and can be different between CPU and wall time (e.g. CPU time can have nanosecond accuracy with wall time only having millisecond accuracy).

Inherited public predicates:

(none)

	Public predicates

	pid/1

	shell/2

	shell/1

	is_absolute_file_name/1

	absolute_file_name/2

	decompose_file_name/3

	decompose_file_name/4

	path_concat/3

	internal_os_path/2

	make_directory/1

	make_directory_path/1

	delete_directory/1

	delete_directory_contents/1

	delete_directory_and_contents/1

	change_directory/1

	working_directory/1

	temporary_directory/1

	null_device_path/1

	full_device_path/1

	read_only_device_path/1

	directory_files/2

	directory_files/3

	directory_exists/1

	ensure_directory/1

	file_exists/1

	file_modification_time/2

	file_size/2

	file_permission/2

	copy_file/2

	rename_file/2

	delete_file/1

	ensure_file/1

	environment_variable/2

	time_stamp/1

	date_time/7

	cpu_time/1

	wall_time/1

	operating_system_type/1

	operating_system_name/1

	operating_system_machine/1

	operating_system_release/1

	command_line_arguments/1

	sleep/1

	Protected predicates

	Private predicates

	Operators

Public predicates

pid/1

Returns the process identifier of the running process.

Compilation flags:

static

Template:

pid(PID)

Mode and number of proofs:

pid(-integer) - one

shell/2

Runs an operating-system shell command and returns its exit status.

Compilation flags:

static

Template:

shell(Command,Status)

Mode and number of proofs:

shell(+atom,-integer) - one

shell/1

Runs an operating-system shell command.

Compilation flags:

static

Template:

shell(Command)

Mode and number of proofs:

shell(+atom) - zero_or_one

is_absolute_file_name/1

True iff the argument is an absolute file path. On POSIX systems, this predicate is true if File starts with a /. On Windows systems, this predicate is true if File starts with a drive letter. No attempt is made to expand File as a path.

Compilation flags:

static

Template:

is_absolute_file_name(File)

Mode and number of proofs:

is_absolute_file_name(+atom) - zero_or_one

absolute_file_name/2

Expands a file name to an absolute file path. An environment variable at the beginning of the file name is also expanded.

Compilation flags:

static

Template:

absolute_file_name(File,Path)

Mode and number of proofs:

absolute_file_name(+atom,-atom) - one

decompose_file_name/3

Decomposes a file name into its directory (which always ends with a slash; ./ is returned if absent) and its basename (which can be the empty atom).

Compilation flags:

static

Template:

decompose_file_name(File,Directory,Basename)

Mode and number of proofs:

decompose_file_name(+atom,?atom,?atom) - one

decompose_file_name/4

Decomposes a file name into its directory (which always ends with a slash; ./ is returned if absent), name (that can be the empty atom), and extension (which starts with a . when defined; the empty atom otherwise).

Compilation flags:

static

Template:

decompose_file_name(File,Directory,Name,Extension)

Mode and number of proofs:

decompose_file_name(+atom,?atom,?atom,?atom) - one

path_concat/3

Concatenates a path prefix and a path suffix, adding a / separator if required. Returns Suffix when it is an absolute path. Returns Prefix with a trailing / appended if missing when Suffix is the empty atom.

Compilation flags:

static

Template:

path_concat(Prefix,Suffix,Path)

Mode and number of proofs:

path_concat(+atom,+atom,--atom) - one

internal_os_path/2

Converts between the internal path representation (which is backend dependent) and the operating-system native path representation.

Compilation flags:

static

Template:

internal_os_path(InternalPath,OSPath)

Mode and number of proofs:

internal_os_path(+atom,-atom) - one

internal_os_path(-atom,+atom) - one

make_directory/1

Makes a new directory. Succeeds if the directory already exists.

Compilation flags:

static

Template:

make_directory(Directory)

Mode and number of proofs:

make_directory(+atom) - one

make_directory_path/1

Makes a new directory creating all the intermediate directories if necessary. Succeeds if the directory already exists.

Compilation flags:

static

Template:

make_directory_path(Directory)

Mode and number of proofs:

make_directory_path(+atom) - one

delete_directory/1

Deletes an empty directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory(Directory)

Mode and number of proofs:

delete_directory(+atom) - one_or_error

delete_directory_contents/1

Deletes directory contents. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory_contents(Directory)

Mode and number of proofs:

delete_directory_contents(+atom) - one_or_error

delete_directory_and_contents/1

Deletes directory and its contents. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory_and_contents(Directory)

Mode and number of proofs:

delete_directory_and_contents(+atom) - one_or_error

change_directory/1

Changes current working directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

change_directory(Directory)

Mode and number of proofs:

change_directory(+atom) - one_or_error

working_directory/1

Current working directory.

Compilation flags:

static

Template:

working_directory(Directory)

Mode and number of proofs:

working_directory(?atom) - zero_or_one

temporary_directory/1

Temporary directory. Tries first environment variables: TEMP and TMP on Windows systems; TMPDIR, TMP, TEMP, and TEMPDIR on POSIX systems. When not defined, tries default locations. Returns the working directory as last resort.

Compilation flags:

static

Template:

temporary_directory(Directory)

Mode and number of proofs:

temporary_directory(?atom) - one

null_device_path/1

Null device path: nul on Windows systems and /dev/null on POSIX systems.

Compilation flags:

static

Template:

null_device_path(Path)

Mode and number of proofs:

null_device_path(?atom) - one

full_device_path/1

Full device path: /dev/full on Linux and BSD systems. Fails on other systems. Experimental.

Compilation flags:

static

Template:

full_device_path(Path)

Mode and number of proofs:

full_device_path(?atom) - zero_or_one

read_only_device_path/1

Read-only device path: /dev/urandom on macOS. Fails on other systems. Experimental.

Compilation flags:

static

Template:

read_only_device_path(Path)

Mode and number of proofs:

read_only_device_path(?atom) - zero_or_one

directory_files/2

Returns a list of all files (including directories, regular files, and hidden directories and files) in a directory. File paths are relative to the directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

directory_files(Directory,Files)

Mode and number of proofs:

directory_files(+atom,-list(atom)) - one_or_error

directory_files/3

Returns a list of files filtered using the given list of options. Invalid options are ignored. Default option values are equivalent to directory_files/2. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

directory_files(Directory,Files,Options)

Mode and number of proofs:

directory_files(+atom,-list(atom),+list(compound)) - one_or_error

Remarks:

	Option paths/1: Possible values are relative and absolute. Default is relative.

	Option type/1: Possible values are all, regular, directory. Default is all.

	Option extensions/1: Argument is a list of required extensions (using the format '.ext'). Default is the empty list.

	Option prefixes/1: Argument is a list of required file prefixes (atoms). Default is the empty list.

	Option suffixes/1: Argument is a list of required file suffixes (atoms). Default is the empty list.

	Option dot_files/1: Possible values are true and false. Default is true.

directory_exists/1

True if the specified directory exists (irrespective of directory permissions).

Compilation flags:

static

Template:

directory_exists(Directory)

Mode and number of proofs:

directory_exists(+atom) - zero_or_one

ensure_directory/1

Ensures that a directory exists, creating it if necessary.

Compilation flags:

static

Template:

ensure_directory(Directory)

Mode and number of proofs:

ensure_directory(+atom) - one

file_exists/1

True if the specified file exists and is a regular file (irrespective of file permissions).

Compilation flags:

static

Template:

file_exists(File)

Mode and number of proofs:

file_exists(+atom) - zero_or_one

file_modification_time/2

File modification time (which can be used for comparison). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_modification_time(File,Time)

Mode and number of proofs:

file_modification_time(+atom,-integer) - one_or_error

file_size/2

File size (in bytes). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_size(File,Size)

Mode and number of proofs:

file_size(+atom,-integer) - one_or_error

file_permission/2

True iff the specified file has the specified permission (read, write, or execute). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_permission(File,Permission)

Mode and number of proofs:

file_permission(+atom,+atom) - zero_or_one_or_error

copy_file/2

Copies a file. Throws an error if the original file does not exist or if the copy cannot be created.

Compilation flags:

static

Template:

copy_file(File,Copy)

Mode and number of proofs:

copy_file(+atom,+atom) - one_or_error

rename_file/2

Renames a file or a directory. Throws an error if the file or directory does not exist.

Compilation flags:

static

Template:

rename_file(Old,New)

Mode and number of proofs:

rename_file(+atom,+atom) - one_or_error

delete_file/1

Deletes a file. Throws an error if the file does not exist.

Compilation flags:

static

Template:

delete_file(File)

Mode and number of proofs:

delete_file(+atom) - one_or_error

ensure_file/1

Ensures that a file exists, creating it if necessary.

Compilation flags:

static

Template:

ensure_file(File)

Mode and number of proofs:

ensure_file(+atom) - one

environment_variable/2

Returns an environment variable value. Fails if the variable does not exists.

Compilation flags:

static

Template:

environment_variable(Variable,Value)

Mode and number of proofs:

environment_variable(+atom,?atom) - zero_or_one

time_stamp/1

Returns a system-dependent time stamp, which can be used for sorting, but should be regarded otherwise as an opaque term.

Compilation flags:

static

Template:

time_stamp(Time)

Mode and number of proofs:

time_stamp(-ground) - one

date_time/7

Returns the current date and time. Note that most backends do not provide sub-second accuracy and in those cases the value of the Milliseconds argument is always zero.

Compilation flags:

static

Template:

date_time(Year,Month,Day,Hours,Minutes,Seconds,Milliseconds)

Mode and number of proofs:

date_time(-integer,-integer,-integer,-integer,-integer,-integer,-integer) - one

cpu_time/1

System cpu time in seconds. Accuracy depends on the backend.

Compilation flags:

static

Template:

cpu_time(Seconds)

Mode and number of proofs:

cpu_time(-number) - one

wall_time/1

Wall time in seconds. Accuracy depends on the backend.

Compilation flags:

static

Template:

wall_time(Seconds)

Mode and number of proofs:

wall_time(-number) - one

operating_system_type/1

Operating system type. Possible values are unix, windows, and unknown.

Compilation flags:

static

Template:

operating_system_type(Type)

Mode and number of proofs:

operating_system_type(?atom) - zero_or_one

operating_system_name/1

Operating system name. On POSIX systems, it returns the value of uname -s. On macOS systems, it returns 'Darwin'. On Windows systems, it returns 'Windows'.

Compilation flags:

static

Template:

operating_system_name(Name)

Mode and number of proofs:

operating_system_name(?atom) - zero_or_one

operating_system_machine/1

Operating system hardware platform. On POSIX systems, it returns the value of uname -m. On Windows systems, it returns the value of the PROCESSOR_ARCHITECTURE environment variable.

Compilation flags:

static

Template:

operating_system_machine(Machine)

Mode and number of proofs:

operating_system_machine(?atom) - zero_or_one

operating_system_release/1

Operating system release. On POSIX systems, it returns the value of uname -r. On Windows systems, it uses WMI code.

Compilation flags:

static

Template:

operating_system_release(Release)

Mode and number of proofs:

operating_system_release(?atom) - zero_or_one

command_line_arguments/1

Returns a list with the command line arguments that occur after --.

Compilation flags:

static

Template:

command_line_arguments(Arguments)

Mode and number of proofs:

command_line_arguments(-list(atom)) - one

sleep/1

Suspends execution the given number of seconds.

Compilation flags:

static

Template:

sleep(Seconds)

Mode and number of proofs:

sleep(+number) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

os, os_types

 protocol

pack_protocol

Pack specification protocol. Objects implementing this protocol should be named after the pack with a _pack suffix and saved in a file with the same name as the object.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:18:0

Date: 2025-05-21

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	name/1

	description/1

	license/1

	home/1

	version/6

	note/3

	Protected predicates

	Private predicates

	Operators

Public predicates

name/1

Pack name.

Compilation flags:

static

Template:

name(Name)

Mode and number of proofs:

name(?atom) - zero_or_one

description/1

Pack one line description.

Compilation flags:

static

Template:

description(Description)

Mode and number of proofs:

description(?atom) - zero_or_one

license/1

Pack license. Specified using the identifier from the SPDX License List (https://spdx.org/licenses/) when possible.

Compilation flags:

static

Template:

license(License)

Mode and number of proofs:

license(?atom) - zero_or_one

home/1

Pack home HTTPS or file URL.

Compilation flags:

static

Template:

home(Home)

Mode and number of proofs:

home(?atom) - zero_or_one

version/6

Table of available versions.

Compilation flags:

static

Template:

version(Version,Status,URL,Checksum,Dependencies,Portability)

Mode and number of proofs:

version(?compound,?atom,-atom,-pair(atom,atom),-list(pair(atom,callable)),?atom) - zero_or_more

version(?compound,?atom,-atom,-pair(atom,atom),-list(pair(atom,callable)),-list(atom)) - zero_or_more

Remarks:

	Version: This argument uses the same format as entity versions: Major:Minor:Patch. Semantic versioning should be used.

	Status: Version development status: stable, rc, beta, alpha, experimental, or deprecated.

	URL: File URL for a local directory, file URL for a local archive, download HTTPS URL for the pack archive, or download git archive URL for the pack archive.

	Checksum: A pair where the key is the hash algorithm and the value is the checksum. Currently, the hash algorithm must be sha256. For file:// URLs of local directories, use none instead of a pair.

	Dependencies: Pack dependencies list. Each dependency is a Dependency Operator Version term. Operator is a term comparison operator. Valid Dependency values are Registry::Pack, os(Name,Machine), logtalk, and a backend identifier atom.

	Portability: Either the atom all or a list of the supported backend Prolog compilers (using the identifier atoms used by the prolog_dialect flag).

	Clause order: Versions must be listed ordered from newest to oldest.

note/3

Table of notes per action and version.

Compilation flags:

static

Template:

note(Action,Version,Note)

Mode and number of proofs:

note(?atom,?term,-atom) - zero_or_more

Remarks:

	Action: Possible values are install, update, and uninstall. When unbound, the note apply to all actions.

	Version: Version being installed, updated, or uninstalled. When unbound, the note apply to all versions.

	Note: Note to print when performing an action on a pack version.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

packs

Pack handling predicates.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:87:1

Date: 2025-08-20

Compilation flags:

static, context_switching_calls

Imports:

public packs_common

public options

Uses:

list

logtalk

os

registries

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 help/0 logtalk_packs/0 logtalk_packs/1 option/2 option/3 pin/0 pin/1 pinned/1 prefix/0 prefix/1 readme/1 readme/2 reset/0 setup/0 unpin/0 unpin/1 valid_option/1 valid_options/1 verify_commands_availability/0

	Public predicates

	available/2

	available/1

	available/0

	installed/4

	installed/3

	installed/1

	installed/0

	outdated/5

	outdated/4

	outdated/2

	outdated/1

	outdated/0

	orphaned/2

	orphaned/0

	versions/3

	describe/2

	describe/1

	search/1

	install/4

	install/3

	install/2

	install/1

	update/3

	update/2

	update/1

	update/0

	uninstall/2

	uninstall/1

	uninstall/0

	clean/2

	clean/1

	clean/0

	save/2

	save/1

	restore/2

	restore/1

	dependents/3

	dependents/2

	dependents/1

	lint/2

	lint/1

	lint/0

	Protected predicates

	Private predicates

	Operators

Public predicates

available/2

Enumerates, by backtracking, all available packs.

Compilation flags:

static

Template:

available(Registry,Pack)

Mode and number of proofs:

available(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

available/1

Lists all the packs that are available for installation from the given registry.

Compilation flags:

static

Template:

available(Registry)

Mode and number of proofs:

available(+atom) - one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

available/0

Lists all the packs that are available for installation from all defined registries.

Compilation flags:

static

Mode and number of proofs:

available - one

installed/4

Enumerates by backtracking all installed packs.

Compilation flags:

static

Template:

installed(Registry,Pack,Version,Pinned)

Mode and number of proofs:

installed(?atom,?atom,?compound,?boolean) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

Pinned is neither a variable nor a boolean:

type_error(boolean,Pinned)

installed/3

Enumerates by backtracking all installed packs.

Compilation flags:

static

Template:

installed(Registry,Pack,Version)

Mode and number of proofs:

installed(?atom,?atom,?compound) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

installed/1

Lists all the packs that are installed from the given registry. Fails if the registry is unknown.

Compilation flags:

static

Template:

installed(Registry)

Mode and number of proofs:

installed(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

installed/0

Lists all the packs that are installed.

Compilation flags:

static

Mode and number of proofs:

installed - one

outdated/5

Enumerates by backtracking all installed but outdated packs (together with the current version installed and the latest version available) using the given options.

Compilation flags:

static

Template:

outdated(Registry,Pack,Version,LatestVersion,Options)

Mode and number of proofs:

outdated(?atom,?atom,?compound,?compound,++list(compound)) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

LatestVersion is neither a variable nor a compound term:

type_error(compound,LatestVersion)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	compatible(Boolean) option: Restrict listing to compatible packs. Default is true.

	status(Status) option: Restrict listing to updates with the given status. Default is [stable,rc,beta,alpha]. Set to all to also list experimental and deprecated updates.

outdated/4

Enumerates by backtracking all installed but outdated packs (together with the current version installed and the latest version available) using default options.

Compilation flags:

static

Template:

outdated(Registry,Pack,Version,LatestVersion)

Mode and number of proofs:

outdated(?atom,?atom,?compound,?compound) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

LatestVersion is neither a variable nor a compound term:

type_error(compound,LatestVersion)

See also:

outdated/5

outdated/2

Lists all the packs from the given registry that are installed but outdated using the given options.

Compilation flags:

static

Template:

outdated(Registry,Options)

Mode and number of proofs:

outdated(+atom,++list(compound)) - one

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	status(Status) option: Restrict listing to updates with the given status. Default is [stable,rc,beta,alpha]. Set to all to also list experimental and deprecated updates.

outdated/1

Lists all the packs from the given registry that are installed but outdated using default options.

Compilation flags:

static

Template:

outdated(Registry)

Mode and number of proofs:

outdated(+atom) - one

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

outdated/2

outdated/0

Lists all the packs that are installed but outdated using default options.

Compilation flags:

static

Mode and number of proofs:

outdated - one

See also:

outdated/1

orphaned/2

Lists all the packs that are installed but whose registry is no longer defined.

Compilation flags:

static

Template:

orphaned(Registry,Pack)

Mode and number of proofs:

orphaned(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

orphaned/0

Lists all the packs that are installed but whose registry is no longer defined.

Compilation flags:

static

Mode and number of proofs:

orphaned - one

versions/3

Returns a list of all available pack versions. Fails if the pack is unknown.

Compilation flags:

static

Template:

versions(Registry,Pack,Versions)

Mode and number of proofs:

versions(+atom,+atom,-list) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

describe/2

Describes a registered pack, including installed version if applicable. Fails if the pack is unknown.

Compilation flags:

static

Template:

describe(Registry,Pack)

Mode and number of proofs:

describe(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

describe/1

Describes a registered pack, including installed version if applicable. Fails if the pack is unknown.

Compilation flags:

static

Template:

describe(Pack)

Mode and number of proofs:

describe(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

search/1

Searches packs whose name or description includes the search term (case sensitive).

Compilation flags:

static

Template:

search(Term)

Mode and number of proofs:

search(+atom) - one

Exceptions:

Term is a variable:

instantiation_error

Term is neither a variable nor an atom:

type_error(atom,Term)

install/4

Installs a new pack using the specified options. Fails if the pack is unknown or already installed but not using update(true) or force(true) options. Fails also if the pack version is unknown.

Compilation flags:

static

Template:

install(Registry,Pack,Version,Options)

Mode and number of proofs:

install(+atom,+atom,++compound,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	update(Boolean) option: Update pack if already installed. Default is false. Overrides the force/1 option.

	force(Boolean) option: Force pack re-installation if already installed. Default is false.

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	clean(Boolean) option: Clean pack archive after installation. Default is false.

	verbose(Boolean) option: Verbose installing steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

install/3

Installs the specified version of a pack from the given registry using default options. Fails if the pack is already installed or unknown. Fails also if the pack version is unknown.

Compilation flags:

static

Template:

install(Registry,Pack,Version)

Mode and number of proofs:

install(+atom,+atom,?compound) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

See also:

install/4

install/2

Installs the latest version of a pack from the given registry using default options. Fails if the pack is already installed or unknown.

Compilation flags:

static

Template:

install(Registry,Pack)

Mode and number of proofs:

install(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

install/3

install/1

Installs a pack (if its name is unique among all registries) using default options. Fails if the pack is already installed or unknown. Fails also if the pack is available from multiple registries.

Compilation flags:

static

Template:

install(Pack)

Mode and number of proofs:

install(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is not an atom:

type_error(atom,Pack)

See also:

install/2

update/3

Updates an outdated pack to the specified version using the specified options. Fails if the pack or the pack version is unknown or if the pack is not installed. Fails also if the pack is orphaned or pinned and not using a force(true) option.

Compilation flags:

static

Template:

update(Pack,Version,Options)

Mode and number of proofs:

update(+atom,++callable,++list(callable)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	install(Boolean) option: Install pack latest version if not already installed. Default is false.

	force(Boolean) option: Force update if the pack is pinned or breaks installed packs. Default is false.

	compatible(Boolean) option: Restrict updating to compatible packs. Default is true.

	status(Status) option: Specify allowed pack status. Default is [stable,rc,beta,alpha]. Set to all to also allow experimental and deprecated.

	clean(Boolean) option: Clean pack archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/2

Updates an outdated pack to its latest version using the specified options. Fails if the pack is orphaned, unknown, or not installed. Fails also if the pack is pinned and not using a force(true) option.

Compilation flags:

static

Template:

update(Pack,Options)

Mode and number of proofs:

update(+atom,++list(callable)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	install(Boolean) option: Install pack latest version if not already installed. Default is false.

	force(Boolean) option: Force update if the pack is pinned or breaks installed packs. Default is false.

	compatible(Boolean) option: Restrict updating to compatible packs. Default is true.

	status(Status) option: Specify allowed pack update status. Default is [stable,rc,beta,alpha]. Set to all to also allow experimental and deprecated.

	clean(Boolean) option: Clean pack archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/1

Updates an outdated pack to its latest version using default options. Fails if the pack is pinned, orphaned, not installed, unknown, or breaks installed packs.

Compilation flags:

static

Template:

update(Pack)

Mode and number of proofs:

update(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

update/2

update/3

update/0

Updates all outdated packs (that are not pinned) using default options.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

uninstall/2

Uninstalls a pack using the specified options. Fails if the pack is unknown or not installed. Fails also if the pack is pinned or have dependents and not using a force(true) option.

Compilation flags:

static

Template:

uninstall(Pack,Options)

Mode and number of proofs:

uninstall(+atom,++list(compound)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force deletion if the pack is pinned. Default is false.

	clean(Boolean) option: Clean pack archive after deleting. Default is false.

	verbose(Boolean) option: Verbose uninstalling steps. Default is false.

uninstall/1

Uninstalls a pack using default options. Fails if the pack is pinned, have dependents, not installed, or unknown.

Compilation flags:

static

Template:

uninstall(Pack)

Mode and number of proofs:

uninstall(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

uninstall/2

uninstall/0

Uninstalls all packs using the force(true) option.

Compilation flags:

static

Mode and number of proofs:

uninstall - zero_or_one

clean/2

Cleans all pack archives. Fails if the the pack is unknown.

Compilation flags:

static

Template:

clean(Registry,Pack)

Mode and number of proofs:

clean(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

clean/1

Cleans all pack archives. Fails if the pack is unknown.

Compilation flags:

static

Template:

clean(Pack)

Mode and number of proofs:

clean(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

clean/2

clean/0

Cleans all archives for all packs.

Compilation flags:

static

Mode and number of proofs:

clean - one

save/2

Saves a list of all installed packs and registries plus pinning status to a file using the given options. Registries without installed packs are saved when using the option save(all) and skipped when using the option save(installed) (default).

Compilation flags:

static

Template:

save(File,Options)

Mode and number of proofs:

save(+atom,++list(compound)) - one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an existing file but cannot be written:

permission_error(open,source_sink,File)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

save/1

Saves a list of all installed packs and their registries plus pinning status to a file using default options.

Compilation flags:

static

Template:

save(File)

Mode and number of proofs:

save(+atom) - one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an existing file but cannot be written:

permission_error(open,source_sink,File)

See also:

save/2

restore/2

Restores a list of registries and packs plus their pinning status from a file using the given options. Fails if restoring is not possible.

Compilation flags:

static

Template:

restore(File,Options)

Mode and number of proofs:

restore(+atom,++list(compound)) - zero_or_one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be read:

permission_error(open,source_sink,File)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force restoring if a registry is already defined or a pack is already installed. Default is true.

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	clean(Boolean) option: Clean registry and pack archives after restoring. Default is false.

	verbose(Boolean) option: Verbose restoring steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksums. Default is true.

	checksig(Boolean) option: Verify pack archive signatures. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

restore/1

Restores a list of registries and packs plus their pinning status from a file using default options. Fails if restoring is not possible.

Compilation flags:

static

Template:

restore(File)

Mode and number of proofs:

restore(+atom) - zero_or_one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be read:

permission_error(open,source_sink,File)

See also:

restore/2

dependents/3

Returns a list of all installed packs that depend on the given pack from the given registry. Fails if the pack is unknown.

Compilation flags:

static

Template:

dependents(Registry,Pack,Dependents)

Mode and number of proofs:

dependents(+atom,+atom,-list(atom)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

dependents/2

Prints a list of all installed packs that depend on the given pack from the given registry. Fails if the pack is unknown.

Compilation flags:

static

Template:

dependents(Registry,Pack)

Mode and number of proofs:

dependents(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

dependents/1

Prints a list of all installed packs that depend on the given pack if unique from all defined registries. Fails if the pack is unknown or available from multiple registries.

Compilation flags:

static

Template:

dependents(Pack)

Mode and number of proofs:

dependents(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/2

Checks the pack specification. Fails if the pack is unknown or if linting detects errors.

Compilation flags:

static

Template:

lint(Registry,Pack)

Mode and number of proofs:

lint(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/1

Checks the pack specification. Fails if the pack is unknown, or available from multiple registries, or if linting detects errors.

Compilation flags:

static

Template:

lint(Pack)

Mode and number of proofs:

lint(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/0

Checks all pack specifications.

Compilation flags:

static

Mode and number of proofs:

lint - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

packs_common

Common predicates for the packs tool objects.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:33:0

Date: 2025-01-23

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

logtalk

os

type

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	setup/0

	reset/0

	verify_commands_availability/0

	help/0

	pin/1

	pin/0

	unpin/1

	unpin/0

	pinned/1

	directory/2

	directory/1

	readme/2

	readme/1

	logtalk_packs/1

	logtalk_packs/0

	prefix/1

	prefix/0

	Protected predicates

	readme_file_path/2

	print_readme_file_path/1

	command/2

	load_registry/1

	sha256sum_command/1

	tar_command/1

	supported_archive/1

	supported_url_archive/1

	decode_url_spaces/2

	Private predicates

	Operators

Public predicates

setup/0

Ensures that registries and packs directory structure exists. Preserves any defined registries and installed packs.

Compilation flags:

static

Mode and number of proofs:

setup - one

reset/0

Resets registries and packs directory structure. Deletes any defined registries and installed packs.

Compilation flags:

static

Mode and number of proofs:

reset - one

verify_commands_availability/0

Verifies required shell commands availability. Fails printing an error message if a command is missing.

Compilation flags:

static

Mode and number of proofs:

verify_commands_availability - zero_or_one

help/0

Provides help about the main predicates.

Compilation flags:

static

Mode and number of proofs:

help - one

pin/1

Pins a resource (pack or registry) preventing it from being updated, uninstalled, or deleted. Fails if the resource is not found.

Compilation flags:

static

Template:

pin(Resource)

Mode and number of proofs:

pin(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

pin/0

Pins all resource (packs or registries) preventing them from being updated, uninstalled, or deleted. Note that resources added after calling this predicate will not be pinned.

Compilation flags:

static

Mode and number of proofs:

pin - one

unpin/1

Unpins a resource (pack or registry), allowing it to be updated, uninstalled, or deleted. Fails if the resource is not found.

Compilation flags:

static

Template:

unpin(Resource)

Mode and number of proofs:

unpin(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

unpin/0

Unpins all resources (packs or registries), allowing them to be updated, uninstalled, or deleted.

Compilation flags:

static

Mode and number of proofs:

unpin - one

pinned/1

True iff the resource (pack or registry) is defined or installed and if it is pinned.

Compilation flags:

static

Template:

pinned(Resource)

Mode and number of proofs:

pinned(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

directory/2

Enumerates by backtracking all packs or registries and respective installation or definition directories (using the internal backend format).

Compilation flags:

static

Template:

directory(Resource,Directory)

Mode and number of proofs:

directory(?atom,?atom) - zero_or_more

Exceptions:

Resource is neither a variable nor an atom:

type_error(atom,Resource)

Directory is neither a variable nor an atom:

type_error(atom,Directory)

directory/1

Prints the directory where the registry or the pack is installed (using the native operating-system format).

Compilation flags:

static

Template:

directory(Resource)

Mode and number of proofs:

directory(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

readme/2

Returns the path to the resource (pack or registry) readme file (using the internal backend format). Fails if the resource is not defined or installed or if no readme file is found for it.

Compilation flags:

static

Template:

readme(Resource,ReadMeFile)

Mode and number of proofs:

readme(+atom,-atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

ReadMeFile is neither a variable nor an atom:

type_error(atom,ReadMeFile)

readme/1

Prints the path to the resource (pack or registry) readme file (using the native operating-system format). Fails if the resource is not defined or installed or if no readme file is found for it.

Compilation flags:

static

Template:

readme(Resource)

Mode and number of proofs:

readme(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

logtalk_packs/1

Returns the directory prefix (using the internal backend format) where the registries, packs, and archives are installed.

Compilation flags:

static

Template:

logtalk_packs(LogtalkPacks)

Mode and number of proofs:

logtalk_packs(-atom) - one

Exceptions:

LogtalkPacks is neither a variable nor an atom:

type_error(atom,LogtalkPacks)

logtalk_packs/0

Prints the directory prefix (using the native operating-system format) where the registries, packs, and archives are installed.

Compilation flags:

static

Mode and number of proofs:

logtalk_packs - one

prefix/1

Returns the directory prefix (using the internal backend format) where the registries or packs are installed.

Compilation flags:

static

Template:

prefix(Prefix)

Mode and number of proofs:

prefix(-atom) - one

Exceptions:

Prefix is neither a variable nor an atom:

type_error(atom,Prefix)

prefix/0

Prints the directory prefix (using the native operating-system format) where the registries or packs are installed.

Compilation flags:

static

Mode and number of proofs:

prefix - one

Protected predicates

readme_file_path/2

Returns the absolute path for the given directory readme file if it exists.

Compilation flags:

static

Template:

readme_file_path(Directory,ReadMeFile)

Mode and number of proofs:

readme_file_path(+atom,-atom) - zero_or_one

Remarks:

	Valid file names: Case variations of README and NOTES with or without a .md or .txt extension. The recommended file name is README.md.

print_readme_file_path/1

Prints the absolute path for the given directory readme file if it exists. Succeeds otherwise.

Compilation flags:

static

Template:

print_readme_file_path(Directory)

Mode and number of proofs:

print_readme_file_path(+atom) - one

command/2

Executes a shell command. Prints an error message and fails if the command fails.

Compilation flags:

static

Template:

command(Command,FailureMessage)

Mode and number of proofs:

command(+atom,@nonvar) - zero_or_one

load_registry/1

Loads all registry files from the given directory.

Compilation flags:

static

Template:

load_registry(Directory)

Mode and number of proofs:

load_registry(+atom) - zero_or_one

sha256sum_command/1

Returns the name of the sha256sum command to be used on POSIX systems. Fails if neither gsha256sum or sha256sum commands are found.

Compilation flags:

static

Template:

sha256sum_command(Command)

Mode and number of proofs:

sha256sum_command(-atom) - zero_or_one

tar_command/1

Returns the name of the tar command to be used depending on the operating-system.

Compilation flags:

static

Template:

tar_command(Command)

Mode and number of proofs:

tar_command(-atom) - one

supported_archive/1

True iff the archive format is supported.

Compilation flags:

static

Template:

supported_archive(Extension)

Mode and number of proofs:

supported_archive(+atom) - zero_or_one

supported_url_archive/1

True iff the URL archive is supported.

Compilation flags:

static

Template:

supported_url_archive(URL)

Mode and number of proofs:

supported_url_archive(+atom) - zero_or_one

decode_url_spaces/2

Decodes encoded spaces (%20) in URLs to spaces.

Compilation flags:

static

Template:

decode_url_spaces(URL,Decoded)

Mode and number of proofs:

decode_url_spaces(+atom,-atom) - one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

packs_messages

Packs default message translations.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:41:0

Date: 2025-05-23

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

packs_specs_hook

Hook object for filtering registry and pack specification file contents.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-06-28

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

character

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

registries

Registry handling predicates.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:62:0

Date: 2025-08-20

Compilation flags:

static, context_switching_calls

Imports:

public packs_common

public options

Uses:

list

logtalk

os

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 help/0 logtalk_packs/0 logtalk_packs/1 option/2 option/3 pin/0 pin/1 pinned/1 prefix/0 prefix/1 readme/1 readme/2 reset/0 setup/0 unpin/0 unpin/1 valid_option/1 valid_options/1 verify_commands_availability/0

	Public predicates

	list/0

	describe/1

	defined/4

	add/3

	add/2

	add/1

	update/2

	update/1

	update/0

	delete/2

	delete/1

	delete/0

	clean/1

	clean/0

	provides/2

	lint/1

	lint/0

	Protected predicates

	Private predicates

	Operators

Public predicates

list/0

Prints a list of all defined registries, including how defined (git, archive, or directory) and if they are pinned.

Compilation flags:

static

Mode and number of proofs:

list - one

describe/1

Prints all registry entries.

Compilation flags:

static

Template:

describe(Registry)

Mode and number of proofs:

describe(+atom) - one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

defined/4

Enumerates by backtracking all defined registries, their definition URL, how they are defined (git, archive, or directory), and if they are pinned.

Compilation flags:

static

Template:

defined(Registry,URL,HowDefined,Pinned)

Mode and number of proofs:

defined(?atom,?atom,?atom,?boolean) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is neither a variable nor an atom:

type_error(atom,URL)

HowDefined is neither a variable nor an atom:

type_error(atom,HowDefined)

Pinned is neither a variable nor a boolean:

type_error(boolean,Pinned)

add/3

Adds a new registry using the given options. Fails if the registry cannot be added or if it is already defined but not using update(true) or force(true) options. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(Registry,URL,Options)

Mode and number of proofs:

add(+atom,+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	Registry name: Must be the URL basename when using a git URL or a local directory URL. Must also be the declared registry name in the registry specification object.

	HTTPS URLs: Must end with either a .git extension or an archive extension.

	update(Boolean) option: Update registry if already defined. Default is false. Overrides the force/1 option.

	force(Boolean) option: Force registry re-installation if already defined by first deleting the previous installation. Default is false.

	clean(Boolean) option: Clean registry archive after updating. Default is false.

	verbose(Boolean) option: Verbose adding steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

add/2

Adds a new registry using default options. Fails if the registry cannot be added or if it is already defined. HTTPS URLs must end with either a .git extension or an archive extension. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(Registry,URL)

Mode and number of proofs:

add(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Remarks:

	Registry name: Must be the URL basename when using a git URL or a local directory URL. Must also be the declared registry name in the registry specification object.

See also:

add/3

add/1

Adds a new registry using default options. Fails if the registry cannot be added or if it is already defined. HTTPS URLs must end with a .git extension or an archive extension. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(URL)

Mode and number of proofs:

add(+atom) - zero_or_one

Exceptions:

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Remarks:

	Registry name: Taken from the URL basename.

See also:

add/2

update/2

Updates a defined registry using the specified options. Fails if the registry is not defined.

Compilation flags:

static

Template:

update(Registry,Options)

Mode and number of proofs:

update(+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force update if the registry is pinned. Default is false.

	clean(Boolean) option: Clean registry archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/1

Updates a defined registry using default options. Fails if the registry is not defined.

Compilation flags:

static

Template:

update(Registry)

Mode and number of proofs:

update(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

update/2

update/0

Updates all defined registries using default options.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

delete/2

Deletes a registry using the specified options (if not pinned).

Compilation flags:

static

Template:

delete(Registry,Options)

Mode and number of proofs:

delete(+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force deletion if the registry is pinned or there are installed registry packs. Default is false.

	clean(Boolean) option: Clean registry archive after deleting. Default is false.

	verbose(Boolean) option: Verbose deleting steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

delete/1

Deletes a registry using default options.

Compilation flags:

static

Template:

delete(Registry)

Mode and number of proofs:

delete(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

delete/2

delete/0

Deletes all registries using the force(true) option.

Compilation flags:

static

Mode and number of proofs:

delete - zero_or_one

clean/1

Cleans all registry archives. Fails if the registry is not defined.

Compilation flags:

static

Template:

clean(Registry)

Mode and number of proofs:

clean(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

clean/0

Cleans all archives for all registries.

Compilation flags:

static

Mode and number of proofs:

clean - one

provides/2

Enumerates by backtracking all packs provided by a registry.

Compilation flags:

static

Template:

provides(Registry,Pack)

Mode and number of proofs:

provides(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/1

Checks the registry specification. Fails if the registry is not defined or if linting detects errors.

Compilation flags:

static

Template:

lint(Registry)

Mode and number of proofs:

lint(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

lint/0

Checks all registry specifications.

Compilation flags:

static

Mode and number of proofs:

lint - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

registry_loader_hook

Hook object for filtering registry loader file contents.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-11-20

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

character

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

registry_protocol

Registry specification protocol. Objects implementing this protocol should be named after the pack with a _registry suffix and saved in a file with the same name as the object.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:12:0

Date: 2022-06-28

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	name/1

	description/1

	home/1

	clone/1

	archive/1

	note/2

	Protected predicates

	Private predicates

	Operators

Public predicates

name/1

Registry name. Preferably a valid unquoted atom.

Compilation flags:

static

Template:

name(Name)

Mode and number of proofs:

name(?atom) - zero_or_one

description/1

Registry one line description.

Compilation flags:

static

Template:

description(Description)

Mode and number of proofs:

description(?atom) - zero_or_one

home/1

Registry home HTTPS or file URL.

Compilation flags:

static

Template:

home(Home)

Mode and number of proofs:

home(?atom) - zero_or_one

clone/1

Registry git clone HTTPS URL (must end with the .git extension). Git repos should have the same name as the registry.

Compilation flags:

static

Template:

clone(URL)

Mode and number of proofs:

clone(?atom) - zero_or_one

archive/1

Registry archive download HTTPS URL.

Compilation flags:

static

Template:

archive(URL)

Mode and number of proofs:

archive(?atom) - zero_or_one

note/2

Table of notes per action.

Compilation flags:

static

Template:

note(Action,Note)

Mode and number of proofs:

note(?atom,-atom) - zero_or_more

Remarks:

	Action: Possible values are add, update, and delete. When unbound, the note apply to all actions.

	Note: Note to print when performing an action on a registry.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

pddl

Simple parser of PDDL 3.0 files.

Availability:

logtalk_load(pddl_parser(loader))

Author: Robert Sasak, Charles University in Prague. Adapted to Logtalk by Paulo Moura.

Version: 1:2:2

Date: 2024-03-14

Compilation flags:

static, context_switching_calls

Imports:

public read_file

Uses:

user

Remarks:

(none)

Inherited public predicates:

 read_file/2

	Public predicates

	parse_domain/3

	parse_domain/2

	parse_problem/2

	parse_problem/3

	Protected predicates

	Private predicates

	Operators

Public predicates

parse_domain/3

Parses a PDDL 3.0 domain file, returning a compound term representing its contents and rest of the file. Useful when domain and problem are in one file.

Compilation flags:

static

Template:

parse_domain(File,Output,RestOfFile)

Mode and number of proofs:

parse_domain(+atom,-compound,-list(atom)) - one

parse_domain/2

Parses a PDDL 3.0 domain file, returning a compound term representing its contents.

Compilation flags:

static

Template:

parse_domain(File,Output)

Mode and number of proofs:

parse_domain(+atom,-compound) - one

parse_problem/2

Parses a PDDL 3.0 problem file, returning a compound term representing its contents.

Compilation flags:

static

Template:

parse_problem(File,Output)

Mode and number of proofs:

parse_problem(+atom,-compound) - one

parse_problem/3

Parses a PDDL 3.0 problem file, returning a compound term representing its contents and rest of the file. Useful when domain and problem are in one file.

Compilation flags:

static

Template:

parse_problem(File,Output,RestOfFile)

Mode and number of proofs:

parse_problem(+atom,-compound,-list(atom)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

read_file

Utility predicates for parsing a file as a list of atoms.

Availability:

logtalk_load(pddl_parser(loader))

Author: Robert Sasak, Charles University in Prague. Adapted to Logtalk by Paulo Moura.

Version: 1:0:0

Date: 2011-08-04

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	read_file/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/2

Reads a file character by character, parsing it into a list of atoms.

Compilation flags:

static

Template:

read_file(File,List)

Mode and number of proofs:

read_file(+atom,-list(atom)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

ports_profiler

Predicate execution box model port profiler.

Availability:

logtalk_load(ports_profiler(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-05-18

Compilation flags:

static, context_switching_calls

Provides:

logtalk::debug_handler/1

logtalk::debug_handler/3

Uses:

logtalk

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	start/0

	stop/0

	data/0

	data/1

	data/2

	reset/0

	reset/1

	port/5

	clause_location/6

	clause/5

	Protected predicates

	Private predicates

	clause_location_/6

	port_/5

	clause_/5

	entity_defines_/2

	Operators

Public predicates

start/0

Activates the ports profiler for followup goals.

Compilation flags:

static

Mode and number of proofs:

start - one

stop/0

Deactivates the ports profiler.

Compilation flags:

static

Mode and number of proofs:

stop - one

data/0

Prints a table with all port profiling data.

Compilation flags:

static

Mode and number of proofs:

data - one

data/1

Prints a table with all port profiling data for the specified entity.

Compilation flags:

static

Template:

data(Entity)

Mode and number of proofs:

data(+entity_identifier) - one

data/2

Prints a table with all port profiling data for the specified entity predicate (or non-terminal).

Compilation flags:

static

Template:

data(Entity,Predicate)

Mode and number of proofs:

data(+entity_identifier,+predicate_indicator) - one

data(+entity_identifier,+non_terminal_indicator) - one

reset/0

Resets all port profiling data.

Compilation flags:

static

Mode and number of proofs:

reset - one

reset/1

Resets all port profiling data for the specified entity.

Compilation flags:

static

Template:

reset(Entity)

Mode and number of proofs:

reset(+entity_identifier) - one

port/5

Enumerates, by backtracking, all collected port profiling data.

Compilation flags:

static

Template:

port(Port,Entity,Functor,Arity,Count)

Mode and number of proofs:

port(?atom,?entity_identifier,?atom,?integer,?integer) - zero_or_more

clause_location/6

Enumerates, by backtracking, all collected profiled clause location data.

Compilation flags:

static

Template:

clause_location(Entity,Functor,Arity,ClauseNumber,File,BeginLine)

Mode and number of proofs:

clause_location(?entity_identifier,?atom,?integer,?integer,?atom,?integer) - zero_or_more

clause/5

Enumerates, by backtracking, all collected clause profiling data.

Compilation flags:

dynamic

Template:

clause(Entity,Functor,Arity,ClauseNumber,Count)

Mode and number of proofs:

clause(?entity_identifier,?atom,?integer,?integer,?integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

clause_location_/6

Internal table of collected profiled clause location data.

Compilation flags:

dynamic

Template:

clause_location_(Entity,Functor,Arity,ClauseNumber,File,BeginLine)

Mode and number of proofs:

clause_location_(?entity_identifier,?atom,?integer,?integer,?atom,?integer) - zero_or_more

port_/5

Internal table of collected port profiling data.

Compilation flags:

dynamic

Template:

port_(Port,Entity,Functor,Arity,Count)

Mode and number of proofs:

port_(?atom,?entity_identifier,?atom,?integer,?integer) - zero_or_more

clause_/5

Internal table of collected clause profiling data.

Compilation flags:

dynamic

Template:

clause_(Entity,Functor,Arity,ClauseNumber,Count)

Mode and number of proofs:

clause_(?entity_identifier,?atom,?integer,?integer,?integer) - zero_or_more

entity_defines_/2

Internal cache for profiled predicates.

Compilation flags:

dynamic

Template:

entity_defines_(Entity,Predicate)

Mode and number of proofs:

entity_defines_(?entity_identifier,?predicate_indicator) - zero_or_more

Operators

(none)

 object

queue

Queue predicates implemented using difference lists.

Availability:

logtalk_load(queues(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-12-09

Compilation flags:

static, context_switching_calls

Implements:

public queuep

Extends:

public compound

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/3 as_list/2 check/1 depth/2 empty/1 ground/1 head/2 join/3 join_all/3 jump/3 jump_all/3 jump_all_block/3 length/2 map/2 map/3 new/1 numbervars/1 numbervars/3 occurs/2 serve/3 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

queuep

Queue protocol.

Availability:

logtalk_load(queues(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-12-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	empty/1

	head/2

	join/3

	join_all/3

	jump/3

	jump_all/3

	jump_all_block/3

	append/3

	length/2

	serve/3

	as_list/2

	map/2

	map/3

	Protected predicates

	Private predicates

	Operators

Public predicates

empty/1

True if the queue is empty.

Compilation flags:

static

Template:

empty(Queue)

Mode and number of proofs:

empty(@queue) - zero_or_one

head/2

Unifies Head with the first element of the queue.

Compilation flags:

static

Template:

head(Queue,Head)

Mode and number of proofs:

head(+queue,?term) - zero_or_one

join/3

Adds the new element at the end of the queue.

Compilation flags:

static

Template:

join(Element,Queue,NewQueue)

Mode and number of proofs:

join(@term,+queue,-queue) - zero_or_one

join_all/3

Adds the new elements at the end of the queue. The elements are added in the same order that they appear in the list.

Compilation flags:

static

Template:

join_all(List,Queue,NewQueue)

Mode and number of proofs:

join_all(+list,+queue,-queue) - zero_or_one

jump/3

Adds the new element at the front of the queue.

Compilation flags:

static

Template:

jump(Element,Queue,NewQueue)

Mode and number of proofs:

jump(@term,+queue,-queue) - zero_or_one

jump_all/3

Adds the new elements at the front of the queue. The last element in the list will be at the front of the queue.

Compilation flags:

static

Template:

jump_all(Elements,Queue,NewQueue)

Mode and number of proofs:

jump_all(+list,+queue,-queue) - zero_or_one

jump_all_block/3

Adds the new elements as a block at the front of the queue. The first element in the list will be at the front of the queue.

Compilation flags:

static

Template:

jump_all_block(Elements,Queue,NewQueue)

Mode and number of proofs:

jump_all_block(+list,+queue,-queue) - zero_or_one

append/3

Appends two queues. The new queue will have the elements of the first queue followed by the elements of the second queue.

Compilation flags:

static

Template:

append(Queue1,Queue2,NewQueue)

Mode and number of proofs:

append(+queue,+queue,-queue) - one

length/2

Queue length.

Compilation flags:

static

Template:

length(Queue,Length)

Mode and number of proofs:

length(+heap,?integer) - zero_or_one

serve/3

Removes the first element of the queue for service.

Compilation flags:

static

Template:

serve(Queue,Head,NewQueue)

Mode and number of proofs:

serve(+queue,?term,-queue) - zero_or_one

as_list/2

Converts a queue to a list.

Compilation flags:

static

Template:

as_list(Queue,List)

Mode and number of proofs:

as_list(+queue,-list) - one

map/2

Applies a closure to all elements of a queue.

Compilation flags:

static

Template:

map(Closure,Queue)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(+callable,+queue) - zero_or_one

map/3

Applies a closure to all elements of a queue constructing a new queue.

Compilation flags:

static

Template:

map(Closure,Queue,NewQueue)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(+callable,+queue,?queue) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

queue

 object

backend_random

Random number generator predicates using the backend Prolog compiler built-in random generator.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:21:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Implementation: The backend Prolog compiler built-in random generator is only used for the basic random/1, get_seed/1, and set_seed/1 predicates.

	Portability: B-Prolog, CxProlog, ECLiPSe, JIProlog, Qu-Prolog, and Quintus Prolog do not provide implementations for the get_seed/1 and set_seed/1 predicates and calling these predicates simply succeed without performing any action.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

random, fast_random

 object

fast_random

Fast portable random number generator predicates. Core predicates originally written by Richard O’Keefe. Based on algorithm AS 183 from Applied Statistics.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 2:12:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Single random number generator: This object provides a faster version of the random library object but does not support being extended to define multiple random number generators.

	Randomness: Loading this object always initializes the random generator seed to the same value, thus providing a pseudo random number generator. The randomize/1 predicate can be used to initialize the seed with a random value.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	reset_seed/0

	randomize/1

	Protected predicates

	Private predicates

	seed_/3

	Operators

Public predicates

reset_seed/0

Resets the random generator seed to its default value. Use get_seed/1 and set_seed/1 instead if you need reproducibility.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_seed - one

randomize/1

Randomizes the random generator using a positive integer to compute a new seed. Use of a large integer is recommended. In alternative, when using a small integer argument, discard the first dozen random values.

Compilation flags:

static, synchronized

Template:

randomize(Seed)

Mode and number of proofs:

randomize(+positive_integer) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

seed_/3

Stores the current random generator seed values.

Compilation flags:

dynamic

Template:

seed_(S0,S1,S2)

Mode and number of proofs:

seed_(-integer,-integer,-integer) - one

Operators

(none)

See also

random, backend_random

 protocol

pseudo_random_protocol

Pseudo-random number generator protocol for seed handling predicates. These predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-02-21

Compilation flags:

static

Extends:

public random_protocol

Remarks:

(none)

Inherited public predicates:

 between/3 enumerate/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 permutation/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 swap/2 swap_consecutive/2

	Public predicates

	get_seed/1

	set_seed/1

	Protected predicates

	Private predicates

	Operators

Public predicates

get_seed/1

Gets the current random generator seed. Seed should be regarded as an opaque ground term.

Compilation flags:

static, synchronized

Template:

get_seed(Seed)

Mode and number of proofs:

get_seed(-ground) - one

set_seed/1

Sets the random generator seed to a given value returned by calling the get_seed/1 predicate.

Compilation flags:

static, synchronized

Template:

set_seed(Seed)

Mode and number of proofs:

set_seed(+ground) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

random, backend_random, fast_random

 object

random

Portable random number generator predicates. Core predicates originally written by Richard O’Keefe. Based on algorithm AS 183 from Applied Statistics.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 2:12:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Multiple random number generators: To define multiple random number generators, simply extend this object. The derived objects must send to self the reset_seed/0 message.

	Randomness: Loading this object always initializes the random generator seed to the same value, thus providing a pseudo random number generator. The randomize/1 predicate can be used to initialize the seed with a random value.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	reset_seed/0

	randomize/1

	Protected predicates

	Private predicates

	seed_/3

	Operators

Public predicates

reset_seed/0

Resets the random generator seed to its default value. Use get_seed/1 and set_seed/1 instead if you need reproducibility.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_seed - one

randomize/1

Randomizes the random generator using a positive integer to compute a new seed. Use of a large integer is recommended. In alternative, when using a small integer argument, discard the first dozen random values.

Compilation flags:

static, synchronized

Template:

randomize(Seed)

Mode and number of proofs:

randomize(+positive_integer) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

seed_/3

Stores the current random generator seed values.

Compilation flags:

dynamic

Template:

seed_(S0,S1,S2)

Mode and number of proofs:

seed_(-integer,-integer,-integer) - one

Operators

(none)

See also

fast_random, backend_random

 protocol

random_protocol

Random number generator protocol. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 3:3:0

Date: 2023-11-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	random/1

	between/3

	member/2

	select/3

	select/4

	swap/2

	swap_consecutive/2

	enumerate/2

	permutation/2

	sequence/4

	set/4

	random/3

	randseq/4

	randset/4

	maybe/0

	maybe/1

	maybe/2

	maybe_call/1

	maybe_call/2

	Protected predicates

	Private predicates

	Operators

Public predicates

random/1

Returns a new random float value in the interval [0.0, 1.0[.

Compilation flags:

static, synchronized

Template:

random(Random)

Mode and number of proofs:

random(-float) - one

between/3

Returns a new random integer in the interval [Lower, Upper]. Fails if Lower or Upper are not integers or if Lower > Upper.

Compilation flags:

static

Template:

between(Lower,Upper,Random)

Mode and number of proofs:

between(+integer,+integer,-integer) - zero_or_one

member/2

Returns a random member of a list. Fails if the list is empty.

Compilation flags:

static

Template:

member(Random,List)

Mode and number of proofs:

member(-term,+list(term)) - zero_or_one

select/3

Returns a random member of a list and the rest of the list. Fails if the list is empty.

Compilation flags:

static

Template:

select(Random,List,Rest)

Mode and number of proofs:

select(-term,+list(term),-list(term)) - zero_or_one

select/4

Returns a random member of a list, replacing it with a new element and returning the resulting list.

Compilation flags:

static

Template:

select(Random,OldList,New,NewList)

Mode and number of proofs:

select(-term,+list(term),@term,-list(term)) - zero_or_one

swap/2

Swaps two randomly selected elements of a list. Fails if the list is empty or contains a single element.

Compilation flags:

static

Template:

swap(OldList,NewList)

Mode and number of proofs:

swap(-term,+list(term)) - zero_or_one

swap_consecutive/2

Swaps two randomly selected consecutive elements of a list. Fails if the list is empty or contains a single element.

Compilation flags:

static

Template:

swap_consecutive(OldList,NewList)

Mode and number of proofs:

swap_consecutive(-term,+list(term)) - zero_or_one

enumerate/2

Enumerates the elements of a list in random order. Fails if the list is empty.

Compilation flags:

static

Template:

enumerate(List,Random)

Mode and number of proofs:

enumerate(+list(term),--term) - zero_or_more

permutation/2

Returns a random permutation of a list.

Compilation flags:

static, synchronized

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(+list,-list) - one

sequence/4

Returns list of random integers of given length in random order in interval [Lower, Upper]. Fails if Length, Lower, or Upper are not integers or if Lower > Upper.

Compilation flags:

static, synchronized

Template:

sequence(Length,Lower,Upper,List)

Mode and number of proofs:

sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

set/4

Returns ordered set of random integers of given size in interval [Lower, Upper]. Fails if Length, Lower, or Upper are not integers, if Lower > Upper, or if Length > Upper - Lower + 1.

Compilation flags:

static, synchronized

Template:

set(Length,Lower,Upper,Set)

Mode and number of proofs:

set(+integer,+integer,+integer,-list(integer)) - zero_or_one

random/3

Returns a new random value in the interval [Lower, Upper[. Fails if Lower > Upper. Deprecated. Use between/3 for integers.

Compilation flags:

static, synchronized

Template:

random(Lower,Upper,Random)

Mode and number of proofs:

random(+integer,+integer,-integer) - zero_or_one

random(+float,+float,-float) - zero_or_one

randseq/4

Returns list of random values of given length in random order in interval [Lower, Upper[. Fails if Lower > Upper or if the arguments are neither integers or floats. Deprecated. Use sequence/4 for integers.

Compilation flags:

static, synchronized

Template:

randseq(Length,Lower,Upper,List)

Mode and number of proofs:

randseq(+integer,+integer,+integer,-list(integer)) - zero_or_one

randseq(+integer,+float,+float,-list(float)) - zero_or_one

randset/4

Returns ordered set of random values of given size in interval [Lower, Upper[. Fails if the arguments are neither integers or floats, Lower > Upper, or Length > Upper - Lower when arguments are integers. Deprecated. Use set/4 for integers.

Compilation flags:

static, synchronized

Template:

randset(Length,Lower,Upper,Set)

Mode and number of proofs:

randset(+integer,+integer,+integer,-list(integer)) - zero_or_one

randset(+integer,+float,+float,-list(float)) - zero_or_one

maybe/0

Succeeds or fails with equal probability.

Compilation flags:

static

Mode and number of proofs:

maybe - zero_or_one

maybe/1

Succeeds with probability Probability or fails with probability 1 - Probability. Fails if Probability is not a float or is outside the interval [0.0, 1.0].

Compilation flags:

static

Template:

maybe(Probability)

Mode and number of proofs:

maybe(+probability) - zero_or_one

maybe/2

Succeeds with probability K/N where K and N are integers satisfying the equation 0 =< K =< N. Fails otherwise.

Compilation flags:

static

Template:

maybe(K,N)

Mode and number of proofs:

maybe(+non_negative_integer,+non_negative_integer) - zero_or_one

maybe_call/1

Calls a goal or fails without calling it with equal probability. When the goal is called, it determines if this predicate succeeds once or fails.

Compilation flags:

static

Template:

maybe_call(Goal)

Meta-predicate template:

maybe_call(0)

Mode and number of proofs:

maybe_call(+callable) - zero_or_one

maybe_call/2

Calls a goal or fails without calling it with probability Probability. When the goal is called, it determines if this predicate succeeds once or fails.

Compilation flags:

static

Template:

maybe_call(Probability,Goal)

Meta-predicate template:

maybe_call(*,0)

Mode and number of proofs:

maybe_call(+probability,+callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

random, backend_random, fast_random

 protocol

sampling_protocol

Predicates for sampling probability distributions.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-02-25

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	normal/3

	lognormal/3

	wald/3

	chi_squared/2

	fisher/3

	logseries/2

	geometric/2

	hypergeometric/4

	exponential/2

	binomial/3

	bernoulli/2

	beta/3

	gamma/3

	logistic/3

	poisson/2

	power/2

	weibull/3

	uniform/3

	uniform/1

	triangular/4

	von_mises/3

	gumbel/3

	dirichlet/2

	circular_uniform_polar/3

	circular_uniform_cartesian/3

	standard_t/2

	standard_cauchy/3

	standard_exponential/1

	standard_gamma/2

	standard_normal/1

	Protected predicates

	Private predicates

	Operators

Public predicates

normal/3

Returns a scaled normally (Gaussian) distributed random value with the given mean and standard deviation.

Compilation flags:

static

Template:

normal(Mean,Deviation,Value)

Mode and number of proofs:

normal(+float,+non_negative_float,-float) - one

lognormal/3

Returns a scaled log normally distributed random value with the given mean and standard deviation for the normal distribution.

Compilation flags:

static

Template:

lognormal(Mean,Deviation,Value)

Mode and number of proofs:

lognormal(+float,+non_negative_float,-float) - one

wald/3

Returns a scaled Wald (inverse Gaussian) distributed random value with the given mean.

Compilation flags:

static

Template:

wald(Mean,Scale,Value)

Mode and number of proofs:

wald(+positive_float,+positive_float,-float) - one

chi_squared/2

Returns a chi-squared distributed random value given the degrees of freedom.

Compilation flags:

static

Template:

chi_squared(DegreesOfFreedom,Value)

Mode and number of proofs:

chi_squared(+positive_integer,-float) - one

fisher/3

Returns a Fisher distributed random value given the degrees of freedom in the numerator and in the denominator.

Compilation flags:

static

Template:

fisher(DegreesOfFreedomNumerator,DegreesOfFreedomDenominator,Value)

Mode and number of proofs:

fisher(+positive_integer,+positive_integer,-float) - one

logseries/2

Returns a logseries distributed random value. Requires 0.0 < Shape < 1 and fails otherwise.

Compilation flags:

static

Template:

logseries(Shape,Value)

Mode and number of proofs:

logseries(+non_negative_integer,-positive_integer) - zero_or_one

geometric/2

Returns a geometric distributed random value (trials until the first success).

Compilation flags:

static

Template:

geometric(Probability,Value)

Mode and number of proofs:

geometric(+probability,-positive_integer) - one

hypergeometric/4

Returns a hypergeometric distributed random value.

Compilation flags:

static

Template:

hypergeometric(Population,Successes,Draws,Value)

Mode and number of proofs:

hypergeometric(+non_negative_integer,+non_negative_integer,+non_negative_integer,-non_negative_integer) - one

exponential/2

Returns a scaled exponentially distributed random value.

Compilation flags:

static

Template:

exponential(Scale,Value)

Mode and number of proofs:

exponential(+positive_float,-float) - one

binomial/3

Returns a binomial distributed random value.

Compilation flags:

static

Template:

binomial(Trials,Probability,Value)

Mode and number of proofs:

binomial(+positive_integer,+positive_float,-float) - one

bernoulli/2

Returns a Bernoulli distributed random value.

Compilation flags:

static

Template:

bernoulli(Probability,Value)

Mode and number of proofs:

bernoulli(+positive_integer,-float) - one

beta/3

Returns a beta distributed random value.

Compilation flags:

static

Template:

beta(Alpha,Beta,Value)

Mode and number of proofs:

beta(+positive_float,+positive_float,-float) - one

gamma/3

Returns a scaled gamma distributed random value.

Compilation flags:

static

Template:

gamma(Shape,Scale,Value)

Mode and number of proofs:

gamma(+positive_float,+positive_float,-float) - one

logistic/3

Returns a scaled logistic distributed random value.

Compilation flags:

static

Template:

logistic(Location,Scale,Value)

Mode and number of proofs:

logistic(+float,+positive_float,-float) - one

poisson/2

Returns a Poisson distributed random value given the expected number of events.

Compilation flags:

static

Template:

poisson(Mean,Value)

Mode and number of proofs:

poisson(+non_negative_float,-non_negative_integer) - one

power/2

Returns a power distributed random value.

Compilation flags:

static

Template:

power(Exponent,Value)

Mode and number of proofs:

power(+positive_float,-float) - one

weibull/3

Returns a scaled Weibull distributed random value.

Compilation flags:

static

Template:

weibull(Shape,Scale,Value)

Mode and number of proofs:

weibull(+float,+positive_float,-float) - one

uniform/3

Returns a uniform distributed random value in the interval``[Lower, Upper[. Fails if ``Lower or Upper are not integers or if Lower > Upper. Same as random/3.

Compilation flags:

static

Template:

uniform(Lower,Upper,Value)

Mode and number of proofs:

uniform(+float,+float,-float) - zero_or_one

uniform/1

Returns a uniform distributed random value in the interval``[0.0, 1.0[. Same as ``random/1.

Compilation flags:

static

Template:

uniform(Value)

Mode and number of proofs:

uniform(-float) - one

triangular/4

Returns a triangular distributed random value. Fails if the Left =< Mode =< Right condition does not hold.

Compilation flags:

static

Template:

triangular(Left,Mode,Right,Value)

Mode and number of proofs:

triangular(+float,+float,+float,-float) - zero_or_one

von_mises/3

Returns a von Mises distributed random value.

Compilation flags:

static

Template:

von_mises(Mode,Concentration,Value)

Mode and number of proofs:

von_mises(+float,+non_negative_float,-float) - zero_or_one

gumbel/3

Returns a Gumbel distributed random value.

Compilation flags:

static

Template:

gumbel(Location,Scale,Value)

Mode and number of proofs:

gumbel(+float,+non_negative_float,-float) - zero_or_one

dirichlet/2

Returns a Dirichlet distributed list of random values.

Compilation flags:

static

Template:

dirichlet(Alphas,Thetas)

Mode and number of proofs:

dirichlet(+list(positive_float),-list(positive_float)) - one

circular_uniform_polar/3

Returns a circular uniform distributed random point in polar coordinates given the circle radius.

Compilation flags:

static

Template:

circular_uniform_polar(Radius,Rho,Theta)

Mode and number of proofs:

circular_uniform_polar(+float,+float,-float) - one

circular_uniform_cartesian/3

Returns a circular uniform distributed random point in cartesian coordinates given the circle radius.

Compilation flags:

static

Template:

circular_uniform_cartesian(Radius,X,Y)

Mode and number of proofs:

circular_uniform_cartesian(+float,+float,-float) - one

standard_t/2

Returns a standard Student’s t distributed random value given the degrees of freedom.

Compilation flags:

static

Template:

standard_t(DegreesOfFreedom,Value)

Mode and number of proofs:

standard_t(+positive_integer,-float) - one

standard_cauchy/3

Returns a standard Cauchy distributed random value.

Compilation flags:

static

Template:

standard_cauchy(Location,Scale,Value)

Mode and number of proofs:

standard_cauchy(+float,+float,-float) - one

standard_exponential/1

Returns a standard exponential distributed random value.

Compilation flags:

static

Template:

standard_exponential(Value)

Mode and number of proofs:

standard_exponential(-float) - one

standard_gamma/2

Returns a standard gamma distributed random value.

Compilation flags:

static

Template:

standard_gamma(Shape,Value)

Mode and number of proofs:

standard_gamma(+positive_float,-float) - one

standard_normal/1

Returns a standard normally (Gaussian) distributed random value (using a default mean of 0.0 and a default deviation of 1.0).

Compilation flags:

static

Template:

standard_normal(Value)

Mode and number of proofs:

standard_normal(-float) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

random_protocol, pseudo_random_protocol

 object

reader

Predicates for reading text file and text stream contents to lists of terms, characters, or character codes and for reading binary file and binary stream contents to lists of bytes.

Availability:

logtalk_load(reader(loader))

Author: Paulo Moura

Version: 2:2:0

Date: 2023-11-14

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	file_to_codes/2

	file_to_codes/3

	file_to_chars/2

	file_to_chars/3

	file_to_terms/2

	file_to_terms/3

	file_to_bytes/2

	file_to_bytes/3

	stream_to_codes/2

	stream_to_codes/3

	stream_to_chars/2

	stream_to_chars/3

	stream_to_terms/2

	stream_to_terms/3

	stream_to_bytes/2

	stream_to_bytes/3

	line_to_chars/2

	line_to_chars/3

	line_to_codes/2

	line_to_codes/3

	Protected predicates

	Private predicates

	Operators

Public predicates

file_to_codes/2

Reads a text file into a list of character codes.

Compilation flags:

static

Template:

file_to_codes(File,Codes)

Mode and number of proofs:

file_to_codes(+atom,-list(character_code)) - one

file_to_codes/3

Reads a text file into a list of character codes. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_codes(File,Codes,Tail)

Mode and number of proofs:

file_to_codes(+atom,-list(character_code),@term) - one

file_to_chars/2

Reads a text file into a list of characters.

Compilation flags:

static

Template:

file_to_chars(File,Chars)

Mode and number of proofs:

file_to_chars(+atom,-list(character)) - one

file_to_chars/3

Reads a text file into a list of characters. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_chars(File,Chars,Tail)

Mode and number of proofs:

file_to_chars(+atom,-list(character),@term) - one

file_to_terms/2

Reads a text file into a list of terms.

Compilation flags:

static

Template:

file_to_terms(File,Terms)

Mode and number of proofs:

file_to_terms(+atom,-list(term)) - one

file_to_terms/3

Reads a text file into a list of terms. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_terms(File,Terms,Tail)

Mode and number of proofs:

file_to_terms(+atom,-list(term),@term) - one

file_to_bytes/2

Reads a binary file into a list of bytes.

Compilation flags:

static

Template:

file_to_bytes(File,Bytes)

Mode and number of proofs:

file_to_bytes(+atom,-list(byte)) - one

file_to_bytes/3

Reads a binary file into a list of bytes. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_bytes(File,Bytes,Tail)

Mode and number of proofs:

file_to_bytes(+atom,-list(byte),@term) - one

stream_to_codes/2

Reads a text stream into a list of character codes. Does not close the stream.

Compilation flags:

static

Template:

stream_to_codes(Stream,Codes)

Mode and number of proofs:

stream_to_codes(+stream_or_alias,-list(character_code)) - one

stream_to_codes/3

Reads a text stream into a list of character codes. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_codes(Stream,Codes,Tail)

Mode and number of proofs:

stream_to_codes(+stream_or_alias,-list(character_code),@term) - one

stream_to_chars/2

Reads a text stream into a list of characters. Does not close the stream.

Compilation flags:

static

Template:

stream_to_chars(Stream,Chars)

Mode and number of proofs:

stream_to_chars(+stream_or_alias,-list(char)) - one

stream_to_chars/3

Reads a text stream into a list of characters. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_chars(Stream,Chars,Tail)

Mode and number of proofs:

stream_to_chars(+stream_or_alias,-list(char),@term) - one

stream_to_terms/2

Reads a text stream into a list of terms. Does not close the stream.

Compilation flags:

static

Template:

stream_to_terms(Stream,Terms)

Mode and number of proofs:

stream_to_terms(+stream_or_alias,-list(term)) - one

stream_to_terms/3

Reads a text stream into a list of terms. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_terms(Stream,Terms,Tail)

Mode and number of proofs:

stream_to_terms(+stream_or_alias,-list(term),@term) - one

stream_to_bytes/2

Reads a binary stream into a list of bytes. Does not close the stream.

Compilation flags:

static

Template:

stream_to_bytes(Stream,Bytes)

Mode and number of proofs:

stream_to_bytes(+stream_or_alias,-list(byte)) - one

stream_to_bytes/3

Reads a binary stream into a list of bytes. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_bytes(Stream,Bytes,Tail)

Mode and number of proofs:

stream_to_bytes(+stream_or_alias,-list(byte),@term) - one

line_to_chars/2

Reads a line from a text stream into a list of characters. Discards the end-of-line characters. Unifies Chars with end_of_file at the end of the file.

Compilation flags:

static

Template:

line_to_chars(Stream,Chars)

Mode and number of proofs:

line_to_chars(+stream_or_alias,-types([atom,list(character)])) - one

line_to_chars/3

Reads a line from a text stream into a list of characters. Keeps the end-of-line marker normalized to the line feed control character. The list is terminated by the given tail, which is unified with the empty list at the end of the file.

Compilation flags:

static

Template:

line_to_chars(Stream,Chars,Tail)

Mode and number of proofs:

line_to_chars(+stream_or_alias,-list(character),?term) - one

line_to_codes/2

Reads a line from a text stream into a list of character codes. Discards the end-of-line character codes. Unifies Codes with end_of_file at the end of the file.

Compilation flags:

static

Template:

line_to_codes(Stream,Codes)

Mode and number of proofs:

line_to_codes(+stream_or_alias,-types([atom,list(character_code)])) - one

line_to_codes/3

Reads a line from a text stream into a list of character codes. Keeps the end-of-line marker normalized to the line feed control character code. The list is terminated by the given tail, which is unified with the empty list at the end of the file.

Compilation flags:

static

Template:

line_to_codes(Stream,Codes,Tail)

Mode and number of proofs:

line_to_codes(+stream_or_alias,-list(character_code),?term) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

recorded_database

Legacy recorded database predicates. Provides an application global database.

Availability:

logtalk_load(recorded_database(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-12-17

Compilation flags:

static, context_switching_calls

Imports:

public recorded_database_core

Remarks:

(none)

Inherited public predicates:

 erase/1 instance/2 recorda/2 recorda/3 recorded/2 recorded/3 recordz/2 recordz/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

recorded_database_core

Legacy recorded database predicates. Can be imported into an object to provide a local database.

Availability:

logtalk_load(recorded_database(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-12-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

	References: Opaque ground terms.

Inherited public predicates:

(none)

	Public predicates

	recorda/3

	recorda/2

	recordz/3

	recordz/2

	recorded/3

	recorded/2

	erase/1

	instance/2

	Protected predicates

	Private predicates

	record_/3

	reference_/1

	Operators

Public predicates

recorda/3

Adds a term as the first term for the given key, returning its reference.

Compilation flags:

static

Template:

recorda(Key,Term,Reference)

Mode and number of proofs:

recorda(+recorded_database_key,+term,--recorded_database_reference) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

Reference is a not a variable:

uninstantiation_error(Reference)

recorda/2

Adds a term as the first term for the given key.

Compilation flags:

static

Template:

recorda(Key,Term)

Mode and number of proofs:

recorda(+recorded_database_key,+term) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

recordz/3

Adds a term as the last term for the given key, returning its reference.

Compilation flags:

static

Template:

recordz(Key,Term,Reference)

Mode and number of proofs:

recordz(+recorded_database_key,+term,--recorded_database_reference) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

Reference is a not a variable:

uninstantiation_error(Reference)

recordz/2

Adds a term as the last term for the given key.

Compilation flags:

static

Template:

recordz(Key,Term)

Mode and number of proofs:

recordz(+recorded_database_key,+term) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

recorded/3

Enumerates, by backtracking, all record key-term pairs and their references.

Compilation flags:

static

Template:

recorded(Key,Term,Reference)

Mode and number of proofs:

recorded(?recorded_database_key,?term,-recorded_database_reference) - zero_or_more

recorded(?recorded_database_key,?term,+recorded_database_reference) - zero_or_one

recorded/2

Enumerates, by backtracking, all record key-term pairs.

Compilation flags:

static

Template:

recorded(Key,Term)

Mode and number of proofs:

recorded(?recorded_database_key,?term) - zero_or_more

erase/1

Erases the record indexed by the given reference. Fails if there is no record with the given reference.

Compilation flags:

static

Template:

erase(Reference)

Mode and number of proofs:

erase(@recorded_database_reference) - zero_or_one_or_error

Exceptions:

Reference is a variable:

instantiation_error

instance/2

.

Compilation flags:

static

Template:

instance(Reference,Term)

Mode and number of proofs:

instance(@recorded_database_reference,?term) - zero_or_one_or_error

Exceptions:

Reference is a variable:

instantiation_error

Protected predicates

(none)

Private predicates

record_/3

Records table.

Compilation flags:

dynamic

Template:

record_(Key,Term,Reference)

Mode and number of proofs:

record_(?recorded_database_key,?term,?recorded_database_reference) - zero_or_more

reference_/1

Reference count.

Compilation flags:

dynamic

Template:

reference_(Reference)

Mode and number of proofs:

reference_(?non_negative_integer) - zero_or_one

Operators

(none)

 object

redis

Redis client. Inspired by Sean Charles GNU Prolog Redis client.

Availability:

logtalk_load(redis(loader))

Author: Paulo Moura

Version: 0:5:1

Date: 2021-12-06

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

	Command representation: Use the Redis command name as the functor of a compound term where the arguments are the command arguments.

	Valid arguments: Atoms, integers, and floats. Always use atoms instead of double-quoted “strings”. This helps portability by not depending on the value of the double_quotes flag.

Inherited public predicates:

(none)

	Public predicates

	connect/1

	connect/3

	disconnect/1

	send/3

	console/1

	Protected predicates

	Private predicates

	Operators

Public predicates

connect/1

Connect to a Redis server running on localhost using the default 6379 port.

Compilation flags:

static

Template:

connect(Connection)

Mode and number of proofs:

connect(--ground) - one

connect/3

Connect to a Redis server running on the given host and port.

Compilation flags:

static

Template:

connect(Host,Port,Connection)

Mode and number of proofs:

connect(+atom,+integer,--ground) - one

disconnect/1

Disconnect from a Redis server.

Compilation flags:

static

Template:

disconnect(Connection)

Mode and number of proofs:

disconnect(++ground) - one

send/3

Sends a request to the a Redis server and returns its reply.

Compilation flags:

static

Template:

send(Connection,Request,Reply)

Mode and number of proofs:

send(++ground,++callable,--callable) - one

console/1

Sends a request to a Redis server running on localhost at the default 6379 port and prints the reply.

Compilation flags:

static

Template:

console(Request)

Mode and number of proofs:

console(++callable) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

set

Set predicates implemented using ordered lists. Uses ==/2 for element comparison and standard term ordering.

Availability:

logtalk_load(sets(loader))

Author: Richard O’Keefe (main predicates); adapted to Logtalk by Paulo Moura.

Version: 2:0:0

Date: 2025-07-08

Compilation flags:

static, context_switching_calls

Implements:

public setp

Extends:

public compound

Aliases:

setp size/2 as length/2

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_list/2 as_set/2 check/1 delete/3 depth/2 disjoint/2 empty/1 equal/2 ground/1 insert/3 insert_all/3 intersect/2 intersection/3 intersection/4 member/2 memberchk/2 new/1 numbervars/1 numbervars/3 occurs/2 powerset/2 product/3 select/3 selectchk/3 singletons/2 size/2 subset/2 subsumes/2 subterm/2 subtract/3 symdiff/3 union/3 union/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

set(Type)

 object

set(Type)

Set predicates with elements constrained to a single type and custom comparing rules.

Availability:

logtalk_load(sets(loader))

Author: Paulo Moura and Adrian Arroyo

Version: 1:24:0

Date: 2022-02-03

Compilation flags:

static, context_switching_calls

Extends:

public set

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_list/2 as_set/2 check/1 delete/3 depth/2 disjoint/2 empty/1 equal/2 ground/1 insert/3 insert_all/3 intersect/2 intersection/3 intersection/4 member/2 memberchk/2 new/1 numbervars/1 numbervars/3 occurs/2 powerset/2 product/3 select/3 selectchk/3 singletons/2 size/2 subset/2 subsumes/2 subterm/2 subtract/3 symdiff/3 union/3 union/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	sort/2

	partition/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sort/2

Sorts a list in ascending order.

Compilation flags:

static

Template:

sort(List,Sorted)

Mode and number of proofs:

sort(+list,-list) - one

partition/4

List partition in two sub-lists using a pivot.

Compilation flags:

static

Template:

partition(List,Pivot,Lowers,Biggers)

Mode and number of proofs:

partition(+list,+nonvar,-list,-list) - one

Operators

(none)

 protocol

setp

Set protocol.

Availability:

logtalk_load(sets(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2025-07-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	as_set/2

	as_list/2

	delete/3

	disjoint/2

	equal/2

	empty/1

	insert/3

	insert_all/3

	intersect/2

	intersection/3

	intersection/4

	size/2

	member/2

	memberchk/2

	powerset/2

	product/3

	select/3

	selectchk/3

	subset/2

	subtract/3

	symdiff/3

	union/3

	union/4

	Protected predicates

	Private predicates

	Operators

Public predicates

as_set/2

Returns a set with all unique elements from the given list.

Compilation flags:

static

Template:

as_set(List,Set)

Mode and number of proofs:

as_set(@list,-set) - one

as_list/2

Returns a list with all elements of the given set.

Compilation flags:

static

Template:

as_list(Set,List)

Mode and number of proofs:

as_list(@set,-list) - one

delete/3

Deletes an element from a set returning the set of the remaining elements.

Compilation flags:

static

Template:

delete(Set,Element,Remaining)

Mode and number of proofs:

delete(@set,@term,-set) - one

disjoint/2

True when the two sets have no element in common.

Compilation flags:

static

Template:

disjoint(Set1,Set2)

Mode and number of proofs:

disjoint(@set,@set) - zero_or_one

equal/2

True when the two sets are equal.

Compilation flags:

static

Template:

equal(Set1,Set2)

Mode and number of proofs:

equal(@set,@set) - zero_or_one

empty/1

True when the set is empty.

Compilation flags:

static

Template:

empty(Set)

Mode and number of proofs:

empty(@set) - zero_or_one

insert/3

Inserts an element in a set, returning the resulting set.

Compilation flags:

static

Template:

insert(In,Element,Out)

Mode and number of proofs:

insert(@set,@term,-set) - one

insert_all/3

Inserts all the elements of the list into a set, returning the resulting set.

Compilation flags:

static

Template:

insert_all(List,In,Out)

Mode and number of proofs:

insert_all(@list,@set,-set) - one

intersect/2

True if the two sets have at least one element in common.

Compilation flags:

static

Template:

intersect(Set1,Set2)

Mode and number of proofs:

intersect(@set,@set) - zero_or_one

intersection/3

Computes the intersection of Set1 and Set2.

Compilation flags:

static

Template:

intersection(Set1,Set2,Intersection)

Mode and number of proofs:

intersection(@set,@set,-set) - one

intersection/4

Computes the intersection and the difference between Set2 and Set1.

Compilation flags:

static

Template:

intersection(Set1,Set2,Intersection,Difference)

Mode and number of proofs:

intersection(@set,@set,-set,-set) - one

size/2

Number of set elements.

Compilation flags:

static

Template:

size(Set,Size)

Mode and number of proofs:

size(@set,?integer) - zero_or_one

member/2

Element is a member of set Set.

Compilation flags:

static

Template:

member(Element,Set)

Mode and number of proofs:

member(?term,+set) - zero_or_more

memberchk/2

True when a term is a member of a set.

Compilation flags:

static

Template:

memberchk(Element,Set)

Mode and number of proofs:

memberchk(@term,@set) - zero_or_one

powerset/2

Returns the power set of a set, represented as a list of sets.

Compilation flags:

static

Template:

powerset(Set,Powerset)

Mode and number of proofs:

powerset(@set,-list(set)) - one

product/3

Returns the cartesian product of two sets.

Compilation flags:

static

Template:

product(Set1,Set2,Product)

Mode and number of proofs:

product(@set,@set,-set) - one

select/3

Selects an element from a set, returning the set of remaining elements.

Compilation flags:

static

Template:

select(Element,Set,Remaining)

Mode and number of proofs:

select(?term,?set,?set) - zero_or_more

selectchk/3

True if an element can be selected from a set, returning the set of remaining elements.

Compilation flags:

static

Template:

selectchk(Element,Set,Remaining)

Mode and number of proofs:

selectchk(@term,@set,-set) - zero_or_one

subset/2

True if Subset is a subset of Set.

Compilation flags:

static

Template:

subset(Subset,Set)

Mode and number of proofs:

subset(@set,@set) - zero_or_one

subtract/3

Computes the set of all the elements of Set1 which are not also in Set2.

Compilation flags:

static

Template:

subtract(Set1,Set2,Difference)

Mode and number of proofs:

subtract(@set,@set,-set) - one

symdiff/3

Computes the symmetric difference of Set1 and Set2, containing all elements that are not in the sets intersection.

Compilation flags:

static

Template:

symdiff(Set1,Set2,Difference)

Mode and number of proofs:

symdiff(@set,@set,-set) - one

union/3

Computes the union of Set1 and Set2.

Compilation flags:

static

Template:

union(Set1,Set2,Union)

Mode and number of proofs:

union(@set,@set,-set) - one

union/4

Computes the union of Set1 and Set2 and the difference between Set2 and Set1.

Compilation flags:

static

Template:

union(Set1,Set2,Union,Difference)

Mode and number of proofs:

union(@set,@set,-set,-set) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

set, set(Type)

 object

population

Statistical population represented as a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-02-02

Compilation flags:

static, context_switching_calls

Imports:

public statistics

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

sample

 object

sample

Statistical sample represented as a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2020-02-02

Compilation flags:

static, context_switching_calls

Imports:

public statistics

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

population

 category

statistics

Statistical calculations over a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:7:1

Date: 2023-05-29

Compilation flags:

static

Implements:

public statisticsp

Uses:

list

numberlist

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	arithmetic_mean/5

	squares_and_cubes/6

	squares_and_hypers/6

	variance/6

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

arithmetic_mean/5

Auxiliary predicate for computing the arithmetic mean.

Compilation flags:

static

Template:

arithmetic_mean(List,Length0,Length,Sum,Mean)

Mode and number of proofs:

arithmetic_mean(+list(number),+integer,-integer,+number,-float) - one

squares_and_cubes/6

Auxiliary predicate for computing the skewness.

Compilation flags:

static

Template:

squares_and_cubes(List,Mean,Squares0,Squares,Cubes0,Cubes)

Mode and number of proofs:

squares_and_cubes(+list(number),+float,+float,-float,+float,-float) - one

squares_and_hypers/6

Auxiliary predicate for computing the kurtosis.

Compilation flags:

static

Template:

squares_and_hypers(List,Mean,Squares0,Squares,Hypers0,Hypers)

Mode and number of proofs:

squares_and_hypers(+list(number),+float,+float,-float,+float,-float) - one

variance/6

Auxiliary predicate for computing the variance.

Compilation flags:

static

Template:

variance(List,Length0,Length,Mean,M20,M2)

Mode and number of proofs:

variance(+list(number),+integer,-integer,+float,+float,-float) - one

Operators

(none)

 protocol

statisticsp

Statistical calculations over a list of numbers protocol.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2022-06-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	product/2

	sum/2

	min/2

	max/2

	min_max/3

	range/2

	arithmetic_mean/2

	geometric_mean/2

	harmonic_mean/2

	weighted_mean/3

	median/2

	modes/2

	average_deviation/3

	mean_deviation/2

	median_deviation/2

	standard_deviation/2

	coefficient_of_variation/2

	relative_standard_deviation/2

	skewness/2

	kurtosis/2

	variance/2

	z_normalization/2

	fractile/3

	valid/1

	Protected predicates

	Private predicates

	Operators

Public predicates

product/2

Calculates the product of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

product(List,Product)

Mode and number of proofs:

product(+list(number),-number) - zero_or_one

sum/2

Calculates the sum of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

sum(List,Sum)

Mode and number of proofs:

sum(+list(number),-number) - zero_or_one

min/2

Determines the minimum value in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list,-number) - zero_or_one

max/2

Determines the list maximum value in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list,-number) - zero_or_one

min_max/3

Determines the minimum and maximum values in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

min_max(List,Minimum,Maximum)

Mode and number of proofs:

min_max(+list(number),-number,-number) - zero_or_one

range/2

Range is the length of the smallest interval which contains all the numbers in List. Fails if the list is empty.

Compilation flags:

static

Template:

range(List,Range)

Mode and number of proofs:

range(+list,-number) - zero_or_one

arithmetic_mean/2

Calculates the arithmetic mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

arithmetic_mean(List,Mean)

Mode and number of proofs:

arithmetic_mean(+list(number),-float) - zero_or_one

geometric_mean/2

Calculates the geometric mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

geometric_mean(List,Mean)

Mode and number of proofs:

geometric_mean(+list(number),-float) - zero_or_one

harmonic_mean/2

Calculates the harmonic mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

harmonic_mean(List,Mean)

Mode and number of proofs:

harmonic_mean(+list(number),-float) - zero_or_one

weighted_mean/3

Calculates the weighted mean of a list of numbers. Fails if the list is empty or if the two lists have different lengths. Wights are assume to be non-negative.

Compilation flags:

static

Template:

weighted_mean(Weights,List,Mean)

Mode and number of proofs:

weighted_mean(+list(number),+list(number),-float) - zero_or_one

median/2

Calculates the median of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median(List,Median)

Mode and number of proofs:

median(+list(number),-float) - zero_or_one

modes/2

Returns the list of modes of a list of numbers in ascending order. Fails if the list is empty.

Compilation flags:

static

Template:

modes(List,Modes)

Mode and number of proofs:

modes(+list(number),-list(number)) - zero_or_one

average_deviation/3

Calculates the average absolute deviation of a list of numbers given a central tendency (e.g., mean, median, or mode). Fails if the list is empty.

Compilation flags:

static

Template:

average_deviation(List,CentralTendency,Deviation)

Mode and number of proofs:

average_deviation(+list(number),+float,-float) - zero_or_one

mean_deviation/2

Calculates the mean absolute deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

mean_deviation(List,Deviation)

Mode and number of proofs:

mean_deviation(+list(number),-float) - zero_or_one

median_deviation/2

Calculates the median absolute deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median_deviation(List,Deviation)

Mode and number of proofs:

median_deviation(+list(number),-float) - zero_or_one

standard_deviation/2

Calculates the standard deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

standard_deviation(List,Deviation)

Mode and number of proofs:

standard_deviation(+list(number),-float) - zero_or_one

coefficient_of_variation/2

Calculates the coefficient of variation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

coefficient_of_variation(List,Coefficient)

Mode and number of proofs:

coefficient_of_variation(+list(number),-float) - zero_or_one

relative_standard_deviation/2

Calculates the relative standard deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

relative_standard_deviation(List,Percentage)

Mode and number of proofs:

relative_standard_deviation(+list(number),-float) - zero_or_one

skewness/2

Calculates the (moment) skewness of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

skewness(List,Skewness)

Mode and number of proofs:

skewness(+list(number),-float) - zero_or_one

kurtosis/2

Calculates the (excess) kurtosis of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

kurtosis(List,Kurtosis)

Mode and number of proofs:

kurtosis(+list(number),-float) - zero_or_one

variance/2

Calculates the unbiased variance of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

variance(List,Variance)

Mode and number of proofs:

variance(+list(number),-float) - zero_or_one

z_normalization/2

Normalizes a list of number such that for the resulting list the mean of is close to zero and the standard deviation is close to 1. Fails if the list is empty.

Compilation flags:

static

Template:

z_normalization(List,NormalizedList)

Mode and number of proofs:

z_normalization(+list(number),-list(float)) - zero_or_one

fractile/3

Calculates the smallest value in a list of numbers such that the list elements in its fraction P are less or equal to that value (with P in the open interval (0.0, 1.0)). Fails if the list is empty.

Compilation flags:

static

Template:

fractile(P,List,Fractile)

Mode and number of proofs:

fractile(+float,+list(integer),-integer) - zero_or_one

fractile(+float,+list(float),-float) - zero_or_one

valid/1

Term is a closed list of numbers.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

statistics, sample, population

 object

term_io

Term input/output from/to atom, chars, and codes.

Availability:

logtalk_load(term_io(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2023-11-14

Compilation flags:

static, context_switching_calls

Implements:

public term_io_protocol

Uses:

os

Remarks:

(none)

Inherited public predicates:

 format_to_atom/3 format_to_chars/3 format_to_chars/4 format_to_codes/3 format_to_codes/4 read_from_atom/2 read_from_chars/2 read_from_codes/2 read_term_from_atom/3 read_term_from_chars/3 read_term_from_chars/4 read_term_from_codes/3 read_term_from_codes/4 with_output_to/2 write_term_to_atom/3 write_term_to_chars/3 write_term_to_chars/4 write_term_to_codes/3 write_term_to_codes/4 write_to_atom/2 write_to_chars/2 write_to_codes/2

	Public predicates

	Protected predicates

	Private predicates

	temporary_file_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

temporary_file_/1

Logtalk session and term_io specific temporary file path.

Compilation flags:

dynamic

Template:

temporary_file_(Path)

Mode and number of proofs:

temporary_file_(-atom) - one

Operators

(none)

 protocol

term_io_protocol

Predicates for term input/output from/to atom, chars, and codes. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(term_io(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2021-10-04

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Portability notes: To keep calls to these library predicates portable, use only standard read/write options and specify output formats using atoms.

Inherited public predicates:

(none)

	Public predicates

	read_term_from_atom/3

	read_from_atom/2

	read_term_from_chars/3

	read_term_from_chars/4

	read_from_chars/2

	read_term_from_codes/3

	read_term_from_codes/4

	read_from_codes/2

	write_term_to_atom/3

	write_to_atom/2

	write_term_to_chars/3

	write_term_to_chars/4

	write_to_chars/2

	write_term_to_codes/3

	write_term_to_codes/4

	write_to_codes/2

	format_to_atom/3

	format_to_chars/3

	format_to_chars/4

	format_to_codes/3

	format_to_codes/4

	with_output_to/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_term_from_atom/3

Reads a term from an atom using the given read options. A period at the end of the atom is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_atom(Atom,Term,Options)

Mode and number of proofs:

read_term_from_atom(+atom,-term,+list(read_option)) - one_or_error

read_from_atom/2

Reads a term from an atom using default read options. Shorthand for read_term_from_atom(Atom,Term,[]). A period at the end of the atom is optional.

Compilation flags:

static

Template:

read_from_atom(Atom,Term)

Mode and number of proofs:

read_from_atom(+atom,-term) - one_or_error

read_term_from_chars/3

Reads a term from a list of characters using the given read options. A period at the end of the list is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_chars(Chars,Term,Options)

Mode and number of proofs:

read_term_from_chars(+list(character),-term,+list(read_option)) - one_or_error

read_term_from_chars/4

Reads a term from a list of characters using the given read options, also returning the remaining characters. A period at the end of the term is required. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static

Template:

read_term_from_chars(Chars,Term,Tail,Options)

Mode and number of proofs:

read_term_from_chars(+list(character),-term,-list(character),+list(read_option)) - one_or_error

read_from_chars/2

Reads a term from a list of characters using default read options. Shorthand for read_term_from_chars(Chars,Term,[]). A period at the end of the list is optional.

Compilation flags:

static

Template:

read_from_chars(Chars,Term)

Mode and number of proofs:

read_from_chars(+list(character),-term) - one_or_error

read_term_from_codes/3

Reads a term from a list of character codes using the given read options. A period at the end of the list is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_codes(Codes,Term,Options)

Mode and number of proofs:

read_term_from_codes(+list(character_code),-term,+list(read_option)) - one_or_error

read_term_from_codes/4

Reads a term from a list of character codes using the given read options, also returning the remaining character codes. A period at the end of the term is required. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static

Template:

read_term_from_codes(Codes,Term,Tail,Options)

Mode and number of proofs:

read_term_from_codes(+list(character_code),-term,-list(character_code),+list(read_option)) - one_or_error

read_from_codes/2

Reads a term from a list of character codes using default read options. Shorthand for read_term_from_codes(Codes,Term,[]). A period at the end of the list is optional.

Compilation flags:

static

Template:

read_from_codes(Codes,Term)

Mode and number of proofs:

read_from_codes(+list(character_code),-term) - one_or_error

write_term_to_atom/3

Writes a term to an atom using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_atom(Term,Atom,Options)

Mode and number of proofs:

write_term_to_atom(@term,-atom,+list(write_option)) - one

write_to_atom/2

Writes a term to an atom using default write options. Shorthand for write_term_to_atom(Term,Atom,[]).

Compilation flags:

static

Template:

write_to_atom(Term,Atom)

Mode and number of proofs:

write_to_atom(@term,-atom) - one

write_term_to_chars/3

Writes a term to a list of characters using the given write options. Shorthand for write_term_to_chars(Term,Chars,[],Options). Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static

Template:

write_term_to_chars(Term,Chars,Options)

Mode and number of proofs:

write_term_to_chars(@term,-list(character),+list(write_option)) - one

write_term_to_chars/4

Writes a term to a list of characters with the given tail using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_chars(Term,Chars,Tail,Options)

Mode and number of proofs:

write_term_to_chars(@term,-list(character),@term,+list(write_option)) - one

write_to_chars/2

Writes a term to a list of characters using default write options. Shorthand for write_term_to_chars(Term,Chars,[],[]).

Compilation flags:

static

Template:

write_to_chars(Term,Chars)

Mode and number of proofs:

write_to_chars(@term,-list(character)) - one

write_term_to_codes/3

Writes a term to a list of character codes using the given write options. Shorthand for write_term_to_codes(Term,Codes,[],Options). Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static

Template:

write_term_to_codes(Term,Codes,Options)

Mode and number of proofs:

write_term_to_codes(@term,-list(character_code),+list(write_option)) - one

write_term_to_codes/4

Writes a term to a list of character codes with the given tail using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_codes(Term,Codes,Tail,Options)

Mode and number of proofs:

write_term_to_codes(@term,-list(character_code),@term,+list(write_option)) - one

write_to_codes/2

Writes a term to a list of character codes using default write options. Shorthand for write_term_to_chars(Term,Codes,[],[]).

Compilation flags:

static

Template:

write_to_codes(Term,Codes)

Mode and number of proofs:

write_to_codes(@term,-list(character_code)) - one

format_to_atom/3

Writes a list of arguments to an atom using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_atom(Format,Arguments,Atom)

Mode and number of proofs:

format_to_atom(@atom,+list(term),-atom) - one

format_to_chars/3

Writes a list of arguments to a list of characters using the given format (specified as in the de facto standard format/2 predicate). Shorthand for format_to_chars(Format,Arguments,Chars,[]).

Compilation flags:

static

Template:

format_to_chars(Format,Arguments,Chars)

Mode and number of proofs:

format_to_chars(@term,+list(term),-list(character)) - one

format_to_chars/4

Writes a term to a list of characters with the given tail using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_chars(Format,Arguments,Chars,Tail)

Mode and number of proofs:

format_to_chars(@term,+list(term),-list(character),@term) - one

format_to_codes/3

Writes a list of arguments to a list of character codes using the given format (specified as in the de facto standard format/2 predicate). Shorthand for format_to_codes(Format,Arguments,Codes,[]).

Compilation flags:

static

Template:

format_to_codes(Format,Arguments,Codes)

Mode and number of proofs:

format_to_codes(@term,+list(term),-list(character_code)) - one

format_to_codes/4

Writes a list of arguments to a list of character codes with the given tail using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_codes(Format,Arguments,Codes,Tail)

Mode and number of proofs:

format_to_codes(@term,+list(term),-list(character_code),@term) - one

with_output_to/2

Calls a goal deterministically with output to the given format: atom(Atom), chars(Chars), chars(Chars,Tail), codes(Codes), or codes(Codes,Tail).

Compilation flags:

static, synchronized

Template:

with_output_to(Output,Goal)

Meta-predicate template:

with_output_to(*,0)

Mode and number of proofs:

with_output_to(+compound,+callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

timeout

Predicates for calling goal with a time limit.

Availability:

logtalk_load(timeout(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2022-06-15

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: B-Prolog, ECLiPSe, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, and YAP.

Inherited public predicates:

(none)

	Public predicates

	call_with_timeout/2

	call_with_timeout/3

	Protected predicates

	Private predicates

	Operators

Public predicates

call_with_timeout/2

Calls a goal deterministically with the given time limit (expressed in seconds). Note that the goal may fail or throw an error before exhausting the time limit.

Compilation flags:

static

Template:

call_with_timeout(Goal,Timeout)

Meta-predicate template:

call_with_timeout(0,*)

Mode and number of proofs:

call_with_timeout(+callable,+positive_number) - zero_or_one

Exceptions:

Goal does not complete in the allowed time:

timeout(Goal)

call_with_timeout/3

Calls a goal deterministically with the given time limit (expressed in seconds) returning a reified result: true, fail, timeout, or error(Error).

Compilation flags:

static

Template:

call_with_timeout(Goal,Timeout,Result)

Meta-predicate template:

call_with_timeout(0,*,*)

Mode and number of proofs:

call_with_timeout(+callable,+positive_number,--atom) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

toychrdb

Simple CHR interpreter/debugger based on the refined operational semantics of CHRs.

Availability:

logtalk_load(toychr(loader))

Author: Gregory J. Duck; adapted to Logtalk by Paulo Moura.

Version: 0:7:1

Date: 2024-03-15

Copyright: Copright 2004 Gregory J. Duck; Copyright 2019-2024 Paulo Moura

License: GPL-2.0-or-later

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

list

user

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	chr_is/2

	chr_trace/0

	chr_notrace/0

	chr_spy/1

	chr_nospy/0

	chr_no_spy/1

	chr_option/2

	Protected predicates

	current_prog/1

	chr_option_print_trace/0

	chr_option_trace_interactive/0

	chr_option_optimization_level/1

	chr_option_show_stack/0

	chr_option_show_store/0

	chr_option_show_history/0

	chr_option_show_id/0

	chr_option_allow_deep_guards/0

	chr_next_state/1

	chr_spy_point/1

	Private predicates

	chr_rule_/1

	Operators

Public predicates

chr_is/2

Compilation flags:

static

chr_trace/0

Compilation flags:

static

chr_notrace/0

Compilation flags:

static

chr_spy/1

Compilation flags:

static

chr_nospy/0

Compilation flags:

static

chr_no_spy/1

Compilation flags:

static

chr_option/2

Compilation flags:

static

Protected predicates

current_prog/1

Compilation flags:

static

chr_option_print_trace/0

Compilation flags:

dynamic

chr_option_trace_interactive/0

Compilation flags:

dynamic

chr_option_optimization_level/1

Compilation flags:

dynamic

chr_option_show_stack/0

Compilation flags:

dynamic

chr_option_show_store/0

Compilation flags:

dynamic

chr_option_show_history/0

Compilation flags:

dynamic

chr_option_show_id/0

Compilation flags:

dynamic

chr_option_allow_deep_guards/0

Compilation flags:

dynamic

chr_next_state/1

Compilation flags:

dynamic

chr_spy_point/1

Compilation flags:

dynamic

Private predicates

chr_rule_/1

Compilation flags:

dynamic

Operators

(none)

 object

tsv

TSV files reading and writing predicates using the option Header-keep.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-11-15

Compilation flags:

static, context_switching_calls

Extends:

public tsv(keep)

Remarks:

(none)

Inherited public predicates:

 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

tsv(Header)

	Header - Header handling option with possible values skip and keep (default).

TSV file and stream reading and writing predicates.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2024-03-11

Compilation flags:

static, context_switching_calls

Implements:

public tsv_protocol

Uses:

list

logtalk

reader

type

Remarks:

(none)

Inherited public predicates:

 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

tsv_protocol

TSV file and stream reading and writing protocol.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2025-05-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Type-checking: Some of the predicate file and stream argument type-checking exceptions depend on the Prolog backend compliance with standards.

Inherited public predicates:

(none)

	Public predicates

	read_file/3

	read_stream/3

	read_file/2

	read_stream/2

	read_file_by_line/3

	read_stream_by_line/3

	read_file_by_line/2

	read_stream_by_line/2

	write_file/3

	write_stream/3

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/3

Reads a TSV file saving the data as clauses for the specified object predicate. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Object,Predicate)

Mode and number of proofs:

read_file(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream/3

Reads a TSV stream saving the data as clauses for the specified object predicate. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Object,Predicate)

Mode and number of proofs:

read_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file/2

Reads a TSV file returning the data as a list of rows, each row a list of fields. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Rows)

Mode and number of proofs:

read_file(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream/2

Reads a TSV stream returning the data as a list of rows, each row a list of fields. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Rows)

Mode and number of proofs:

read_stream(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

read_file_by_line/3

Reads a TSV file saving the data as clauses for the specified object predicate. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Object,Predicate)

Mode and number of proofs:

read_file_by_line(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream_by_line/3

Reads a TSV stream saving the data as clauses for the specified object predicate. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Object,Predicate)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file_by_line/2

Reads a TSV file returning the data as a list of rows, each row a list of fields. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Rows)

Mode and number of proofs:

read_file_by_line(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream_by_line/2

Reads a TSV stream returning the data as a list of rows, each row a list of fields. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Rows)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

write_file/3

Writes a TSV file with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_file(File,Object,Predicate)

Mode and number of proofs:

write_file(+atom,+object_identifier,+predicate_indicator) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

write_stream/3

Writes a TSV stream with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_stream(Stream,Object,Predicate)

Mode and number of proofs:

write_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an input stream:

permission_error(output,stream,Stream)

Stream is a binary stream:

permission_error(output,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

tutor

This object adds explanations and suggestions to selected compiler warning and error messages.

Availability:

logtalk_load(tutor(loader))

Author: Paulo Moura

Version: 0:84:0

Date: 2025-10-20

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

list

logtalk

Remarks:

	Usage: Simply load this object at startup using the goal logtalk_load(tutor(loader)).

Inherited public predicates:

(none)

	Public predicates

	explain//1

	Protected predicates

	Private predicates

	Operators

Public predicates

explain//1

Generates an explanation for a message.

Compilation flags:

static

Template:

explain(Message)

Mode and number of proofs:

explain(@callable) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

atom

Atom data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:9:0

Date: 2023-04-12

Compilation flags:

static, context_switching_calls

Extends:

public atomic

Uses:

user

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	replace_sub_atom/4

	split/3

	Protected predicates

	Private predicates

	Operators

Public predicates

replace_sub_atom/4

Replaces all occurrences of Old by New in Input returning Output. Returns Input if Old is the empty atom. Fails when Output does not unify with the resulting atom.

Compilation flags:

static

Template:

replace_sub_atom(Old,New,Input,Output)

Mode and number of proofs:

replace_sub_atom(+atom,+atom,+atom,?atom) - zero_or_one

split/3

Splits an atom at a given delimiter into a list of sub-atoms.

Compilation flags:

static

Template:

split(Atom,Delimiter,SubAtoms)

Mode and number of proofs:

split(+atom,+atom,-list(atom)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

atomic

Atomic data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

callable

Callable term type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

character

Character predicates (most of them assume an ASCII representation).

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:9:0

Date: 2019-06-29

Compilation flags:

static, context_switching_calls

Implements:

public characterp

Extends:

public atom

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 is_alpha/1 is_alphanumeric/1 is_ascii/1 is_bin_digit/1 is_control/1 is_dec_digit/1 is_end_of_line/1 is_hex_digit/1 is_layout/1 is_letter/1 is_lower_case/1 is_newline/1 is_octal_digit/1 is_period/1 is_punctuation/1 is_quote/1 is_upper_case/1 is_vowel/1 is_white_space/1 lower_upper/2 new/1 numbervars/1 numbervars/3 occurs/2 parenthesis/2 replace_sub_atom/4 singletons/2 split/3 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

characterp

Character protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2019-06-29

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_ascii/1

	is_alphanumeric/1

	is_alpha/1

	is_letter/1

	is_bin_digit/1

	is_octal_digit/1

	is_dec_digit/1

	is_hex_digit/1

	is_lower_case/1

	is_upper_case/1

	is_vowel/1

	is_white_space/1

	is_layout/1

	is_quote/1

	is_punctuation/1

	is_period/1

	is_control/1

	is_newline/1

	is_end_of_line/1

	parenthesis/2

	lower_upper/2

	Protected predicates

	Private predicates

	Operators

Public predicates

is_ascii/1

True if the argument is an ASCII character.

Compilation flags:

static

Template:

is_ascii(Char)

Mode and number of proofs:

is_ascii(+char) - zero_or_one

is_alphanumeric/1

True if the argument is an alphanumeric character.

Compilation flags:

static

Template:

is_alphanumeric(Char)

Mode and number of proofs:

is_alphanumeric(+char) - zero_or_one

is_alpha/1

True if the argument is a letter or an underscore.

Compilation flags:

static

Template:

is_alpha(Char)

Mode and number of proofs:

is_alpha(+char) - zero_or_one

is_letter/1

True if the argument is a letter.

Compilation flags:

static

Template:

is_letter(Char)

Mode and number of proofs:

is_letter(+char) - zero_or_one

is_bin_digit/1

True if the argument is a binary digit.

Compilation flags:

static

Template:

is_bin_digit(Char)

Mode and number of proofs:

is_bin_digit(+char) - zero_or_one

is_octal_digit/1

True if the argument is an octal digit.

Compilation flags:

static

Template:

is_octal_digit(Char)

Mode and number of proofs:

is_octal_digit(+char) - zero_or_one

is_dec_digit/1

True if the argument is a decimal digit.

Compilation flags:

static

Template:

is_dec_digit(Char)

Mode and number of proofs:

is_dec_digit(+char) - zero_or_one

is_hex_digit/1

True if the argument is an hexadecimal digit.

Compilation flags:

static

Template:

is_hex_digit(Char)

Mode and number of proofs:

is_hex_digit(+char) - zero_or_one

is_lower_case/1

True if the argument is a lower case letter.

Compilation flags:

static

Template:

is_lower_case(Char)

Mode and number of proofs:

is_lower_case(+char) - zero_or_one

is_upper_case/1

True if the argument is a upper case letter.

Compilation flags:

static

Template:

is_upper_case(Char)

Mode and number of proofs:

is_upper_case(+char) - zero_or_one

is_vowel/1

True if the argument is a vowel.

Compilation flags:

static

Template:

is_vowel(Char)

Mode and number of proofs:

is_vowel(+char) - zero_or_one

is_white_space/1

True if the argument is a white space character (a space or a tab) inside a line of characters.

Compilation flags:

static

Template:

is_white_space(Char)

Mode and number of proofs:

is_white_space(+char) - zero_or_one

is_layout/1

True if the argument is a layout character.

Compilation flags:

static

Template:

is_layout(Char)

Mode and number of proofs:

is_layout(+char) - zero_or_one

is_quote/1

True if the argument is a quote character.

Compilation flags:

static

Template:

is_quote(Char)

Mode and number of proofs:

is_quote(+char) - zero_or_one

is_punctuation/1

True if the argument is a sentence punctuation character.

Compilation flags:

static

Template:

is_punctuation(Char)

Mode and number of proofs:

is_punctuation(+char) - zero_or_one

is_period/1

True if the argument is a character that ends a sentence.

Compilation flags:

static

Template:

is_period(Char)

Mode and number of proofs:

is_period(+char) - zero_or_one

is_control/1

True if the argument is an ASCII control character.

Compilation flags:

static

Template:

is_control(Char)

Mode and number of proofs:

is_control(+char) - zero_or_one

is_newline/1

True if the argument is the ASCII newline character.

Compilation flags:

static

Template:

is_newline(Char)

Mode and number of proofs:

is_newline(+char) - zero_or_one

is_end_of_line/1

True if the argument is the ASCII end-of-line character (either a carriage return or a line feed).

Compilation flags:

static

Template:

is_end_of_line(Char)

Mode and number of proofs:

is_end_of_line(+char) - zero_or_one

parenthesis/2

Recognizes and converts between open and close parenthesis.

Compilation flags:

static

Template:

parenthesis(Char1,Char2)

Mode and number of proofs:

parenthesis(?char,?char) - zero_or_more

parenthesis(+char,?char) - zero_or_one

parenthesis(?char,+char) - zero_or_one

lower_upper/2

Recognizes and converts between lower and upper case letters.

Compilation flags:

static

Template:

lower_upper(Char1,Char2)

Mode and number of proofs:

lower_upper(?char,?char) - zero_or_more

lower_upper(+char,?char) - zero_or_one

lower_upper(?char,+char) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

character

 protocol

comparingp

Comparing protocol using overloading of standard operators.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	(<)/2

	(=<)/2

	(>)/2

	(>=)/2

	(=:=)/2

	(=\=)/2

	Protected predicates

	Private predicates

	Operators

Public predicates

(<)/2

True if Term1 is less than Term2.

Compilation flags:

static

Template:

Term1<Term2

Mode and number of proofs:

+term< +term - zero_or_one

(=<)/2

True if Term1 is less or equal than Term2.

Compilation flags:

static

Template:

Term1=<Term2

Mode and number of proofs:

+term=< +term - zero_or_one

(>)/2

True if Term1 is greater than Term2.

Compilation flags:

static

Template:

Term1>Term2

Mode and number of proofs:

+term> +term - zero_or_one

(>=)/2

True if Term1 is equal or grater than Term2.

Compilation flags:

static

Template:

Term1>=Term2

Mode and number of proofs:

+term>= +term - zero_or_one

(=:=)/2

True if Term1 is equal to Term2.

Compilation flags:

static

Template:

Term1=:=Term2

Mode and number of proofs:

+term=:= +term - zero_or_one

(=\=)/2

True if Term1 is not equal to Term2.

Compilation flags:

static

Template:

Term1=\=Term2

Mode and number of proofs:

+term=\= +term - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

compound

Compound data type.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

difflist

Difference list predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2020-05-11

Compilation flags:

static, context_switching_calls

Implements:

public listp

Extends:

public compound

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	add/3

	as_list/2

	Protected predicates

	Private predicates

	Operators

Public predicates

add/3

Adds a term to the end of a difference list.

Compilation flags:

static

Template:

add(Term,DiffList,NewDiffList)

Mode and number of proofs:

add(@term,+difference_list,-difference_list) - one

as_list/2

Returns a list with the elements of the difference list.

Compilation flags:

static

Template:

as_list(DiffList,List)

Mode and number of proofs:

as_list(@difference_list,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), numberlist, varlist

 object

float

Floating point numbers data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:7:0

Date: 2025-02-25

Compilation flags:

static, context_switching_calls

Extends:

public number

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	between/4

	sequence/4

	sequence/5

	Protected predicates

	Private predicates

	Operators

Public predicates

between/4

Enumerates by backtracking a sequence of N equally spaced floats in the interval [Lower,Upper]. Assumes N > 0 and Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

between(Lower,Upper,N,Float)

Mode and number of proofs:

between(+float,+float,+positive_integer,-float) - zero_or_more

sequence/4

Generates a list with the sequence of N equally spaced floats in the interval [Lower,Upper]. Assumes N > 0 and Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,N,List)

Mode and number of proofs:

sequence(+float,+float,+positive_integer,-list(float)) - zero_or_one

sequence/5

Generates a list with the sequence of Step spaced floats in the interval [Lower,Upper]. Also returns the length of the list. Assumes Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,Step,List,Length)

Mode and number of proofs:

sequence(+float,+float,+float,-list(float),-positive_integer) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

integer

Integer data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:56:0

Date: 2025-05-26

Compilation flags:

static, context_switching_calls

Extends:

public number

Remarks:

	Portability notes: This object will use the backend Prolog system between/3, plus/3, and succ/2 built-in predicates when available.

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	between/3

	plus/3

	succ/2

	sequence/3

	sequence/4

	power_sequence/4

	Protected predicates

	Private predicates

	Operators

Public predicates

between/3

Returns integers in the interval defined by the two first arguments.

Compilation flags:

static

Template:

between(Lower,Upper,Integer)

Mode and number of proofs:

between(+integer,+integer,+integer) - zero_or_one

between(+integer,+integer,-integer) - zero_or_more

plus/3

Reversible integer sum. At least two of the arguments must be instantiated to integers.

Compilation flags:

static

Template:

plus(I,J,Sum)

Mode and number of proofs:

plus(+integer,+integer,?integer) - zero_or_one

plus(+integer,?integer,+integer) - zero_or_one

plus(?integer,+integer,+integer) - zero_or_one

succ/2

Successor of a natural number. At least one of the arguments must be instantiated to a natural number.

Compilation flags:

static

Template:

succ(I,J)

Mode and number of proofs:

succ(+integer,?integer) - zero_or_one

succ(?integer,+integer) - zero_or_one

sequence/3

Generates a list with the sequence of all integers in the interval [Lower,Upper]. Assumes Lower =< Upper and fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,List)

Mode and number of proofs:

sequence(+integer,+integer,-list(integer)) - zero_or_one

sequence/4

Generates a list with the sequence of integers in the interval [Lower,Upper] by Step. Assumes Lower =< Upper, Step >= 1 and fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,Step,List)

Mode and number of proofs:

sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

power_sequence/4

Generates a list of exponentiation results given [Lower,Upper] sequence of exponents and Base. Assumes Lower =< Upper and Base > 1 and fails otherwise.

Compilation flags:

static

Template:

power_sequence(Lower,Upper,Base,List)

Mode and number of proofs:

power_sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

list

List predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 4:3:0

Date: 2024-05-24

Compilation flags:

static, context_switching_calls

Implements:

public listp

Extends:

public compound

Remarks:

	Portability notes: This object will use the backend Prolog system msort/2 and sort/4 built-in predicates when available.

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	as_difflist/2

	Protected predicates

	Private predicates

	Operators

Public predicates

as_difflist/2

Converts a list to a difference list.

Compilation flags:

static

Template:

as_difflist(List,Diffist)

Mode and number of proofs:

as_difflist(+list,-difference_list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list(Type), numberlist, varlist, difflist

 object

list(Type)

List predicates with elements constrained to a single type.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:22:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 as_difflist/2 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, numberlist, varlist, difflist

 protocol

listp

List protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:18:0

Date: 2024-05-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	append/2

	append/3

	delete/3

	delete_matches/3

	empty/1

	flatten/2

	hamming_distance/3

	keysort/2

	last/2

	length/2

	max/2

	member/2

	memberchk/2

	min/2

	msort/2

	msort/3

	nextto/3

	nth0/3

	nth0/4

	nth1/3

	nth1/4

	sequential_occurrences/2

	sequential_occurrences/3

	occurrences/2

	occurrences/3

	partition/5

	permutation/2

	prefix/2

	prefix/3

	proper_prefix/2

	proper_prefix/3

	remove_duplicates/2

	reverse/2

	same_length/2

	same_length/3

	select/3

	selectchk/3

	select/4

	selectchk/4

	sort/2

	sort/3

	sort/4

	split/4

	sublist/2

	subsequence/3

	subsequence/4

	substitute/4

	subtract/3

	suffix/2

	suffix/3

	proper_suffix/2

	proper_suffix/3

	take/3

	drop/3

	Protected predicates

	Private predicates

	Operators

Public predicates

append/2

Appends all lists in a list of lists.

Compilation flags:

static

Template:

append(Lists,Concatenation)

Mode and number of proofs:

append(+list(list),?list) - zero_or_one

append/3

Appends two lists.

Compilation flags:

static

Template:

append(List1,List2,List)

Mode and number of proofs:

append(?list,?list,?list) - zero_or_more

delete/3

Deletes from a list all occurrences of an element returning the list of remaining elements. Uses ==/2 for element comparison.

Compilation flags:

static

Template:

delete(List,Element,Remaining)

Mode and number of proofs:

delete(@list,@term,?list) - one

delete_matches/3

Deletes all matching elements from a list, returning the list of remaining elements. Uses =/2 for element comparison.

Compilation flags:

static

Template:

delete_matches(List,Element,Remaining)

Mode and number of proofs:

delete_matches(@list,@term,?list) - one

empty/1

True if the argument is an empty list.

Compilation flags:

static

Template:

empty(List)

Mode and number of proofs:

empty(@list) - zero_or_one

flatten/2

Flattens a list of lists into a list.

Compilation flags:

static

Template:

flatten(List,Flatted)

Mode and number of proofs:

flatten(+list,-list) - one

hamming_distance/3

Calculates the Hamming distance between two lists (using equality to compare list elements). Fails if the two lists are not of the same length.

Compilation flags:

static

Template:

hamming_distance(List1,List2,Distance)

Mode and number of proofs:

hamming_distance(+list,+list,-integer) - zero_or_one

keysort/2

Sorts a list of key-value pairs in ascending order.

Compilation flags:

static

Template:

keysort(List,Sorted)

Mode and number of proofs:

keysort(+list(pair),-list(pair)) - one

last/2

List last element (if it exists).

Compilation flags:

static

Template:

last(List,Last)

Mode and number of proofs:

last(?list,?term) - zero_or_more

length/2

List length.

Compilation flags:

static

Template:

length(List,Length)

Mode and number of proofs:

length(?list,?integer) - zero_or_more

max/2

Determines the list maximum value using standard order. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list,-term) - zero_or_one

member/2

Element is a list member.

Compilation flags:

static

Template:

member(Element,List)

Mode and number of proofs:

member(?term,?list) - zero_or_more

memberchk/2

Checks if a term is a member of a list.

Compilation flags:

static

Template:

memberchk(Element,List)

Mode and number of proofs:

memberchk(?term,?list) - zero_or_one

min/2

Determines the minimum value in a list using standard order. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list,-term) - zero_or_one

msort/2

Sorts a list in ascending order (duplicated elements are not removed).

Compilation flags:

static

Template:

msort(List,Sorted)

Mode and number of proofs:

msort(+list,-list) - one

msort/3

Sorts a list using a user-specified comparison predicate modeled on the standard compare/3 predicate (duplicated elements are not removed).

Compilation flags:

static

Template:

msort(Closure,List,Sorted)

Meta-predicate template:

msort(3,*,*)

Mode and number of proofs:

msort(+callable,+list,-list) - one

nextto/3

X and Y are consecutive elements in List.

Compilation flags:

static

Template:

nextto(X,Y,List)

Mode and number of proofs:

nextto(?term,?term,?list) - zero_or_more

nth0/3

Nth element of a list (counting from zero).

Compilation flags:

static

Template:

nth0(Nth,List,Element)

Mode and number of proofs:

nth0(?integer,?list,?term) - zero_or_more

nth0/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth0(Nth,List,Element,Rest)

Mode and number of proofs:

nth0(?integer,?list,?term,?list) - zero_or_more

nth1/3

Nth element of a list (counting from one).

Compilation flags:

static

Template:

nth1(Nth,List,Element)

Mode and number of proofs:

nth1(?integer,?list,?term) - zero_or_more

nth1/4

Nth element of a list (counting from one). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth1(Nth,List,Element,Rest)

Mode and number of proofs:

nth1(?integer,?list,?term,?list) - zero_or_more

sequential_occurrences/2

Counts the number of sequential occurrences of each List element, unifying Occurrences with a list of Element-Count pairs. Uses term equality for element comparison.

Compilation flags:

static

Template:

sequential_occurrences(List,Occurrences)

Mode and number of proofs:

sequential_occurrences(@list,-list(pair(term,positive_integer))) - one

sequential_occurrences/3

Counts the number of sequential occurrences of each List element, unifying Occurrences with a list of Element-Count pairs. Uses Closure for element comparison.

Compilation flags:

static

Template:

sequential_occurrences(List,Closure,Occurrences)

Mode and number of proofs:

sequential_occurrences(@list,@callable,-list(pair(term,positive_integer))) - one

occurrences/2

Counts the number of occurrences of each List element, unifying Occurrences with a sorted list of Element-Count pairs. Uses term equality for element comparison.

Compilation flags:

static

Template:

occurrences(List,Occurrences)

Mode and number of proofs:

occurrences(@list,-list(pair(term,positive_integer))) - one

occurrences/3

Counts the number of occurrences of each List element, unifying Occurrences with a sorted list of Element-Count pairs. Uses Closure for element comparison.

Compilation flags:

static

Template:

occurrences(List,Closure,Occurrences)

Meta-predicate template:

occurrences(*,2,*)

Mode and number of proofs:

occurrences(@list,@callable,-list(pair(term,positive_integer))) - one

partition/5

Partitions a list in lists with values less, equal, and greater than a given value (using standard order).

Compilation flags:

static

Template:

partition(List,Value,Less,Equal,Greater)

Mode and number of proofs:

partition(+list,+number,-list,-list,-list) - one

permutation/2

The two lists are a permutation of the same list.

Compilation flags:

static

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(?list,?list) - zero_or_more

prefix/2

Prefix is a prefix of List.

Compilation flags:

static

Template:

prefix(Prefix,List)

Mode and number of proofs:

prefix(?list,+list) - zero_or_more

prefix/3

Prefix is a prefix of length Length of List.

Compilation flags:

static

Template:

prefix(Prefix,Length,List)

Mode and number of proofs:

prefix(?list,+integer,+list) - zero_or_one

prefix(?list,-integer,+list) - zero_or_more

proper_prefix/2

Prefix is a proper prefix of List.

Compilation flags:

static

Template:

proper_prefix(Prefix,List)

Mode and number of proofs:

proper_prefix(?list,+list) - zero_or_more

proper_prefix/3

Prefix is a proper prefix of length Length of List.

Compilation flags:

static

Template:

proper_prefix(Prefix,Length,List)

Mode and number of proofs:

proper_prefix(?list,+integer,+list) - zero_or_one

proper_prefix(?list,-integer,+list) - zero_or_more

remove_duplicates/2

Removes duplicated list elements using equality (==/2) for comparison and keeping the left-most element when repeated.

Compilation flags:

static

Template:

remove_duplicates(List,Set)

Mode and number of proofs:

remove_duplicates(+list,-list) - one

reverse/2

Reverses a list.

Compilation flags:

static

Template:

reverse(List,Reversed)

Mode and number of proofs:

reverse(+list,?list) - zero_or_one

reverse(?list,+list) - zero_or_one

reverse(-list,-list) - one_or_more

same_length/2

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2)

Mode and number of proofs:

same_length(+list,?list) - zero_or_one

same_length(?list,+list) - zero_or_one

same_length(-list,-list) - one_or_more

same_length/3

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2,Length)

Mode and number of proofs:

same_length(+list,?list,?integer) - zero_or_one

same_length(?list,+list,?integer) - zero_or_one

same_length(-list,-list,-integer) - one_or_more

select/3

Selects an element from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

select(Element,List,Remaining)

Mode and number of proofs:

select(?term,?list,?list) - zero_or_more

selectchk/3

Checks that an element can be selected from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

selectchk(Element,List,Remaining)

Mode and number of proofs:

selectchk(?term,?list,?list) - zero_or_one

select/4

Selects an element from a list, replacing it by a new element and returning the resulting list.

Compilation flags:

static

Template:

select(Old,OldList,New,NewList)

Mode and number of proofs:

select(?term,?list,?term,?list) - zero_or_more

selectchk/4

Checks that an element from a list can be replaced by a new element, returning the resulting list.

Compilation flags:

static

Template:

selectchk(Old,OldList,New,NewList)

Mode and number of proofs:

selectchk(?term,?list,?term,?list) - zero_or_one

sort/2

Sorts a list in ascending order (duplicated elements are removed).

Compilation flags:

static

Template:

sort(List,Sorted)

Mode and number of proofs:

sort(+list,-list) - one

sort/3

Sorts a list using a user-specified comparison predicate modeled on the standard compare/3 predicate (duplicated elements are removed).

Compilation flags:

static

Template:

sort(Closure,List,Sorted)

Meta-predicate template:

sort(3,*,*)

Mode and number of proofs:

sort(+callable,+list,-list) - one

sort/4

Sorts a list using the given key and order. Uses the standard term comparison operators for the order. The key selects the argument in each element in the list to use for comparisons. A key value of zero uses the whole element for comparisons.

Compilation flags:

static

Template:

sort(Key,Order,List,Sorted)

Mode and number of proofs:

sort(+non_negative_integer,+atom,+list,-list) - one

Remarks:

	Removing duplicates: Use one of the @< or @> orders.

	Keeping duplicates: Use one of the @=< or @>= orders.

	Sorting in ascending order: Use one of the @< or @=< orders.

	Sorting in descending order: Use one of the @> or @>= orders.

split/4

Splits a list into sublists of a given length. Also returns a list with the remaining elements. Fails if the length is zero or negative.

Compilation flags:

static

Template:

split(List,Length,Sublists,Remaining)

Mode and number of proofs:

split(+list,+integer,-list(list),-list) - zero_or_one

sublist/2

The first list is a sublist of the second.

Compilation flags:

static

Template:

sublist(Sublist,List)

Mode and number of proofs:

sublist(?list,+list) - zero_or_more

subsequence/3

List is an interleaving of Subsequence and Remaining. Element order is preserved.

Compilation flags:

static

Template:

subsequence(List,Subsequence,Remaining)

Mode and number of proofs:

subsequence(?list,?list,?list) - zero_or_more

subsequence/4

Generates subsequences of a given length from a list. Also returns the remaining elements. Element order is preserved.

Compilation flags:

static

Template:

subsequence(List,Length,Subsequence,Remaining)

Mode and number of proofs:

subsequence(+list,+integer,?list,?list) - zero_or_more

substitute/4

Substitutes all occurrences of Old in List by New, returning NewList. Uses term equality for element comparison.

Compilation flags:

static

Template:

substitute(Old,List,New,NewList)

Mode and number of proofs:

substitute(@term,@list,@term,-list) - one

subtract/3

Removes all elements in the second list from the first list, returning the list of remaining elements.

Compilation flags:

static

Template:

subtract(List,Elements,Remaining)

Mode and number of proofs:

subtract(+list,+list,-list) - one

suffix/2

Suffix is a suffix of List.

Compilation flags:

static

Template:

suffix(Suffix,List)

Mode and number of proofs:

suffix(?list,+list) - zero_or_more

suffix/3

Suffix is a suffix of length Length of List.

Compilation flags:

static

Template:

suffix(Suffix,Length,List)

Mode and number of proofs:

suffix(?list,+integer,+list) - zero_or_one

suffix(?list,-integer,+list) - zero_or_more

proper_suffix/2

Suffix is a proper suffix of List.

Compilation flags:

static

Template:

proper_suffix(Suffix,List)

Mode and number of proofs:

proper_suffix(?list,+list) - zero_or_more

proper_suffix/3

Suffix is a proper suffix of length Length of List.

Compilation flags:

static

Template:

proper_suffix(Suffix,Length,List)

Mode and number of proofs:

proper_suffix(?list,+integer,+list) - zero_or_one

proper_suffix(?list,-integer,+list) - zero_or_more

take/3

Takes the first N elements of a list. Fails if the list have fewer than N elements.

Compilation flags:

static

Template:

take(N,List,Elements)

Mode and number of proofs:

take(+integer,+list,-list) - zero_or_one

drop/3

Drops the first N elements of a list. Fails if the list have fewer than N elements.

Compilation flags:

static

Template:

drop(N,List,Remaining)

Mode and number of proofs:

drop(+integer,+list,-list) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

list, list(Type), numberlistp, varlistp

 object

natural

Natural numbers data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2025-01-16

Compilation flags:

static, context_switching_calls

Extends:

public integer

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 between/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 plus/3 power_sequence/4 sequence/3 sequence/4 singletons/2 subsumes/2 subterm/2 succ/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

number

Number data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:14:0

Date: 2023-12-07

Compilation flags:

static, context_switching_calls

Extends:

public atomic

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	approximately_equal/2

	approximately_equal/3

	essentially_equal/3

	tolerance_equal/4

	=~= / 2

	Protected predicates

	Private predicates

	Operators

	op(700,xfx,=~=)

Public predicates

approximately_equal/2

Compares two numbers for approximate equality given the epsilon arithmetic constant value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * epsilon. No type-checking.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2)

Mode and number of proofs:

approximately_equal(+number,+number) - zero_or_one

approximately_equal/3

Compares two numbers for approximate equality given a user-defined epsilon value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * Epsilon. No type-checking.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

approximately_equal(+number,+number,+number) - zero_or_one

Remarks:

	Epsilon range: Epsilon should be the epsilon arithmetic constant value or a small multiple of it. Only use a larger value if a greater error is expected.

	Comparison with essential equality: For the same epsilon value, approximate equality is weaker requirement than essential equality.

essentially_equal/3

Compares two numbers for essential equality given an epsilon value using the de facto standard formula abs(Number1 - Number2) =< min(abs(Number1), abs(Number2)) * Epsilon. No type-checking.

Compilation flags:

static

Template:

essentially_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

essentially_equal(+number,+number,+number) - zero_or_one

Remarks:

	Comparison with approximate equality: For the same epsilon value, essential equality is a stronger requirement than approximate equality.

tolerance_equal/4

Compares two numbers for close equality given relative and absolute tolerances using the de facto standard formula abs(Number1 - Number2) =< max(RelativeTolerance * max(abs(Number1), abs(Number2)), AbsoluteTolerance). No type-checking.

Compilation flags:

static

Template:

tolerance_equal(Number1,Number2,RelativeTolerance,AbsoluteTolerance)

Mode and number of proofs:

tolerance_equal(+number,+number,+number,+number) - zero_or_one

=~= / 2

Compares two floats (or lists of floats) for approximate equality using 100*epsilon for the absolute error and, if that fails, 99.999% accuracy for the relative error. Note that these precision values may not be adequate for all cases. No type-checking.

Compilation flags:

static

Template:

=~=(Float1,Float2)

Mode and number of proofs:

=~=(+number,+number) - zero_or_one

=~=(+list(number),+list(number)) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

op(700,xfx,=~=)

Scope:

public

 object

numberlist

List of numbers predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:16:0

Date: 2025-03-13

Compilation flags:

static, context_switching_calls

Implements:

public numberlistp

Extends:

public list

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 as_difflist/2 average/2 chebyshev_distance/3 chebyshev_norm/2 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 euclidean_distance/3 euclidean_norm/2 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 least_common_multiple/2 length/2 manhattan_distance/3 manhattan_norm/2 max/2 median/2 member/2 memberchk/2 min/2 min_max/3 modes/2 msort/2 msort/3 new/1 nextto/3 normalize_range/2 normalize_range/4 normalize_scalar/2 normalize_unit/2 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 product/2 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 rescale/3 reverse/2 same_length/2 same_length/3 scalar_product/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 softmax/2 softmax/3 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 sum/2 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), varlist, difflist

 protocol

numberlistp

List of numbers protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:10:0

Date: 2025-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	min/2

	max/2

	min_max/3

	product/2

	sum/2

	average/2

	median/2

	modes/2

	euclidean_norm/2

	chebyshev_norm/2

	manhattan_norm/2

	euclidean_distance/3

	chebyshev_distance/3

	manhattan_distance/3

	scalar_product/3

	normalize_range/2

	normalize_range/4

	normalize_unit/2

	normalize_scalar/2

	rescale/3

	least_common_multiple/2

	softmax/2

	softmax/3

	Protected predicates

	Private predicates

	Operators

Public predicates

min/2

Determines the minimum value in a list using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list(number),-number) - zero_or_one

max/2

Determines the list maximum value using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list(number),-number) - zero_or_one

min_max/3

Determines the minimum and maximum values in a list using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

min_max(List,Minimum,Maximum)

Mode and number of proofs:

min_max(+list(number),-number,-number) - zero_or_one

product/2

Calculates the product of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

product(List,Product)

Mode and number of proofs:

product(+list(number),-number) - zero_or_one

sum/2

Calculates the sum of all list numbers. Returns the integer zero if the list is empty.

Compilation flags:

static

Template:

sum(List,Sum)

Mode and number of proofs:

sum(+list(number),-number) - one

average/2

Calculates the average (i.e., arithmetic mean) of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

average(List,Average)

Mode and number of proofs:

average(+list(number),-float) - zero_or_one

median/2

Calculates the median of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median(List,Median)

Mode and number of proofs:

median(+list(number),-float) - zero_or_one

modes/2

Returns the list of modes of a list of numbers in ascending order. Fails if the list is empty.

Compilation flags:

static

Template:

modes(List,Modes)

Mode and number of proofs:

modes(+list(number),-list(number)) - zero_or_one

euclidean_norm/2

Calculates the Euclidean norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

euclidean_norm(List,Norm)

Mode and number of proofs:

euclidean_norm(+list(number),-float) - zero_or_one

chebyshev_norm/2

Calculates the Chebyshev norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

chebyshev_norm(List,Norm)

Mode and number of proofs:

chebyshev_norm(+list(integer),-integer) - zero_or_one

chebyshev_norm(+list(float),-float) - zero_or_one

manhattan_norm/2

Calculates the Manhattan norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

manhattan_norm(List,Norm)

Mode and number of proofs:

manhattan_norm(+list(integer),-integer) - zero_or_one

manhattan_norm(+list(float),-float) - zero_or_one

euclidean_distance/3

Calculates the Euclidean distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

euclidean_distance(List1,List2,Distance)

Mode and number of proofs:

euclidean_distance(+list(number),+list(number),-float) - zero_or_one

chebyshev_distance/3

Calculates the Chebyshev distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

chebyshev_distance(List1,List2,Distance)

Mode and number of proofs:

chebyshev_distance(+list(integer),+list(integer),-integer) - zero_or_one

chebyshev_distance(+list(float),+list(float),-float) - zero_or_one

manhattan_distance/3

Calculates the Manhattan distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

manhattan_distance(List1,List2,Distance)

Mode and number of proofs:

manhattan_distance(+list(integer),+list(integer),-integer) - zero_or_one

manhattan_distance(+list(float),+list(float),-float) - zero_or_one

scalar_product/3

Calculates the scalar product of two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

scalar_product(List1,List2,Product)

Mode and number of proofs:

scalar_product(+list(integer),+list(integer),-integer) - zero_or_one

scalar_product(+list(float),+list(float),-float) - zero_or_one

normalize_range/2

Normalizes a list of numbers into the [0.0,1.0] range. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_range(List,NormalizedList)

Mode and number of proofs:

normalize_range(+list(number),-list(float)) - one

normalize_range/4

Normalizes a list of numbers into the given range. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_range(List,Minimum,Maximum,NormalizedList)

Mode and number of proofs:

normalize_range(+list(number),+number,+number,-list(float)) - one

normalize_unit/2

Normalizes a list of numbers returning its unit vector (i.e., a list with Euclidean norm equal to one). Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_unit(List,NormalizedList)

Mode and number of proofs:

normalize_unit(+list(number),-list(float)) - one

normalize_scalar/2

Normalizes a list of numbers such that the sum of all numbers is equal to one. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_scalar(List,NormalizedList)

Mode and number of proofs:

normalize_scalar(+list(number),-list(float)) - one

rescale/3

Rescales all numbers in a list by the given factor.

Compilation flags:

static

Template:

rescale(List,Factor,RescaledList)

Mode and number of proofs:

rescale(+list(integer),+integer,-list(integer)) - one

rescale(+list(number),+float,-list(float)) - one

least_common_multiple/2

Computes the least common multiple of a list of two or more positive integers. Fails if the list is empty or contains a single element. Fails also if any of the elements is zero. May require backend support for unbound integer arithmetic.

Compilation flags:

static

Template:

least_common_multiple(Integers,LeastCommonMultiple)

Mode and number of proofs:

least_common_multiple(+list(positive_integer),-positive_integer) - zero_or_one

softmax/2

Computes the softmax of a list of floats, returning a probability distribution.

Compilation flags:

static

Template:

softmax(Floats,Softmax)

Mode and number of proofs:

softmax(+list(float),-list(float)) - one

softmax/3

Computes the softmax of a list of floats with the given temperature, returning a probability distribution.

Compilation flags:

static

Template:

softmax(Floats,Temperature,Softmax)

Mode and number of proofs:

softmax(+list(float),+positive_float,-list(float)) - one

Remarks:

	Temperature > 1.0: Makes the distribution more uniform.

	Temperature < 1.0: Makes the distribution more concentrated on the largest values.

	Temperature = 1.0: Standard softmax behavior.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

numberlist, listp, varlistp

 object

pairs

Useful predicates over lists of pairs (key-value terms).

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:1:1

Date: 2023-11-21

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Usage: This object can be loaded independently of other entities in the types library by using the goal logtalk_load(types(pairs)).

Inherited public predicates:

(none)

	Public predicates

	keys_values/3

	keys/2

	key/2

	values/2

	value/3

	transpose/2

	group_sorted_by_key/2

	group_consecutive_by_key/2

	group_by_key/2

	map/3

	Protected predicates

	Private predicates

	Operators

Public predicates

keys_values/3

Converts between a list of pairs and lists of keys and values. When converting to pairs, this predicate fails if the list of keys and the list of values have different lengths.

Compilation flags:

static

Template:

keys_values(Pairs,Keys,Values)

Mode and number of proofs:

keys_values(+list(pair),-list,-list) - one

keys_values(-list(pair),+list,+list) - zero_or_one

keys/2

Returns a list of keys from a list of pairs.

Compilation flags:

static

Template:

keys(Pairs,Keys)

Mode and number of proofs:

keys(+list(pair),-list) - one

key/2

Enumerates by backtracking all keys from a list of pairs.

Compilation flags:

static

Template:

key(Pairs,Key)

Mode and number of proofs:

key(+list(pair),-term) - zero_or_more

values/2

Returns a list of values from a list of pairs.

Compilation flags:

static

Template:

values(Pairs,Values)

Mode and number of proofs:

values(+list(pair),-list) - one

value/3

Returns a value addressed by the given path (a key or a list of keys in the case of nested list of pairs). Fails if path does not exist.

Compilation flags:

static

Template:

value(Pairs,Path,Value)

Mode and number of proofs:

value(+list(pair),+term,-term) - zero_or_one

value(+list(pair),+list,-term) - zero_or_one

transpose/2

Transposes a list of pairs by swapping each pair key and value. The relative order of the list elements is kept.

Compilation flags:

static

Template:

transpose(Pairs,TransposedPairs)

Mode and number of proofs:

transpose(+list(pair),-list(pair)) - one

group_sorted_by_key/2

Groups pairs by key by sorting them and then constructing new pairs by grouping all values for a given key in a list. Keys are compared using equality. Relative order of values per key is kept. Resulting list of pairs is sorted by key.

Compilation flags:

static

Template:

group_sorted_by_key(Pairs,Groups)

Mode and number of proofs:

group_sorted_by_key(+list(pair),-list(pair)) - one

group_consecutive_by_key/2

Groups pairs by constructing new pairs by grouping all values for consecutive key in a list. Keys are compared using equality. The relative order of the values for the same key is kept.

Compilation flags:

static

Template:

group_consecutive_by_key(Pairs,Groups)

Mode and number of proofs:

group_consecutive_by_key(+list(pair),-list(pair)) - one

group_by_key/2

Same as the group_sorted_by_key/2 predicate. Deprecated.

Compilation flags:

static

Template:

group_by_key(Pairs,Groups)

Mode and number of proofs:

group_by_key(+list(pair),-list(pair)) - one

map/3

Maps a list into pairs using a closure that applies to each list element to compute its key.

Compilation flags:

static

Template:

map(Closure,List,Pairs)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(@callable,+list,-list(pair)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

term

Term utility predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:11:0

Date: 2022-05-13

Compilation flags:

static, context_switching_calls

Implements:

public termp

Aliases:

termp variables/2 as vars/2

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

termp

Term utility predicates protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:35:0

Date: 2022-05-13

Compilation flags:

static

Extends:

public comparingp

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2

	Public predicates

	depth/2

	ground/1

	new/1

	occurs/2

	subsumes/2

	subterm/2

	valid/1

	check/1

	variant/2

	variables/2

	singletons/2

	numbervars/3

	numbervars/1

	varnumbers/3

	varnumbers/2

	Protected predicates

	Private predicates

	Operators

Public predicates

depth/2

True if the depth of Term is Depth. The depth of atomic terms is zero; the depth of a compound term is one plus the maximum depth of its sub-terms.

Compilation flags:

static

Template:

depth(Term,Depth)

Mode and number of proofs:

depth(@term,?integer) - zero_or_one

ground/1

True if the argument is ground. Deprecated. Use the ground/1 standard predicate instead.

Compilation flags:

static

Template:

ground(Term)

Mode and number of proofs:

ground(@term) - zero_or_one

new/1

Creates a new term instance (if meaningful).

Compilation flags:

static

Template:

new(Term)

Mode and number of proofs:

new(-nonvar) - zero_or_one

occurs/2

True if the variable occurs in the term.

Compilation flags:

static

Template:

occurs(Variable,Term)

Mode and number of proofs:

occurs(@var,@term) - zero_or_one

subsumes/2

The first term subsumes the second term. Deprecated. Use the subsumes_term/2 standard predicate instead.

Compilation flags:

static

Template:

subsumes(General,Specific)

Mode and number of proofs:

subsumes(@term,@term) - zero_or_one

subterm/2

The first term is a subterm of the second term.

Compilation flags:

static

Template:

subterm(Subterm,Term)

Mode and number of proofs:

subterm(?term,+term) - zero_or_more

valid/1

Term is valid.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

check/1

Checks if a term is valid. Throws an exception if the term is not valid.

Compilation flags:

static

Template:

check(Term)

Mode and number of proofs:

check(@nonvar) - one

variant/2

Each term is a variant of the other (i.e., they are structurally equivalent).

Compilation flags:

static

Template:

variant(Term1,Term2)

Mode and number of proofs:

variant(@term,@term) - zero_or_one

variables/2

Returns a list of all term variables (ordered as found when doing a depth-first, left-to-right traversal of Term). Deprecated. Use the standard term_variables/2 predicate instead.

Compilation flags:

static

Template:

variables(Term,List)

Mode and number of proofs:

variables(@term,-list) - one

singletons/2

Returns a list of all term singleton variables (ordered as found when doing a depth-first, left-to-right traversal of Term).

Compilation flags:

static

Template:

singletons(Term,Singletons)

Mode and number of proofs:

singletons(@term,-list) - one

numbervars/3

Grounds a term by replacing all variables with '$VAR'(N) terms with N starting at From. The Next argument is unified with the next value for N after binding all variables.

Compilation flags:

static

Template:

numbervars(Term,From,Next)

Mode and number of proofs:

numbervars(?term,+integer,?integer) - zero_or_one

numbervars/1

Grounds a term by replacing all variables with '$VAR'(N) terms with N starting at 0.

Compilation flags:

static

Template:

numbervars(Term)

Mode and number of proofs:

numbervars(?term) - zero_or_one

varnumbers/3

Replaces all '$VAR'(N) sub-terms in a term with fresh variables for all values of N grater or equal to From. Variables in Term are shared with Copy.

Compilation flags:

static

Template:

varnumbers(Term,From,Copy)

Mode and number of proofs:

varnumbers(@term,+integer,?term) - zero_or_one

varnumbers/2

Replaces all '$VAR'(N) sub-terms in a term with fresh variables for all values of N grater or equal to 0. Variables in Term are shared with Copy.

Compilation flags:

static

Template:

varnumbers(Term,Copy)

Mode and number of proofs:

varnumbers(@term,?term) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

term

 object

type

Type checking predicates. User extensible. New types can be defined by adding clauses for the type/1 and check/2 multifile predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:5:1

Date: 2024-09-26

Compilation flags:

static, context_switching_calls, complements(restrict)

Uses:

list

Remarks:

	Logtalk specific types: entity, object, protocol, category, entity_identifier, object_identifier, protocol_identifier, category_identifier, event, predicate.

	Prolog module related types (when the backend compiler supports modules): module, module_identifier, qualified_callable.

	Prolog base types: term, var, nonvar, atomic, atom, number, integer, float, compound, callable, ground.

	Atom derived types: non_quoted_atom, non_empty_atom, boolean, character, in_character, char, operator_specifier, hex_char.

	Atom derived parametric types: atom(CharSet), atom(CharSet,Length), non_empty_atom(CharSet), character(CharSet), in_character(CharSet), char(CharSet).

	Number derived types: positive_number, negative_number, non_positive_number, non_negative_number.

	Float derived types: positive_float, negative_float, non_positive_float, non_negative_float, probability.

	Integer derived types: positive_integer, negative_integer, non_positive_integer, non_negative_integer, byte, in_byte, character_code, in_character_code, code, operator_priority, hex_code.

	Integer derived parametric types: character_code(CharSet), in_character_code(CharSet), code(CharSet).

	List types (compound derived types): list, non_empty_list, partial_list, list_or_partial_list, list(Type), list(Type,Length), list(Type,Min,Max), list(Type,Length,Min,Max), non_empty_list(Type), codes, chars.

	Difference list types (compound derived types): difference_list, difference_list(Type).

	Other compound derived types: compound(Name,Types), predicate_indicator, non_terminal_indicator, predicate_or_non_terminal_indicator, clause, grammar_rule, pair, pair(KeyType,ValueType), cyclic, acyclic.

	Stream types: stream, stream_or_alias, stream(Property), stream_or_alias(Property).

	Other types: Object::Closure, between(Type,Lower,Upper), property(Type,LambdaExpression), one_of(Type,Set), var_or(Type), ground(Type), types(Types), constrain(Type,Closure), type.

	Type predicate notes: This type is used to check for an object public predicate specified as Object::Functor/Arity.

	Type boolean notes: The two value of this type are the atoms true and false.

	Stream types notes: In the case of the stream(Property) and stream_or_alias(Property) types, Property must be a valid stream property.

	Type order notes: The three possible values of this type are the single character atoms <, =, and >.

	Type character_code notes: This type takes into account Unicode support by the backend compiler. When Unicode is supported, it distinguishes between BMP and full support. When Unicode is not supported, it assumes a byte representation for characters.

	Type Object::Closure notes: Allows calling a public object predicate for type-checking. The predicate should provide valid/2 predicate semantics and assume called with a bound argument. The Closure closure is extended with a single argument, the value to be checked.

	Type compound(Name,Types) notes: This type verifies that a compound term have the given Name and its arguments conform to Types.

	Type between(Type, Lower, Upper) notes: The type argument allows distinguishing between numbers and other types. It also allows choosing between mixed integer/float comparisons and strict float or integer comparisons. The term is type-checked before testing for interval membership.

	Type property(Type, Lambda) notes: Verifies that Term satisfies a property described using a lambda expression of the form [Parameter]>>Goal. The lambda expression is applied in the context of user. The term is type-checked before calling the goal.

	Type one_of(Type, Set) notes: For checking if a given term is an element of a set. The set is represented using a list. The term is type-checked before testing for set membership.

	Type var_or(Type) notes: Allows checking if a term is either a variable or a valid value of the given type.

	Type ground(Type) notes: Allows checking if a term is ground and a valid value of the given type.

	Type types(Types) notes: Allows checking if a term is a valid value for one of the types in a list of types.

	Type constrain(Type,Closure) notes: Allows checking if a term is a valid value for the given type and satisfies the given closure.

	Type type notes: Allows checking if a term is a valid type.

	Type qualified_callable notes: Allows checking if a term is a possibly module-qualified callable term. When the term is qualified, it also checks that the qualification modules are type correct. When the term is not qualified, its semantics are the same as the callable type.

	Design choices: The main predicates are valid/2 and check/3. These are defined using the predicate check/2. Defining clauses for check/2 instead of valid/2 gives the user full control of exception terms without requiring an additional predicate.

	Error context: The built-in execution-context method context/1 can be used to provide the calling context for errors when using the predicate check/3.

	Registering new types: New types can be registered by defining clauses for the type/1 and check/2 multifile predicates. Clauses for both predicates must have a bound first argument to avoid introducing spurious choice-points when type-checking terms.

	Meta-types: Meta-types are types that have one or more sub-type arguments. E.g. var_or(Type). The sub-types of a meta-type can be enumerated by defining a clause for the meta_type/3 multifile predicate.

	Character sets: When testing character or character code based terms (e.g., atom), it is possible to choose a character set (ascii_identifier, ascii_printable, ascii_full, byte, unicode_bmp, or unicode_full) using the parameterizable types.

	Caveats: The type argument (and any type parameterization) to the predicates is not type-checked (or checked for consistency) for performance reasons.

	Unicode limitations: Currently, correct character/code type-checking is only ensured for XVM and SWI-Prolog as other backends do not provide support for querying a Unicode code point category.

Inherited public predicates:

 arbitrary/1 arbitrary/2 edge_case/2 get_seed/1 max_size/1 mutation/3 set_seed/1 shrink/3 shrink_sequence/3 shrinker/1

	Public predicates

	type/1

	meta_type/3

	valid/2

	check/3

	check/2

	Protected predicates

	Private predicates

	Operators

Public predicates

type/1

Table of defined types. A new type can be registered by defining a clause for this predicate and adding a clause for the check/2 multifile predicate.

Compilation flags:

static, multifile

Template:

type(Type)

Mode and number of proofs:

type(?callable) - zero_or_more

meta_type/3

Table of defined meta-types. A registered type that is a meta-type can be described by defining a clause for this predicate to enumerate its sub-types and optional values in case of a single sub-type.

Compilation flags:

static, multifile

Template:

meta_type(MetaType,SubTypes,Values)

Mode and number of proofs:

meta_type(?callable,-list,-list) - zero_or_more

valid/2

True if the given term is of the specified type. Fails otherwise.

Compilation flags:

static

Template:

valid(Type,Term)

Mode and number of proofs:

valid(@callable,@term) - zero_or_one

check/3

True if the given term is of the specified type. Throws an error otherwise using the format error(Error, Context). For the possible values of Error see the check/2 predicate.

Compilation flags:

static

Template:

check(Type,Term,Context)

Mode and number of proofs:

check(@callable,@term,@term) - one_or_error

check/2

True if the given term is of the specified type. Throws an error otherwise. A new type can be added by defining a clause for this predicate and registering it by adding a clause for the type/1 multifile predicate.

Compilation flags:

static, multifile

Template:

check(Type,Term)

Meta-predicate template:

check(::,*)

Mode and number of proofs:

check(@callable,@term) - one_or_error

Exceptions:

Term is not bound as required:

instantiation_error

Term is bound but not of the specified type:

type_error(Type,Term)

Term is the of the correct type but not in the specified domain:

domain_error(Domain,Term)

Term is the of the correct type and domain but the resource it represents does not exist:

existence_error(Type,Term)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

arbitrary, os_types, either, maybe

 object

varlist

List of variables predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2020-05-11

Compilation flags:

static, context_switching_calls

Implements:

public varlistp

Remarks:

(none)

Inherited public predicates:

 append/3 check/1 delete/3 empty/1 flatten/2 last/2 length/2 memberchk/2 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 permutation/2 prefix/2 remove_duplicates/2 reverse/2 same_length/2 select/3 sublist/2 subtract/3 suffix/2 valid/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), numberlist, difflist

 protocol

varlistp

List of variables protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2022-09-19

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	append/3

	delete/3

	empty/1

	flatten/2

	last/2

	length/2

	memberchk/2

	nextto/3

	nth0/3

	nth0/4

	nth1/3

	nth1/4

	permutation/2

	prefix/2

	remove_duplicates/2

	reverse/2

	same_length/2

	select/3

	sublist/2

	subtract/3

	suffix/2

	valid/1

	check/1

	Protected predicates

	Private predicates

	Operators

Public predicates

append/3

Appends two lists.

Compilation flags:

static

Template:

append(List1,List2,List)

Mode and number of proofs:

append(?list,?list,?list) - zero_or_more

delete/3

Deletes from a list all occurrences of an element returning the list of remaining elements.

Compilation flags:

static

Template:

delete(List,Element,Remaining)

Mode and number of proofs:

delete(@list,@term,?list) - one

empty/1

True if the argument is an empty list.

Compilation flags:

static

Template:

empty(List)

Mode and number of proofs:

empty(@list) - zero_or_one

flatten/2

Flattens a list of lists into a list.

Compilation flags:

static

Template:

flatten(List,Flatted)

Mode and number of proofs:

flatten(@list,-list) - one

last/2

List last element (if it exists).

Compilation flags:

static

Template:

last(List,Last)

Mode and number of proofs:

last(@list,@var) - zero_or_one

length/2

List length.

Compilation flags:

static

Template:

length(List,Length)

Mode and number of proofs:

length(@list,?integer) - zero_or_one

memberchk/2

Checks if a variable is a member of a list.

Compilation flags:

static

Template:

memberchk(Element,List)

Mode and number of proofs:

memberchk(@var,@list) - zero_or_one

nextto/3

X and Y are consecutive elements in List.

Compilation flags:

static

Template:

nextto(X,Y,List)

Mode and number of proofs:

nextto(@var,@var,?list) - zero_or_more

nth0/3

Nth element of a list (counting from zero).

Compilation flags:

static

Template:

nth0(Nth,List,Element)

Mode and number of proofs:

nth0(?integer,+list,@var) - zero_or_more

nth0/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth0(Nth,List,Element,Rest)

Mode and number of proofs:

nth0(?integer,+list,@var,?list) - zero_or_more

nth1/3

Nth element of a list (counting from one).

Compilation flags:

static

Template:

nth1(Nth,List,Element)

Mode and number of proofs:

nth1(?integer,+list,@var) - zero_or_more

nth1/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth1(Nth,List,Element,Rest)

Mode and number of proofs:

nth1(?integer,+list,@var,?list) - zero_or_more

permutation/2

The two lists are a permutation of the same list.

Compilation flags:

static

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(@list,@list) - zero_or_one

prefix/2

Prefix is a prefix of List.

Compilation flags:

static

Template:

prefix(Prefix,List)

Mode and number of proofs:

prefix(?list,@list) - zero_or_more

remove_duplicates/2

Removes duplicated variables and keeping the left-most variable when repeated.

Compilation flags:

static

Template:

remove_duplicates(List,Set)

Mode and number of proofs:

remove_duplicates(+list,-list) - one

reverse/2

Reverses a list.

Compilation flags:

static

Template:

reverse(List,Reversed)

Mode and number of proofs:

reverse(@list,?list) - zero_or_one

reverse(?list,@list) - zero_or_one

reverse(-list,-list) - one_or_more

same_length/2

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2)

Mode and number of proofs:

same_length(@list,?list) - zero_or_one

same_length(?list,@list) - zero_or_one

same_length(-list,-list) - one_or_more

select/3

Selects an element from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

select(Element,List,Remaining)

Mode and number of proofs:

select(@var,?list,?list) - zero_or_more

sublist/2

The first list is a sublist of the second.

Compilation flags:

static

Template:

sublist(Sublist,List)

Mode and number of proofs:

sublist(?list,@list) - zero_or_more

subtract/3

Removes all elements in the second list from the first list, returning the list of remaining elements.

Compilation flags:

static

Template:

subtract(List,Elements,Remaining)

Mode and number of proofs:

subtract(@list,@list,-list) - one

suffix/2

Suffix is a suffix of List.

Compilation flags:

static

Template:

suffix(Suffix,List)

Mode and number of proofs:

suffix(?list,@list) - zero_or_more

valid/1

Term is a valid list of variables.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

check/1

Checks if a term is a valid list of variables. Throws an exception if the term is not valid.

Compilation flags:

static

Template:

check(Term)

Mode and number of proofs:

check(@nonvar) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

varlist, listp, numberlistp

 object

ulid

Universally Unique Lexicographically Sortable Identifier (ULID) generator using an atom representation.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static, context_switching_calls

Extends:

public ulid(atom)

Remarks:

(none)

Inherited public predicates:

 generate/1 generate/2 generate/8 timestamp/2 timestamp/8

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid(Representation), ulid_types, uuid, uuid(Representation), ids, ids(Representation,Bytes)

 object

ulid(Representation)

	Representation - Text representation for the ULID. Possible values are atom, chars, and codes.

Universally Unique Lexicographically Sortable Identifier (ULID) generator.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static, context_switching_calls

Implements:

public ulid_protocol

Uses:

fast_random

iso8601

list

os

Remarks:

(none)

Inherited public predicates:

 generate/1 generate/2 generate/8 timestamp/2 timestamp/8

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid, ulid_types, uuid(Representation), uuid, ids, ids(Representation,Bytes)

 protocol

ulid_protocol

Universally Unique Lexicographically Sortable Identifier (ULID) generator protocol.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/1

	generate/2

	generate/8

	timestamp/2

	timestamp/8

	Protected predicates

	Private predicates

	Operators

Public predicates

generate/1

Generates a new ULID.

Compilation flags:

static

Template:

generate(ULID)

Mode and number of proofs:

generate(--ulid) - one

generate/2

Generates a new ULID from a timestamp (number of milliseconds since the Unix epoch: 00:00:00 UTC on January 1, 1970).

Compilation flags:

static

Template:

generate(Milliseconds,ULID)

Mode and number of proofs:

generate(+integer,--ulid) - one

generate/8

Generates a new ULID from a timestamp discrete components.

Compilation flags:

static

Template:

generate(Year,Month,Day,Hours,Minutes,Seconds,Milliseconds,ULID)

Mode and number of proofs:

generate(+integer,+integer,+integer,+integer,+integer,+integer,+integer,--ulid) - one

timestamp/2

Returns the given ULID timestamp (number of milliseconds since the Unix epoch: 00:00:00 UTC on January 1, 1970).

Compilation flags:

static

Template:

timestamp(ULID,Milliseconds)

Mode and number of proofs:

timestamp(++ulid,-integer) - one

timestamp/8

Decodes a ULID into its timestamp discrete components.

Compilation flags:

static

Template:

timestamp(ULID,Year,Month,Day,Hours,Minutes,Seconds,Milliseconds)

Mode and number of proofs:

timestamp(++ulid,-integer,-integer,-integer,-integer,-integer,-integer,-integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

ulid_types

ULID type definition.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

type

Remarks:

	Provided types: This category adds a ulid(Representation) type for type-checking when using the ulid library object. Valid representation values are atom, chars, and codes.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid(Representation), ulid

 object

union_find

Union find data structure implementation.

Availability:

logtalk_load(union_find(loader))

Author: José Antonio Riaza Valverde; adapted to Logtalk by Paulo Moura

Version: 1:0:0

Date: 2022-02-18

Compilation flags:

static, context_switching_calls

Implements:

public union_find_protocol

Extends:

public compound

Uses:

avltree

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 disjoint_sets/2 find/4 find/5 ground/1 make_set/3 new/1 new/2 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 union/4 union_all/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

union_find_protocol

Union-find data structure protocol.

Availability:

logtalk_load(union_find(loader))

Author: José Antonio Riaza Valverde; adapted to Logtalk by Paulo Moura

Version: 1:0:0

Date: 2022-02-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/2

	make_set/3

	union/4

	union_all/3

	find/4

	find/5

	disjoint_sets/2

	Protected predicates

	Private predicates

	Operators

Public predicates

new/2

Creates a new union-find data structure with a list of elements as keys.

Compilation flags:

static

Template:

new(Elements,UnionFind)

Mode and number of proofs:

new(+list(element),?union_find) - zero_or_one

make_set/3

Makes a new set by creating a new element with a unique key Element, a rank of 0, and a parent pointer to itself. The parent pointer to itself indicates that the element is the representative member of its own set.

Compilation flags:

static

Template:

make_set(UnionFind,Element,NewUnionFind)

Mode and number of proofs:

make_set(+union_find,+element,?union_find) - zero_or_one

union/4

Merges the two trees, if distinct, that contain the given elements. The trees are joined by attaching the shorter tree (by rank) to the root of the taller tree. Fails if any of the elements is not found.

Compilation flags:

static

Template:

union(UnionFind,Element1,Element2,NewUnionFind)

Mode and number of proofs:

union(+union_find,+element,+element,?union_find) - zero_or_one

union_all/3

Merges the distinct trees for all the given elements returning the resulting union-find data structure. Fails if any of the elements is not found.

Compilation flags:

static

Template:

union_all(UnionFind,Elements,NewUnionFind)

Mode and number of proofs:

union_all(+union_find,+list(element),?union_find) - zero_or_one

find/4

Finds the root element of a set by following the chain of parent pointers from the given element. Root is the representative member of the set to which the element belongs, and may be element itself. Fails if the element is not found.

Compilation flags:

static

Template:

find(UnionFind,Element,Root,NewUnionFind)

Mode and number of proofs:

find(+union_find,+element,?element,?union_find) - zero_or_one

Remarks:

	Path compression: The structure of the tree containing the element is flattened by making every node point to the root whenever this predicate is used on it.

find/5

Same as the find/4 predicate, but returning also the rank of the root. Fails if the element is not found.

Compilation flags:

static

Template:

find(UnionFind,Element,Root,Rank,UnionFindOut)

Mode and number of proofs:

find(+union_find,+element,?element,?rank,?union_find) - zero_or_one

Remarks:

	Path compression: The structure of the tree containing the element is flattened by making every node point to the root whenever this predicate is used on it.

disjoint_sets/2

Returns the list of disjoint sets in the given union-find data structure.

Compilation flags:

static

Template:

disjoint_sets(UnionFind,Sets)

Mode and number of proofs:

disjoint_sets(+union_find,?sets) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

union_find

 object

uuid

Universally unique identifier (UUID) generator using an atom representation.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:2:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Extends:

public uuid(atom)

Remarks:

(none)

Inherited public predicates:

 random_node/1 uuid_null/1 uuid_v1/2 uuid_v4/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

uuid(Representation), ulid, ulid(Representation), ids, ids(Representation,Bytes)

 object

uuid(Representation)

	Representation - Text representation for the UUID. Possible values are atom, chars, and codes.

Universally unique identifier (UUID) generator.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Implements:

public uuid_protocol

Uses:

fast_random

iso8601

list

os

Remarks:

(none)

Inherited public predicates:

 random_node/1 uuid_null/1 uuid_v1/2 uuid_v4/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

uuid, ulid, ulid(Representation), ids, ids(Representation,Bytes)

 protocol

uuid_protocol

Universally unique identifier (UUID) generator protocol.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2021-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	uuid_v1/2

	uuid_v4/1

	uuid_null/1

	random_node/1

	Protected predicates

	Private predicates

	Operators

Public predicates

uuid_v1/2

Returns a version 1 UUID for the given MAC address (a list of six bytes). The MAC address can be replaced by a random 6 bytes node identifier as per RFC 4122 when the MAC address is not available or should not be disclosed.

Compilation flags:

static

Template:

uuid_v1(MAC,UUID)

Mode and number of proofs:

uuid_v1(+list(byte),--ground) - one

uuid_v4/1

Returns a version 4 UUID.

Compilation flags:

static

Template:

uuid_v4(UUID)

Mode and number of proofs:

uuid_v4(--ground) - one

uuid_null/1

Returns the null UUID.

Compilation flags:

static

Template:

uuid_null(UUID)

Mode and number of proofs:

uuid_null(--ground) - one

random_node/1

Generates a list with six random bytes that can be used in alternative to a MAC address when generating version 1 UUIDs.

Compilation flags:

static

Template:

random_node(Node)

Mode and number of proofs:

random_node(--list(byte)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

a_star_interpreter(W)

A* interpreter for general logic programs. The parameter W is used to fine tune the behavior. W = 0 gives us a breadth-first search and W = 1 gives us a greedy best-first search. The default value for W is 0.5.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Imports:

public best_first

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

benchmark_generators

Generates random data structures for use in benchmarks.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Uses:

random

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	random_tree/1

	Protected predicates

	Private predicates

	Operators

Public predicates

random_tree/1

Generates a random tree.

Compilation flags:

static

Template:

random_tree(Tree)

Mode and number of proofs:

random_tree(-tree) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

best_first

Best-first framework for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:1:0

Date: 2019-03-08

Compilation flags:

static

Implements:

public interpreterp

Uses:

counter

minheap

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	f/4

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

f/4

.

Compilation flags:

static

Template:

f(Length1,Length2,Depth,Cost)

Mode and number of proofs:

f(+float,+float,+float,-float) - zero_or_more

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

bfs_interpreter

Breadth-first interpreter for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

queue

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

bup_interpreter

Semi-naive bottom-up interpreter for general (stratified) logic programs. Magic transformation is realized through an expansion hook.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Ulf Nilsson. Ported to Logtalk and augmented with negation by Victor Lagerkvist.

Version: 1:1:3

Date: 2023-11-30

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

list

magic

term

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

counter

Counter implemented with asserta/retract.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:1

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	increment/0

	increase/1

	set/1

	value/1

	reset/0

	Protected predicates

	Private predicates

	c/1

	Operators

Public predicates

increment/0

Increment the counter by 1.

Compilation flags:

static

Mode and number of proofs:

increment - one

increase/1

Increments the counter by the specified amount.

Compilation flags:

static

Template:

increase(I)

Mode and number of proofs:

increase(+number) - one

set/1

Sets the counter to the specified amount.

Compilation flags:

static

Template:

set(N)

Mode and number of proofs:

set(+number) - one

value/1

Gets the current value of the counter.

Compilation flags:

static

Template:

value(N)

Mode and number of proofs:

value(?number) - one

reset/0

Resets the counter to zero.

Compilation flags:

static

Mode and number of proofs:

reset - one

Protected predicates

(none)

Private predicates

c/1

Stores the current value of the counter.

Compilation flags:

dynamic

Template:

c(N)

Mode and number of proofs:

c(?number) - zero_or_one

Operators

(none)

 protocol

databasep

Database protocol.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	rule/4

	rule/3

	rule/2

	bench_goal/1

	Protected predicates

	Private predicates

	Operators

Public predicates

rule/4

Clauses for this predicate are automatically generated using term-expansion. The third argument contains the length of Body.

Compilation flags:

static

Template:

rule(Head,Body,Length,Tail)

Mode and number of proofs:

rule(?callable,?callable,-,-) - zero_or_more

rule/3

Clauses for this predicate are automatically generated using term-expansion. The third argument denotes the tail of the Body.

Compilation flags:

static

Template:

rule(Head,Body,Tail)

Mode and number of proofs:

rule(?callable,?callable,-) - zero_or_more

rule/2

Clauses for this predicate are automatically generated using term-expansion.

Compilation flags:

static

Template:

rule(Head,Body)

Mode and number of proofs:

rule(?callable,-list(callable)) - zero_or_more

bench_goal/1

Table of benchmark goals. They are used from shell.lgt to make benchmarking easier.

Compilation flags:

static

Template:

bench_goal(Goal)

Mode and number of proofs:

bench_goal(?callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

debug_expansion(Mode)

Expands debug/1 calls. The parameter Mode can be either the atom “debug” or “production”.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2010-04-15

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

demodb

Availability:

logtalk_load(verdi_neruda(loader))

Compilation flags:

static, context_switching_calls

Implements:

public databasep

Remarks:

(none)

Inherited public predicates:

 bench_goal/1 rule/2 rule/3 rule/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dfs_interpreter

Depth-first interpreter for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

flatting

Flattens conjunction of goals with the form f and g into a list [f,g].

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:1:0

Date: 2025-10-06

Compilation flags:

static

source: Based on source code from The Craft of Prolog, by Richard O’Keefe.

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	flatten_goals//1

	Private predicates

	Operators

Public predicates

(none)

Protected predicates

flatten_goals//1

Flattens a conjunction of goals.

Compilation flags:

static

Template:

flatten_goals(Conjunction)

Mode and number of proofs:

flatten_goals(+callable) - one

Private predicates

(none)

Operators

(none)

 object

heuristic_expansion(Mode)

Expands rules of the form p if f and g to rule(p, [f,g|Tail], Length, Tail).

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Extends:

public rule_expansion(Mode)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

iddfs_interpreter(Increment)

Iterative deepening depth-first interpreter for general logic programs. Based on source code from The Craft of Prolog, by Richard O’Keefe. The default value for the increment is 1.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

dfs_interpreter

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

interpreterp

Protocol for an interpreter.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	prove/2

	prove/3

	Protected predicates

	Private predicates

	Operators

Public predicates

prove/2

True if goal is provable in the specified database.

Compilation flags:

static

Template:

prove(Goal,DB)

Mode and number of proofs:

prove(+goal,+database) - zero_or_more

prove/3

True if goal is provable within the given depth-limit in the specified database.

Compilation flags:

static

Template:

prove(Goal,Limit,DB)

Mode and number of proofs:

prove(+goal,+limit,+database) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

magic

Object encapsulating magic methods.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Ulf Nilsson. Ported to Logtalk and augmented with stratified negation by Victor Lagerkvist.

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	magicise/4

	magic/2

	Protected predicates

	Private predicates

	Operators

Public predicates

magicise/4

Transform (Head :- Body) into a magic clause (NewHead :- NewBody).

Compilation flags:

static

Template:

magicise(Head,Body,NewHead,NewBody)

Mode and number of proofs:

magicise(+term,+list,-term,-list) - zero_or_one

magic/2

Prefix the predicate symbol of Old with magic.

Compilation flags:

static

Template:

magic(Old,New)

Mode and number of proofs:

magic(+callable,-callable) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

magic_expansion(Mode)

Expands rules of the form p if f and g to the more manageable rule(p, [f,g]) and performs magic transformation of clauses.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public flatting

Extends:

public debug_expansion(Mode)

Uses:

list

magic

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

rule_expansion(Mode)

Expands rules of the form p if f and g to the more manageable rule(p, [f,g]).

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public flatting

Extends:

public debug_expansion(Mode)

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell

User frontend to start the application.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-03-20

Compilation flags:

static, context_switching_calls

Uses:

shell(Interpreters)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	welcome/0

	start/0

	Protected predicates

	Private predicates

	Operators

Public predicates

welcome/0

Compilation flags:

static

start/0

Compilation flags:

static

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell(Interpreters)

Prolog shell for the interpreters.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist and Paulo Moura

Version: 1:1:3

Date: 2024-03-15

Compilation flags:

static, context_switching_calls

Uses:

counter

list

meta

pairs

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	init/0

	Protected predicates

	Private predicates

	Operators

Public predicates

init/0

Compilation flags:

static

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell_expansion(Mode)

Expansion object for the shell.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:1

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Extends:

public rule_expansion(Mode)

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

wrapper

Adviser tool for porting and wrapping plain Prolog applications.

Availability:

logtalk_load(wrapper(loader))

Author: Paulo Moura

Version: 0:12:3

Date: 2025-10-28

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_hook/4

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Uses:

logtalk

os

Remarks:

	prolog_extensions(Extensions) option: List of file name extensions used to recognize Prolog source files (default is ['.pl','.pro','.prolog']).

	logtalk_extension(Extension) option: Logtalk file name extension to be used for the generated wrapper files (default is '.lgt').

	exclude_files(Files) option: List of Prolog source files names to exclude (default is []).

	exclude_directories(Files) option: List of sub-directory names to exclude (default is []).

	include_wrapped_files(Boolean): Generate include/1 directives for the wrapped Prolog source files (default is true).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	rdirectory/2

	rdirectory/1

	directory/2

	directory/1

	directories/2

	directories/1

	files/2

	files/1

	file/2

	file/1

	save/1

	save/0

	default_option/1

	default_options/1

	Protected predicates

	Private predicates

	merge_options/2

	predicate_called_but_not_defined_/2

	object_predicate_called_/3

	module_predicate_called_/3

	unknown_predicate_called_/2

	missing_predicate_directive_/3

	non_standard_predicate_call_/2

	dynamic_directive_/3

	multifile_directive_/3

	add_directive_before_entity_/2

	add_directive_/2

	add_directive_/3

	remove_directive_/2

	file_being_advised_/4

	Operators

Public predicates

rdirectory/2

Advises the user on missing directives for converting all plain Prolog files in a directory and its sub-directories to Logtalk objects using the specified options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Advises the user on missing directives for converting all plain Prolog files in a directory and its sub-directories to Logtalk objects using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/2

Advises the user on missing directives for converting all plain Prolog files in a directory to Logtalk objects using the specified options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Advises the user on missing directives for converting all plain Prolog files in a directory to Logtalk objects using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

directories/2

Advises the user on missing directives for converting all Prolog files in a set of directories to Logtalk objects using the specified options.

Compilation flags:

static

Template:

directories(Directories,Options)

Mode and number of proofs:

directories(+list(atom),+list(compound)) - one

directories/1

Advises the user on missing directives for converting all Prolog files in a set of directories to Logtalk objects using default options.

Compilation flags:

static

Template:

directories(Directories)

Mode and number of proofs:

directories(+list(atom)) - one

files/2

Advises the user on missing directives for converting a list of plain Prolog files to Logtalk objects using the specified options.

Compilation flags:

static

Template:

files(Files,Options)

Mode and number of proofs:

files(+list(atom),+list(compound)) - one

files/1

Advises the user on missing directives for converting a list of plain Prolog files to Logtalk objects using default options.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

file/2

Advises the user on missing directives for converting a plain Prolog file to Logtalk objects using the specified options.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - one

file/1

Advises the user on missing directives for converting a plain Prolog file to Logtalk objects using default options.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

save/1

Saves the generated wrapper objects (plus a loader file per directory) for all advised files using the specified options. The wrapper objects are saved to the same directories that contain the wrapped Prolog files.

Compilation flags:

static

Template:

save(Options)

Mode and number of proofs:

save(+list(compound)) - one

save/0

Saves the generated wrapper objects (plus a loader file per directory) for all advised files using default options. The wrapper objects are saved to the same directories that contain the wrapped Prolog files.

Compilation flags:

static

Mode and number of proofs:

save - one

default_option/1

Enumerates by backtracking the default options used when generating the wrapper objects.

Compilation flags:

static

Template:

default_option(DefaultOption)

Mode and number of proofs:

default_option(?compound) - zero_or_more

default_options/1

Returns a list of the default options used when generating the wrapper objects.

Compilation flags:

static

Template:

default_options(DefaultOptions)

Mode and number of proofs:

default_options(-list(compound)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

merge_options/2

Merges the user options with the default options, returning the list of options used when generating the wrapper objects.

Compilation flags:

static

Template:

merge_options(UserOptions,Options)

Mode and number of proofs:

merge_options(+list(compound),-list(compound)) - one

predicate_called_but_not_defined_/2

Table of called object predicates that are not locally defined.

Compilation flags:

dynamic

Template:

predicate_called_but_not_defined_(Object,Predicate)

Mode and number of proofs:

predicate_called_but_not_defined_(?atom,?predicate_indicator) - zero_or_more

object_predicate_called_/3

Table of called object predicates.

Compilation flags:

dynamic

Template:

object_predicate_called_(Object,Other,Predicate)

Mode and number of proofs:

object_predicate_called_(?atom,?atom,?predicate_indicator) - zero_or_more

module_predicate_called_/3

Table of called module predicates.

Compilation flags:

dynamic

Template:

module_predicate_called_(Object,Module,Predicate)

Mode and number of proofs:

module_predicate_called_(?atom,?atom,?predicate_indicator) - zero_or_more

unknown_predicate_called_/2

Table of predicates called but not defined.

Compilation flags:

dynamic

Template:

unknown_predicate_called_(Object,Predicate)

Mode and number of proofs:

unknown_predicate_called_(?atom,?predicate_indicator) - zero_or_more

missing_predicate_directive_/3

Table of missing predicate directives.

Compilation flags:

dynamic

Template:

missing_predicate_directive_(Object,Directive,Predicate)

Mode and number of proofs:

missing_predicate_directive_(?atom,?predicate_indicator,?predicate_indicator) - zero_or_more

non_standard_predicate_call_/2

Table of called non-standard predicates.

Compilation flags:

dynamic

Template:

non_standard_predicate_call_(Object,Predicate)

Mode and number of proofs:

non_standard_predicate_call_(?atom,?predicate_indicator) - zero_or_more

dynamic_directive_/3

Table of declared dynamic predicates.

Compilation flags:

dynamic

Template:

dynamic_directive_(Object,Line,Predicate)

Mode and number of proofs:

dynamic_directive_(?atom,?integer,?predicate_indicator) - zero_or_more

multifile_directive_/3

Table of declared multifile predicates.

Compilation flags:

dynamic

Template:

multifile_directive_(Object,Line,Predicate)

Mode and number of proofs:

multifile_directive_(?atom,?integer,?predicate_indicator) - zero_or_more

add_directive_before_entity_/2

Table of directives to be added before the entity opening directive.

Compilation flags:

dynamic

Template:

add_directive_before_entity_(Object,Directive)

Mode and number of proofs:

add_directive_before_entity_(?atom,?predicate_indicator) - zero_or_more

add_directive_/2

Table of directives to be added.

Compilation flags:

dynamic

Template:

add_directive_(Object,Directive)

Mode and number of proofs:

add_directive_(?atom,?predicate_indicator) - zero_or_more

add_directive_/3

Table of directives to be added to complement existing directives.

Compilation flags:

dynamic

Template:

add_directive_(Object,Directive,NewDirective)

Mode and number of proofs:

add_directive_(?atom,?predicate_indicator,?predicate_indicator) - zero_or_more

remove_directive_/2

Table of directives to be removed.

Compilation flags:

dynamic

Template:

remove_directive_(Object,Directive)

Mode and number of proofs:

remove_directive_(?atom,?predicate_indicator) - zero_or_more

file_being_advised_/4

Table of files being advised are respective directories and names (basename without extension).

Compilation flags:

dynamic

Template:

file_being_advised_(File,Path,Directory,Name)

Mode and number of proofs:

file_being_advised_(?atom,?atom,?atom,?atom) - zero_or_more

Operators

(none)

 object

xml

Bi-directional XML parser.

Availability:

logtalk_load(xml_parser(loader))

Author: John Fletcher; adapted to Logtalk by Paulo Moura.

Version: 3:9:0

Date: 2025-10-06

Copyright: Copyright (C) 2001-2005 Binding Time Limited, Copyright (C) 2005-2013 John Fletcher

License: This program is offered free of charge, as unsupported source code. You may use it, copy it, distribute it, modify it or sell it without restriction, but entirely at your own risk.

Compilation flags:

static, context_switching_calls

Uses:

list

term

Remarks:

	On-line documentation: https://binding-time.co.uk/index.php/Parsing_XML_with_Prolog

	Compliance: This XML parser supports a subset of XML suitable for XML Data and Worldwide Web applications. It is neither as strict nor as comprehensive as the XML 1.0 Specification mandates.

	Compliance-strictness: It is not as strict, because, while the specification must eliminate ambiguities, not all errors need to be regarded as faults, and some reasonable examples of real XML usage would have to be rejected if they were.

	Compliance-comprehensive: It is not as comprehensive, because, where the XML specification makes provision for more or less complete DTDs to be provided as part of a document, xml.pl actions the local definition of ENTITIES only. Other DTD extensions are treated as commentary.

	Bi-directional conversions: Conversions are not fully symmetrical as weaker XML is accepted than can be generated. Notably, in-bound (Codes -> Document) parsing does not require strictly well-formed XML. If Codes does not represent well-formed XML, Document is instantiated to the term malformed(<attributes>,<content>).

Inherited public predicates:

(none)

	Public predicates

	parse/2

	parse/3

	subterm/2

	pp/1

	Protected predicates

	Private predicates

	xml_to_document/3

	empty_map/1

	map_member/3

	map_store/4

	pp_string/1

	fault/5

	exception/4

	document_generation//2

	pcdata_7bit//1

	character_data_format/3

	cdata_generation//1

	Operators

Public predicates

parse/2

Parses a list of character codes to/from a data structure of the form xml(<atts>,<content>).

Compilation flags:

static

Template:

parse(Codes,Document)

Mode and number of proofs:

parse(+list(character_code),?nonvar) - zero_or_one

parse(?list(character_code),+nonvar) - zero_or_one

parse/3

Parses a list of character codes to/from a data structure of the form xml(<atts>,<content>) using the given list of options.

Compilation flags:

static

Template:

parse(Options,Codes,Document)

Mode and number of proofs:

parse(++list(compound),+list(character_code),?nonvar) - zero_or_one

parse(++list(compound),?list(character_code),+nonvar) - zero_or_one

Remarks:

	extended_characters(Boolean) option: Use the extended character entities for XHTML (default true).

	format(Boolean) option: For parsing, strip layouts when no character data appears between elements (default true). For generating, indent the element content (default true).

	remove_attribute_prefixes(Boolean) option: Remove namespace prefixes from attributes when it’s the same as the prefix of the parent element (default false).

	allow_ampersand(Boolean) option: Allow unescaped ampersand characters (&) to occur in PCDATA (default false).

subterm/2

Unifies Subterm with a sub-term of XMLTerm. Note that XMLTerm is a sub-term of itself.

Compilation flags:

static

Template:

subterm(XMLTerm,Subterm)

Mode and number of proofs:

subterm(+nonvar,?nonvar) - zero_or_one

pp/1

Pretty prints a XML document on the current output stream.

Compilation flags:

static

Template:

pp(XMLDocument)

Mode and number of proofs:

pp(+nonvar) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

xml_to_document/3

Translates the list of character codes XML into the Prolog term Document. Options is a list of terms controlling the treatment of layout characters and character entities.

Compilation flags:

static

Template:

xml_to_document(Options,XML,Document)

Mode and number of proofs:

xml_to_document(+nonvar,+nonvar,?nonvar) - zero_or_one

empty_map/1

True if Map is a null map.

Compilation flags:

static

Template:

empty_map(Map)

Mode and number of proofs:

empty_map(?nonvar) - zero_or_one

map_member/3

True if Map is a ordered map structure which records the pair Key-Data. Key must be ground.

Compilation flags:

static

Template:

map_member(Key,Map,Data)

Mode and number of proofs:

map_member(+nonvar,+nonvar,?nonvar) - zero_or_one

map_store/4

True if Map0 is an ordered map structure, Key must be ground, and Map1 is identical to Map0 except that the pair Key-Data is recorded by Map1.

Compilation flags:

static

Template:

map_store(Map0,Key,Data,Map1)

Mode and number of proofs:

map_store(+nonvar,+nonvar,+nonvar,?nonvar) - zero_or_one

pp_string/1

Prints String onto the current output stream. If String contains only 7-bit chars it is printed in shorthand quoted format, otherwise it is written as a list.

Compilation flags:

static

Template:

pp_string(String)

Mode and number of proofs:

pp_string(+nonvar) - zero_or_one

fault/5

Identifies SubTerm as a sub-term of Term which cannot be serialized after Indentation. Message is an atom naming the type of error; Path is a string encoding a list of SubTerm’s ancestor elements in the form <tag>{(id)}* where <tag> is the element tag and <id> is the value of any attribute _named_ id.

Compilation flags:

static

Template:

fault(Term,Indentation,SubTerm,Path,Message)

Mode and number of proofs:

fault(+nonvar,+nonvar,?nonvar,?nonvar,?nonvar) - zero_or_one

exception/4

Hook to raise an exception to be raised in respect of a fault in the XML Term Document.

Compilation flags:

static

Template:

exception(Message,Document,Culprit,Path)

Mode and number of proofs:

exception(+atom,+nonvar,+nonvar,+nonvar) - one

document_generation//2

DCG generating Document as a list of character codes. Format is true|false defining whether layouts, to provide indentation, should be added between the element content of the resultant “string”. Note that formatting is disabled for elements that are interspersed with pcdata/1 terms, such as XHTML’s ‘inline’ elements. Also, Format is over-ridden, for an individual element, by an explicit 'xml:space'="preserve" attribute.

Compilation flags:

static

Template:

document_generation(Format,Document)

Mode and number of proofs:

document_generation(+nonvar,+nonvar) - zero_or_one

pcdata_7bit//1

Represents the ASCII character set in its simplest format, using the character entities &, ", <, and > which are common to both XML and HTML. The numeric entity ' is used in place of ' because browsers don’t recognize it in HTML.

Compilation flags:

static

Template:

pcdata_7bit(Code)

Mode and number of proofs:

pcdata_7bit(?nonvar) - zero_or_one

character_data_format/3

Holds when Format0 and Format1 are the statuses of XML formatting before and after Codes - which may be null.

Compilation flags:

static

Template:

character_data_format(Codes,Format0,Format1)

Mode and number of proofs:

character_data_format(+nonvar,+nonvar,?nonvar) - zero_or_one

cdata_generation//1

Holds when Format0 and Format1 are the statuses of XML formatting before and after Codes - which may be null.

Compilation flags:

static

Template:

cdata_generation(Codes)

Mode and number of proofs:

cdata_generation(+list) - zero_or_one

Operators

(none)

 protocol

zipperp

Zipper protocol.

Availability:

logtalk_load(zippers(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-01-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	zip/2

	zip/3

	unzip/2

	current/2

	next/2

	next/3

	previous/2

	previous/3

	rewind/2

	rewind/3

	forward/2

	forward/3

	apply/2

	insert_before/3

	insert_after/3

	replace/3

	delete_and_previous/2

	delete_and_next/2

	delete_and_unzip/2

	delete_all_before/2

	delete_all_before_and_unzip/2

	delete_all_after/2

	delete_all_after_and_unzip/2

	Protected predicates

	Private predicates

	Operators

Public predicates

zip/2

Adds a zipper to a compound term holding a sequence of elements. Fails if the sequence is empty.

Compilation flags:

static

Template:

zip(Sequence,Zipper)

Mode and number of proofs:

zip(+sequence,--zipper) - zero_or_one

zip/3

Adds a zipper to a compound term holding a sequence of elements. Also returns the first element. Fails if the sequence is empty.

Compilation flags:

static

Template:

zip(Sequence,Zipper,First)

Mode and number of proofs:

zip(+sequence,--zipper,--term) - zero_or_one

unzip/2

Removes a zipper from a sequence.

Compilation flags:

static

Template:

unzip(Zipper,Sequence)

Mode and number of proofs:

unzip(@zipper,--sequence) - one

current/2

Current element.

Compilation flags:

static

Template:

current(Zipper,Current)

Mode and number of proofs:

current(+zipper,?term) - zero_or_one

next/2

Moves to the next element. Fails if already at the last elements.

Compilation flags:

static

Template:

next(Zipper,NewZipper)

Mode and number of proofs:

next(+zipper,--zipper) - zero_or_one

next/3

Moves to and returns the next element. Fails if already at the last elements.

Compilation flags:

static

Template:

next(Zipper,NewZipper,Next)

Mode and number of proofs:

next(+zipper,--zipper,-term) - zero_or_one

previous/2

Moves to the previous element. Fails if already at the first elements.

Compilation flags:

static

Template:

previous(Zipper,NewZipper)

Mode and number of proofs:

previous(+zipper,--zipper) - zero_or_one

previous/3

Moves to and returns the previous element. Fails if already at the first element.

Compilation flags:

static

Template:

previous(Zipper,NewZipper,Previous)

Mode and number of proofs:

previous(+zipper,--zipper,-term) - zero_or_one

rewind/2

Rewinds the zipper so that the first element becomes the current element.

Compilation flags:

static

Template:

rewind(Zipper,NewZipper)

Mode and number of proofs:

rewind(+zipper,--zipper) - one

rewind/3

Rewinds the zipper so that the first element becomes the current element. Also returns the first element.

Compilation flags:

static

Template:

rewind(Zipper,NewZipper,First)

Mode and number of proofs:

rewind(+zipper,--zipper,?term) - zero_or_one

forward/2

Forward the zipper so that the last element becomes the current element.

Compilation flags:

static

Template:

forward(Zipper,NewZipper)

Mode and number of proofs:

forward(+zipper,--zipper) - one

forward/3

Forward the zipper so that the last element becomes the current element. Also returns the last element.

Compilation flags:

static

Template:

forward(Zipper,NewZipper,Last)

Mode and number of proofs:

forward(+zipper,--zipper,?term) - zero_or_one

apply/2

Applies a closure to the current element.

Compilation flags:

static

Template:

apply(Closure,Zipper)

Meta-predicate template:

apply(1,*)

Mode and number of proofs:

apply(+callable,+zipper) - zero_or_more

insert_before/3

Inserts an element before the current one.

Compilation flags:

static

Template:

insert_before(Zipper,Element,NewZipper)

Mode and number of proofs:

insert_before(+zipper,?term,--zipper) - zero_or_one

insert_after/3

Inserts an element after the current one.

Compilation flags:

static

Template:

insert_after(Zipper,Element,NewZipper)

Mode and number of proofs:

insert_after(+zipper,?term,--zipper) - zero_or_one

replace/3

Replaces the current element with a new element.

Compilation flags:

static

Template:

replace(Zipper,NewCurrent,NewZipper)

Mode and number of proofs:

replace(+zipper,?term,--zipper) - one

delete_and_previous/2

Deletes the current element and moves to the previous element. Fails if no previous element exists.

Compilation flags:

static

Template:

delete_and_previous(Zipper,NewZipper)

Mode and number of proofs:

delete_and_previous(+zipper,--zipper) - zero_or_one

delete_and_next/2

Deletes the current element and moves to the next element. Fails if no next element exists.

Compilation flags:

static

Template:

delete_and_next(Zipper,NewZipper)

Mode and number of proofs:

delete_and_next(+zipper,--zipper) - zero_or_one

delete_and_unzip/2

Deletes the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_and_unzip(Zipper,Sequence)

Mode and number of proofs:

delete_and_unzip(+zipper,--sequence) - one

delete_all_before/2

Deletes all elements before the current element.

Compilation flags:

static

Template:

delete_all_before(Zipper,NewZipper)

Mode and number of proofs:

delete_all_before(+zipper,--zipper) - one

delete_all_before_and_unzip/2

Deletes all elements before the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_all_before_and_unzip(Zipper,NewZipper)

Mode and number of proofs:

delete_all_before_and_unzip(+zipper,--sequence) - one

delete_all_after/2

Deletes all elements after the current element.

Compilation flags:

static

Template:

delete_all_after(Zipper,NewZipper)

Mode and number of proofs:

delete_all_after(+zipper,--zipper) - one

delete_all_after_and_unzip/2

Deletes all elements after the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_all_after_and_unzip(Zipper,NewZipper)

Mode and number of proofs:

delete_all_after_and_unzip(+zipper,--sequence) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

zlist

 object

zlist

Zipper list predicates. Zippers should be regarded as opaque terms.

Availability:

logtalk_load(zippers(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2019-03-12

Compilation flags:

static, context_switching_calls

Implements:

public zipperp

Remarks:

(none)

Inherited public predicates:

 apply/2 current/2 delete_all_after/2 delete_all_after_and_unzip/2 delete_all_before/2 delete_all_before_and_unzip/2 delete_and_next/2 delete_and_previous/2 delete_and_unzip/2 forward/2 forward/3 insert_after/3 insert_before/3 next/2 next/3 previous/2 previous/3 replace/3 rewind/2 rewind/3 unzip/2 zip/2 zip/3

	Public predicates

	zip_at_index/4

	Protected predicates

	Private predicates

	Operators

Public predicates

zip_at_index/4

Adds a zipper to a list opened at the given index and also returns the element at the index. Fails if the list is empty or the index (starting at 1) does not exist.

Compilation flags:

static

Template:

zip_at_index(Index,List,Zipper,Element)

Mode and number of proofs:

zip_at_index(+natural,+list,--zipper,--term) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

Directories

To load an entity, always load the library that includes it using the goal logtalk_load(library_name(loader)) instead of using its path. The library loader file ensures that all the required dependencies are also loaded and that any required flags are used. The loading goal can be found in the entity documentation.

contributions/flags/

	flags

	flags_validator

contributions/iso8601/

	iso8601

contributions/pddl_parser/

	pddl

	read_file

contributions/verdi_neruda/

	a_star_interpreter(W)

	benchmark_generators

	best_first

	bfs_interpreter

	bup_interpreter

	counter

	databasep

	debug_expansion(Mode)

	demodb

	dfs_interpreter

	flatting

	heuristic_expansion(Mode)

	iddfs_interpreter(Increment)

	interpreterp

	magic

	magic_expansion(Mode)

	rule_expansion(Mode)

	shell

	shell(Interpreters)

	shell_expansion(Mode)

contributions/xml_parser/

	xml

core/

	core_messages

	expanding

	forwarding

	logtalk

	monitoring

	user

library/

	cloning

	counters

	streamvars

library/arbitrary/

	arbitrary

library/assignvars/

	assignvars

	assignvarsp

library/base64/

	base64

	base64url

library/cbor/

	cbor

	cbor(StringRepresentation)

library/coroutining/

	coroutining

library/csv/

	csv

	csv(Header,Separator,IgnoreQuotes)

	csv_guess_questions

	csv_protocol

library/dates/

	date

	datep

	time

	timep

library/dependents/

	observer

	subject

library/dictionaries/

	avltree

	bintree

	dictionaryp

	rbtree

library/dif/

	dif

library/edcg/

	edcg

library/events/

	after_event_registry

	before_event_registry

	event_registry

	event_registryp

	monitor

	monitorp

library/expand_library_alias_paths/

	expand_library_alias_paths

library/expecteds/

	either

	expected

	expected(Expected)

library/format/

	format

library/genint/

	genint

	genint_core

library/gensym/

	gensym

	gensym_core

library/git/

	git

	git_protocol

library/grammars/

	blank_grammars(Format)

	ip_grammars(Format)

	number_grammars(Format)

	sequence_grammars

library/heaps/

	heap(Order)

	heapp

	maxheap

	minheap

library/hierarchies/

	class_hierarchy

	class_hierarchyp

	hierarchyp

	proto_hierarchy

	proto_hierarchyp

library/hook_flows/

	hook_pipeline(Pipeline)

	hook_set(Set)

library/hook_objects/

	backend_adapter_hook

	default_workflow_hook

	grammar_rules_hook

	identity_hook

	object_wrapper_hook

	object_wrapper_hook(Protocol)

	object_wrapper_hook(Name,Relations)

	print_goal_hook

	prolog_module_hook(Module)

	suppress_goal_hook

	write_to_file_hook(File)

	write_to_file_hook(File,Options)

	write_to_stream_hook(Stream)

	write_to_stream_hook(Stream,Options)

library/html/

	html

	html5

	xhtml11

library/ids/

	ids

	ids(Representation,Bytes)

library/intervals/

	interval

	intervalp

library/java/

	java

	java(Reference)

	java(Reference,ReturnValue)

	java_access_protocol

	java_hook

	java_utils_protocol

library/json/

	json

	json(StringRepresentation)

	json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_protocol

library/json_lines/

	json_lines

	json_lines(StringRepresentation)

	json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_lines_protocol

library/listing/

	listing

library/logging/

	logger

	logging

	loggingp

library/loops/

	loop

	loopp

library/meta/

	meta

	metap

library/meta_compiler/

	meta_compiler

library/mutations/

	default_atom_mutations

	default_compound_mutations

	default_float_mutations

	default_integer_mutations

	default_list_mutations

	mutations

	mutations_store

library/nested_dictionaries/

	navltree

	nbintree

	nested_dictionary_protocol

	nrbtree

library/optionals/

	maybe

	optional

	optional(Optional)

library/options/

	options

	options_protocol

library/os/

	os

	os_types

	osp

library/queues/

	queue

	queuep

library/random/

	backend_random

	fast_random

	pseudo_random_protocol

	random

	random_protocol

	sampling_protocol

library/reader/

	reader

library/recorded_database/

	recorded_database

	recorded_database_core

library/redis/

	redis

library/sets/

	set

	set(Type)

	setp

library/statistics/

	population

	sample

	statistics

	statisticsp

library/term_io/

	term_io

	term_io_protocol

library/timeout/

	timeout

library/tsv/

	tsv

	tsv(Header)

	tsv_protocol

library/types/

	atom

	atomic

	callable

	character

	characterp

	comparingp

	compound

	difflist

	float

	integer

	list

	list(Type)

	listp

	natural

	number

	numberlist

	numberlistp

	pairs

	term

	termp

	type

	varlist

	varlistp

library/ulid/

	ulid

	ulid(Representation)

	ulid_protocol

	ulid_types

library/union_find/

	union_find

	union_find_protocol

library/uuid/

	uuid

	uuid(Representation)

	uuid_protocol

library/zippers/

	zipperp

	zlist

ports/fcube/

	fcube

ports/metagol/

	metagol

	metagol_example_protocol

ports/toychr/

	toychrdb

tools/assertions/

	assertions

	assertions(Mode)

	assertions_messages

tools/code_metrics/

	cc_metric

	code_metric

	code_metrics

	code_metrics_messages

	code_metrics_utilities

	coupling_metric

	dit_metric

	doc_metric

	halstead_metric

	halstead_metric(Stroud)

	noc_metric

	nor_metric

	size_metric

	upn_metric

tools/dead_code_scanner/

	dead_code_scanner

	dead_code_scanner_messages

tools/debug_messages/

	debug_messages

tools/debugger/

	debugger

	debugger_messages

	debuggerp

	dump_trace

tools/diagrams/

	d2_graph_language

	diagram(Format)

	diagrams

	diagrams(Format)

	directory_dependency_diagram

	directory_dependency_diagram(Format)

	directory_diagram(Format)

	directory_load_diagram

	directory_load_diagram(Format)

	dot_graph_language

	entity_diagram

	entity_diagram(Format)

	file_dependency_diagram

	file_dependency_diagram(Format)

	file_diagram(Format)

	file_load_diagram

	file_load_diagram(Format)

	graph_language_protocol

	graph_language_registry

	inheritance_diagram

	inheritance_diagram(Format)

	library_dependency_diagram

	library_dependency_diagram(Format)

	library_diagram(Format)

	library_load_diagram

	library_load_diagram(Format)

	mermaid_graph_language

	modules_diagram_support

	uses_diagram

	uses_diagram(Format)

	xref_diagram

	xref_diagram(Format)

tools/doclet/

	doclet

tools/help/

	help

	help_info_support

tools/issue_creator/

	issue_creator

tools/lgtdoc/

	lgtdoc

	lgtdoc_messages

	lgtdocp

tools/lgtunit/

	automation_report

	coverage_report

	lgtunit

	lgtunit_messages

	minimal_output

	tap_output

	tap_report

	xunit_net_v2_output

	xunit_net_v2_report

	xunit_output

	xunit_report

tools/packs/

	pack_protocol

	packs

	packs_common

	packs_messages

	packs_specs_hook

	registries

	registry_loader_hook

	registry_protocol

tools/ports_profiler/

	ports_profiler

tools/tutor/

	tutor

tools/wrapper/

	wrapper

 category

flags

Implementation of persistent object flags.

Availability:

logtalk_load(flags(loader))

Author: Theofrastos Mantadelis

Version: 1:0:0

Date: 2010-11-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	get_flag_value/2

	set_flag_value/2

	set_flag_value/3

	reset_flags/0

	reset_flags/1

	flag_groups/1

	flag_group_chk/1

	print_flags/0

	print_flags/1

	defined_flag/6

	built_in_flag/2

	Protected predicates

	unsafe_set_flag_value/2

	define_flag/1

	define_flag/2

	Private predicates

	defined_flag_/6

	flag_value_/2

	validate/3

	validate_type/1

	is_validator/1

	Operators

Public predicates

get_flag_value/2

Gets or tests the value of a flag.

Compilation flags:

static

Template:

get_flag_value(Flag,Value)

Mode and number of proofs:

get_flag_value(+atom,?nonvar) - zero_or_one

set_flag_value/2

Sets the value of a flag.

Compilation flags:

static

Template:

set_flag_value(Flag,NewValue)

Mode and number of proofs:

set_flag_value(+atom,@nonvar) - one

set_flag_value/3

Sets the value of a flag, returning the old value.

Compilation flags:

static

Template:

set_flag_value(Flag,OldValue,NewValue)

Mode and number of proofs:

set_flag_value(+atom,?nonvar,@nonvar) - one

reset_flags/0

Resets all flags to their default values.

Compilation flags:

static

Mode and number of proofs:

reset_flags - one

reset_flags/1

Resets all flags in a group to their default values.

Compilation flags:

static

Template:

reset_flags(Group)

Mode and number of proofs:

reset_flags(+atom) - one

flag_groups/1

Returns a list of all flag groups.

Compilation flags:

static

Template:

flag_groups(Groups)

Mode and number of proofs:

flag_groups(-list(atom)) - one

flag_group_chk/1

Checks if a given atom is a flag group.

Compilation flags:

static

Template:

flag_group_chk(Group)

Mode and number of proofs:

flag_group_chk(+atom) - zero_or_one

print_flags/0

Prints a listing of all flags.

Compilation flags:

static

Mode and number of proofs:

print_flags - one

print_flags/1

Prints a listing of all flags in a group.

Compilation flags:

static

Template:

print_flags(Group)

Mode and number of proofs:

print_flags(+atom) - one

defined_flag/6

Gets or test the existing (visible) flag definitions.

Compilation flags:

static

Template:

defined_flag(Flag,Group,Type,DefaultValue,Description,Access)

Mode and number of proofs:

defined_flag(?atom,?atom,?nonvar,?nonvar,?atom,?atom) - zero_or_more

built_in_flag/2

True if the argument is a built-in flag type with the specified default value.

Compilation flags:

static

Template:

built_in_flag(Type,DefaultValue)

Mode and number of proofs:

built_in_flag(?atom,?nonvar) - zero_or_more

Protected predicates

unsafe_set_flag_value/2

Sets the value of a flag without performing any validation checks.

Compilation flags:

static

Template:

unsafe_set_flag_value(Flag,NewValue)

Mode and number of proofs:

unsafe_set_flag_value(+atom,@nonvar) - one

define_flag/1

Defines a new flag using default options.

Compilation flags:

static

Template:

define_flag(Flag)

Mode and number of proofs:

define_flag(+atom) - one

define_flag/2

Defines a new flag using a given set of options (for example, [group(general), type(nonvar), default(true), description(Flag), access(read_write)]).

Compilation flags:

static

Template:

define_flag(Flag,Options)

Mode and number of proofs:

define_flag(+atom,@list) - one

Private predicates

defined_flag_/6

Gets or test the existing flag definitions.

Compilation flags:

dynamic

Template:

defined_flag_(Flag,Group,Type,DefaultValue,Description,Access)

Mode and number of proofs:

defined_flag_(?atom,?atom,?nonvar,?nonvar,?atom,?atom) - zero_or_more

flag_value_/2

Table of flag values.

Compilation flags:

dynamic

Template:

flag_value_(Flag,Value)

Mode and number of proofs:

flag_value_(?atom,?nonvar) - zero_or_more

validate/3

Compilation flags:

static

validate_type/1

Compilation flags:

static

is_validator/1

Compilation flags:

static

Operators

(none)

 protocol

flags_validator

Flag validation protocol. Must be implemented by validator objects.

Availability:

logtalk_load(flags(loader))

Author: Theofrastos Mantadelis

Version: 1:0:0

Date: 2010-11-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	print_flags/0

	validate/1

	Protected predicates

	Private predicates

	Operators

Public predicates

print_flags/0

Validates the validator object itself.

Compilation flags:

static

Mode and number of proofs:

print_flags - zero_or_one

validate/1

Validates a flag value.

Compilation flags:

static

Template:

validate(Value)

Mode and number of proofs:

validate(@term) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

iso8601

ISO 8601 (and European civil calendar) compliant library of date predicates.

Availability:

logtalk_load(iso8601(loader))

Author: Daniel L. Dudley

Version: 1:0:3

Date: 2019-10-09

Compilation flags:

static, context_switching_calls

Uses:

os

Remarks:

	Scope: This object currently provides a powerful, versatile and efficient set of date-handling predicates, which–thanks to Logtalk–may be used as is on a wide range of Prolog compilers. Besides taking time to familiarize oneself with each predicate, the user should take note of the following information.

	Validation of dates: Date parts are not validated–that is the caller’s responsibility! However, not being quite heartless yet, we do provide a predicate for this purpose.

	Date arithmetic: Many of the examples illustrate a simplified method of doing date arithmetic. Note, however, that we do not generally recommend this practice–it is all too easy to make mistakes. The safest way of finding the day difference between two dates is to first convert the dates to their Julian day numbers and then subtract one from the other. Similarly, the safe way to add or subtract a day offset to a particular date is to first convert the date to its Julian day number, add or subtract the day offset, and then convert the result to its corresponding date.

	BC years: ISO 8601 specifies that the Gregorian calendar be used, yet requires that years prior to 1 AD be handled arithmetically, i.e., the year we know as 1 BC is year 0, 2 BC is year -1, 3 BC is year -2 and so on. We do not follow ISO 8601 with regard to the handling of BC years. Our date predicates will accept and interpret an input year 0 as 1 BC; however, a negative year, Year, should always be interpreted as abs(Year) =:= Year BC. We believe that the average person will find our handling of BC years more user-friendly than the ISO 8601 one, but we encourage feedback from users with a view to a possible change in future versions.

	Week numbers: It is possible for a day (date) to have a week number that belongs to another year. Up to three of the first days of a calendar year may belong to the last week (number) of the prior calendar year, and up to three days of the last days of a calendar year may belong to the first week (number) of the next calendar year. It for this reason that the Week parameter in date/6-7 is a compound term, namely week(WeekNo,ActualYear).

	Computation of Gregorian Easter Sunday: The algorithm is based upon the “Gaussian rule”. Proleptic use is limited to years > 1582 AD, that is, after the introduction of the Gregorian calendar.

	Some Christian feast day offsets from Easter Sunday: Carnival Monday: -48 days, Mardi Gras (Shrove Tuesday): -47 days, Ash Wednesday: -46 days, Palm Sunday: -7 days, Easter Friday: -2 days, Easter Saturday: -1 day, Easter Monday: +1 day, Ascension of Christ: +39 days, Whitsunday: +49 days, Whitmonday: +50 days, Feast of Corpus Christi: +60 days.

Inherited public predicates:

(none)

	Public predicates

	date/4

	date/5

	date/6

	date/7

	date_string/3

	valid_date/3

	leap_year/1

	calendar_month/3

	easter_day/3

	Protected predicates

	Private predicates

	Operators

Public predicates

date/4

Get the system date and/or its Julian Day # or convert a Julian Day # to/from given date parts.

Compilation flags:

static

Template:

date(JD,Year,Month,Day)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer) - zero_or_one

Examples:

Current date (i.e., today)

date(JD,Year,Month,Day)

JD=2453471,Year=2005,Month=4,Day=10

Convert a date to its Julian day number

date(JD,2000,2,29)

JD=2451604

Convert a Julian day number to its date

date(2451604,Year,Month,Day)

Year=2000,Month=2,Day=29

What is the date of day # 60 in year 2000?

date(JD,2000,1,60)

JD=2451604

What is the Julian of the 1st day prior to 2000-1-1?

date(JD,2000,1,0)

JD=2451544

What is the Julian of the 60th day prior to 2000-1-1?

date(JD,2000,1,-59)

JD=2451485

Illegal date is auto-adjusted (see also next query)

date(JD,1900,2,29)

JD=2415080

This is the correct date!

date(2415080,Year,Month,Day)

Year=1900,Month=3,Day=1

date/5

Ditto date/4 + get/check its day-of-week #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer) - zero_or_one

Examples:

Get the Julian and the day-of-week # of a date

date(JD,2000,2,29,DoW)

JD=2451604,DoW=2

Check the validity of a given date (day-of-week is 2, not 4)

date(_,2002,3,5,4)

no

Get the Julian day of a given date if it is a Sunday

date(JD,2004,2,29,7)

JD=2453065

Get the date and day-of-week # of a Julian

date(2451545,Year,Month,Day,DoW)

Year=2000,Month=1,Day=1,DoW=6

date/6

Ditto date/5 + get/check its week #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW,Week)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Week - Compound term, week(WeekNo,ActualYear), of a day.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer,?compound) - zero_or_one

Examples:

Get the day-of-week and week number of a date

date(_,2000,1,1,DoW,Week)

DoW=6,Week=week(52,1999)

Get the week number and year of this week

date(_,_,_,_,_,Week)

Week=week(7,2004)

Get the Julian number and the week of a date if it is a Sunday

date(JD,2004,2,29,7,Week)

JD=2453065,Week=week(9,2004)

Get the day-of-week and week of a Julian day number

date(2453066,_,_,_,DoW,Week)

DoW=1,Week=week(10,2004)

Check that given date data matches

date(_,2004,3,1,1,week(10,2004))

yes

What is the date of a day of week (default is 1) in given week # and year?

date(_,Year,Month,Day,DoW,week(26,2004))

Year=2004,Month=6,Day=21,DoW=1

Ditto for Sunday

date(_,Year,Month,Day,7,week(1,2005))

Year=2005,Month=1,Day=9

Ditto for Tuesday in following week

date(_,Year,Month,Day,9,week(1,2005))

Year=2005,Month=1,Day=11

Ditto for Thursday in the prior week

date(_,Year,Month,Day,4,week(0,2005))

Year=2004,Month=12,Day=30

Ditto for Tuesday two weeks prior

date(_,Year,Month,Day,2,week(-1,2005))

Year=2004,Month=12,Day=21

Ditto for Saturday

date(_,Year,Month,Day,6,week(53,2004))

Year=2005,Month=1,Day=1

Ditto for Monday (note automatic compensation of nonexistent week number)

date(_,Year,Month,Day,1,week(60,2004))

Year=2005,Month=2,Day=14

date/7

Ditto date/6 + get/check its day-of-year #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW,Week,DoY)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Week - Compound term, week(WeekNo,ActualYear), of a day.

DoY - Day of year (NB! calendar year, not week # year).

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer,?compound,?integer) - zero_or_one

Examples:

Get the date and day-of-year of a Julian number

date(2451649,Year,Month,Day,_,_,DoY)

Year=2000,Month=4,Day=14,DoY=105

Get the Julian number, week number and day-of-year of a date, confirming that it is a Sunday

date(JD,2004,2,29,7,Week,DoY)

JD=2453065,Week=week(9,2004),DoY=60

Confirm that a date is, in fact, a specific day-of-year

date(_,2004,3,1,_,_,61)

yes

Get the Julian number, week day and day-of-year of a date

date(JD,2004,10,18,DoW,_,DoY)

JD=2453297,DoW=1,DoY=292

Get today’s day-of-year

date(_,_,_,_,_,_,DoY)

DoY=54

Get all missing date data (excl. Julian number) for the 60th calendar day of 2004

date(_,2004,Month,Day,DoW,Week,60)

Month=2,Day=29,DoW=7,Week=week(9,2004)

Match given date data and, if true, return the missing data (excl. Julian number)

date(_,2004,3,Day,DoW,Week,61)

Day=1,DoW=1,Week=week(10,2004)

Ditto (the 61st day-of-year cannot be both day 1 and 2 of the month)

date(_,2004,_,2,_,_,61)

no

date_string/3

Conversion between an ISO 8601 compliant date string and its components (truncated and expanded date representations are currently unsupported). Note that date components are not validated; that is the caller’s responsibility!

Compilation flags:

static

Template:

date_string(Format,Components,String)

Format - ISO 8601 format.

Components - When bound and String is free, either a Julian number or a [Year,Month,Day] term; it binds to the system day/date if free When free and String is bound, it binds to an integer list representing the numeric elements of String.

String - ISO 8601 formatted string correspondent to Components.

Mode and number of proofs:

date_string(+atom,+integer,?atom) - zero_or_one

date_string(+atom,?list,?atom) - zero_or_one

Examples:

Date, complete, basic (section 5.2.1.1)

date_string('YYYYMMDD',[2004,2,29],String)

String='20040229'

Date, complete, basic (section 5.2.1.1)

date_string('YYYYMMDD',Components,'20040229')

Components=[2004,2,29]

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',[2003,12,16],String)

String='2003-12-16'

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',Components,'2003-12-16')

Components=[2003,12,16]

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',_,String)

String='2004-02-17'

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',Components,'2004-02-17')

Components=[2004,2,17]

Date, reduced, month (section 5.2.1.2 a)

date_string('YYYY-MM',[2004,9,18],String)

String='2004-09'

Date, reduced, month (section 5.2.1.2 a)

date_string('YYYY-MM',Components,'2004-09')

Components=[2004,9]

Date, reduced, year (section 5.2.1.2 b)

date_string('YYYY',[1900,7,24],String)

String='1900'

Date, reduced, year (section 5.2.1.2 b)

date_string('YYYY',Components,'1900')

Components=[1900]

Date, reduced, century (section 5.2.1.2 c)

date_string('YY',2456557,String)

String='20'

Date, reduced, century (section 5.2.1.2 c)

date_string('YY',Components,'20')

Components=[20]

Date, ordinal, complete (section 5.2.2.1)

date_string('YYYYDDD',[2005,3,25],String)

String='2005084'

Date, ordinal, complete (section 5.2.2.1)

date_string('YYYYDDD',Components,'2005084')

Components=[2005,84]

Date, ordinal, extended (section 5.2.2.1)

date_string('YYYY-DDD',[1854,12,4],String)

String='1854-338'

Date, ordinal, extended (section 5.2.2.1)

date_string('YYYY-DDD',Components,'1854-338')

Components=[1854,338]

Week, complete, basic (section 5.2.3.1)

date_string('YYYYWwwD',[2000,1,2],String)

String='1999W527'

Week, complete, basic (section 5.2.3.1)

date_string('YYYYWwwD',Components,'1999W527')

Components=[1999,52,7]

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',[2003,12,29],String)

String='2004-W01-1'

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',Components,'2004-W01-1')

Components=[2004,1,1]

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',2453167,String)

String='2004-W24-4'

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',Components,'2004-W24-4')

Components=[2004,24,4]

Week, reduced, basic (section 5.2.3.2)

date_string('YYYYWww',[2004,2,29],String)

String='2004W09'

Week, reduced, basic (section 5.2.3.2)

date_string('YYYYWww',Components,'2004W09')

Components=[2004,9]

Week, reduced, extended (section 5.2.3.2)

date_string('YYYY-Www',[2004,2,29],String)

String='2004-W09'

Week, reduced, extended (section 5.2.3.2)

date_string('YYYY-Www',Components,'2004-W09')

Components=[2004,9]

valid_date/3

Validate a given date in the Gregorian calendar.

Compilation flags:

static

Template:

valid_date(Year,Month,Day)

Mode and number of proofs:

valid_date(+integer,+integer,+integer) - zero_or_one

Examples:

Yes, the recent millennium was a leap year

valid_date(2000,2,29)

yes

2004 was also a leap year

valid_date(2004,2,29)

yes

Only 30 days in April

valid_date(2004,4,31)

no

1 BC was a leap year

valid_date(-1,2,29)

yes

leap_year/1

Succeed if given year is a leap year in the Gregorian calendar.

Compilation flags:

static

Template:

leap_year(Year)

Year - The Gregorian calendar year to investigate. If free, it binds to the system year.

Mode and number of proofs:

leap_year(?integer) - zero_or_one

Examples:

No, the prior centenary was not a leap year

leap_year(1900)

no

The recent millennium

leap_year(2000)

yes

This year

leap_year(Year)

Year=2004

This year (equivalent to prior query)

leap_year(_)

yes

Next centennial

leap_year(2100)

no

Year 0, equivalent to 1 BC

leap_year(0)

yes

1 BC

leap_year(-1)

yes

4 BC

leap_year(-4)

no

5 BC

leap_year(-5)

yes

calendar_month/3

Compute a calendar month.

Compilation flags:

static

Template:

calendar_month(Year,Month,Calendar)

Year - The calendar year.

Month - The calendar month.

Calendar - A compound term, m/3, composed of three main arguments specifying year, month, and a list of week and week day numbers (calendar body).

Mode and number of proofs:

calendar_month(?integer,?integer,-compound) - zero_or_one

Examples:

Compute the calendar of March, 2005

calendar_month(2005,3,Calendar)

Calendar=m(2005,3,[w(9,[0,1,2,3,4,5,6]),w(10,[7,8,9,10,11,12,13]),w(11,[14,15,16,17,18,19,20]),w(12,[21,22,23,24,25,26,27]),w(13,[28,29,30,31,0,0,0]),w(0,[0,0,0,0,0,0,0])])

easter_day/3

Compute a Gregorian Easter Sunday.

Compilation flags:

static

Template:

easter_day(Year,Month,Day)

Year - Integer specifying the year to be investigated.

Month - Month in which Easter Sunday falls for given year.

Day - Day of month in which Easter Sunday falls for given year.

Mode and number of proofs:

easter_day(?integer,-integer,-integer) - zero_or_one

Examples:

Compute Easter Sunday for a particular year

easter_day(2006,Month,Day)

Month=4,Day=16

Compute Easter Sunday for the current year

easter_day(Year,Month,Day)

Year=2005,Month=3,Day=27

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

pddl

Simple parser of PDDL 3.0 files.

Availability:

logtalk_load(pddl_parser(loader))

Author: Robert Sasak, Charles University in Prague. Adapted to Logtalk by Paulo Moura.

Version: 1:2:2

Date: 2024-03-14

Compilation flags:

static, context_switching_calls

Imports:

public read_file

Uses:

user

Remarks:

(none)

Inherited public predicates:

 read_file/2

	Public predicates

	parse_domain/3

	parse_domain/2

	parse_problem/2

	parse_problem/3

	Protected predicates

	Private predicates

	Operators

Public predicates

parse_domain/3

Parses a PDDL 3.0 domain file, returning a compound term representing its contents and rest of the file. Useful when domain and problem are in one file.

Compilation flags:

static

Template:

parse_domain(File,Output,RestOfFile)

Mode and number of proofs:

parse_domain(+atom,-compound,-list(atom)) - one

parse_domain/2

Parses a PDDL 3.0 domain file, returning a compound term representing its contents.

Compilation flags:

static

Template:

parse_domain(File,Output)

Mode and number of proofs:

parse_domain(+atom,-compound) - one

parse_problem/2

Parses a PDDL 3.0 problem file, returning a compound term representing its contents.

Compilation flags:

static

Template:

parse_problem(File,Output)

Mode and number of proofs:

parse_problem(+atom,-compound) - one

parse_problem/3

Parses a PDDL 3.0 problem file, returning a compound term representing its contents and rest of the file. Useful when domain and problem are in one file.

Compilation flags:

static

Template:

parse_problem(File,Output,RestOfFile)

Mode and number of proofs:

parse_problem(+atom,-compound,-list(atom)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

read_file

Utility predicates for parsing a file as a list of atoms.

Availability:

logtalk_load(pddl_parser(loader))

Author: Robert Sasak, Charles University in Prague. Adapted to Logtalk by Paulo Moura.

Version: 1:0:0

Date: 2011-08-04

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	read_file/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/2

Reads a file character by character, parsing it into a list of atoms.

Compilation flags:

static

Template:

read_file(File,List)

Mode and number of proofs:

read_file(+atom,-list(atom)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

a_star_interpreter(W)

A* interpreter for general logic programs. The parameter W is used to fine tune the behavior. W = 0 gives us a breadth-first search and W = 1 gives us a greedy best-first search. The default value for W is 0.5.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Imports:

public best_first

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

benchmark_generators

Generates random data structures for use in benchmarks.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Uses:

random

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	random_tree/1

	Protected predicates

	Private predicates

	Operators

Public predicates

random_tree/1

Generates a random tree.

Compilation flags:

static

Template:

random_tree(Tree)

Mode and number of proofs:

random_tree(-tree) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

best_first

Best-first framework for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:1:0

Date: 2019-03-08

Compilation flags:

static

Implements:

public interpreterp

Uses:

counter

minheap

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	f/4

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

f/4

.

Compilation flags:

static

Template:

f(Length1,Length2,Depth,Cost)

Mode and number of proofs:

f(+float,+float,+float,-float) - zero_or_more

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

bfs_interpreter

Breadth-first interpreter for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

queue

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

bup_interpreter

Semi-naive bottom-up interpreter for general (stratified) logic programs. Magic transformation is realized through an expansion hook.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Ulf Nilsson. Ported to Logtalk and augmented with negation by Victor Lagerkvist.

Version: 1:1:3

Date: 2023-11-30

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

list

magic

term

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

counter

Counter implemented with asserta/retract.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:1

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	increment/0

	increase/1

	set/1

	value/1

	reset/0

	Protected predicates

	Private predicates

	c/1

	Operators

Public predicates

increment/0

Increment the counter by 1.

Compilation flags:

static

Mode and number of proofs:

increment - one

increase/1

Increments the counter by the specified amount.

Compilation flags:

static

Template:

increase(I)

Mode and number of proofs:

increase(+number) - one

set/1

Sets the counter to the specified amount.

Compilation flags:

static

Template:

set(N)

Mode and number of proofs:

set(+number) - one

value/1

Gets the current value of the counter.

Compilation flags:

static

Template:

value(N)

Mode and number of proofs:

value(?number) - one

reset/0

Resets the counter to zero.

Compilation flags:

static

Mode and number of proofs:

reset - one

Protected predicates

(none)

Private predicates

c/1

Stores the current value of the counter.

Compilation flags:

dynamic

Template:

c(N)

Mode and number of proofs:

c(?number) - zero_or_one

Operators

(none)

 protocol

databasep

Database protocol.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	rule/4

	rule/3

	rule/2

	bench_goal/1

	Protected predicates

	Private predicates

	Operators

Public predicates

rule/4

Clauses for this predicate are automatically generated using term-expansion. The third argument contains the length of Body.

Compilation flags:

static

Template:

rule(Head,Body,Length,Tail)

Mode and number of proofs:

rule(?callable,?callable,-,-) - zero_or_more

rule/3

Clauses for this predicate are automatically generated using term-expansion. The third argument denotes the tail of the Body.

Compilation flags:

static

Template:

rule(Head,Body,Tail)

Mode and number of proofs:

rule(?callable,?callable,-) - zero_or_more

rule/2

Clauses for this predicate are automatically generated using term-expansion.

Compilation flags:

static

Template:

rule(Head,Body)

Mode and number of proofs:

rule(?callable,-list(callable)) - zero_or_more

bench_goal/1

Table of benchmark goals. They are used from shell.lgt to make benchmarking easier.

Compilation flags:

static

Template:

bench_goal(Goal)

Mode and number of proofs:

bench_goal(?callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

debug_expansion(Mode)

Expands debug/1 calls. The parameter Mode can be either the atom “debug” or “production”.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2010-04-15

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

demodb

Availability:

logtalk_load(verdi_neruda(loader))

Compilation flags:

static, context_switching_calls

Implements:

public databasep

Remarks:

(none)

Inherited public predicates:

 bench_goal/1 rule/2 rule/3 rule/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dfs_interpreter

Depth-first interpreter for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

flatting

Flattens conjunction of goals with the form f and g into a list [f,g].

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:1:0

Date: 2025-10-06

Compilation flags:

static

source: Based on source code from The Craft of Prolog, by Richard O’Keefe.

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	flatten_goals//1

	Private predicates

	Operators

Public predicates

(none)

Protected predicates

flatten_goals//1

Flattens a conjunction of goals.

Compilation flags:

static

Template:

flatten_goals(Conjunction)

Mode and number of proofs:

flatten_goals(+callable) - one

Private predicates

(none)

Operators

(none)

 object

heuristic_expansion(Mode)

Expands rules of the form p if f and g to rule(p, [f,g|Tail], Length, Tail).

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Extends:

public rule_expansion(Mode)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

iddfs_interpreter(Increment)

Iterative deepening depth-first interpreter for general logic programs. Based on source code from The Craft of Prolog, by Richard O’Keefe. The default value for the increment is 1.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

dfs_interpreter

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

interpreterp

Protocol for an interpreter.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	prove/2

	prove/3

	Protected predicates

	Private predicates

	Operators

Public predicates

prove/2

True if goal is provable in the specified database.

Compilation flags:

static

Template:

prove(Goal,DB)

Mode and number of proofs:

prove(+goal,+database) - zero_or_more

prove/3

True if goal is provable within the given depth-limit in the specified database.

Compilation flags:

static

Template:

prove(Goal,Limit,DB)

Mode and number of proofs:

prove(+goal,+limit,+database) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

magic

Object encapsulating magic methods.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Ulf Nilsson. Ported to Logtalk and augmented with stratified negation by Victor Lagerkvist.

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	magicise/4

	magic/2

	Protected predicates

	Private predicates

	Operators

Public predicates

magicise/4

Transform (Head :- Body) into a magic clause (NewHead :- NewBody).

Compilation flags:

static

Template:

magicise(Head,Body,NewHead,NewBody)

Mode and number of proofs:

magicise(+term,+list,-term,-list) - zero_or_one

magic/2

Prefix the predicate symbol of Old with magic.

Compilation flags:

static

Template:

magic(Old,New)

Mode and number of proofs:

magic(+callable,-callable) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

magic_expansion(Mode)

Expands rules of the form p if f and g to the more manageable rule(p, [f,g]) and performs magic transformation of clauses.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public flatting

Extends:

public debug_expansion(Mode)

Uses:

list

magic

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

rule_expansion(Mode)

Expands rules of the form p if f and g to the more manageable rule(p, [f,g]).

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public flatting

Extends:

public debug_expansion(Mode)

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell

User frontend to start the application.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-03-20

Compilation flags:

static, context_switching_calls

Uses:

shell(Interpreters)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	welcome/0

	start/0

	Protected predicates

	Private predicates

	Operators

Public predicates

welcome/0

Compilation flags:

static

start/0

Compilation flags:

static

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell(Interpreters)

Prolog shell for the interpreters.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist and Paulo Moura

Version: 1:1:3

Date: 2024-03-15

Compilation flags:

static, context_switching_calls

Uses:

counter

list

meta

pairs

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	init/0

	Protected predicates

	Private predicates

	Operators

Public predicates

init/0

Compilation flags:

static

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell_expansion(Mode)

Expansion object for the shell.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:1

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Extends:

public rule_expansion(Mode)

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

xml

Bi-directional XML parser.

Availability:

logtalk_load(xml_parser(loader))

Author: John Fletcher; adapted to Logtalk by Paulo Moura.

Version: 3:9:0

Date: 2025-10-06

Copyright: Copyright (C) 2001-2005 Binding Time Limited, Copyright (C) 2005-2013 John Fletcher

License: This program is offered free of charge, as unsupported source code. You may use it, copy it, distribute it, modify it or sell it without restriction, but entirely at your own risk.

Compilation flags:

static, context_switching_calls

Uses:

list

term

Remarks:

	On-line documentation: https://binding-time.co.uk/index.php/Parsing_XML_with_Prolog

	Compliance: This XML parser supports a subset of XML suitable for XML Data and Worldwide Web applications. It is neither as strict nor as comprehensive as the XML 1.0 Specification mandates.

	Compliance-strictness: It is not as strict, because, while the specification must eliminate ambiguities, not all errors need to be regarded as faults, and some reasonable examples of real XML usage would have to be rejected if they were.

	Compliance-comprehensive: It is not as comprehensive, because, where the XML specification makes provision for more or less complete DTDs to be provided as part of a document, xml.pl actions the local definition of ENTITIES only. Other DTD extensions are treated as commentary.

	Bi-directional conversions: Conversions are not fully symmetrical as weaker XML is accepted than can be generated. Notably, in-bound (Codes -> Document) parsing does not require strictly well-formed XML. If Codes does not represent well-formed XML, Document is instantiated to the term malformed(<attributes>,<content>).

Inherited public predicates:

(none)

	Public predicates

	parse/2

	parse/3

	subterm/2

	pp/1

	Protected predicates

	Private predicates

	xml_to_document/3

	empty_map/1

	map_member/3

	map_store/4

	pp_string/1

	fault/5

	exception/4

	document_generation//2

	pcdata_7bit//1

	character_data_format/3

	cdata_generation//1

	Operators

Public predicates

parse/2

Parses a list of character codes to/from a data structure of the form xml(<atts>,<content>).

Compilation flags:

static

Template:

parse(Codes,Document)

Mode and number of proofs:

parse(+list(character_code),?nonvar) - zero_or_one

parse(?list(character_code),+nonvar) - zero_or_one

parse/3

Parses a list of character codes to/from a data structure of the form xml(<atts>,<content>) using the given list of options.

Compilation flags:

static

Template:

parse(Options,Codes,Document)

Mode and number of proofs:

parse(++list(compound),+list(character_code),?nonvar) - zero_or_one

parse(++list(compound),?list(character_code),+nonvar) - zero_or_one

Remarks:

	extended_characters(Boolean) option: Use the extended character entities for XHTML (default true).

	format(Boolean) option: For parsing, strip layouts when no character data appears between elements (default true). For generating, indent the element content (default true).

	remove_attribute_prefixes(Boolean) option: Remove namespace prefixes from attributes when it’s the same as the prefix of the parent element (default false).

	allow_ampersand(Boolean) option: Allow unescaped ampersand characters (&) to occur in PCDATA (default false).

subterm/2

Unifies Subterm with a sub-term of XMLTerm. Note that XMLTerm is a sub-term of itself.

Compilation flags:

static

Template:

subterm(XMLTerm,Subterm)

Mode and number of proofs:

subterm(+nonvar,?nonvar) - zero_or_one

pp/1

Pretty prints a XML document on the current output stream.

Compilation flags:

static

Template:

pp(XMLDocument)

Mode and number of proofs:

pp(+nonvar) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

xml_to_document/3

Translates the list of character codes XML into the Prolog term Document. Options is a list of terms controlling the treatment of layout characters and character entities.

Compilation flags:

static

Template:

xml_to_document(Options,XML,Document)

Mode and number of proofs:

xml_to_document(+nonvar,+nonvar,?nonvar) - zero_or_one

empty_map/1

True if Map is a null map.

Compilation flags:

static

Template:

empty_map(Map)

Mode and number of proofs:

empty_map(?nonvar) - zero_or_one

map_member/3

True if Map is a ordered map structure which records the pair Key-Data. Key must be ground.

Compilation flags:

static

Template:

map_member(Key,Map,Data)

Mode and number of proofs:

map_member(+nonvar,+nonvar,?nonvar) - zero_or_one

map_store/4

True if Map0 is an ordered map structure, Key must be ground, and Map1 is identical to Map0 except that the pair Key-Data is recorded by Map1.

Compilation flags:

static

Template:

map_store(Map0,Key,Data,Map1)

Mode and number of proofs:

map_store(+nonvar,+nonvar,+nonvar,?nonvar) - zero_or_one

pp_string/1

Prints String onto the current output stream. If String contains only 7-bit chars it is printed in shorthand quoted format, otherwise it is written as a list.

Compilation flags:

static

Template:

pp_string(String)

Mode and number of proofs:

pp_string(+nonvar) - zero_or_one

fault/5

Identifies SubTerm as a sub-term of Term which cannot be serialized after Indentation. Message is an atom naming the type of error; Path is a string encoding a list of SubTerm’s ancestor elements in the form <tag>{(id)}* where <tag> is the element tag and <id> is the value of any attribute _named_ id.

Compilation flags:

static

Template:

fault(Term,Indentation,SubTerm,Path,Message)

Mode and number of proofs:

fault(+nonvar,+nonvar,?nonvar,?nonvar,?nonvar) - zero_or_one

exception/4

Hook to raise an exception to be raised in respect of a fault in the XML Term Document.

Compilation flags:

static

Template:

exception(Message,Document,Culprit,Path)

Mode and number of proofs:

exception(+atom,+nonvar,+nonvar,+nonvar) - one

document_generation//2

DCG generating Document as a list of character codes. Format is true|false defining whether layouts, to provide indentation, should be added between the element content of the resultant “string”. Note that formatting is disabled for elements that are interspersed with pcdata/1 terms, such as XHTML’s ‘inline’ elements. Also, Format is over-ridden, for an individual element, by an explicit 'xml:space'="preserve" attribute.

Compilation flags:

static

Template:

document_generation(Format,Document)

Mode and number of proofs:

document_generation(+nonvar,+nonvar) - zero_or_one

pcdata_7bit//1

Represents the ASCII character set in its simplest format, using the character entities &, ", <, and > which are common to both XML and HTML. The numeric entity ' is used in place of ' because browsers don’t recognize it in HTML.

Compilation flags:

static

Template:

pcdata_7bit(Code)

Mode and number of proofs:

pcdata_7bit(?nonvar) - zero_or_one

character_data_format/3

Holds when Format0 and Format1 are the statuses of XML formatting before and after Codes - which may be null.

Compilation flags:

static

Template:

character_data_format(Codes,Format0,Format1)

Mode and number of proofs:

character_data_format(+nonvar,+nonvar,?nonvar) - zero_or_one

cdata_generation//1

Holds when Format0 and Format1 are the statuses of XML formatting before and after Codes - which may be null.

Compilation flags:

static

Template:

cdata_generation(Codes)

Mode and number of proofs:

cdata_generation(+list) - zero_or_one

Operators

(none)

 category

core_messages

Logtalk core (compiler and runtime) default message tokenization.

Availability:

built_in

Author: Paulo Moura

Version: 1:144:0

Date: 2025-09-30

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

expanding

Term and goal expansion protocol.

Availability:

built_in

Author: Paulo Moura

Version: 1:1:0

Date: 2016-07-12

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	goal_expansion/2

	term_expansion/2

	Protected predicates

	Private predicates

	Operators

Public predicates

goal_expansion/2

Defines a goal expansion. Called recursively until a fixed point is reached on goals found while compiling a source file (except for goals wrapped using the {}/1 compiler bypass control construct).

Compilation flags:

static

Template:

goal_expansion(Goal,ExpandedGoal)

Mode and number of proofs:

goal_expansion(+callable,-callable) - zero_or_one

term_expansion/2

Defines a term expansion. Called until it succeeds on all terms read while compiling a source file (except for terms skipped by using the conditional compilation directives or wrapped using the {}/1 compiler bypass control construct).

Compilation flags:

static

Template:

term_expansion(Term,ExpandedTerms)

Mode and number of proofs:

term_expansion(+term,-term) - zero_or_one

term_expansion(+term,-list(term)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

forwarding

Message forwarding protocol.

Availability:

built_in

Author: Paulo Moura

Version: 1:0:1

Date: 2025-05-15

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	forward/1

	Protected predicates

	Private predicates

	Operators

Public predicates

forward/1

User-defined message forwarding handler, automatically called (if defined) by the runtime for any message that the receiving object does not understand.

Compilation flags:

static

Template:

forward(Message)

Mode and number of proofs:

forward(+callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

logtalk

Built-in object providing message printing, debugging, library, source file, and hacking methods.

Availability:

built_in

Author: Paulo Moura

Version: 3:3:0

Date: 2025-10-06

Compilation flags:

static, built_in, context_switching_calls, threaded

Dependencies:

(none)

Remarks:

	Default message kinds: silent, silent(Key), banner, help, comment, comment(Key), information, information(Key), warning, warning(Key), error, error(Key), debug, debug(Key), question, and question(Key).

	Printing of silent messages: By default, silent messages are not printed. These messages are only useful when intercepted.

	Printing of banner and comment messages: By default, banner and comment messages are only printed when the report flag is turned on.

	Printing of help, information, and question messages: These messages are always printed by default as they provide requested output.

	Printing of warning messages: By default, warning messages are not printed when the report flag is turned off.

	Printing of error messages: These messages are always printed by default.

	Printing of debug messages: By default, debug messages are only printed when the debug flag is turned on. The compiler suppresses debug message printing goals when compiling in optimized mode.

	Meta messages: A meta message is a message that have another message as argument and is typically used for debugging messages. Meta messages avoid the need of defining tokenizer rules for every message but can be intercepted as any other message.

	Meta message @Message: By default, the message is printed as passed to the write/1 predicate followed by a newline.

	Meta message Key-Value: By default, the message is printed as “Key: Value” followed by a newline. The key is printed as passed to the write/1 predicate while the value is printed as passed to the writeq/1 predicate.

	Meta message Format+Arguments: By default, the message is printed as passed to the format/2 predicate.

	Meta message List: By default, the list items are printed indented one per line. The items are preceded by a dash and can be @Message, Key-Value, or Format+Arguments messages. If that is not the case, the item is printed as passed to the writeq/1 predicate.

	Meta message Title::List: By default, the title is printed followed by a newline and the indented list items, one per line. The items are printed as in the List meta message.

	Meta message [Stream,Prefix]>>Goal: By default, call user-defined Goal in the context of user. The use of a lambda expression allows passing the message stream and prefix. Printing the prefix is delegated to the goal.

	Meta message [Stream]>>Goal: By default, call user-defined Goal in the context of user. The use of a lambda expression allows passing the message stream.

	Message tokens: at_same_line, tab(Expression), nl, flush, Format-Arguments, term(Term,Options), ansi(Attributes,Format,Arguments), begin(Kind,Variable), and end(Variable).

	Multi-threading applications: Predicates calling methods such as print_message/3, ask_question/5, or compile_aux_clauses/1 may need to be declared synchronized in order to avoid race conditions.

Inherited public predicates:

(none)

	Public predicates

	print_message/3

	print_message_tokens/3

	print_message_token/4

	message_tokens//2

	message_prefix_stream/4

	message_prefix_file/6

	message_hook/4

	ask_question/5

	question_hook/6

	question_prompt_stream/4

	trace_event/2

	debug_handler/1

	active_debug_handler/1

	activate_debug_handler/1

	deactivate_debug_handler/0

	debug_handler/3

	expand_library_path/2

	loaded_file/1

	loaded_file_property/2

	file_type_extension/2

	compile_aux_clauses/1

	entity_prefix/2

	compile_predicate_heads/4

	compile_predicate_indicators/3

	decompile_predicate_heads/4

	decompile_predicate_indicators/4

	execution_context/7

	Protected predicates

	Private predicates

	active_debug_handler_/1

	Operators

Public predicates

print_message/3

Prints a message of the given kind for the specified component.

Compilation flags:

static

Template:

print_message(Kind,Component,Message)

Mode and number of proofs:

print_message(+nonvar,+nonvar,+nonvar) - one

print_message_tokens/3

Print the messages tokens to the given stream, prefixing each line with the specified atom.

Compilation flags:

static

Template:

print_message_tokens(Stream,Prefix,Tokens)

Mode and number of proofs:

print_message_tokens(@stream_or_alias,+atom,@list(nonvar)) - one

print_message_token/4

User-defined hook predicate for printing a message token (see this object remarks).

Compilation flags:

dynamic, multifile

Template:

print_message_token(Stream,Prefix,Token,Tokens)

Mode and number of proofs:

print_message_token(@stream_or_alias,@atom,@nonvar,@list(nonvar)) - zero_or_one

message_tokens//2

User-defined hook grammar rule for converting a message into a list of tokens (see this object remarks).

Compilation flags:

dynamic, multifile

Template:

message_tokens(Message,Component)

Mode and number of proofs:

message_tokens(+nonvar,+nonvar) - zero_or_one

message_prefix_stream/4

Message line prefix and output stream to be used when printing a message given its kind and component.

Compilation flags:

dynamic, multifile

Template:

message_prefix_stream(Kind,Component,Prefix,Stream)

Mode and number of proofs:

message_prefix_stream(?nonvar,?nonvar,?atom,?stream_or_alias) - zero_or_more

message_prefix_file/6

Message line prefix and output file to be used when printing a message given its kind and component.

Compilation flags:

dynamic, multifile

Template:

message_prefix_file(Kind,Component,Prefix,File,Mode,Options)

Mode and number of proofs:

message_prefix_file(?nonvar,?nonvar,?atom,?atom,?atom,?list(compound)) - zero_or_more

message_hook/4

User-defined hook predicate for intercepting message printing calls.

Compilation flags:

dynamic, multifile

Template:

message_hook(Message,Kind,Component,Tokens)

Mode and number of proofs:

message_hook(+nonvar,+nonvar,+nonvar,+list(nonvar)) - zero_or_one

ask_question/5

Asks a question and reads the answer until the check predicate is true.

Compilation flags:

static

Template:

ask_question(Kind,Component,Question,Check,Answer)

Meta-predicate template:

ask_question(*,*,*,1,*)

Mode and number of proofs:

ask_question(+nonvar,+nonvar,+nonvar,+callable,-term) - one

question_hook/6

User-defined hook predicate for intercepting question asking calls.

Compilation flags:

dynamic, multifile

Template:

question_hook(Question,Kind,Component,Tokens,Check,Answer)

Meta-predicate template:

question_hook(*,*,*,*,1,*)

Mode and number of proofs:

question_hook(+nonvar,+nonvar,+nonvar,+list(nonvar),+callable,-term) - zero_or_one

question_prompt_stream/4

Prompt and input stream to be used when asking a question given its kind and component.

Compilation flags:

dynamic, multifile

Template:

question_prompt_stream(Kind,Component,Prompt,Stream)

Mode and number of proofs:

question_prompt_stream(?nonvar,?nonvar,?atom,?stream_or_alias) - zero_or_more

trace_event/2

Trace event handler. The runtime calls all trace event handlers using a failure-driven loop before calling the debug event handler.

Compilation flags:

dynamic, multifile

Template:

trace_event(Event,ExecutionContext)

Mode and number of proofs:

trace_event(@callable,@execution_context) - zero

Remarks:

	Unification events: Generated after a successful unification with a fact - fact(Entity,Fact,Clause,File,Line) - or a rule head - rule(Entity,Head,Clause,File,Line).

	Goal events: Generated when calling a goal: top_goal(Goal,CompiledGoal) or goal(Goal,CompiledGoal).

debug_handler/1

Enumerates, by backtracking, all declared debug handler providers. Define a clause for this predicate to declare a new debug handler provider.

Compilation flags:

static, multifile

Template:

debug_handler(Provider)

Mode and number of proofs:

debug_handler(?object_identifier) - zero_or_more

debug_handler(?category_identifier) - zero_or_more

active_debug_handler/1

Current active debug handler provider if any. There is at most one active debug handler provider at any given moment.

Compilation flags:

static

Template:

active_debug_handler(Provider)

Mode and number of proofs:

active_debug_handler(?category_identifier) - zero_or_one

active_debug_handler(?category_identifier) - zero_or_one

activate_debug_handler/1

Activates the given debug handler provider. There is at most one active debug handler provider at any given moment. Fails if the object or category is not declared as a debug handler provider.

Compilation flags:

static

Template:

activate_debug_handler(Provider)

Mode and number of proofs:

activate_debug_handler(@object_identifier) - zero_or_one

activate_debug_handler(@category_identifier) - zero_or_one

deactivate_debug_handler/0

Deactivates the current debug handler provider if any.

Compilation flags:

static

Mode and number of proofs:

deactivate_debug_handler - one

debug_handler/3

Debug event handler. Called by the runtime when the given provider is active.

Compilation flags:

static, multifile

Template:

debug_handler(Provider,Event,ExecutionContext)

Mode and number of proofs:

debug_handler(+object_identifier,+callable,+execution_context) - zero_or_more

debug_handler(+category_identifier,+callable,+execution_context) - zero_or_more

Remarks:

	Unification events: Generated after a successful unification with a fact - fact(Entity,Fact,Clause,File,Line) - or a rule head - rule(Entity,Head,Clause,File,Line).

	Goal events: Generated when calling a goal: top_goal(Goal,CompiledGoal) or goal(Goal,CompiledGoal).

expand_library_path/2

Expands a library alias (an atom) or a compound term (using library notation) into its absolute path. Uses a depth bound to prevent loops.

Compilation flags:

static

Template:

expand_library_path(LibraryAlias,AbsolutePath)

Mode and number of proofs:

expand_library_path(+atom,?atom) - zero_or_one

expand_library_path(+callable,?atom) - zero_or_one

loaded_file/1

Enumerates, by backtracking, all loaded files, returning their full paths.

Compilation flags:

static

Template:

loaded_file(Path)

Mode and number of proofs:

loaded_file(?atom) - zero_or_more

loaded_file_property/2

Enumerates, by backtracking, loaded file properties.

Compilation flags:

static

Template:

loaded_file_property(Path,Property)

Mode and number of proofs:

loaded_file_property(?atom,?compound) - zero_or_more

Remarks:

	Property basename/1: Basename of the file (includes the file extension, if any).

	Property directory/1: Directory of the file (ending with a slash).

	Property mode/1: Compilation mode of the file (possible values are optimal, normal, and debug).

	Property flags/1: Explicit flags used for compiling the file.

	Property text_properties/1: List of the file text properties (encoding/1 and bom/1). Empty if no encoding/1 directive is present and the stream used for reading the file does not have a bom/1 (or equivalent) property.

	Property target/1: Full path of the generated intermediate Prolog file.

	Property modified/1: File modification time stamp (should be regarded as an opaque but otherwise comparable term).

	Property parent/1: Full path of the parent file that loaded the file.

	Property includes/2: Full path of a file included by the file and the line of the include/1 directive.

	Property includes/1: Full path of a file included by the file.

	Property library/1: Library alias for the library that includes the file.

	Property object/3: Identifier for an object defined in the file and the start and end lines of its definition.

	Property object/1: Identifier for an object defined in the file.

	Property protocol/3: Identifier for a protocol defined in the file and the start and end lines of its definition.

	Property protocol/1: Identifier for a protocol defined in the file.

	Property category/3: Identifier for a category defined in the file and the start and end lines of its definition.

	Property category/1: Identifier for a category defined in the file.

file_type_extension/2

Enumerates, by backtracking, all defined file type extensions. The defined types are: source, object, logtalk, prolog, and tmp. The source type returns both logtalk and prolog type extensions.

Compilation flags:

static

Template:

file_type_extension(Type,Extension)

Mode and number of proofs:

file_type_extension(?atom,?atom) - zero_or_more

compile_aux_clauses/1

Compiles a list of auxiliary clauses. Can only be called during source file compilation, usually from term_expansion/2 or goal_expansion/2 hook predicate definitions.

Compilation flags:

static

Template:

compile_aux_clauses(Clauses)

Mode and number of proofs:

compile_aux_clauses(@list(clause)) - one

entity_prefix/2

Converts between an entity identifier and the entity prefix that is used for its compiled code. When none of the arguments is instantiated, it returns the identifier and the prefix of the entity under compilation, if any.

Compilation flags:

static

Template:

entity_prefix(Entity,Prefix)

Mode and number of proofs:

entity_prefix(?entity_identifier,?atom) - zero_or_one

compile_predicate_heads/4

Compiles clause heads. The heads are compiled in the context of the entity under compilation when the entity argument is not instantiated.

Compilation flags:

static

Template:

compile_predicate_heads(Heads,Entity,CompiledHeads,ExecutionContext)

Mode and number of proofs:

compile_predicate_heads(@list(callable),?entity_identifier,-list(callable),@execution_context) - zero_or_one

compile_predicate_heads(@conjunction(callable),?entity_identifier,-conjunction(callable),@execution_context) - zero_or_one

compile_predicate_heads(@callable,?entity_identifier,-callable,@execution_context) - zero_or_one

compile_predicate_indicators/3

Compiles predicate indicators. The predicate are compiled in the context of the entity under compilation when the entity argument is not instantiated.

Compilation flags:

static

Template:

compile_predicate_indicators(PredicateIndicators,Entity,CompiledPredicateIndicators)

Mode and number of proofs:

compile_predicate_indicators(@list(predicate_indicator),?entity_identifier,-list(predicate_indicator)) - zero_or_one

compile_predicate_indicators(@conjunction(predicate_indicator),?entity_identifier,-conjunction(predicate_indicator)) - zero_or_one

compile_predicate_indicators(@predicate_indicator,?entity_identifier,-predicate_indicator) - zero_or_one

decompile_predicate_heads/4

Decompiles clause heads. All compiled clause heads must belong to the same entity, which must be loaded.

Compilation flags:

static

Template:

decompile_predicate_heads(CompiledHeads,Entity,Type,Heads)

Mode and number of proofs:

decompile_predicate_heads(@list(callable),-entity_identifier,-atom,-list(callable)) - zero_or_one

decompile_predicate_heads(@conjunction(callable),-entity_identifier,-atom,-conjunction(callable)) - zero_or_one

decompile_predicate_heads(@callable,-entity_identifier,-atom,-callable) - zero_or_one

decompile_predicate_indicators/4

Decompiles predicate indicators. All compiled predicate indicators must belong to the same entity, which must be loaded.

Compilation flags:

static

Template:

decompile_predicate_indicators(CompiledPredicateIndicators,Entity,Type,PredicateIndicators)

Mode and number of proofs:

decompile_predicate_indicators(@list(predicate_indicator),-entity_identifier,-atom,-list(predicate_indicator)) - zero_or_one

decompile_predicate_indicators(@conjunction(predicate_indicator),-entity_identifier,-atom,-conjunction(predicate_indicator)) - zero_or_one

decompile_predicate_indicators(@predicate_indicator,-entity_identifier,-atom,-predicate_indicator) - zero_or_one

execution_context/7

Execution context term data. Execution context terms should be considered opaque terms subject to change without notice.

Compilation flags:

static

Template:

execution_context(ExecutionContext,Entity,Sender,This,Self,MetaCallContext,CoinductionStack)

Mode and number of proofs:

execution_context(?nonvar,?entity_identifier,?object_identifier,?object_identifier,?object_identifier,@list(callable),@list(callable)) - zero_or_one

Protected predicates

(none)

Private predicates

active_debug_handler_/1

Current active debug handler provider. There is at most one active debug handler provider at any given moment.

Compilation flags:

dynamic

Template:

active_debug_handler_(Provider)

Mode and number of proofs:

active_debug_handler_(?entity_identifier) - zero_or_one

Operators

(none)

 protocol

monitoring

Event handlers protocol. The handlers are automatically called by the runtime for messages sent using the ::/2 control construct from objects or categories compiled with the events flag set to allow.

Availability:

built_in

Author: Paulo Moura

Version: 1:2:0

Date: 2018-11-29

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	before/3

	after/3

	Protected predicates

	Private predicates

	Operators

Public predicates

before/3

Event handler for before events. A before event handler may prevent a method from being looked up or called by failing.

Compilation flags:

static

Template:

before(Object,Message,Sender)

Mode and number of proofs:

before(?term,?term,?term) - zero_or_more

after/3

Event handler for after events. An after event handler may prevent a method from succeeding by failing.

Compilation flags:

static

Template:

after(Object,Message,Sender)

Mode and number of proofs:

after(?term,?term,?term) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

user

Pseudo-object representing the plain Prolog database. Can be used as a monitor by defining before/3 and after/3 predicates. Can be used as a hook object by defining term_expansion/2 and goal_expansion/2 multifile and dynamic predicates.

Availability:

built_in

Author: Paulo Moura

Version: 1:6:0

Date: 2024-11-11

Compilation flags:

static, built_in, context_switching_calls, dynamic_declarations, threaded

Implements:

public expanding

public forwarding

public monitoring

Uses:

user

Remarks:

(none)

Inherited public predicates:

 after/3 before/3 forward/1 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

cloning

Object cloning protocol.

Availability:

logtalk_load(library(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2010-09-14

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	clone/1

	Protected predicates

	Private predicates

	Operators

Public predicates

clone/1

Clones an object, returning the identifier of the new object if none is given.

Compilation flags:

static

Template:

clone(Clone)

Mode and number of proofs:

clone(?object) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

counters

Named integer counters. Counter names can be any nonvar term.

Availability:

logtalk_load(library(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2022-02-11

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	counter/2

	increment_counter/1

	decrement_counter/1

	reset_counter/1

	reset_counters/0

	Protected predicates

	Private predicates

	counter_/2

	Operators

Public predicates

counter/2

True if Counter is a counter with value Value.

Compilation flags:

static

Template:

counter(Counter,Value)

Mode and number of proofs:

counter(?nonvar,?integer) - zero_or_more

increment_counter/1

Increments the named counter.

Compilation flags:

static

Template:

increment_counter(Counter)

Mode and number of proofs:

increment_counter(+nonvar) - one

decrement_counter/1

Decrements the named counter.

Compilation flags:

static

Template:

decrement_counter(Counter)

Mode and number of proofs:

decrement_counter(+nonvar) - one

reset_counter/1

Resets the named counter to zero. Creates the counter if it does not exist.

Compilation flags:

static

Template:

reset_counter(Counter)

Mode and number of proofs:

reset_counter(+nonvar) - one

reset_counters/0

Resets all existing named counters to zero.

Compilation flags:

static

Mode and number of proofs:

reset_counters - one

Protected predicates

(none)

Private predicates

counter_/2

Table of named counters.

Compilation flags:

dynamic

Template:

counter_(Counter,Value)

Mode and number of proofs:

counter_(?nonvar,?integer) - zero_or_more

Operators

(none)

 object

streamvars

Stream variables (supporting logical, backtracable, adding and retrieving of terms).

Availability:

logtalk_load(library(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:3:0

Date: 2019-06-15

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/1

	new/2

	(<=)/2

	(=>)/2

	Protected predicates

	Private predicates

	Operators

	op(100,xfx,<=)

	op(100,xfx,=>)

Public predicates

new/1

Makes Variable a stream variable. Initial state will be empty.

Compilation flags:

static

Template:

new(Variable)

Mode and number of proofs:

new(--streamvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

new/2

Makes Variable a stream variable and sets its initial state to Value.

Compilation flags:

static

Template:

new(Variable,Value)

Mode and number of proofs:

new(--streamvar,@nonvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

(<=)/2

Sets the state of the stream variable Variable to Value (initializing the variable if needed).

Compilation flags:

static

Template:

Variable<=Value

Mode and number of proofs:

(?streamvar)<=(@nonvar) - one

(=>)/2

Unifies Value with the current state of the stream variable Variable.

Compilation flags:

static

Template:

Variable=>Value

Mode and number of proofs:

+streamvar=> ?nonvar - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

op(100,xfx,<=)

Scope:

public

op(100,xfx,=>)

Scope:

public

 category

arbitrary

Adds predicates for generating and shrinking random values for selected types to the library type object. User extensible.

Availability:

logtalk_load(arbitrary(loader))

Author: Paulo Moura

Version: 2:35:1

Date: 2024-08-13

Compilation flags:

static

Complements:

type

Uses:

fast_random

integer

list

type

Remarks:

	Logtalk specific types: entity, object, protocol, category, entity_identifier, object_identifier, protocol_identifier, category_identifier, event, predicate.

	Prolog module related types (when the backend compiler supports modules): module, module_identifier, qualified_callable.

	Prolog base types: term, var, nonvar, atomic, atom, number, integer, float, compound, callable, ground.

	Atom derived types: non_quoted_atom, non_empty_atom, non_empty_atom(CharSet), boolean, character, in_character, char, operator_specifier, hex_char.

	Atom derived parametric types: atom(CharSet), atom(CharSet,Length), non_empty_atom(CharSet), character(CharSet), in_character(CharSet), char(CharSet).

	Number derived types: positive_number, negative_number, non_positive_number, non_negative_number.

	Float derived types: positive_float, negative_float, non_positive_float, non_negative_float, probability.

	Integer derived types: positive_integer, negative_integer, non_positive_integer, non_negative_integer, byte, in_byte, character_code, in_character_code, code, operator_priority, hex_code.

	Integer derived parametric types: character_code(CharSet), in_character_code(CharSet), code(CharSet).

	List types (compound derived types): list, non_empty_list, partial_list, list_or_partial_list, list(Type), list(Type,Length), list(Type,Min,Max), list(Type,Length,Min,Max), non_empty_list(Type), codes, chars.

	Difference list types (compound derived types): difference_list, difference_list(Type).

	List and difference list types length: The types that do not take a fixed length generate lists with a length in the [0,MaxSize] interval ([1,MaxSize] for non-empty list types).

	Predicate and non-terminal indicator types arity: These types generate indicators with an arity in the [0,MaxSize] interval.

	Other compound derived types: compound(Name,Types), predicate_indicator, non_terminal_indicator, predicate_or_non_terminal_indicator, clause, grammar_rule, pair, pair(KeyType,ValueType).

	Other types: Object::Closure, between(Type,Lower,Upper), property(Type,LambdaExpression), one_of(Type,Set), var_or(Type), ground(Type), types(Types), types_frequency(Pairs), transform(Type,Closure), constrain(Type,Closure).

	Type Object::Closure notes: Allows calling public object predicates as generators and shrinkers. The Closure closure is extended with either a single argument, the generated arbitrary value, or with two arguments, when shrinking a value.

	Type compound(Name,Types) notes: Generate a random compound term with the given name with a random argument for each type.

	Type types_frequency(Pairs) notes: Generate a random term for one of the types in a list of Type-Frequency pairs. The type is randomly selected taking into account the types frequency.

	Type transform(Type,Closure) notes: Generate a random term by transforming the term generated for the given type using the given closure.

	Type constrain(Type,Closure) notes: Generate a random term for the given type that satisfy the given closure.

	Registering new types: Add clauses for the arbitrary/1-2 multifile predicates and optionally for the shrinker/1 and shrink/3 multifile predicates. The clauses must have a bound first argument to avoid introducing spurious choice-points.

	Shrinking values: The shrink/3 should either succeed or fail but never throw an exception.

	Character sets: ascii_identifier, ascii_printable, ascii_full, byte, unicode_bmp, unicode_full.

	Default character sets: The default character set when using a parameterizable type that takes a character set parameter depends on the type.

	Default character sets: Entity, predicate, and non-terminal identifier types plus compound and callable types default to an ascii_identifier functor. Character and character code types default to ascii_full. Other types default to ascii_printable.

	Caveats: The type argument (and any type parameterization) to the predicates is not type-checked (or checked for consistency) for performance reasons.

	Unicode limitations: Currently, correct character/code generation is only ensured for XVM and SWI-Prolog as other backends do not provide support for querying a Unicode code point category.

Inherited public predicates:

(none)

	Public predicates

	arbitrary/1

	arbitrary/2

	shrinker/1

	shrink/3

	shrink_sequence/3

	edge_case/2

	get_seed/1

	set_seed/1

	max_size/1

	Protected predicates

	Private predicates

	Operators

Public predicates

arbitrary/1

Table of defined types for which an arbitrary value can be generated. A new type can be registered by defining a clause for this predicate and adding a clause for the arbitrary/2 multifile predicate.

Compilation flags:

static, multifile

Template:

arbitrary(Type)

Mode and number of proofs:

arbitrary(?callable) - zero_or_more

arbitrary/2

Generates an arbitrary term of the specified type. Fails if the type is not supported. A new generator can be defined by adding a clause for this predicate and registering it via the arbitrary/1 predicate.

Compilation flags:

static, multifile

Template:

arbitrary(Type,Term)

Meta-predicate template:

arbitrary(::,*)

Mode and number of proofs:

arbitrary(@callable,-term) - zero_or_one

shrinker/1

Table of defined types for which a shrinker is provided. A new shrinker can be registered by defining a clause for this predicate and adding a definition for the shrink/3 multifile predicate.

Compilation flags:

static, multifile

Template:

shrinker(Type)

Mode and number of proofs:

shrinker(?callable) - zero_or_more

shrink/3

Shrinks a value to a smaller value if possible. Must generate a finite number of solutions. Fails if the type is not supported. A new shrinker can be defined by adding a clause for this predicate and registering it via the shrinker/1 predicate.

Compilation flags:

static, multifile

Template:

shrink(Type,Large,Small)

Mode and number of proofs:

shrink(@callable,@term,-term) - zero_or_more

shrink_sequence/3

Shrinks a value repeatedly until shrinking is no longer possible returning the sequence of values (ordered from larger to smaller value). Fails if the type is not supported.

Compilation flags:

static

Template:

shrink_sequence(Type,Value,Sequence)

Mode and number of proofs:

shrink_sequence(@callable,@term,-list(term)) - zero_or_one

edge_case/2

Table of type edge cases. Fails if the given type have no defined edge cases. New edge cases for existing or new types can be added by defining a clause for this multifile predicate.

Compilation flags:

static, multifile

Template:

edge_case(Type,Term)

Mode and number of proofs:

edge_case(?callable,?term) - zero_or_more

get_seed/1

Gets the current random generator seed. Seed should be regarded as an opaque ground term.

Compilation flags:

static

Template:

get_seed(Seed)

Mode and number of proofs:

get_seed(-ground) - one

set_seed/1

Sets the random generator seed to a given value returned by calling the get_seed/1 predicate.

Compilation flags:

static

Template:

set_seed(Seed)

Mode and number of proofs:

set_seed(+ground) - one

max_size/1

User defined maximum size for types where its meaningful and implicit. When not defined, defaults to 42. When multiple definitions exist, the first valid one found is used.

Compilation flags:

static, multifile

Template:

max_size(Size)

Mode and number of proofs:

max_size(?positive_integer) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

assignvars

Assignable variables (supporting backtracable assignment of non-variable terms).

Availability:

logtalk_load(assignvars(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:7:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Implements:

public assignvarsp

Remarks:

(none)

Inherited public predicates:

 (<=)/2 (=>)/2 assignable/1 assignable/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

assignvarsp

Assignable variables (supporting backtracable assignment of non-variable terms) protocol.

Availability:

logtalk_load(assignvars(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:0:1

Date: 2019-06-10

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	assignable/1

	assignable/2

	(<=)/2

	(=>)/2

	Protected predicates

	Private predicates

	Operators

	op(100,xfx,<=)

	op(100,xfx,=>)

Public predicates

assignable/1

Makes Variable an assignable variable. Initial state will be empty.

Compilation flags:

static

Template:

assignable(Variable)

Mode and number of proofs:

assignable(--assignvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

assignable/2

Makes Variable an assignable variable and sets its initial state to Value.

Compilation flags:

static

Template:

assignable(Variable,Value)

Mode and number of proofs:

assignable(--assignvar,@nonvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

Value is not instantiated:

instantiation_error

(<=)/2

Sets the state of the assignable variable Variable to Value (initializing the variable if needed).

Compilation flags:

static

Template:

Variable<=Value

Mode and number of proofs:

(?assignvar)<=(@nonvar) - one

Exceptions:

Value is not instantiated:

instantiation_error

(=>)/2

Unifies Value with the current state of the assignable variable Variable.

Compilation flags:

static

Template:

Variable=>Value

Mode and number of proofs:

+assignvar=> ?nonvar - zero_or_one

Exceptions:

Variable is not instantiated:

instantiation_error

Protected predicates

(none)

Private predicates

(none)

Operators

op(100,xfx,<=)

Scope:

public

op(100,xfx,=>)

Scope:

public

See also

assignvars

 object

base64

Base64 parser and generator.

Availability:

logtalk_load(base64(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2021-03-22

Compilation flags:

static, context_switching_calls

Uses:

reader

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the Base64 data from the given source (atom(Atom), chars(List), codes(List), stream(Stream), or file(Path) into a list of bytes.

Compilation flags:

static

Template:

parse(Source,Bytes)

Mode and number of proofs:

parse(++compound,--list(byte)) - one_or_error

generate/2

Generates Base64 in the representation specified in the first argument (atom(Atom), chars(List), codes(List), stream(Stream), or file(Path) for the list of bytes in the second argument.

Compilation flags:

static

Template:

generate(Sink,Bytes)

Mode and number of proofs:

generate(+compound,+list(byte)) - one_or_error

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

base64url

Base64URL parser and generator.

Availability:

logtalk_load(base64(loader))

Author: Paulo Moura

Version: 0:9:0

Date: 2021-03-10

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the Base64URL data from the given source (atom(Atom), chars(List), or codes(List) into a URL (using the same format as the source).

Compilation flags:

static

Template:

parse(Source,URL)

Mode and number of proofs:

parse(++compound,--types([atom,chars,codes])) - one_or_error

generate/2

Generates Base64URL data in the representation specified in the first argument (atom(Atom), chars(List), or codes(List) for the given URL (given in the same format as the sink).

Compilation flags:

static

Template:

generate(Sink,URL)

Mode and number of proofs:

generate(+compound,+types([atom,chars,codes])) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

cbor

Concise Binary Object Representation (CBOR) format exporter and importer. Uses atoms to represent decoded CBOR strings.

Availability:

logtalk_load(cbor(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-03-04

Compilation flags:

static, context_switching_calls

Extends:

public cbor(atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

cbor(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding CBOR strings. Possible values are atom (default), chars, and codes.

Concise Binary Object Representation (CBOR) format exporter and importer.

Availability:

logtalk_load(cbor(loader))

Author: Paulo Moura

Version: 0:11:1

Date: 2021-12-06

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses a list of bytes in the CBOR format returning the corresponding term representation. Throws an error when parsing is not possible (usually due to an invalid byte sequence).

Compilation flags:

static

Template:

parse(Bytes,Term)

Mode and number of proofs:

parse(@list(byte),-ground) - one_or_error

generate/2

Generates a list of bytes in the CBOR format representing the given term. Throws an error when generating is not possible (usually due to a term that have no CBOR corresponding representation).

Compilation flags:

static

Template:

generate(Term,Bytes)

Mode and number of proofs:

generate(@ground,-list(byte)) - one_or_error

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coroutining

Coroutining predicates.

Availability:

logtalk_load(coroutining(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2021-12-17

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: ECLiPSe, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	dif/2

	dif/1

	freeze/2

	frozen/2

	when/2

	Protected predicates

	Private predicates

	Operators

Public predicates

dif/2

Sets a constraint that is true iff the two terms are different.

Compilation flags:

static

Template:

dif(Term1,Term2)

Mode and number of proofs:

dif(+term,+term) - zero_or_one

dif/1

Sets a set of constraints that are true iff all terms in a list are different.

Compilation flags:

static

Template:

dif(Terms)

Mode and number of proofs:

dif(+list(term)) - zero_or_one

freeze/2

Delays the execution of a goal until a variable is bound.

Compilation flags:

static

Template:

freeze(Variable,Goal)

Meta-predicate template:

freeze(*,0)

Mode and number of proofs:

freeze(+term,+callable) - zero_or_more

frozen/2

Unifies Goal with the goal delayed by Variable. When no goals are frozen on Variable, Goal is unified with true.

Compilation flags:

static

Template:

frozen(Variable,Goal)

Mode and number of proofs:

frozen(@var,--callable) - one

when/2

Calls Goal when Condition becomes true. The portable conditions are: nonvar/1, ground/1, (,)/2, and (;)/2.

Compilation flags:

static

Template:

when(Condition,Goal)

Meta-predicate template:

when(*,0)

Mode and number of proofs:

when(+callable,+callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

csv

CSV files reading and writing predicates using the options Header - keep, Separator - comma, and IgnoreQuotes - false.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila

Version: 1:0:0

Date: 2021-02-02

Compilation flags:

static, context_switching_calls

Extends:

public csv(keep,comma,false)

Remarks:

(none)

Inherited public predicates:

 guess_arity/2 guess_separator/2 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

csv(Header,Separator,IgnoreQuotes)

	Header - Header handling option with possible values missing, skip, and keep (default).

	Separator - Separator handling option with possible values comma (default for non .tsv and non .tab files or when no file name extension is available), tab (default for .tsv and .tab files), semicolon, and colon.

	IgnoreQuotes - Double-quotes handling option to ignore (true) or preserve (false; default) double quotes surrounding data.

CSV file and stream reading and writing predicates.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila and Paulo Moura

Version: 2:1:0

Date: 2023-11-15

Compilation flags:

static, context_switching_calls

Implements:

public csv_protocol

Uses:

list

logtalk

os

reader

type

Remarks:

(none)

Inherited public predicates:

 guess_arity/2 guess_separator/2 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

csv_guess_questions

Support for asking questions when guessing the separator and the record arity of CSV files.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila

Version: 1:0:0

Date: 2021-02-03

Compilation flags:

static

Provides:

logtalk::message_tokens//2

logtalk::question_prompt_stream/4

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

csv_protocol

CSV file and stream reading and writing protocol.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila and Paulo Moura

Version: 2:0:1

Date: 2025-05-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Type-checking: Some of the predicate file and stream argument type-checking exceptions depend on the Prolog backend compliance with standards.

Inherited public predicates:

(none)

	Public predicates

	read_file/3

	read_stream/3

	read_file/2

	read_stream/2

	read_file_by_line/3

	read_stream_by_line/3

	read_file_by_line/2

	read_stream_by_line/2

	write_file/3

	write_stream/3

	guess_separator/2

	guess_arity/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/3

Reads a CSV file saving the data as clauses for the specified object predicate. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Object,Predicate)

Mode and number of proofs:

read_file(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream/3

Reads a CSV stream saving the data as clauses for the specified object predicate. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Object,Predicate)

Mode and number of proofs:

read_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file/2

Reads a CSV file returning the data as a list of rows, each row a list of fields. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Rows)

Mode and number of proofs:

read_file(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream/2

Reads a CSV stream returning the data as a list of rows, each row a list of fields. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Rows)

Mode and number of proofs:

read_stream(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

read_file_by_line/3

Reads a CSV file saving the data as clauses for the specified object predicate. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Object,Predicate)

Mode and number of proofs:

read_file_by_line(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream_by_line/3

Reads a CSV stream saving the data as clauses for the specified object predicate. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Object,Predicate)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file_by_line/2

Reads a CSV file returning the data as a list of rows, each row a list of fields. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Rows)

Mode and number of proofs:

read_file_by_line(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream_by_line/2

Reads a CSV stream returning the data as a list of rows, each row a list of fields. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Rows)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

write_file/3

Writes a CSV file with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_file(File,Object,Predicate)

Mode and number of proofs:

write_file(+atom,+object_identifier,+predicate_indicator) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

write_stream/3

Writes a CSV stream with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_stream(Stream,Object,Predicate)

Mode and number of proofs:

write_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an input stream:

permission_error(output,stream,Stream)

Stream is a binary stream:

permission_error(output,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

guess_separator/2

Guesses the separator used in a given file, asking the user to confirm.

Compilation flags:

static

Template:

guess_separator(File,Separator)

Mode and number of proofs:

guess_separator(+atom,-atom) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

guess_arity/2

Guesses the arity of records in a given file, asking the user to confirm.

Compilation flags:

static

Template:

guess_arity(File,Arity)

Mode and number of proofs:

guess_arity(+atom,-number) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

date

Date predicates.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2014-09-27

Compilation flags:

static, context_switching_calls

Implements:

public datep

Uses:

os

Remarks:

(none)

Inherited public predicates:

 days_in_month/3 leap_year/1 name_of_day/3 name_of_month/3 today/3 valid/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

datep

Date protocol.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2005-03-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	today/3

	leap_year/1

	name_of_day/3

	name_of_month/3

	days_in_month/3

	valid/3

	Protected predicates

	Private predicates

	Operators

Public predicates

today/3

Returns current date.

Compilation flags:

static

Template:

today(Year,Month,Day)

Mode and number of proofs:

today(-integer,-integer,-integer) - one

leap_year/1

True if the argument is a leap year.

Compilation flags:

static

Template:

leap_year(Year)

Mode and number of proofs:

leap_year(+integer) - zero_or_one

name_of_day/3

Name and short name of day.

Compilation flags:

static

Template:

name_of_day(Index,Name,Short)

Mode and number of proofs:

name_of_day(?integer,?atom,?atom) - zero_or_more

name_of_month/3

Name and short name of month.

Compilation flags:

static

Template:

name_of_month(Index,Name,Short)

Mode and number of proofs:

name_of_month(?integer,?atom,?atom) - zero_or_more

days_in_month/3

Number of days in a month.

Compilation flags:

static

Template:

days_in_month(Month,Year,Days)

Mode and number of proofs:

days_in_month(?integer,+integer,?integer) - zero_or_more

valid/3

True if the arguments represent a valid date.

Compilation flags:

static

Template:

valid(Year,Month,Day)

Mode and number of proofs:

valid(@integer,@integer,@integer) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

date, timep

 object

time

Time predicates.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2014-09-27

Compilation flags:

static, context_switching_calls

Implements:

public timep

Uses:

os

Remarks:

(none)

Inherited public predicates:

 cpu_time/1 now/3 valid/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

datep

 protocol

timep

Time protocol.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	now/3

	cpu_time/1

	valid/3

	Protected predicates

	Private predicates

	Operators

Public predicates

now/3

Returns current time.

Compilation flags:

static

Template:

now(Hours,Mins,Secs)

Mode and number of proofs:

now(-integer,-integer,-integer) - one

cpu_time/1

Returns the current cpu time.

Compilation flags:

static

Template:

cpu_time(Time)

Mode and number of proofs:

cpu_time(-number) - one

valid/3

True if the arguments represent a valid time value.

Compilation flags:

static

Template:

valid(Hours,Mins,Secs)

Mode and number of proofs:

valid(+integer,+integer,+integer) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

time, datep

 category

observer

Smalltalk dependent protocol.

Availability:

logtalk_load(dependents(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2003-02-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	update/1

	Protected predicates

	Private predicates

	Operators

Public predicates

update/1

Called when an observed object is updated.

Compilation flags:

static

Template:

update(Change)

Mode and number of proofs:

update(?nonvar) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

subject

 category

subject

Smalltalk dependent handling predicates.

Availability:

logtalk_load(dependents(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2003-02-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	changed/0

	changed/1

	dependents/1

	addDependent/1

	removeDependent/1

	Protected predicates

	Private predicates

	dependent_/1

	Operators

Public predicates

changed/0

Receiver changed in some way. Notify all dependents.

Compilation flags:

static

Mode and number of proofs:

changed - one

changed/1

Receiver changed as specified in the argument. Notify all dependents.

Compilation flags:

static

Template:

changed(Change)

Mode and number of proofs:

changed(?nonvar) - one

dependents/1

Returns a list of all dependent objects.

Compilation flags:

static

Template:

dependents(Dependents)

Mode and number of proofs:

dependents(-list) - one

addDependent/1

Adds a new dependent object.

Compilation flags:

static

Template:

addDependent(Dependent)

Mode and number of proofs:

addDependent(@object) - one

removeDependent/1

Removes a dependent object.

Compilation flags:

static

Template:

removeDependent(Dependent)

Mode and number of proofs:

removeDependent(?object) - zero_or_more

Protected predicates

(none)

Private predicates

dependent_/1

Table of dependent objects.

Compilation flags:

dynamic

Template:

dependent_(Dependent)

Mode and number of proofs:

dependent_(?object) - zero_or_more

Operators

(none)

See also

observer

 object

avltree

AVL tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: R.A.O’Keefe, L.Damas, V.S.Costa, Glenn Burgess, Jiri Spitz, and Jan Wielemaker; Logtalk port and additional predicates by Paulo Moura

Version: 1:4:1

Date: 2025-05-28

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

bintree, rbtree

 object

bintree

Simple binary tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: Paulo Moura and Paul Fodor

Version: 2:11:1

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	preorder/2

	inorder/2

	postorder/2

	Protected predicates

	Private predicates

	Operators

Public predicates

preorder/2

Preorder tree traversal.

Compilation flags:

static

Template:

preorder(Tree,List)

Mode and number of proofs:

preorder(@tree,-list) - one

inorder/2

Inorder tree traversal.

Compilation flags:

static

Template:

inorder(Tree,List)

Mode and number of proofs:

inorder(@tree,-list) - one

postorder/2

Postorder tree traversal.

Compilation flags:

static

Template:

postorder(Tree,List)

Mode and number of proofs:

postorder(@tree,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

avltree, rbtree

 protocol

dictionaryp

Dictionary protocol.

Availability:

logtalk_load(dictionaries(loader))

Author: Paulo Moura

Version: 2:4:0

Date: 2024-10-02

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	as_dictionary/2

	as_list/2

	as_curly_bracketed/2

	clone/3

	clone/4

	insert/4

	delete/4

	update/4

	update/5

	update/3

	empty/1

	lookup/3

	lookup/2

	intersection/2

	intersection/3

	previous/4

	next/4

	min/3

	max/3

	delete_min/4

	delete_max/4

	keys/2

	values/2

	map/2

	map/3

	apply/4

	size/2

	Protected predicates

	Private predicates

	Operators

Public predicates

as_dictionary/2

Converts a list of key-value pairs to a dictionary.

Compilation flags:

static

Template:

as_dictionary(Pairs,Dictionary)

Mode and number of proofs:

as_dictionary(@list(pairs),-dictionary) - one

as_list/2

Converts a dictionary to an ordered list (as per standard order) of key-value pairs.

Compilation flags:

static

Template:

as_list(Dictionary,Pairs)

Mode and number of proofs:

as_list(@dictionary,-list(pairs)) - one

as_curly_bracketed/2

Creates a curly-bracketed term representation of a dictionary.

Compilation flags:

static

Template:

as_curly_bracketed(Dictionary,Term)

Mode and number of proofs:

as_curly_bracketed(+dictionary,--term) - one

clone/3

Clones a dictionary using the same keys but with all values unbound and returning a list of all the pairs in the new clone.

Compilation flags:

static

Template:

clone(Dictionary,Clone,ClonePairs)

Mode and number of proofs:

clone(+dictionary,-dictionary,-list(pairs)) - one

clone/4

Clones a dictionary using the same keys but with all values unbound and returning the list of all pairs in the dictionary and in the clone.

Compilation flags:

static

Template:

clone(Dictionary,Pairs,Clone,ClonePairs)

Mode and number of proofs:

clone(+dictionary,-list(pairs),-dictionary,-list(pairs)) - one

insert/4

Inserts a key-value pair into a dictionary, returning the updated dictionary. When the key already exists, the associated value is updated.

Compilation flags:

static

Template:

insert(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

insert(+dictionary,+ground,@term,-dictionary) - one

delete/4

Deletes a matching key-value pair from a dictionary, returning the updated dictionary. Fails if it cannot find the key or if the key exists but the value does not unify.

Compilation flags:

static

Template:

delete(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete(+dictionary,@ground,?term,-dictionary) - zero_or_one

update/4

Updates the value associated with Key in a dictionary, returning the updated dictionary. Fails if it cannot find the key.

Compilation flags:

static

Template:

update(OldDictionary,Key,NewValue,NewDictionary)

Mode and number of proofs:

update(+dictionary,@ground,+term,-dictionary) - zero_or_one

update/5

Updates the value associated with a key in a dictionary, returning the updated dictionary. Fails if it cannot find the key or if the existing value does not unify.

Compilation flags:

static

Template:

update(OldDictionary,Key,OldValue,NewValue,NewDictionary)

Mode and number of proofs:

update(+dictionary,@ground,?term,+term,-dictionary) - zero_or_one

update/3

Updates the key-value pairs in a dictionary, returning the updated dictionary. Fails if it cannot find one of the keys.

Compilation flags:

static

Template:

update(OldDictionary,Pairs,NewDictionary)

Mode and number of proofs:

update(+dictionary,@list(pair),-dictionary) - zero_or_one

empty/1

True iff the dictionary is empty.

Compilation flags:

static

Template:

empty(Dictionary)

Mode and number of proofs:

empty(@dictionary) - zero_or_one

lookup/3

Lookups a matching key-value pair from a dictionary. Fails if no match is found.

Compilation flags:

static

Template:

lookup(Key,Value,Dictionary)

Mode and number of proofs:

lookup(+ground,?term,@dictionary) - zero_or_one

lookup(-ground,?term,@dictionary) - zero_or_more

lookup/2

Lookups all matching key-value pairs from a dictionary. Fails if it cannot find one of the keys or if a value for a key does not unify.

Compilation flags:

static

Template:

lookup(Pairs,Dictionary)

Mode and number of proofs:

lookup(+list(pair),@dictionary) - zero_or_one

intersection/2

True iff the values of the dictionaries common keys unify. Trivially true when there are no common keys.

Compilation flags:

static

Template:

intersection(Dictionary1,Dictionary2)

Mode and number of proofs:

intersection(+dictionary,+dictionary) - zero_or_one

intersection/3

Returns the (possibly empty) intersection between two dictionaries when the values of their common keys unify.

Compilation flags:

static

Template:

intersection(Dictionary1,Dictionary2,Intersection)

Mode and number of proofs:

intersection(+dictionary,+dictionary,-dictionary) - zero_or_one

previous/4

Returns the previous pair in a dictionary given a key. Fails if there is no previous pair.

Compilation flags:

static

Template:

previous(Dictionary,Key,Previous,Value)

Mode and number of proofs:

previous(+dictionary,+key,-key,-value) - zero_or_one

next/4

Returns the next pair in a dictionary given a key. Fails if there is no next pair.

Compilation flags:

static

Template:

next(Dictionary,Key,Next,Value)

Mode and number of proofs:

next(+dictionary,+key,-key,-value) - zero_or_one

min/3

Returns the pair with the minimum key (as per standard order) in a dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

min(Dictionary,Key,Value)

Mode and number of proofs:

min(+dictionary,-key,-value) - zero_or_one

max/3

Returns the pair with the maximum key (as per standard order) in a dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

max(Dictionary,Key,Value)

Mode and number of proofs:

max(+dictionary,-key,-value) - zero_or_one

delete_min/4

Deletes the pair with the minimum key (as per standard order) from a dictionary, returning the deleted pair and the updated dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

delete_min(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete_min(+dictionary,-key,-value,-dictionary) - zero_or_one

delete_max/4

Deletes the pair with the maximum key (as per standard order) from a dictionary, returning the deleted pair and the updated dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

delete_max(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete_max(+dictionary,-key,-value,-dictionary) - zero_or_one

keys/2

Returns a list with all the dictionary keys in ascending order (as per standard order).

Compilation flags:

static

Template:

keys(Dictionary,Keys)

Mode and number of proofs:

keys(@dictionary,-list) - one

values/2

Returns a list with all the dictionary values in ascending order of the keys (as per standard order).

Compilation flags:

static

Template:

values(Dictionary,Values)

Mode and number of proofs:

values(@dictionary,-list) - one

map/2

Maps a closure over each dictionary key-value pair. Fails if the mapped closure attempts to modify the keys.

Compilation flags:

static

Template:

map(Closure,Dictionary)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(@callable,+dictionary) - zero_or_more

map/3

Maps a closure over each dictionary key-value pair, returning the new dictionary. Fails if the mapped closure attempts to modify the keys.

Compilation flags:

static

Template:

map(Closure,OldDictionary,NewDictionary)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(@callable,+dictionary,-dictionary) - zero_or_more

apply/4

Applies a closure to a specific key-value pair, returning the new dictionary. Fails if the key cannot be found or if the mapped closure attempts to modify the key.

Compilation flags:

static

Template:

apply(Closure,OldDictionary,Key,NewDictionary)

Meta-predicate template:

apply(2,*,*,*)

Mode and number of proofs:

apply(+callable,+dictionary,+key,-dictionary) - zero_or_one

size/2

Number of dictionary entries.

Compilation flags:

static

Template:

size(Dictionary,Size)

Mode and number of proofs:

size(@dictionary,?integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

avltree, bintree, rbtree

 object

rbtree

Red-Black tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: Vitor Santos Costa; Logtalk port and additional predicates by Paulo Moura.

Version: 1:9:0

Date: 2021-04-12

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	partial_map/4

	Protected predicates

	Private predicates

	Operators

Public predicates

partial_map/4

Applies a closure to the tree pairs identified by a set of keys.

Compilation flags:

static

Template:

partial_map(Tree,Keys,Closure,NewTree)

Meta-predicate template:

partial_map(*,*,2,*)

Mode and number of proofs:

partial_map(+tree,+list,@closure,-tree) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

avltree, bintree

 object

dif

Provides dif/2 and derived predicates.

Availability:

logtalk_load(dif(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2023-10-02

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: B-Prolog, ECLiPSe, SICStus Prolog, SWI-Prolog, Trealla Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	dif/2

	dif/1

	Protected predicates

	Private predicates

	Operators

Public predicates

dif/2

Sets a constraint that is true iff the two terms are different.

Compilation flags:

static

Template:

dif(Term1,Term2)

Mode and number of proofs:

dif(+term,+term) - zero_or_one

dif/1

Sets a set of constraints that are true iff all terms in a list are different.

Compilation flags:

static

Template:

dif(Terms)

Mode and number of proofs:

dif(+list(term)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

edcg

Multiple hidden parameters: an extension to Prolog’s DCG notation. Ported to Logtalk as a hook object.

Availability:

logtalk_load(edcg(loader))

Author: Peter Van Roy; adapted to Logtalk by Paulo Moura.

Version: 1:4:2

Date: 2020-04-08

Copyright: Copyright (C) 1992 Peter Van Roy

License: MIT

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

	Usage: Compile source files with objects (or categories) defining EDCGs using the compiler option hook(edcg).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	pred_info/3

	acc_info/7

	acc_info/5

	pass_info/2

	pass_info/1

	Operators

	op(1200,xfx,-->>)

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

pred_info/3

Declares predicates that have the listed hidden parameters.

Compilation flags:

dynamic

Template:

pred_info(Name,Arity,HiddenParameters)

Mode and number of proofs:

pred_info(?atom,?integer,?list(atom)) - zero_or_more

acc_info/7

Long form for declaring accumulators.

Compilation flags:

dynamic

Template:

acc_info(Accumulator,Term,Left,Right,Joiner,LStart,RStart)

Mode and number of proofs:

acc_info(?atom,?term,?term,?term,?callable,?term,?term) - zero_or_more

acc_info/5

Short form for declaring accumulators.

Compilation flags:

dynamic

Template:

acc_info(Accumulator,Term,Left,Right,Joiner)

Mode and number of proofs:

acc_info(?atom,?term,?term,?term,?callable) - zero_or_more

pass_info/2

Long form for declaring passed arguments. Passed arguments are conceptually the same as accumulators with =/2 as the joiner function.

Compilation flags:

dynamic

Template:

pass_info(Argument,PStart)

Mode and number of proofs:

pass_info(?atom,?term) - zero_or_more

pass_info/1

Short form for declaring passed arguments. Passed arguments are conceptually the same as accumulators with =/2 as the joiner function.

Compilation flags:

dynamic

Template:

pass_info(Argument)

Mode and number of proofs:

pass_info(?atom) - zero_or_more

Operators

op(1200,xfx,-->>)

Scope:

public

 object

after_event_registry

After events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

before_event_registry, monitorp

 object

before_event_registry

Before events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

after_event_registry, monitorp

 object

event_registry

Before and after events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

event_registryp

Event registry protocol.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	monitors/1

	monitor/1

	monitored/1

	monitor/4

	set_monitor/4

	del_monitors/4

	del_monitors/0

	Protected predicates

	Private predicates

	Operators

Public predicates

monitors/1

Returns a list of all current monitors.

Compilation flags:

static

Template:

monitors(Monitors)

Mode and number of proofs:

monitors(-list(object_identifier)) - one

monitor/1

Monitor is an object playing the role of a monitor.

Compilation flags:

static

Template:

monitor(Monitor)

Mode and number of proofs:

monitor(-object_identifier) - zero_or_more

monitor(+object_identifier) - zero_or_one

monitored/1

Returns a list of all currently monitored objects.

Compilation flags:

static

Template:

monitored(Objects)

Mode and number of proofs:

monitored(-list(object_identifier)) - one

monitor/4

True if the arguments describe a currently defined monitored event.

Compilation flags:

static

Template:

monitor(Object,Message,Sender,Monitor)

Mode and number of proofs:

monitor(?object_identifier,?nonvar,?object_identifier,?object_identifier) - zero_or_more

set_monitor/4

Sets a monitor for the set of matching events.

Compilation flags:

static

Template:

set_monitor(Object,Message,Sender,Monitor)

Mode and number of proofs:

set_monitor(?object_identifier,?nonvar,?object_identifier,+object_identifier) - zero_or_one

del_monitors/4

Deletes all matching monitored events.

Compilation flags:

static

Template:

del_monitors(Object,Message,Sender,Monitor)

Mode and number of proofs:

del_monitors(?object_identifier,?nonvar,?object_identifier,?object_identifier) - one

del_monitors/0

Deletes all monitored events.

Compilation flags:

static

Mode and number of proofs:

del_monitors - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

event_registry, monitorp

 category

monitor

Monitor predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2019-03-08

Compilation flags:

static, events

Implements:

public monitorp

Remarks:

(none)

Inherited public predicates:

 activate_monitor/0 del_spy_points/4 monitor_activated/0 reset_monitor/0 set_spy_point/4 spy_point/4 suspend_monitor/0

	Public predicates

	Protected predicates

	Private predicates

	spy_point_/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

spy_point_/4

Stores current spy points.

Compilation flags:

dynamic

Template:

spy_point_(Event,Object,Message,Sender)

Mode and number of proofs:

spy_point_(?event,?object,?callable,?object) - zero_or_more

Operators

(none)

 protocol

monitorp

Monitor protocol.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	monitor_activated/0

	activate_monitor/0

	suspend_monitor/0

	reset_monitor/0

	spy_point/4

	set_spy_point/4

	del_spy_points/4

	Protected predicates

	Private predicates

	Operators

Public predicates

monitor_activated/0

True if monitor is currently active.

Compilation flags:

static

Mode and number of proofs:

monitor_activated - zero_or_one

activate_monitor/0

Activates all spy points and start monitoring.

Compilation flags:

static

Mode and number of proofs:

activate_monitor - one

suspend_monitor/0

Suspends monitoring, deactivating all spy points.

Compilation flags:

static

Mode and number of proofs:

suspend_monitor - one

reset_monitor/0

Resets monitor, deactivating and deleting all spy points.

Compilation flags:

static

Mode and number of proofs:

reset_monitor - one

spy_point/4

Current spy point.

Compilation flags:

static

Template:

spy_point(Event,Object,Message,Sender)

Mode and number of proofs:

spy_point(?event,?object,?callable,?object) - zero_or_more

set_spy_point/4

Sets a spy point.

Compilation flags:

static

Template:

set_spy_point(Event,Object,Message,Sender)

Mode and number of proofs:

set_spy_point(?event,?object,?callable,?object) - one

del_spy_points/4

Deletes all matching spy points.

Compilation flags:

static

Template:

del_spy_points(Event,Object,Message,Sender)

Mode and number of proofs:

del_spy_points(@event,@object,@callable,@object) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

monitor, event_registryp

 object

expand_library_alias_paths

Hook object for expanding library alias paths in logtalk_library_path/2 facts when compiling a source file.

Availability:

logtalk_load(expand_library_alias_paths(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2018-04-12

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

logtalk

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

either

Types and predicates for extended type-checking and handling of expected terms.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 0:7:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

arbitrary::arbitrary/1

arbitrary::arbitrary/2

Uses:

expected

expected(Expected)

random

type

Remarks:

	Type-checking support: Defines a either(ValueType, ErrorType) type for checking expected terms where the value and error terms must be of the given types.

	QuickCheck support: Defines clauses for the type::arbitrary/1-2 predicates to allow generating random values for the either(ValueType, ErrorType) type.

Inherited public predicates:

(none)

	Public predicates

	expecteds/2

	unexpecteds/2

	partition/3

	Protected predicates

	Private predicates

	Operators

Public predicates

expecteds/2

Returns the values stored in the expected terms that hold a value.

Compilation flags:

static

Template:

expecteds(Expecteds,Values)

Mode and number of proofs:

expecteds(+list(expected),-list) - one

unexpecteds/2

Returns the errors stored in the expected terms that hold an error.

Compilation flags:

static

Template:

unexpecteds(Expecteds,Errors)

Mode and number of proofs:

unexpecteds(+list(expected),-list) - one

partition/3

Retrieves and partitions the values and errors hold by the expected terms.

Compilation flags:

static

Template:

partition(Expecteds,Values,Errors)

Mode and number of proofs:

partition(+list(expected),-list,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

expected, expected(Expected), type, arbitrary

 object

expected

Constructors for expected terms. An expected term contains either a value or an error. Expected terms should be regarded as opaque terms and always used with the expected/1 object by passing the expected term as a parameter.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

Remarks:

	Type-checking support: This object also defines a type expected for use with the type library object.

Inherited public predicates:

(none)

	Public predicates

	of_unexpected/2

	of_expected/2

	from_goal/4

	from_goal/3

	from_goal/2

	from_generator/4

	from_generator/3

	from_generator/2

	Protected predicates

	Private predicates

	Operators

Public predicates

of_unexpected/2

Constructs an expected term from an error that represent that the expected value is missing.

Compilation flags:

static

Template:

of_unexpected(Error,Expected)

Mode and number of proofs:

of_unexpected(@term,--nonvar) - one

of_expected/2

Constructs an expected term from an expected value.

Compilation flags:

static

Template:

of_expected(Value,Expected)

Mode and number of proofs:

of_expected(@term,--nonvar) - one

from_goal/4

Constructs an expected term holding a value bound by calling the given goal. Otherwise returns an expected term with the unexpected goal error or failure represented by the Error argument.

Compilation flags:

static

Template:

from_goal(Goal,Value,Error,Expected)

Meta-predicate template:

from_goal(0,*,*,*)

Mode and number of proofs:

from_goal(+callable,--term,@term,--nonvar) - one

from_goal/3

Constructs an expected term holding a value bound by calling the given goal. Otherwise returns an expected term with the unexpected goal error or the atom fail representing the unexpected failure.

Compilation flags:

static

Template:

from_goal(Goal,Value,Expected)

Meta-predicate template:

from_goal(0,*,*)

Mode and number of proofs:

from_goal(+callable,--term,--nonvar) - one

from_goal/2

Constructs an expected term holding a value bound by calling the given closure. Otherwise returns an expected term holding the unexpected closure error or the atom fail representing the unexpected failure.

Compilation flags:

static

Template:

from_goal(Closure,Expected)

Meta-predicate template:

from_goal(1,*)

Mode and number of proofs:

from_goal(+callable,--nonvar) - one

from_generator/4

Constructs expected terms with the values generated by calling the given goal. On goal error or failure, returns an expected term with the unexpected goal error or failure represented by the Error argument.

Compilation flags:

static

Template:

from_generator(Goal,Value,Error,Expected)

Meta-predicate template:

from_generator(0,*,*,*)

Mode and number of proofs:

from_generator(+callable,--term,@term,--nonvar) - one_or_more

from_generator/3

Constructs expected terms with the values generated by calling the given goal. On goal error or failure, returns an expected term with, respectively, the unexpected goal error or the atom fail representing the unexpected goal failure.

Compilation flags:

static

Template:

from_generator(Goal,Value,Expected)

Meta-predicate template:

from_generator(0,*,*)

Mode and number of proofs:

from_generator(+callable,--term,--nonvar) - one_or_more

from_generator/2

Constructs expected terms with the values generated by calling the given closure. On closure error or failure, returns an expected term with, respectively, the unexpected closure error or the atom fail representing the unexpected closure failure.

Compilation flags:

static

Template:

from_generator(Closure,Expected)

Meta-predicate template:

from_generator(1,*)

Mode and number of proofs:

from_generator(+callable,--nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

expected(Expected), type

 object

expected(Expected)

Expected term predicates. Requires passing an expected term (constructed using the expected object predicates) as a parameter.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 1:5:0

Date: 2020-01-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_expected/0

	is_unexpected/0

	if_expected/1

	if_unexpected/1

	if_expected_or_else/2

	unexpected/1

	expected/1

	map/2

	flat_map/2

	either/3

	or_else/2

	or_else_get/2

	or_else_call/2

	or_else_throw/1

	or_else_fail/1

	Protected predicates

	Private predicates

	Operators

Public predicates

is_expected/0

True if the expected term holds a value. See also the if_expected/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_expected - zero_or_one

is_unexpected/0

True if the expected term holds an error. See also the if_unexpected/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_unexpected - zero_or_one

if_expected/1

Applies a closure when the expected term holds a value using the value as argument. Succeeds otherwise.

Compilation flags:

static

Template:

if_expected(Closure)

Meta-predicate template:

if_expected(1)

Mode and number of proofs:

if_expected(+callable) - zero_or_more

if_unexpected/1

Applies a closure when the expected term holds an error using the error as argument. Succeeds otherwise. Can be used to throw the exception hold by the expected term by calling it the atom throw.

Compilation flags:

static

Template:

if_unexpected(Closure)

Meta-predicate template:

if_unexpected(1)

Mode and number of proofs:

if_unexpected(+callable) - zero_or_more

if_expected_or_else/2

Applies either ExpectedClosure or UnexpectedClosure depending on the expected term holding a value or an error.

Compilation flags:

static

Template:

if_expected_or_else(ExpectedClosure,UnexpectedClosure)

Meta-predicate template:

if_expected_or_else(1,1)

Mode and number of proofs:

if_expected_or_else(+callable,+callable) - zero_or_more

unexpected/1

Returns the error hold by the expected term. Throws an error otherwise.

Compilation flags:

static

Template:

unexpected(Error)

Mode and number of proofs:

unexpected(--term) - one_or_error

Exceptions:

Expected term holds a value:

existence_error(unexpected_error,Expected)

expected/1

Returns the value hold by the expected term. Throws an error otherwise.

Compilation flags:

static

Template:

expected(Value)

Mode and number of proofs:

expected(--term) - one_or_error

Exceptions:

Expected term holds an error:

existence_error(expected_value,Expected)

map/2

When the expected term does not hold an error and mapping a closure with the expected value and the new value as additional arguments is successful, returns an expected term with the new value. Otherwise returns the same expected term.

Compilation flags:

static

Template:

map(Closure,NewExpected)

Meta-predicate template:

map(2,*)

Mode and number of proofs:

map(+callable,--nonvar) - one

flat_map/2

When the expected term does not hold an error and mapping a closure with the expected value and the new expected term as additional arguments is successful, returns the new expected term. Otherwise returns the same expected term.

Compilation flags:

static

Template:

flat_map(Closure,NewExpected)

Meta-predicate template:

flat_map(2,*)

Mode and number of proofs:

flat_map(+callable,--nonvar) - one

either/3

Applies either ExpectedClosure if the expected term holds a value or UnexpectedClosure if the expected term holds an error. Returns a new expected term if the applied closure is successful. Otherwise returns the same expected term.

Compilation flags:

static

Template:

either(ExpectedClosure,UnexpectedClosure,NewExpected)

Meta-predicate template:

either(2,2,*)

Mode and number of proofs:

either(+callable,+callable,--nonvar) - one

or_else/2

Returns the value hold by the expected term if it does not hold an error or the given default term if the expected term holds an error.

Compilation flags:

static

Template:

or_else(Value,Default)

Mode and number of proofs:

or_else(--term,@term) - one

or_else_get/2

Returns the value hold by the expected term if it does not hold an error. Otherwise applies a closure to compute the expected value. Throws an error when the expected term holds an error and a value cannot be computed.

Compilation flags:

static

Template:

or_else_get(Value,Closure)

Meta-predicate template:

or_else_get(*,1)

Mode and number of proofs:

or_else_get(--term,+callable) - one_or_error

Exceptions:

Expected term holds an unexpected error and an expected value cannot be computed:

existence_error(expected_value,Expected)

or_else_call/2

Returns the value hold by the expected term if it does not hold an error. Calls a goal deterministically otherwise.

Compilation flags:

static

Template:

or_else_call(Value,Goal)

Meta-predicate template:

or_else_call(*,0)

Mode and number of proofs:

or_else_call(--term,+callable) - zero_or_one

or_else_throw/1

Returns the value hold by the expected term if present. Throws the error hold by the expected term as an exception otherwise.

Compilation flags:

static

Template:

or_else_throw(Value)

Mode and number of proofs:

or_else_throw(--term) - one_or_error

or_else_fail/1

Returns the value hold by the expected term if it does not hold an error. Fails otherwise. Usually called to skip over expected terms holding errors.

Compilation flags:

static

Template:

or_else_fail(Value)

Mode and number of proofs:

or_else_fail(--term) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

expected

 object

format

Formatted output predicates.

Availability:

logtalk_load(format(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2023-10-02

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	format/3

	format/2

	Protected predicates

	Private predicates

	Operators

Public predicates

format/3

Writes a list of arguments after a format specification to the specified output stream.

Compilation flags:

static

Template:

format(Stream,Format,Arguments)

Mode and number of proofs:

format(@stream_or_alias,+atom,@list) - zero_or_one

format(@stream_or_alias,+list(character_code),@list) - zero_or_one

format(@stream_or_alias,+list(character),@list) - zero_or_one

format/2

Writes a list of arguments after a format specification to the current output stream.

Compilation flags:

static

Template:

format(Format,Arguments)

Mode and number of proofs:

format(+atom,@list) - zero_or_one

format(+list(character_code),@list) - zero_or_one

format(+list(character),@list) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

genint

Global object for generating increasing non-negative integers for named counters. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(genint(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-21

Compilation flags:

static, context_switching_calls

Imports:

public genint_core

Remarks:

(none)

Inherited public predicates:

 genint/2 reset_genint/0 reset_genint/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

genint_core

Predicates for generating increasing non-negative integers. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(genint(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	reset_genint/0

	reset_genint/1

	genint/2

	Protected predicates

	Private predicates

	counter_/2

	Operators

Public predicates

reset_genint/0

Resets all counters.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_genint - one

reset_genint/1

Resets the given counter.

Compilation flags:

static, synchronized

Template:

reset_genint(Counter)

Mode and number of proofs:

reset_genint(+atom) - one

genint/2

Returns the next integer for a given counter.

Compilation flags:

static, synchronized

Template:

genint(Counter,Integer)

Mode and number of proofs:

genint(+atom,-non_negative_integer) - one

Protected predicates

(none)

Private predicates

counter_/2

Table of current state of counters.

Compilation flags:

dynamic

Template:

counter_(Counter,Latest)

Mode and number of proofs:

counter_(?atom,?non_negative_integer) - zero_or_more

Operators

(none)

 object

gensym

Global object for generating unique atoms. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(gensym(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2022-07-21

Compilation flags:

static, context_switching_calls

Imports:

public gensym_core

Remarks:

(none)

Inherited public predicates:

 gensym/2 reset_gensym/0 reset_gensym/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

gensym_core

Predicates for generating unique atoms. Protocol based on the gensym module of SWI-Prolog. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(gensym(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2022-07-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	reset_gensym/0

	reset_gensym/1

	gensym/2

	Protected predicates

	Private predicates

	base_/2

	Operators

Public predicates

reset_gensym/0

Resets the generator counter for all bases.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_gensym - one

reset_gensym/1

Resets the generator counter for a given base.

Compilation flags:

static, synchronized

Template:

reset_gensym(Base)

Mode and number of proofs:

reset_gensym(+atom) - one

gensym/2

Returns a new unique atom with a given base (prefix).

Compilation flags:

static, synchronized

Template:

gensym(Base,Unique)

Mode and number of proofs:

gensym(+atom,-atom) - one

Protected predicates

(none)

Private predicates

base_/2

Table of generator bases and respective counters.

Compilation flags:

dynamic

Template:

base_(Base,Counter)

Mode and number of proofs:

base_(?atom,?integer) - zero_or_more

Operators

(none)

 object

git

Predicates for accessing a git project current branch and latest commit data.

Availability:

logtalk_load(git(loader))

Author: Paulo Moura

Version: 2:1:2

Date: 2024-03-11

Compilation flags:

static, context_switching_calls

Implements:

public git_protocol

Uses:

os

user

Remarks:

(none)

Inherited public predicates:

 branch/2 commit_author/2 commit_date/2 commit_hash/2 commit_hash_abbreviated/2 commit_log/3 commit_message/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

git_protocol

Predicates for accessing a git project current branch and latest commit data.

Availability:

logtalk_load(git(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2022-01-21

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	branch/2

	commit_author/2

	commit_date/2

	commit_hash/2

	commit_hash_abbreviated/2

	commit_message/2

	commit_log/3

	Protected predicates

	Private predicates

	Operators

Public predicates

branch/2

Returns the name of the current git branch. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

branch(Directory,Branch)

Mode and number of proofs:

branch(+atom,?atom) - zero_or_one

commit_author/2

Returns the latest commit author. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_author(Directory,Author)

Mode and number of proofs:

commit_author(+atom,-atom) - zero_or_one

commit_date/2

Returns the latest commit date (strict ISO 8601 format). Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_date(Directory,Date)

Mode and number of proofs:

commit_date(+atom,-atom) - zero_or_one

commit_hash/2

Returns the latest commit hash. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_hash(Directory,Hash)

Mode and number of proofs:

commit_hash(+atom,-atom) - zero_or_one

commit_hash_abbreviated/2

Returns the latest commit abbreviated hash. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_hash_abbreviated(Directory,Hash)

Mode and number of proofs:

commit_hash_abbreviated(+atom,-atom) - zero_or_one

commit_message/2

Returns the latest commit message. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_message(Directory,Message)

Mode and number of proofs:

commit_message(+atom,-atom) - zero_or_one

commit_log/3

Returns the git latest commit log output for the given format (see e.g. https://git-scm.com/docs/pretty-formats). Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_log(Directory,Format,Output)

Mode and number of proofs:

commit_log(+atom,+atom,-atom) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

blank_grammars(Format)

Blank grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:4:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	white_space//0

	white_spaces//0

	space//0

	spaces//0

	tab//0

	tabs//0

	new_line//0

	new_lines//0

	blank//0

	blanks//0

	non_blank//1

	non_blanks//1

	control//0

	controls//0

	Protected predicates

	Private predicates

	Operators

Public predicates

white_space//0

Consumes a single space or tab.

Compilation flags:

static

Mode and number of proofs:

white_space - zero_or_one

white_spaces//0

Consumes zero or more spaces and tabs.

Compilation flags:

static

Mode and number of proofs:

white_spaces - one

space//0

Consumes a single space.

Compilation flags:

static

Mode and number of proofs:

space - zero_or_one

spaces//0

Consumes zero or more spaces.

Compilation flags:

static

Mode and number of proofs:

spaces - one

tab//0

Consumes a single tab.

Compilation flags:

static

Mode and number of proofs:

tab - zero_or_one

tabs//0

Consumes zero or more tabs.

Compilation flags:

static

Mode and number of proofs:

tabs - one

new_line//0

Consumes a single new line.

Compilation flags:

static

Mode and number of proofs:

new_line - zero_or_one

new_lines//0

Consumes zero or more new lines.

Compilation flags:

static

Mode and number of proofs:

new_lines - one

blank//0

Consumes a single space, tab, vertical tab, line feed, or new line.

Compilation flags:

static

Mode and number of proofs:

blank - zero_or_one

blanks//0

Consumes zero or more spaces, tabs, vertical tabs, line feeds, or new lines.

Compilation flags:

static

Mode and number of proofs:

blanks - one

non_blank//1

Returns a single non-blank character or character code.

Compilation flags:

static

Template:

non_blank(NonBlank)

Mode and number of proofs:

non_blank(-atomic) - zero_or_one

non_blanks//1

Returns a (possibly empty) list of non-blank characters or character codes.

Compilation flags:

static

Template:

non_blanks(NonBlanks)

Mode and number of proofs:

non_blanks(-list(atomic)) - one

control//0

Consumes a single control character or character code. Support for the null control character depends on the Prolog backend.

Compilation flags:

static

Mode and number of proofs:

control - zero_or_one

controls//0

Consumes zero or more control characters or character codes. Support for the null control character depends on the Prolog backend.

Compilation flags:

static

Mode and number of proofs:

controls - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

ip_grammars(Format)

IP address grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:2:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Uses:

number_grammars(Format)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	ipv4//1

	ipv6//1

	Protected predicates

	Private predicates

	Operators

Public predicates

ipv4//1

Parses an IPv4 network address in the format XXX.XXX.XXX.XXX where each XXX is an octet (i.e., an integer between 0 and 255).

Compilation flags:

static

Template:

ipv4(Octets)

Mode and number of proofs:

ipv4(?list(integer)) - zero_or_one

ipv6//1

Parses an IPv6 network address in the format XXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XXXX where each X is a hexadecimal digit.

Compilation flags:

static

Template:

ipv6(HexDigits)

Mode and number of proofs:

ipv6(?list(integer)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

number_grammars(Format)

Number grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	bit//1

	bits//1

	digit//1

	digits//1

	hex_digit//1

	hex_digits//1

	natural//1

	integer//1

	float//1

	number//1

	sign//1

	dot//1

	Protected predicates

	Private predicates

	Operators

Public predicates

bit//1

Parses a single bit.

Compilation flags:

static

Template:

bit(Bit)

Mode and number of proofs:

bit(?integer) - zero_or_one

bits//1

Parses a sequence of one or more bits.

Compilation flags:

static

Template:

bits(Bits)

Mode and number of proofs:

bits(?list(integer)) - zero_or_one

digit//1

Parses a single decimal digit.

Compilation flags:

static

Template:

digit(Digit)

Mode and number of proofs:

digit(?atomic) - zero_or_one

digits//1

Parses a sequence of zero of more digits.

Compilation flags:

static

Template:

digits(Digits)

Mode and number of proofs:

digits(?list(atomic)) - one

hex_digit//1

Parses a single hexa-decimal digit.

Compilation flags:

static

Template:

hex_digit(HexDigit)

Mode and number of proofs:

hex_digit(?atomic) - zero_or_one

hex_digits//1

Parses a sequence of zero or more hexa-decimal digits.

Compilation flags:

static

Template:

hex_digits(HexDigits)

Mode and number of proofs:

hex_digits(?list(atomic)) - one

natural//1

Parses a natural number (a non signed integer).

Compilation flags:

static

Template:

natural(Natural)

Mode and number of proofs:

natural(?non_negative_integer) - zero_or_one

integer//1

Parses an integer.

Compilation flags:

static

Template:

integer(Integer)

Mode and number of proofs:

integer(?integer) - zero_or_one

float//1

Parses a float.

Compilation flags:

static

Template:

float(Float)

Mode and number of proofs:

float(?float) - zero_or_one

number//1

Parses a number (an integer or a float).

Compilation flags:

static

Template:

number(Number)

Mode and number of proofs:

number(?number) - zero_or_one

sign//1

Parses a number sign (plus or minus).

Compilation flags:

static

Template:

sign(Sign)

Mode and number of proofs:

sign(?atomic) - zero_or_one

dot//1

Parses a decimal dot.

Compilation flags:

static

Template:

dot(Dot)

Mode and number of proofs:

dot(?atomic) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

sequence_grammars

Sequence grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:4:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	zero_or_more//2

	one_or_more//2

	zero_or_more//1

	one_or_more//1

	zero_or_more//0

	one_or_more//0

	without//2

	Protected predicates

	Private predicates

	Operators

Public predicates

zero_or_more//2

Eagerly collect zero or more terminals that satisfy the given closure.

Compilation flags:

static

Template:

zero_or_more(Closure,Terminals)

Meta-predicate template:

zero_or_more(1,*)

Mode and number of proofs:

zero_or_more(+callable,-list(atomic)) - one

one_or_more//2

Eagerly collect one or more terminals that satisfy the given closure.

Compilation flags:

static

Template:

one_or_more(Closure,Terminals)

Meta-predicate template:

one_or_more(1,*)

Mode and number of proofs:

one_or_more(+callable,-list(atomic)) - zero_or_one

zero_or_more//1

Eagerly collect zero or more terminals.

Compilation flags:

static

Template:

zero_or_more(Terminals)

Mode and number of proofs:

zero_or_more(-list(atomic)) - one

one_or_more//1

Eagerly collect one or more terminals.

Compilation flags:

static

Template:

one_or_more(Terminals)

Mode and number of proofs:

one_or_more(-list(atomic)) - zero_or_one

zero_or_more//0

Eagerly parse zero or more terminals.

Compilation flags:

static

Mode and number of proofs:

zero_or_more - one

one_or_more//0

Eagerly parse one or more terminals.

Compilation flags:

static

Mode and number of proofs:

one_or_more - zero_or_one

without//2

Collects input terminals until one of the stop terminals is found. The stop terminals are excluded from the collected terminals.

Compilation flags:

static

Template:

without(StopTerminals,Terminals)

Mode and number of proofs:

without(+list(atomic),-list(atomic)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

heap(Order)

Heap implementation, parameterized by the order to be used to compare keys (< or >).

Availability:

logtalk_load(heaps(loader))

Author: Richard O’Keefe; adapted to Logtalk by Paulo Moura and Victor Lagerkvist.

Version: 1:1:0

Date: 2019-05-18

Compilation flags:

static, context_switching_calls

Implements:

public heapp

Extends:

public compound

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

minheap, maxheap

 protocol

heapp

Heap protocol. Key-value pairs are represented as Key-Value.

Availability:

logtalk_load(heaps(loader))

Author: Richard O’Keefe; adapted to Logtalk by Paulo Moura and Victor Lagerkvist.

Version: 1:0:1

Date: 2010-11-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	insert/4

	insert_all/3

	delete/4

	merge/3

	empty/1

	size/2

	as_list/2

	as_heap/2

	top/3

	top_next/5

	Protected predicates

	Private predicates

	Operators

Public predicates

insert/4

Inserts the new pair into a heap, returning the updated heap.

Compilation flags:

static

Template:

insert(Key,Value,Heap,NewHeap)

Mode and number of proofs:

insert(+key,+value,+heap,-heap) - one

insert_all/3

Inserts a list of pairs into a heap, returning the updated heap.

Compilation flags:

static

Template:

insert_all(List,Heap,NewHeap)

Mode and number of proofs:

insert_all(@list(pairs),+heap,-heap) - one

delete/4

Deletes and returns the top pair in a heap returning the updated heap.

Compilation flags:

static

Template:

delete(Heap,TopKey,TopValue,NewHeap)

Mode and number of proofs:

delete(+heap,?key,?value,-heap) - zero_or_one

merge/3

Merges two heaps.

Compilation flags:

static

Template:

merge(Heap1,Heap2,NewHeap)

Mode and number of proofs:

merge(+heap,+heap,-heap) - one

empty/1

True if the heap is empty.

Compilation flags:

static

Template:

empty(Heap)

Mode and number of proofs:

empty(@heap) - zero_or_one

size/2

Returns the number of heap elements.

Compilation flags:

static

Template:

size(Heap,Size)

Mode and number of proofs:

size(+heap,?integer) - zero_or_one

as_list/2

Returns the current set of pairs in the heap as a list, sorted into ascending order of the keys.

Compilation flags:

static

Template:

as_list(Heap,List)

Mode and number of proofs:

as_list(+heap,-list) - one

as_heap/2

Constructs a heap from a list of pairs.

Compilation flags:

static

Template:

as_heap(List,Heap)

Mode and number of proofs:

as_heap(+list,-heap) - one

top/3

Returns the top pair in the heap. Fails if the heap is empty.

Compilation flags:

static

Template:

top(Heap,TopKey,TopValue)

Mode and number of proofs:

top(+heap,?key,?value) - zero_or_one

top_next/5

Returns the top pair and the next pair in the heap. Fails if the heap does not have at least two elements.

Compilation flags:

static

Template:

top_next(Heap,TopKey,TopValue,NextKey,NextValue)

Mode and number of proofs:

top_next(+heap,?key,?value,?key,?value) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

heap(Order)

 object

maxheap

Max-heap implementation. Uses standard order to compare keys.

Availability:

logtalk_load(heaps(loader))

Author: Paulo Moura.

Version: 1:0:0

Date: 2010-02-19

Compilation flags:

static, context_switching_calls

Extends:

public heap(>)

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

minheap

Min-heap implementation. Uses standard order to compare keys.

Availability:

logtalk_load(heaps(loader))

Author: Paulo Moura.

Version: 1:0:0

Date: 2010-02-19

Compilation flags:

static, context_switching_calls

Extends:

public heap(<)

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

class_hierarchy

Class hierarchy predicates.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Implements:

public class_hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 class/1 classes/1 descendant/1 descendant_class/1 descendant_classes/1 descendant_instance/1 descendant_instances/1 descendants/1 instance/1 instances/1 leaf/1 leaf_class/1 leaf_classes/1 leaf_instance/1 leaf_instances/1 leaves/1 subclass/1 subclasses/1 superclass/1 superclasses/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

class_hierarchyp

Class hierarchy protocol.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Extends:

public hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 leaf/1 leaves/1

	Public predicates

	class/1

	classes/1

	instance/1

	instances/1

	subclass/1

	subclasses/1

	superclass/1

	superclasses/1

	leaf_instance/1

	leaf_instances/1

	leaf_class/1

	leaf_classes/1

	descendant_instance/1

	descendant_instances/1

	descendant_class/1

	descendant_classes/1

	Protected predicates

	Private predicates

	Operators

Public predicates

class/1

Returns, by backtracking, all object classes.

Compilation flags:

static

Template:

class(Class)

Mode and number of proofs:

class(?object) - zero_or_more

classes/1

List of all object classes.

Compilation flags:

static

Template:

classes(Classes)

Mode and number of proofs:

classes(-list) - one

instance/1

Returns, by backtracking, all class instances.

Compilation flags:

static

Template:

instance(Instance)

Mode and number of proofs:

instance(?object) - zero_or_more

instances/1

List of all class instances.

Compilation flags:

static

Template:

instances(Instances)

Mode and number of proofs:

instances(-list) - one

subclass/1

Returns, by backtracking, all class subclasses.

Compilation flags:

static

Template:

subclass(Subclass)

Mode and number of proofs:

subclass(?object) - zero_or_more

subclasses/1

List of all class subclasses.

Compilation flags:

static

Template:

subclasses(Subclasses)

Mode and number of proofs:

subclasses(-list) - one

superclass/1

Returns, by backtracking, all class superclasses.

Compilation flags:

static

Template:

superclass(Superclass)

Mode and number of proofs:

superclass(?object) - zero_or_more

superclasses/1

List of all class superclasses.

Compilation flags:

static

Template:

superclasses(Superclasses)

Mode and number of proofs:

superclasses(-list) - one

leaf_instance/1

Returns, by backtracking, all class leaf instances.

Compilation flags:

static

Template:

leaf_instance(Leaf)

Mode and number of proofs:

leaf_instance(?object) - zero_or_more

leaf_instances/1

List of all class leaf instances.

Compilation flags:

static

Template:

leaf_instances(Leaves)

Mode and number of proofs:

leaf_instances(-list) - one

leaf_class/1

Returns, by backtracking, all class leaf subclasses.

Compilation flags:

static

Template:

leaf_class(Leaf)

Mode and number of proofs:

leaf_class(?object) - zero_or_more

leaf_classes/1

List of all class leaf leaf subclasses.

Compilation flags:

static

Template:

leaf_classes(Leaves)

Mode and number of proofs:

leaf_classes(-list) - one

descendant_instance/1

Returns, by backtracking, all class descendant instances.

Compilation flags:

static

Template:

descendant_instance(Descendant)

Mode and number of proofs:

descendant_instance(?object) - zero_or_more

descendant_instances/1

List of all class descendant instances.

Compilation flags:

static

Template:

descendant_instances(Descendants)

Mode and number of proofs:

descendant_instances(-list) - one

descendant_class/1

Returns, by backtracking, all class descendant subclasses.

Compilation flags:

static

Template:

descendant_class(Descendant)

Mode and number of proofs:

descendant_class(?object) - zero_or_more

descendant_classes/1

List of all class descendant subclasses.

Compilation flags:

static

Template:

descendant_classes(Descendants)

Mode and number of proofs:

descendant_classes(-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

class_hierarchy

 protocol

hierarchyp

Common hierarchy protocol for prototype and class hierarchies.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	ancestor/1

	ancestors/1

	leaf/1

	leaves/1

	descendant/1

	descendants/1

	Protected predicates

	Private predicates

	Operators

Public predicates

ancestor/1

Returns, by backtracking, all object ancestors.

Compilation flags:

static

Template:

ancestor(Ancestor)

Mode and number of proofs:

ancestor(?object) - zero_or_more

ancestors/1

List of all object ancestors.

Compilation flags:

static

Template:

ancestors(Ancestors)

Mode and number of proofs:

ancestors(-list) - one

leaf/1

Returns, by backtracking, all object leaves.

Compilation flags:

static

Template:

leaf(Leaf)

Mode and number of proofs:

leaf(?object) - zero_or_more

leaves/1

List of all object leaves.

Compilation flags:

static

Template:

leaves(Leaves)

Mode and number of proofs:

leaves(-list) - one

descendant/1

Returns, by backtracking, all object descendants.

Compilation flags:

static

Template:

descendant(Descendant)

Mode and number of proofs:

descendant(?object) - zero_or_more

descendants/1

List of all object descendants.

Compilation flags:

static

Template:

descendants(Descendants)

Mode and number of proofs:

descendants(-list) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

proto_hierarchy

Prototype hierarchy predicates.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Implements:

public proto_hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 extension/1 extensions/1 leaf/1 leaves/1 parent/1 parents/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

proto_hierarchyp

Prototype hierarchy protocol.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Extends:

public hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 leaf/1 leaves/1

	Public predicates

	parent/1

	parents/1

	extension/1

	extensions/1

	Protected predicates

	Private predicates

	Operators

Public predicates

parent/1

Returns, by backtracking, all object parents.

Compilation flags:

static

Template:

parent(Parent)

Mode and number of proofs:

parent(?object) - zero_or_more

parents/1

List of all object parents.

Compilation flags:

static

Template:

parents(Parents)

Mode and number of proofs:

parents(-list) - one

extension/1

Returns, by backtracking, all object direct descendants.

Compilation flags:

static

Template:

extension(Extension)

Mode and number of proofs:

extension(?object) - zero_or_more

extensions/1

List of all object direct descendants.

Compilation flags:

static

Template:

extensions(Extensions)

Mode and number of proofs:

extensions(-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

proto_hierarchy

 object

hook_pipeline(Pipeline)

	Pipeline - List of hook objects.

Use a pipeline (represented using a list) of hook objects to expand terms and goals. The expansion results from a hook object are passed to the next hook object in the pipeline.

Availability:

logtalk_load(hook_flows(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-09-27

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files that should be expanded using the pipeline of hook objects using the compiler option hook(hook_pipeline(Pipeline)).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

hook_set(Set)

 object

hook_set(Set)

	Set - Set (list) of hook objects.

Use a set (represented using a list) of hook objects to expand terms and goals. The hook objects are tried in sequence until one of them succeeds in expanding the current term (goal) into a different term (goal).

Availability:

logtalk_load(hook_flows(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-09-27

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files that should be expanded using the set of hook objects using the compiler option hook(hook_set(Set)).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

hook_pipeline(Pipeline)

 object

backend_adapter_hook

This hook object applies the expansion rules defined in the Prolog backend adapter file.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-17

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

default_workflow_hook

Use this object as the default hook object to restore the default expansion pipeline semantics used by the compiler.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2020-03-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

grammar_rules_hook

This hook object expands grammar rules into clauses.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-14

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

identity_hook

Use this object as a file specific hook object to prevent any (other) user-defined expansion rules to be applied when compiling the file.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-15

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook

Use this object to wrap the contents of a plain Prolog file in an object named after the file. The wrapper sets the context_switching_calls flag to allow, enabling calling of the wrapped predicates using the <</2 control construct.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2020-10-30

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook(Protocol), object_wrapper_hook(Name,Relations), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook(Protocol)

Use this object to wrap the contents of a plain Prolog file in an object named after the file that implements the given protocol.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-11-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook, object_wrapper_hook(Name,Relations), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook(Name,Relations)

Use this object to wrap the contents of a plain Prolog file in an object with the given name and object entity relations (a list).

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-02-03

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook, object_wrapper_hook(Protocol), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

print_goal_hook

Use this object to easily print entity predicate goals before, after, or before and after calling them.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-03-14

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Mark a goal to be printed by prefixing it with an operator. Printing uses a comment message.

	To print goal before calling it: - Goal.

	To print goal after calling it: + Goal.

	To print goal before and after calling it: * Goal.

	Operators: This hook object uses the standard - and + prefix operators and also defines a global * prefix operator with the same type and priority.

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), suppress_goal_hook

 object

prolog_module_hook(Module)

This hook object applies the expansion rules defined in a Prolog module (e.g., user).

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-17

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

suppress_goal_hook

Use this object to easily suppress a goal in a clause body.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-05-04

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Mark a goal to be suppressed by prefixing it with the -- operator.

	Operators: This hook object uses the -- prefix operator declared by Logtalk for use in mode/2 directives.

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook

 object

write_to_file_hook(File)

This hook object writes term-expansion results to a file in canonical format. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-06

Compilation flags:

static, context_switching_calls

Extends:

public write_to_file_hook(File,[quoted(true),ignore_ops(true)])

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_file_hook(File,Options), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

write_to_file_hook(File,Options)

This hook object writes term-expansion results to a file using a list of write_term/3 options. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-06

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_file_hook(File), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

write_to_stream_hook(Stream)

This hook object writes term-expansion results to a stream in canonical format. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-16

Compilation flags:

static, context_switching_calls

Extends:

public write_to_stream_hook(Stream,[quoted(true),ignore_ops(true)])

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_file_hook(File,Options), write_to_file_hook(File), print_goal_hook, suppress_goal_hook

 object

write_to_stream_hook(Stream,Options)

This hook object writes term-expansion results to a stream using a list of write_term/3 options. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-16

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream), write_to_file_hook(File,Options), write_to_file_hook(File), print_goal_hook, suppress_goal_hook

 category

html

HTML generation.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 0:3:0

Date: 2021-03-30

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/2

	void_element/1

	normal_element/2

	Protected predicates

	Private predicates

	doctype/1

	Operators

Public predicates

generate/2

Generates HTML content using the representation specified in the first argument (stream(Stream) or file(Path)) for the term in the second argument.

Compilation flags:

static

Template:

generate(Sink,Term)

Mode and number of proofs:

generate(+compound,++term) - one_or_error

void_element/1

Enumerates, by backtracking, all void elements.

Compilation flags:

static

Template:

void_element(Element)

Mode and number of proofs:

void_element(?atom) - zero_or_more

normal_element/2

Enumerates, by backtracking, all normal elements. The value of the Display argument is either inline or block.

Compilation flags:

static

Template:

normal_element(Element,Display)

Mode and number of proofs:

normal_element(?atom,?atom) - zero_or_more

Protected predicates

(none)

Private predicates

doctype/1

Doctype text.

Compilation flags:

static

Template:

doctype(DocType)

Mode and number of proofs:

doctype(?atom) - one

Operators

(none)

 object

html5

HTML content generation using the HTML 5 doctype.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 1:0:0

Date: 2021-03-29

Compilation flags:

static, context_switching_calls

Imports:

public html

Remarks:

(none)

Inherited public predicates:

 generate/2 normal_element/2 void_element/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

xhtml11

XHTML content generation using the XHTML 1.1 doctype.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 1:0:0

Date: 2021-03-29

Compilation flags:

static, context_switching_calls

Imports:

public html

Remarks:

(none)

Inherited public predicates:

 generate/2 normal_element/2 void_element/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

ids

Generator of random identifiers represented as atoms with 160 bits (20 bytes) of randomness.

Availability:

logtalk_load(ids(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2025-06-03

Compilation flags:

static, context_switching_calls

Extends:

public ids(atom,20)

Remarks:

(none)

Inherited public predicates:

 generate/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ids(Representation,Bytes), uuid, ulid

 object

ids(Representation,Bytes)

	Representation - Text representation for the identifier. Possible values are atom, chars, and codes.

	Bytes - Number of bytes of randomness.

Generator of random identifiers.

Availability:

logtalk_load(ids(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Uses:

base64

fast_random

list

os

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/1

	Protected predicates

	Private predicates

	Operators

Public predicates

generate/1

Generate a random identifier.

Compilation flags:

static

Template:

generate(Identifier)

Mode and number of proofs:

generate(--textids) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ids, uuid, ulid

 object

interval

Basic temporal interval relations. An interval is represented by a compound term, i/2, with two ground arguments, the start and end points.

Availability:

logtalk_load(intervals(loader))

Author: Paulo Moura

Version: 1:2:1

Date: 2022-01-15

Compilation flags:

static, context_switching_calls

Implements:

public intervalp

Aliases:

intervalp before/2 as b/2

intervalp after/2 as bi/2

intervalp meets/2 as m/2

intervalp met_by/2 as mi/2

intervalp overlaps/2 as o/2

intervalp overlapped_by/2 as oi/2

intervalp starts/2 as s/2

intervalp started_by/2 as si/2

intervalp during/2 as d/2

intervalp contains/2 as di/2

intervalp finishes/2 as f/2

intervalp finished_by/2 as fi/2

intervalp equal/2 as eq/2

Remarks:

(none)

Inherited public predicates:

 after/2 before/2 contains/2 during/2 equal/2 finished_by/2 finishes/2 meets/2 met_by/2 new/3 overlapped_by/2 overlaps/2 started_by/2 starts/2 valid/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

intervalp

Basic temporal interval relations protocol (based on James F. Allen Interval Algebra work).

Availability:

logtalk_load(intervals(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2014-04-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/3

	valid/1

	before/2

	after/2

	meets/2

	met_by/2

	overlaps/2

	overlapped_by/2

	starts/2

	started_by/2

	during/2

	contains/2

	finishes/2

	finished_by/2

	equal/2

	Protected predicates

	Private predicates

	Operators

Public predicates

new/3

Constructs a new interval given start and end points. The start point must strictly precede the end point.

Compilation flags:

static

Template:

new(Start,End,Interval)

Mode and number of proofs:

new(@ground,@ground,-interval) - zero_or_one

valid/1

True if Interval is a valid interval.

Compilation flags:

static

Template:

valid(Interval)

Mode and number of proofs:

valid(@interval) - zero_or_one

before/2

True if Interval1 takes place before Interval2.

Compilation flags:

static

Template:

before(Interval1,Interval2)

Mode and number of proofs:

before(@interval,@interval) - zero_or_one

after/2

True if Interval1 takes place after Interval2.

Compilation flags:

static

Template:

after(Interval1,Interval2)

Mode and number of proofs:

after(@interval,@interval) - zero_or_one

meets/2

True if Interval1 meets Interval2.

Compilation flags:

static

Template:

meets(Interval1,Interval2)

Mode and number of proofs:

meets(@interval,@interval) - zero_or_one

met_by/2

True if Interval1 is met by Interval2.

Compilation flags:

static

Template:

met_by(Interval1,Interval2)

Mode and number of proofs:

met_by(@interval,@interval) - zero_or_one

overlaps/2

True if Interval1 overlaps with Interval2.

Compilation flags:

static

Template:

overlaps(Interval1,Interval2)

Mode and number of proofs:

overlaps(@interval,@interval) - zero_or_one

overlapped_by/2

True if Interval1 is overlapped by Interval2.

Compilation flags:

static

Template:

overlapped_by(Interval1,Interval2)

Mode and number of proofs:

overlapped_by(@interval,@interval) - zero_or_one

starts/2

True if Interval1 starts Interval2.

Compilation flags:

static

Template:

starts(Interval1,Interval2)

Mode and number of proofs:

starts(@interval,@interval) - zero_or_one

started_by/2

True if Interval1 is started by Interval2.

Compilation flags:

static

Template:

started_by(Interval1,Interval2)

Mode and number of proofs:

started_by(@interval,@interval) - zero_or_one

during/2

True if Interval1 occurs during Interval2.

Compilation flags:

static

Template:

during(Interval1,Interval2)

Mode and number of proofs:

during(@interval,@interval) - zero_or_one

contains/2

True if Interval1 contains Interval2.

Compilation flags:

static

Template:

contains(Interval1,Interval2)

Mode and number of proofs:

contains(@interval,@interval) - zero_or_one

finishes/2

True if Interval1 finishes Interval2.

Compilation flags:

static

Template:

finishes(Interval1,Interval2)

Mode and number of proofs:

finishes(@interval,@interval) - zero_or_one

finished_by/2

True if Interval1 is finished by Interval2.

Compilation flags:

static

Template:

finished_by(Interval1,Interval2)

Mode and number of proofs:

finished_by(@interval,@interval) - zero_or_one

equal/2

True if Interval1 is equal to Interval2.

Compilation flags:

static

Template:

equal(Interval1,Interval2)

Mode and number of proofs:

equal(@interval,@interval) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

interval

 object

java

Abstract interface to JPL API utility predicates.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:8:0

Date: 2023-03-15

Compilation flags:

static, context_switching_calls

Implements:

public java_utils_protocol

Uses:

user

Remarks:

(none)

Inherited public predicates:

 array_list/2 array_to_list/2 array_to_terms/2 array_to_terms/3 decode_exception/2 decode_exception/3 false/1 is_false/1 is_null/1 is_object/1 is_true/1 is_void/1 iterator_element/2 list_to_array/2 map_element/2 null/1 set_element/2 terms_to_array/2 true/1 value_reference/2 void/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java(Reference), java_hook

 object

java(Reference)

	Reference - Either a class name or a Java reference to an object.

Minimal abstraction of the JPL API for calling Java from Logtalk using familiar message-sending syntax and a forward/1 handler to resolve methods.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:0:1

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public java(Reference,_)

Remarks:

	Usage: Send to this object any valid message as listed in the JavaDocs for the given reference.

Inherited public predicates:

 forward/1 get_field/2 invoke/1 invoke/2 new/1 new/2 set_field/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java, java_hook

 object

java(Reference,ReturnValue)

	Reference - Either a class name or a Java reference to an object.

	ReturnValue - Value returned by a method call (possibly the Java value void).

Minimal abstraction of the JPL API for calling Java from Logtalk using familiar message-sending syntax and a forward/1 handler to resolve methods.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:4:0

Date: 2023-03-13

Compilation flags:

static, context_switching_calls

Implements:

public forwarding

public java_access_protocol

Remarks:

	Usage: Send to this object any valid message as listed in the JavaDocs for the given reference.

Inherited public predicates:

 forward/1 get_field/2 invoke/1 invoke/2 new/1 new/2 set_field/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference), java, java_hook

 protocol

java_access_protocol

Protocol for a minimal abstraction for calling Java from Logtalk using familiar message-sending syntax.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:2:1

Date: 2023-03-16

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	get_field/2

	set_field/2

	new/2

	new/1

	invoke/1

	invoke/2

	Protected predicates

	Private predicates

	Operators

Public predicates

get_field/2

Gets the value of a class or object field.

Compilation flags:

static

Template:

get_field(Field,Value)

Mode and number of proofs:

get_field(+atom,?nonvar) - zero_or_one

set_field/2

Sets the value of a class or object field.

Compilation flags:

static

Template:

set_field(Field,Value)

Mode and number of proofs:

set_field(+atom,+nonvar) - one

new/2

Creates a new instance using the specified parameter values.

Compilation flags:

static

Template:

new(Parameters,Instance)

Mode and number of proofs:

new(+list(nonvar),-reference) - one

new/1

Creates a new instance using default parameter values.

Compilation flags:

static

Template:

new(Instance)

Mode and number of proofs:

new(-reference) - one

invoke/1

Invokes a method. This is a more efficient compared with relying on the forward/1 handler to resolve methods.

Compilation flags:

static

Template:

invoke(Method)

Mode and number of proofs:

invoke(@nonvar) - one

invoke/2

Invokes a method. This is a more efficient compared with relying on the forward/1 handler to resolve methods.

Compilation flags:

static

Template:

invoke(Functor,Arguments)

Mode and number of proofs:

invoke(@nonvar,@list) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

java_hook

Hook object to optimize messages to the java/1-2 objects that otherwise would trigger the forward/1 handler.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files with messages to the java/1-2 objects using the compiler option hook(java_hook).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java(Reference)

 protocol

java_utils_protocol

Abstract interface to Java utility predicates.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:6:0

Date: 2023-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	value_reference/2

	true/1

	false/1

	void/1

	null/1

	is_true/1

	is_false/1

	is_void/1

	is_null/1

	is_object/1

	terms_to_array/2

	array_to_terms/3

	array_to_terms/2

	array_to_list/2

	list_to_array/2

	array_list/2

	iterator_element/2

	map_element/2

	set_element/2

	decode_exception/2

	decode_exception/3

	Protected predicates

	Private predicates

	Operators

Public predicates

value_reference/2

Returns an opaque term that represents the Java value with the given name.

Compilation flags:

static

Template:

value_reference(Value,Reference)

Mode and number of proofs:

value_reference(?atom,--ground) - one_or_more

true/1

Returns an opaque term that represents the Java value true.

Compilation flags:

static

Template:

true(Reference)

Mode and number of proofs:

true(--ground) - one

false/1

Returns an opaque term that represents the Java value false.

Compilation flags:

static

Template:

false(Reference)

Mode and number of proofs:

false(--ground) - one

void/1

Returns an opaque term that represents the Java value void.

Compilation flags:

static

Template:

void(Reference)

Mode and number of proofs:

void(--ground) - one

null/1

Returns an opaque term that represents the Java value null.

Compilation flags:

static

Template:

null(Reference)

Mode and number of proofs:

null(--ground) - one

is_true/1

True when the argument is the Java value true. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_true(Reference)

Mode and number of proofs:

is_true(@term) - zero_or_one

is_false/1

True when the argument is the Java value false. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_false(Reference)

Mode and number of proofs:

is_false(@term) - zero_or_one

is_void/1

True when the argument is the Java value void. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_void(Reference)

Mode and number of proofs:

is_void(@term) - zero_or_one

is_null/1

True when the argument is the Java value null. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_null(Reference)

Mode and number of proofs:

is_null(@term) - zero_or_one

is_object/1

True when the argument is a reference to a Java object. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_object(Reference)

Mode and number of proofs:

is_object(@term) - zero_or_one

terms_to_array/2

Converts a list of ground Prolog terms to an array (a Java reference).

Compilation flags:

static

Template:

terms_to_array(Terms,Array)

Mode and number of proofs:

terms_to_array(++list(ground),-array) - one

array_to_terms/3

Converts an array (a Java reference) to a list of ground Prolog terms returning also its length. The array elements must be atoms, integers, floats, or compound terms. Fails otherwise.

Compilation flags:

static

Template:

array_to_terms(Array,Terms,Length)

Mode and number of proofs:

array_to_terms(+array,-list(ground),-integer) - one

array_to_terms/2

Converts an array (a Java reference) to a list of ground Prolog terms. The array elements must be atoms, integers, floats, or ground compound terms. Fails otherwise.

Compilation flags:

static

Template:

array_to_terms(Array,Terms)

Mode and number of proofs:

array_to_terms(+array,-list(term)) - one

array_to_list/2

Converts an array (a Java reference) to a list of Java references or their values.

Compilation flags:

static

Template:

array_to_list(Array,List)

Mode and number of proofs:

array_to_list(+array,-list) - one

list_to_array/2

Converts a list of Java references or values to an array (a Java reference).

Compilation flags:

static

Template:

list_to_array(List,Array)

Mode and number of proofs:

list_to_array(+list,-array) - one

array_list/2

Converts between an array (a Java reference) and a list of Java references or their values. Deprecated. Use the array_to_list/2 and list_to_array/2 predicates instead.

Compilation flags:

static

Template:

array_list(Array,List)

Mode and number of proofs:

array_list(+array,-list) - one

array_list(-array,+list) - one

iterator_element/2

Enumerates, by backtracking, all iterator elements.

Compilation flags:

static

Template:

iterator_element(Iterator,Element)

Mode and number of proofs:

iterator_element(+iterator,-element) - zero_or_more

map_element/2

Enumerates, by backtracking, all map elements.

Compilation flags:

static

Template:

map_element(Map,Element)

Mode and number of proofs:

map_element(+iterator,-element) - zero_or_more

set_element/2

Enumerates, by backtracking, all set elements.

Compilation flags:

static

Template:

set_element(Set,Element)

Mode and number of proofs:

set_element(+iterator,-element) - zero_or_more

decode_exception/2

Decodes an exception into its corresponding cause. Fails if the exception is not a Java exception.

Compilation flags:

static

Template:

decode_exception(Exception,Cause)

Mode and number of proofs:

decode_exception(+callable,-atom) - zero_or_one

decode_exception/3

Decodes an exception into its corresponding cause and a stack trace. Fails if the exception is not a Java exception.

Compilation flags:

static

Template:

decode_exception(Exception,Cause,StackTrace)

Mode and number of proofs:

decode_exception(+callable,-atom,-list(atom)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

json

JSON parser and generator. Uses curly terms for parsed JSON objects, dashes for parsed JSON pairs, and atoms for parsed JSON strings.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 1:1:0

Date: 2022-11-14

Compilation flags:

static, context_switching_calls

Extends:

public json(curly,dash,atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON parser and generator. Uses curly terms for parsed JSON objects and dashes for parsed JSON pairs.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-11-14

Compilation flags:

static, context_switching_calls

Extends:

public json(curly,dash,StringRepresentation)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	ObjectRepresentation - Object representation to be used when decoding JSON objects. Possible values are curly (default) and list.

	PairRepresentation - Pair representation to be used when decoding JSON objects. Possible values are dash (default), equal, and colon.

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON parser and generator.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 0:13:0

Date: 2024-07-16

Compilation flags:

static, context_switching_calls

Implements:

public json_protocol

Uses:

reader

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

json_protocol

JSON parser and generator protocol.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 0:11:0

Date: 2022-11-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the JSON contents read from the given source (codes(List), stream(Stream), line(Stream), file(Path), chars(List), or atom(Atom)) into a term. Fails if the JSON contents cannot be parsed.

Compilation flags:

static

Template:

parse(Source,Term)

Mode and number of proofs:

parse(++compound,--term) - one_or_error

generate/2

Generates the content using the representation specified in the first argument (codes(List), stream(Stream), file(Path), chars(List), or atom(Atom)) for the term in the second argument. Fails if this term cannot be processed.

Compilation flags:

static

Template:

generate(Sink,Term)

Mode and number of proofs:

generate(+compound,++term) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

json_lines

JSON Lines parser and generator. Uses curly terms for parsed JSON objects, dashes for parsed JSON pairs, and atoms for parsed JSON strings.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Extends:

public json_lines(curly,dash,atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json_lines(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON Lines parser and generator. Uses curly terms for parsed JSON objects and dashes for parsed JSON pairs.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Extends:

public json_lines(curly,dash,StringRepresentation)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	ObjectRepresentation - Object representation to be used when decoding JSON objects. Possible values are curly (default) and list.

	PairRepresentation - Pair representation to be used when decoding JSON objects. Possible values are dash (default), equal, and colon.

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON Lines parser and generator.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Implements:

public json_lines_protocol

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

json_lines_protocol

JSON Lines parser and generator protocol.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the JSON Lines contents read from the given source (file(Path), stream(Stream), line(Stream), codes(Codes), chars(Chars), or atom(Atom)) into a list of ground terms.

Compilation flags:

static

Template:

parse(Source,Terms)

Mode and number of proofs:

parse(++compound,--list(ground)) - one_or_error

Exceptions:

Source is a variable:

instantiation_error

Source is neither a variable nor a valid source:

domain_error(json_lines_source,Source)

generate/2

Generates the content using the representation specified in the first argument (file(Path), stream(Stream), codes(Codes), chars(Chars), or atom(Atom)) for the list of ground terms in the second argument.

Compilation flags:

static

Template:

generate(Sink,Terms)

Mode and number of proofs:

generate(+compound,++list(ground)) - one_or_error

Exceptions:

Sink is a variable:

instantiation_error

Terms is a variable:

instantiation_error

Terms is neither a variable nor a list:

type_error(list,Terms)

Term is a non-ground element of the list Terms:

instantiation_error

Term is an element of the list Terms but not a valid JSON term:

domain_error(json_term,Term)

Sink cannot be generated:

domain_error(json_lines_sink,Sink)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

listing

Listing predicates.

Availability:

logtalk_load(listing(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2024-01-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	listing/0

	listing/1

	portray_clause/1

	Protected predicates

	Private predicates

	Operators

Public predicates

listing/0

Lists all clauses of all visible dynamic predicates to the current output stream.

Compilation flags:

static

Mode and number of proofs:

listing - one

listing/1

Lists all clauses of a visible dynamic predicate or non-terminal to the current output stream. When the argument is a clause head, lists all matching clauses.

Compilation flags:

static

Template:

listing(Spec)

Mode and number of proofs:

listing(+predicate_indicator) - one_or_error

listing(+non_terminal_indicator) - one_or_error

listing(+callable) - one_or_error

Exceptions:

Spec is not ground:

instantiation_error

Spec is ground but not a valid predicate indicator:

type_error(predicate_indicator,Spec)

Spec is ground but not a valid non-terminal indicator:

type_error(non_terminal_indicator,Spec)

Spec is a predicate indicator but not a visible predicate:

existence_error(predicate,Spec)

Spec is a non-terminal indicator but not a visible non-terminal:

existence_error(non_terminal,Spec)

Spec is a callable term with a Functor/Arity indicator but not a visible predicate:

existence_error(predicate,Functor/Arity)

Spec is a predicate indicator of a visible predicate but not a dynamic predicate:

permission_error(access,predicate,Spec)

Spec is a non-terminal indicator of a visible non-terminal but not a dynamic non-terminal:

permission_error(access,non_terminal,Spec)

Spec is a callable term for a visible predicate with a Functor/Arity indicator but not a dynamic predicate:

permission_error(access,predicate,Functor/Arity)

portray_clause/1

Pretty prints a clause to the current output stream.

Compilation flags:

static

Template:

portray_clause(Clause)

Mode and number of proofs:

portray_clause(+clause) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

logger

Global logger object for logging events to files.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static, context_switching_calls

Implements:

public loggingp

Remarks:

(none)

Inherited public predicates:

 define_log_file/2 disable_logging/1 enable_logging/1 init_log_file/2 log_event/2 log_file/2 logging/1

	Public predicates

	Protected predicates

	Private predicates

	log_file_/2

	logging_to_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

log_file_/2

Table of log files.

Compilation flags:

dynamic

Template:

log_file_(Alias,File)

Mode and number of proofs:

log_file_(?atom,?nonvar) - zero_or_more

logging_to_file_/2

Table of logging file status for log files.

Compilation flags:

dynamic

Template:

logging_to_file_(Alias,Status)

Mode and number of proofs:

logging_to_file_(?atom,?atom) - zero_or_more

Operators

(none)

 category

logging

Logging events to files category.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static

Implements:

public loggingp

Remarks:

(none)

Inherited public predicates:

 define_log_file/2 disable_logging/1 enable_logging/1 init_log_file/2 log_event/2 log_file/2 logging/1

	Public predicates

	Protected predicates

	Private predicates

	log_file_/2

	logging_to_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

log_file_/2

Table of log files.

Compilation flags:

dynamic

Template:

log_file_(Alias,File)

Mode and number of proofs:

log_file_(?atom,?nonvar) - zero_or_more

logging_to_file_/2

Table of logging file status for log files.

Compilation flags:

dynamic

Template:

logging_to_file_(Alias,Status)

Mode and number of proofs:

logging_to_file_(?atom,?atom) - zero_or_more

Operators

(none)

 protocol

loggingp

Logging events to files protocol.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	log_file/2

	define_log_file/2

	init_log_file/2

	log_event/2

	logging/1

	enable_logging/1

	disable_logging/1

	Protected predicates

	Private predicates

	Operators

Public predicates

log_file/2

Access to the table of log files.

Compilation flags:

static

Template:

log_file(Alias,File)

Mode and number of proofs:

log_file(?atom,?atom) - zero_or_more

define_log_file/2

Defines a log file with alias Alias and file name File. If the log file already exists, its contents are kept. Logging is enabled by default.

Compilation flags:

static

Template:

define_log_file(Alias,File)

Mode and number of proofs:

define_log_file(+atom,+atom) - one

init_log_file/2

Initializes a new log file with alias Alias and file name File. If the log file already exists, its contents are erased. Logging is enabled by default.

Compilation flags:

static

Template:

init_log_file(Alias,File)

Mode and number of proofs:

init_log_file(+atom,+atom) - one

log_event/2

Logs an event Event to a log file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

log_event(Alias,Event)

Mode and number of proofs:

log_event(+atom,+nonvar) - zero_or_one

logging/1

True if logging to file with alias Alias is enabled.

Compilation flags:

static

Template:

logging(Alias)

Mode and number of proofs:

logging(+atom) - zero_or_one

enable_logging/1

Enables logging to file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

enable_logging(Alias)

Mode and number of proofs:

enable_logging(+atom) - zero_or_one

disable_logging/1

Disables logging to file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

disable_logging(Alias)

Mode and number of proofs:

disable_logging(+atom) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

logging

 object

loop

Loop control structures predicates.

Availability:

logtalk_load(loops(loader))

Author: Paulo Moura

Version: 1:4:1

Date: 2020-12-20

Compilation flags:

static, context_switching_calls

Implements:

public loopp

Remarks:

(none)

Inherited public predicates:

 dowhile/2 fordownto/3 fordownto/4 fordownto/5 foreach/3 foreach/4 forto/3 forto/4 forto/5 whiledo/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

loopp

Loop control constructs protocol.

Availability:

logtalk_load(loops(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2017-03-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	whiledo/2

	dowhile/2

	foreach/3

	foreach/4

	forto/3

	forto/4

	forto/5

	fordownto/3

	fordownto/4

	fordownto/5

	Protected predicates

	Private predicates

	Operators

Public predicates

whiledo/2

While Condition is true do Action.

Compilation flags:

static

Template:

whiledo(Condition,Action)

Meta-predicate template:

whiledo(0,0)

Mode and number of proofs:

whiledo(+callable,@callable) - zero_or_one

dowhile/2

Do Action while Condition is true.

Compilation flags:

static

Template:

dowhile(Action,Condition)

Meta-predicate template:

dowhile(0,0)

Mode and number of proofs:

dowhile(@callable,+callable) - zero_or_one

foreach/3

For each Element in List call Goal.

Compilation flags:

static

Template:

foreach(Element,List,Goal)

Meta-predicate template:

foreach(*,*,0)

Mode and number of proofs:

foreach(@var,+list(term),@callable) - zero_or_one

foreach/4

For each Element in List at position Index call Goal. Index starts at 1.

Compilation flags:

static

Template:

foreach(Element,Index,List,Goal)

Meta-predicate template:

foreach(*,*,*,0)

Mode and number of proofs:

foreach(@var,@var,+list(term),@callable) - zero_or_one

forto/3

Calls Goal counting up from First to Last. Increment is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

forto(First,Last,Goal)

Meta-predicate template:

forto(*,*,0)

Mode and number of proofs:

forto(+number,+number,@callable) - zero_or_one

forto/4

Calls Goal counting up from First to Last and binding Count to each successive value. Increment is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

forto(Count,First,Last,Goal)

Meta-predicate template:

forto(*,*,*,0)

Mode and number of proofs:

forto(@var,+number,+number,@callable) - zero_or_one

forto/5

Calls Goal counting up from First to Last and binding Count to each successive value. For convenience, First, Last, and Increment can be arithmetic expressions (uses Increment absolute value). Fails iff Goal fails.

Compilation flags:

static

Template:

forto(Count,First,Last,Increment,Goal)

Meta-predicate template:

forto(*,*,*,*,0)

Mode and number of proofs:

forto(@var,+number,+number,+number,@callable) - zero_or_one

fordownto/3

Calls Goal counting down from First to Last. Decrement is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(First,Last,Goal)

Meta-predicate template:

fordownto(*,*,0)

Mode and number of proofs:

fordownto(+number,+number,@callable) - zero_or_one

fordownto/4

Calls Goal counting down from First to Last and binding Count to each successive value. Decrement is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(Count,First,Last,Goal)

Meta-predicate template:

fordownto(*,*,*,0)

Mode and number of proofs:

fordownto(@var,+number,+number,@callable) - zero_or_one

fordownto/5

Calls Goal counting down from First to Last and binding Count to each successive value. For convenience, First, Last, and Decrement can be arithmetic expressions (uses Decrement absolute value). Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(Count,First,Last,Decrement,Goal)

Meta-predicate template:

fordownto(*,*,*,*,0)

Mode and number of proofs:

fordownto(@var,+number,+number,+number,@callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

loop

 object

meta

Some useful meta-predicates.

Availability:

logtalk_load(meta(loader))

Author: Paulo Moura

Version: 5:2:0

Date: 2016-10-06

Compilation flags:

static, context_switching_calls

Implements:

public metap

Aliases:

metap map/2 as succeeds/2

metap map/2 as maplist/2

metap map/3 as maplist/3

metap map/4 as maplist/4

metap map/5 as maplist/5

metap map/6 as maplist/6

metap map/7 as maplist/7

metap map/8 as maplist/8

metap include/3 as filter/3

metap fold_left/4 as foldl/4

metap fold_left_1/3 as foldl1/3

metap fold_right/4 as foldr/4

metap fold_right_1/3 as foldr1/3

metap scan_left/4 as scanl/4

metap scan_left_1/3 as scanl1/3

metap scan_right/4 as scanr/4

metap scan_right_1/3 as scanr1/3

Remarks:

(none)

Inherited public predicates:

 exclude/3 findall_member/4 findall_member/5 fold_left/4 fold_left_1/3 fold_right/4 fold_right_1/3 include/3 map/2 map/3 map/4 map/5 map/6 map/7 map/8 map_reduce/5 partition/4 partition/6 scan_left/4 scan_left_1/3 scan_right/4 scan_right_1/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

meta_compiler

 protocol

metap

Useful meta-predicates protocol.

Availability:

logtalk_load(meta(loader))

Author: Paulo Moura

Version: 6:1:0

Date: 2015-12-23

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	include/3

	exclude/3

	findall_member/4

	findall_member/5

	partition/4

	partition/6

	fold_left/4

	fold_left_1/3

	scan_left/4

	scan_left_1/3

	fold_right/4

	fold_right_1/3

	scan_right/4

	scan_right_1/3

	map/2

	map/3

	map/4

	map/5

	map/6

	map/7

	map/8

	map_reduce/5

	Protected predicates

	Private predicates

	Operators

Public predicates

include/3

Returns a list of all list elements that satisfy a predicate.

Compilation flags:

static

Template:

include(Closure,List,Included)

Meta-predicate template:

include(1,*,*)

Mode and number of proofs:

include(+callable,+list,-list) - one

exclude/3

Returns a list of all list elements that fail to satisfy a predicate.

Compilation flags:

static

Template:

exclude(Closure,List,Excluded)

Meta-predicate template:

exclude(1,*,*)

Mode and number of proofs:

exclude(+callable,+list,-list) - one

findall_member/4

Finds all members of a list that satisfy a given test.

Compilation flags:

static

Template:

findall_member(Member,List,Test,Result)

Meta-predicate template:

findall_member(*,*,0,*)

Mode and number of proofs:

findall_member(@term,+list,@callable,-list) - one

findall_member/5

Finds all members of a list that satisfy a given test appending the given tail to the result.

Compilation flags:

static

Template:

findall_member(Member,List,Test,Result,Tail)

Meta-predicate template:

findall_member(*,*,0,*,*)

Mode and number of proofs:

findall_member(@term,+list,@callable,-list,+list) - one

partition/4

Partition a list of elements in two lists using a predicate.

Compilation flags:

static

Template:

partition(Closure,List,Included,Excluded)

Meta-predicate template:

partition(1,*,*,*)

Mode and number of proofs:

partition(+callable,+list,-list,-list) - one

partition/6

Partitions a list in lists with values less, equal, and greater than a given value using a comparison predicate with the same argument order as compare/3.

Compilation flags:

static

Template:

partition(Closure,List,Value,Less,Equal,Greater)

Meta-predicate template:

partition(3,*,*,*,*,*)

Mode and number of proofs:

partition(+callable,+list,@term,-list,-list,-list) - one

fold_left/4

List folding (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator.

Compilation flags:

static

Template:

fold_left(Closure,Accumulator,List,Result)

Meta-predicate template:

fold_left(3,*,*,*)

Mode and number of proofs:

fold_left(+callable,?term,+list,?term) - zero_or_more

fold_left_1/3

List folding (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator. The initial value of the accumulator is the list first element. Fails for empty lists.

Compilation flags:

static

Template:

fold_left_1(Closure,List,Result)

Meta-predicate template:

fold_left_1(3,*,*)

Mode and number of proofs:

fold_left_1(+callable,+list,?term) - zero_or_more

scan_left/4

List scanning (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator.

Compilation flags:

static

Template:

scan_left(Closure,Accumulator,List,Results)

Meta-predicate template:

scan_left(3,*,*,*)

Mode and number of proofs:

scan_left(+callable,?term,+list,?list) - zero_or_more

scan_left_1/3

List scanning (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator. The accumulator is initialized with the list first element. Fails for empty lists.

Compilation flags:

static

Template:

scan_left_1(Closure,List,Results)

Meta-predicate template:

scan_left_1(3,*,*)

Mode and number of proofs:

scan_left_1(+callable,+list,?list) - zero_or_more

fold_right/4

List folding (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator.

Compilation flags:

static

Template:

fold_right(Closure,Accumulator,List,Result)

Meta-predicate template:

fold_right(3,*,*,*)

Mode and number of proofs:

fold_right(+callable,?term,+list,?term) - zero_or_more

fold_right_1/3

List folding (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator. The initial value of the accumulator is the list first element. Fails for empty lists.

Compilation flags:

static

Template:

fold_right_1(Closure,List,Result)

Meta-predicate template:

fold_right_1(3,*,*)

Mode and number of proofs:

fold_right_1(+callable,+list,?term) - zero_or_more

scan_right/4

List scanning (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator.

Compilation flags:

static

Template:

scan_right(Closure,Accumulator,List,Results)

Meta-predicate template:

scan_right(3,*,*,*)

Mode and number of proofs:

scan_right(+callable,?term,+list,?list) - zero_or_more

scan_right_1/3

List scanning (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator. The accumulator is initialized with the list first element. Fails for empty lists.

Compilation flags:

static

Template:

scan_right_1(Closure,List,Results)

Meta-predicate template:

scan_right_1(3,*,*)

Mode and number of proofs:

scan_right_1(+callable,+list,?list) - zero_or_more

map/2

True if the predicate succeeds for each list element.

Compilation flags:

static

Template:

map(Closure,List)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(+callable,?list) - zero_or_more

map/3

List mapping predicate taken arguments from two lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(+callable,?list,?list) - zero_or_more

map/4

List mapping predicate taken arguments from three lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3)

Meta-predicate template:

map(3,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list) - zero_or_more

map/5

List mapping predicate taken arguments from four lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4)

Meta-predicate template:

map(4,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list) - zero_or_more

map/6

List mapping predicate taken arguments from five lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5)

Meta-predicate template:

map(5,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list) - zero_or_more

map/7

List mapping predicate taken arguments from six lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5,List6)

Meta-predicate template:

map(6,*,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list,?list) - zero_or_more

map/8

List mapping predicate taken arguments from seven lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5,List6,List7)

Meta-predicate template:

map(7,*,*,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list,?list,?list) - zero_or_more

map_reduce/5

Map a list and apply a fold left (reduce) to the resulting list.

Compilation flags:

static

Template:

map_reduce(Map,Reduce,Accumulator,List,Result)

Meta-predicate template:

map_reduce(2,3,*,*,*)

Mode and number of proofs:

map_reduce(+callable,+callable,+term,?list,?term) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

meta

 object

meta_compiler

Compiler for the meta object meta-predicates. Generates auxiliary predicates in order to avoid meta-call overheads.

Availability:

logtalk_load(meta_compiler(loader))

Author: Paulo Moura

Version: 0:16:0

Date: 2024-10-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

gensym

list

logtalk

user

Remarks:

	Usage: Compile source files with calls to the meta object meta-predicates using the compiler option hook(meta_compiler).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	generated_predicate_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

generated_predicate_/1

Table of generated auxiliary predicates.

Compilation flags:

dynamic

Template:

generated_predicate_(Predicate)

Mode and number of proofs:

generated_predicate_(?predicate_indicator) - zero_or_more

Operators

(none)

See also

meta

 object

default_atom_mutations

Default atom mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

type

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_compound_mutations

Default compound mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_float_mutations

Default float mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_integer_mutations

Default integer mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_list_mutations

Default list mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 category

mutations

Adds mutations support to the library type object.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-11-23

Compilation flags:

static

Complements:

type

Uses:

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	mutation/3

	Protected predicates

	Private predicates

	Operators

Public predicates

mutation/3

Returns a random mutation of a term into another term of the same type. The input Term is assume to be valid for the given Type.

Compilation flags:

static

Template:

mutation(Type,Term,Mutation)

Mode and number of proofs:

mutation(@callable,@term,-term) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

mutations_store

Stores mutation definitions for selected types. User extensible by defining objects or categories defining clauses for the mutation/3 predicate and using this object as a hook object for their compilation.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

fast_random

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	mutation/3

	counter/2

	Protected predicates

	Private predicates

	mutation/4

	counter_/2

	Operators

Public predicates

mutation/3

Returns a random mutation of a term into another term of the same type. The input Term is assumed to be valid for the given Type.

Compilation flags:

static

Template:

mutation(Type,Term,Mutation)

Mode and number of proofs:

mutation(@callable,@term,-term) - one

counter/2

Table of the number of mutations available per type.

Compilation flags:

static

Template:

counter(Type,N)

Mode and number of proofs:

counter(?callable,?positive_integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

mutation/4

Returns a random mutation of a term into another term of the same type using mutator N. The input Term is assume to be valid for the given Type.

Compilation flags:

static, multifile

Template:

mutation(Type,N,Term,Mutation)

Mode and number of proofs:

mutation(?callable,?positive_integer,@term,-term) - zero_or_more

counter_/2

Internal counter for the number of mutations available for a given type.

Compilation flags:

dynamic

Template:

counter_(Type,N)

Mode and number of proofs:

counter_(?callable,?positive_integer) - zero_or_more

Operators

(none)

See also

type

 object

navltree

Nested dictionary implementation based on the AVL tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private avltree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

nrbtree, nbintree

 object

nbintree

Nested dictionary implementation based on the simple binary tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private bintree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

nrbtree, navltree

 protocol

nested_dictionary_protocol

Nested dictionary protocol.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura

Version: 0:1:0

Date: 2021-04-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/1

	empty/1

	as_nested_dictionary/2

	as_curly_bracketed/2

	lookup_in/3

	update_in/4

	update_in/5

	insert_in/4

	delete_in/4

	Protected predicates

	Private predicates

	Operators

Public predicates

new/1

Create an empty (nested) dictionary.

Compilation flags:

static

Template:

new(Dictionary)

Mode and number of proofs:

new(--dictionary) - one

empty/1

True iff the dictionary is empty.

Compilation flags:

static

Template:

empty(Dictionary)

Mode and number of proofs:

empty(@dictionary) - zero_or_one

as_nested_dictionary/2

Creates a (nested) dictionary term from a curly-brackted term representation.

Compilation flags:

static

Template:

as_nested_dictionary(Term,Dictionary)

Mode and number of proofs:

as_nested_dictionary(++term,--dictionary) - one_or_error

as_curly_bracketed/2

Creates a a curly-brackted term representation from a (nested) dictionary.

Compilation flags:

static

Template:

as_curly_bracketed(Dictionary,Term)

Mode and number of proofs:

as_curly_bracketed(+dictionary,--term) - one_or_error

lookup_in/3

Lookup a chain of keys in a nested dictionary. Unifies Value with Dictionary when Keys is the empty list.

Compilation flags:

static

Template:

lookup_in(Keys,Value,Dictionary)

Mode and number of proofs:

lookup_in(++list(ground),?term,+dictionary) - zero_or_more

update_in/4

Updates the value found by traversing through the nested keys.

Compilation flags:

static

Template:

update_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

update_in(+dictionary,++list(ground),++term,--dictionary) - zero_or_one

update_in/5

Updates the value found by traversing through the nested keys, only succeeding if the value found after traversal matches the old value.

Compilation flags:

static

Template:

update_in(OldDictionary,Keys,OldValue,NewValue,NewDictionary)

Mode and number of proofs:

update_in(+dictionary,++list(ground),?term,++term,--dictionary) - zero_or_one

insert_in/4

Inserts a key-value pair into a dictionary by traversing through the nested keys. When the key already exists, the associated value is updated.

Compilation flags:

static

Template:

insert_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

insert_in(+dictionary,++list(ground),++term,--dictionary) - zero_or_one

delete_in/4

Deletes a matching key-value pair from a dictionary by traversing through the nested keys, returning the updated dictionary.

Compilation flags:

static

Template:

delete_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

delete_in(+dictionary,++list(ground),?term,--dictionary) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

navltree, nbintree, nrbtree

 object

nrbtree

Nested dictionary implementation based on the red-black tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private rbtree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

navltree, nbintree

 object

maybe

Types and predicates for type-checking and handling optional terms. Inspired by Haskell.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 0:7:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

arbitrary::arbitrary/1

arbitrary::arbitrary/2

Uses:

optional

optional(Optional)

random

type

Remarks:

	Type-checking support: Defines type maybe(Type) for checking optional terms where the value hold by the optional term must be of the given type.

	QuickCheck support: Defines clauses for the arbitrary::arbitrary/1-2 predicates to allow generating random values for the maybe(Type) type.

Inherited public predicates:

(none)

	Public predicates

	cat/2

	Protected predicates

	Private predicates

	Operators

Public predicates

cat/2

Returns the values stored in the non-empty optional terms.

Compilation flags:

static

Template:

cat(Optionals,Values)

Mode and number of proofs:

cat(+list(optional),-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

optional, optional(Optional), type, arbitrary

 object

optional

Constructors for optional terms. An optional term is either empty or holds a value. Optional terms should be regarded as opaque terms and always used with the optional/1 object by passing the optional term as a parameter.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

Remarks:

	Type-checking support: This object also defines a type optional for use with the type library object.

Inherited public predicates:

(none)

	Public predicates

	empty/1

	of/2

	from_goal/3

	from_goal/2

	from_generator/3

	from_generator/2

	Protected predicates

	Private predicates

	Operators

Public predicates

empty/1

Constructs an empty optional term.

Compilation flags:

static

Template:

empty(Optional)

Mode and number of proofs:

empty(--nonvar) - one

of/2

Constructs an optional term holding the given value.

Compilation flags:

static

Template:

of(Value,Optional)

Mode and number of proofs:

of(@term,--nonvar) - one

from_goal/3

Constructs an optional term holding a value bound by calling the given goal. Returns an empty optional term if the goal fails or throws an error.

Compilation flags:

static

Template:

from_goal(Goal,Value,Optional)

Meta-predicate template:

from_goal(0,*,*)

Mode and number of proofs:

from_goal(+callable,--term,--nonvar) - one

from_goal/2

Constructs an optional term holding a value bound by calling the given closure. Returns an empty optional term if the closure fails or throws an error.

Compilation flags:

static

Template:

from_goal(Closure,Optional)

Meta-predicate template:

from_goal(1,*)

Mode and number of proofs:

from_goal(+callable,--nonvar) - one

from_generator/3

Constructs optional terms with the values generated by calling the given goal. On goal error or failure, returns an empty optional.

Compilation flags:

static

Template:

from_generator(Goal,Value,Optional)

Meta-predicate template:

from_generator(0,*,*)

Mode and number of proofs:

from_generator(+callable,--term,--nonvar) - one_or_more

from_generator/2

Constructs optional terms with the values generated by calling the given closure. On closure error or failure, returns an empty optional.

Compilation flags:

static

Template:

from_generator(Closure,Optional)

Meta-predicate template:

from_generator(1,*)

Mode and number of proofs:

from_generator(+from_generator,--nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

optional(Optional), type

 object

optional(Optional)

Optional term handling predicates. Requires passing an optional term (constructed using the optional object predicates) as a parameter.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 1:7:0

Date: 2019-11-26

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_empty/0

	is_present/0

	if_empty/1

	if_present/1

	if_present_or_else/2

	filter/2

	map/2

	flat_map/2

	or/2

	get/1

	or_else/2

	or_else_get/2

	or_else_call/2

	or_else_fail/1

	or_else_throw/2

	Protected predicates

	Private predicates

	Operators

Public predicates

is_empty/0

True if the optional term is empty. See also the if_empty/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_empty - zero_or_one

is_present/0

True if the optional term holds a value. See also the if_present/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_present - zero_or_one

if_empty/1

Calls a goal if the optional term is empty. Succeeds otherwise.

Compilation flags:

static

Template:

if_empty(Goal)

Meta-predicate template:

if_empty(0)

Mode and number of proofs:

if_empty(+callable) - zero_or_more

if_present/1

Applies a closure to the value hold by the optional term if not empty. Succeeds otherwise.

Compilation flags:

static

Template:

if_present(Closure)

Meta-predicate template:

if_present(1)

Mode and number of proofs:

if_present(+callable) - zero_or_more

if_present_or_else/2

Applies a closure to the value hold by the optional term if not empty. Otherwise calls the given goal.

Compilation flags:

static

Template:

if_present_or_else(Closure,Goal)

Meta-predicate template:

if_present_or_else(1,0)

Mode and number of proofs:

if_present_or_else(+callable,+callable) - zero_or_more

filter/2

Returns the optional term when it is not empty and the value it holds satisfies a closure. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

filter(Closure,NewOptional)

Meta-predicate template:

filter(1,*)

Mode and number of proofs:

filter(+callable,--nonvar) - one

map/2

When the optional term is not empty and mapping a closure with the value it holds and the new value as additional arguments is successful, returns an optional term with the new value. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

map(Closure,NewOptional)

Meta-predicate template:

map(2,*)

Mode and number of proofs:

map(+callable,--nonvar) - one

flat_map/2

When the optional term is not empty and mapping a closure with the value it holds and the new optional term as additional arguments is successful, returns the new optional term. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

flat_map(Closure,NewOptional)

Meta-predicate template:

flat_map(2,*)

Mode and number of proofs:

flat_map(+callable,--nonvar) - one

or/2

Returns the same optional term if not empty. Otherwise calls closure to generate a new optional term. Fails if optional term is empty and calling the closure fails or throws an error.

Compilation flags:

static

Template:

or(NewOptional,Closure)

Meta-predicate template:

or(*,1)

Mode and number of proofs:

or(--term,@callable) - zero_or_one

get/1

Returns the value hold by the optional term if not empty. Throws an error otherwise.

Compilation flags:

static

Template:

get(Value)

Mode and number of proofs:

get(--term) - one_or_error

Exceptions:

Optional is empty:

existence_error(optional_term,Optional)

or_else/2

Returns the value hold by the optional term if not empty or the given default value if the optional term is empty.

Compilation flags:

static

Template:

or_else(Value,Default)

Mode and number of proofs:

or_else(--term,@term) - one

or_else_get/2

Returns the value hold by the optional term if not empty. Applies a closure to compute the value otherwise. Throws an error when the optional term is empty and the value cannot be computed.

Compilation flags:

static

Template:

or_else_get(Value,Closure)

Meta-predicate template:

or_else_get(*,1)

Mode and number of proofs:

or_else_get(--term,+callable) - one_or_error

Exceptions:

Optional is empty and the term cannot be computed:

existence_error(optional_term,Optional)

or_else_call/2

Returns the value hold by the optional term if not empty or calls a goal deterministically if the optional term is empty.

Compilation flags:

static

Template:

or_else_call(Value,Goal)

Meta-predicate template:

or_else_call(*,0)

Mode and number of proofs:

or_else_call(--term,+callable) - zero_or_one

or_else_fail/1

Returns the value hold by the optional term if not empty. Fails otherwise. Usually called to skip over empty optional terms.

Compilation flags:

static

Template:

or_else_fail(Value)

Mode and number of proofs:

or_else_fail(--term) - zero_or_one

or_else_throw/2

Returns the value hold by the optional term if not empty. Throws the given error otherwise.

Compilation flags:

static

Template:

or_else_throw(Value,Error)

Mode and number of proofs:

or_else_throw(--term,@nonvar) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

optional

 category

options

Options processing predicates. Options are represented by compound terms where the functor is the option name.

Availability:

logtalk_load(options(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2022-01-03

Compilation flags:

static

Implements:

public options_protocol

Uses:

list

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

options_protocol

Options protocol.

Availability:

logtalk_load(options(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2022-01-03

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	check_option/1

	check_options/1

	valid_option/1

	valid_options/1

	default_option/1

	default_options/1

	option/2

	option/3

	Protected predicates

	merge_options/2

	fix_options/2

	fix_option/2

	Private predicates

	Operators

Public predicates

check_option/1

Succeeds if the option is valid. Throws an error otherwise.

Compilation flags:

static

Template:

check_option(Option)

Mode and number of proofs:

check_option(@term) - one_or_error

Exceptions:

Option is a variable:

instantiation_error

Option is neither a variable nor a compound term:

type_error(compound,Option)

Option is a compound term but not a valid option:

domain_error(option,Option)

check_options/1

Succeeds if all the options in a list are valid. Throws an error otherwise.

Compilation flags:

static

Template:

check_options(Options)

Mode and number of proofs:

check_options(@term) - one_or_error

Exceptions:

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

valid_option/1

Succeeds if the option is valid.

Compilation flags:

static

Template:

valid_option(Option)

Mode and number of proofs:

valid_option(@term) - zero_or_one

valid_options/1

Succeeds if all the options in a list are valid.

Compilation flags:

static

Template:

valid_options(Options)

Mode and number of proofs:

valid_options(@term) - one

default_option/1

Enumerates, by backtracking, the default options.

Compilation flags:

static

Template:

default_option(Option)

Mode and number of proofs:

default_option(?compound) - zero_or_more

default_options/1

Returns a list of the default options.

Compilation flags:

static

Template:

default_options(Options)

Mode and number of proofs:

default_options(-list(compound)) - one

option/2

True iff Option unifies with the first occurrence of the same option in the Options list.

Compilation flags:

static

Template:

option(Option,Options)

Mode and number of proofs:

option(+compound,+list(compound)) - zero_or_one

option/3

True iff Option unifies with the first occurrence of the same option in the Options list or, when that is not the case, if Option unifies with Default.

Compilation flags:

static

Template:

option(Option,Options,Default)

Mode and number of proofs:

option(+compound,+list(compound),+compound) - zero_or_one

Protected predicates

merge_options/2

Merges the user options with the default options, returning the final list of options. Calls the fix_options/2 predicate to preprocess the options after merging. Callers must ensure, if required, that the user options are valid.

Compilation flags:

static

Template:

merge_options(UserOptions,Options)

Mode and number of proofs:

merge_options(+list(compound),-list(compound)) - one

fix_options/2

Fixes a list of options, returning the list of options.

Compilation flags:

static

Template:

fix_options(Options,FixedOptions)

Mode and number of proofs:

fix_options(+list(compound),-list(compound)) - one

fix_option/2

Fixes an option.

Compilation flags:

static

Template:

fix_option(Option,FixedOption)

Mode and number of proofs:

fix_option(+compound,-compound) - zero_or_one

Private predicates

(none)

Operators

(none)

See also

options

 object

os

Portable operating-system access predicates.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:101:2

Date: 2024-12-01

Compilation flags:

static, context_switching_calls

Implements:

public osp

Uses:

list

Aliases:

osp absolute_file_name/2 as expand_path/2

Remarks:

	File path expansion: To ensure portability, all file paths are expanded before being handed to the backend Prolog system.

	Exception terms: Currently, there is no standardization of the exception terms thrown by the different backend Prolog systems.

	B-Prolog portability: The wall_time/1 predicate is not supported.

	CxProlog portability: The date_time/7 predicate returns zeros for all arguments.

	JIProlog portability: The file_permission/2 and command_line_arguments/1 predicates are not supported.

	Quintus Prolog: The pid/1 and shell/2 predicates are not supported.

	XSB portability: The command_line_arguments/1 predicate is not supported.

Inherited public predicates:

 absolute_file_name/2 change_directory/1 command_line_arguments/1 copy_file/2 cpu_time/1 date_time/7 decompose_file_name/3 decompose_file_name/4 delete_directory/1 delete_directory_and_contents/1 delete_directory_contents/1 delete_file/1 directory_exists/1 directory_files/2 directory_files/3 ensure_directory/1 ensure_file/1 environment_variable/2 file_exists/1 file_modification_time/2 file_permission/2 file_size/2 full_device_path/1 internal_os_path/2 is_absolute_file_name/1 make_directory/1 make_directory_path/1 null_device_path/1 operating_system_machine/1 operating_system_name/1 operating_system_release/1 operating_system_type/1 path_concat/3 pid/1 read_only_device_path/1 rename_file/2 shell/1 shell/2 sleep/1 temporary_directory/1 time_stamp/1 wall_time/1 working_directory/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

os_types

 category

os_types

A set of operating-system related types.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2021-02-12

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

os

Remarks:

	Provided types: This category adds file, file(Extensions), file(Extensions,Permissions), directory, directory(Permissions), and environment_variable types for type-checking when using the type library object.

	Type file: For checking if a term is an atom and an existing file.

	Type file(Extensions): For checking if a term is an atom and an existing file with one of the listed extensions (specified as '.ext').

	Type file(Extensions,Permissions): For checking if a term is an atom and an existing file with one of the listed extensions (specified as '.ext') and listed permissions ({read, write, execute}).

	Type directory: For checking if a term is an atom and an existing directory.

	Type directory(Permissions): For checking if a term is an atom and an existing directory with the listed permissions ({read, write, execute}).

	Type environment_variable: For checking if a term is an atom and an existing environment variable.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

osp, os, type

 protocol

osp

Portable operating-system access protocol.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:41:0

Date: 2025-05-19

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Error handling: Predicates that require a file or directory to exist throw an error when that is not the case. But the exact exception term is currently backend Prolog compiler dependent.

	CPU and wall time accuracy: Depends on the backend and can be different between CPU and wall time (e.g. CPU time can have nanosecond accuracy with wall time only having millisecond accuracy).

Inherited public predicates:

(none)

	Public predicates

	pid/1

	shell/2

	shell/1

	is_absolute_file_name/1

	absolute_file_name/2

	decompose_file_name/3

	decompose_file_name/4

	path_concat/3

	internal_os_path/2

	make_directory/1

	make_directory_path/1

	delete_directory/1

	delete_directory_contents/1

	delete_directory_and_contents/1

	change_directory/1

	working_directory/1

	temporary_directory/1

	null_device_path/1

	full_device_path/1

	read_only_device_path/1

	directory_files/2

	directory_files/3

	directory_exists/1

	ensure_directory/1

	file_exists/1

	file_modification_time/2

	file_size/2

	file_permission/2

	copy_file/2

	rename_file/2

	delete_file/1

	ensure_file/1

	environment_variable/2

	time_stamp/1

	date_time/7

	cpu_time/1

	wall_time/1

	operating_system_type/1

	operating_system_name/1

	operating_system_machine/1

	operating_system_release/1

	command_line_arguments/1

	sleep/1

	Protected predicates

	Private predicates

	Operators

Public predicates

pid/1

Returns the process identifier of the running process.

Compilation flags:

static

Template:

pid(PID)

Mode and number of proofs:

pid(-integer) - one

shell/2

Runs an operating-system shell command and returns its exit status.

Compilation flags:

static

Template:

shell(Command,Status)

Mode and number of proofs:

shell(+atom,-integer) - one

shell/1

Runs an operating-system shell command.

Compilation flags:

static

Template:

shell(Command)

Mode and number of proofs:

shell(+atom) - zero_or_one

is_absolute_file_name/1

True iff the argument is an absolute file path. On POSIX systems, this predicate is true if File starts with a /. On Windows systems, this predicate is true if File starts with a drive letter. No attempt is made to expand File as a path.

Compilation flags:

static

Template:

is_absolute_file_name(File)

Mode and number of proofs:

is_absolute_file_name(+atom) - zero_or_one

absolute_file_name/2

Expands a file name to an absolute file path. An environment variable at the beginning of the file name is also expanded.

Compilation flags:

static

Template:

absolute_file_name(File,Path)

Mode and number of proofs:

absolute_file_name(+atom,-atom) - one

decompose_file_name/3

Decomposes a file name into its directory (which always ends with a slash; ./ is returned if absent) and its basename (which can be the empty atom).

Compilation flags:

static

Template:

decompose_file_name(File,Directory,Basename)

Mode and number of proofs:

decompose_file_name(+atom,?atom,?atom) - one

decompose_file_name/4

Decomposes a file name into its directory (which always ends with a slash; ./ is returned if absent), name (that can be the empty atom), and extension (which starts with a . when defined; the empty atom otherwise).

Compilation flags:

static

Template:

decompose_file_name(File,Directory,Name,Extension)

Mode and number of proofs:

decompose_file_name(+atom,?atom,?atom,?atom) - one

path_concat/3

Concatenates a path prefix and a path suffix, adding a / separator if required. Returns Suffix when it is an absolute path. Returns Prefix with a trailing / appended if missing when Suffix is the empty atom.

Compilation flags:

static

Template:

path_concat(Prefix,Suffix,Path)

Mode and number of proofs:

path_concat(+atom,+atom,--atom) - one

internal_os_path/2

Converts between the internal path representation (which is backend dependent) and the operating-system native path representation.

Compilation flags:

static

Template:

internal_os_path(InternalPath,OSPath)

Mode and number of proofs:

internal_os_path(+atom,-atom) - one

internal_os_path(-atom,+atom) - one

make_directory/1

Makes a new directory. Succeeds if the directory already exists.

Compilation flags:

static

Template:

make_directory(Directory)

Mode and number of proofs:

make_directory(+atom) - one

make_directory_path/1

Makes a new directory creating all the intermediate directories if necessary. Succeeds if the directory already exists.

Compilation flags:

static

Template:

make_directory_path(Directory)

Mode and number of proofs:

make_directory_path(+atom) - one

delete_directory/1

Deletes an empty directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory(Directory)

Mode and number of proofs:

delete_directory(+atom) - one_or_error

delete_directory_contents/1

Deletes directory contents. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory_contents(Directory)

Mode and number of proofs:

delete_directory_contents(+atom) - one_or_error

delete_directory_and_contents/1

Deletes directory and its contents. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory_and_contents(Directory)

Mode and number of proofs:

delete_directory_and_contents(+atom) - one_or_error

change_directory/1

Changes current working directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

change_directory(Directory)

Mode and number of proofs:

change_directory(+atom) - one_or_error

working_directory/1

Current working directory.

Compilation flags:

static

Template:

working_directory(Directory)

Mode and number of proofs:

working_directory(?atom) - zero_or_one

temporary_directory/1

Temporary directory. Tries first environment variables: TEMP and TMP on Windows systems; TMPDIR, TMP, TEMP, and TEMPDIR on POSIX systems. When not defined, tries default locations. Returns the working directory as last resort.

Compilation flags:

static

Template:

temporary_directory(Directory)

Mode and number of proofs:

temporary_directory(?atom) - one

null_device_path/1

Null device path: nul on Windows systems and /dev/null on POSIX systems.

Compilation flags:

static

Template:

null_device_path(Path)

Mode and number of proofs:

null_device_path(?atom) - one

full_device_path/1

Full device path: /dev/full on Linux and BSD systems. Fails on other systems. Experimental.

Compilation flags:

static

Template:

full_device_path(Path)

Mode and number of proofs:

full_device_path(?atom) - zero_or_one

read_only_device_path/1

Read-only device path: /dev/urandom on macOS. Fails on other systems. Experimental.

Compilation flags:

static

Template:

read_only_device_path(Path)

Mode and number of proofs:

read_only_device_path(?atom) - zero_or_one

directory_files/2

Returns a list of all files (including directories, regular files, and hidden directories and files) in a directory. File paths are relative to the directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

directory_files(Directory,Files)

Mode and number of proofs:

directory_files(+atom,-list(atom)) - one_or_error

directory_files/3

Returns a list of files filtered using the given list of options. Invalid options are ignored. Default option values are equivalent to directory_files/2. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

directory_files(Directory,Files,Options)

Mode and number of proofs:

directory_files(+atom,-list(atom),+list(compound)) - one_or_error

Remarks:

	Option paths/1: Possible values are relative and absolute. Default is relative.

	Option type/1: Possible values are all, regular, directory. Default is all.

	Option extensions/1: Argument is a list of required extensions (using the format '.ext'). Default is the empty list.

	Option prefixes/1: Argument is a list of required file prefixes (atoms). Default is the empty list.

	Option suffixes/1: Argument is a list of required file suffixes (atoms). Default is the empty list.

	Option dot_files/1: Possible values are true and false. Default is true.

directory_exists/1

True if the specified directory exists (irrespective of directory permissions).

Compilation flags:

static

Template:

directory_exists(Directory)

Mode and number of proofs:

directory_exists(+atom) - zero_or_one

ensure_directory/1

Ensures that a directory exists, creating it if necessary.

Compilation flags:

static

Template:

ensure_directory(Directory)

Mode and number of proofs:

ensure_directory(+atom) - one

file_exists/1

True if the specified file exists and is a regular file (irrespective of file permissions).

Compilation flags:

static

Template:

file_exists(File)

Mode and number of proofs:

file_exists(+atom) - zero_or_one

file_modification_time/2

File modification time (which can be used for comparison). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_modification_time(File,Time)

Mode and number of proofs:

file_modification_time(+atom,-integer) - one_or_error

file_size/2

File size (in bytes). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_size(File,Size)

Mode and number of proofs:

file_size(+atom,-integer) - one_or_error

file_permission/2

True iff the specified file has the specified permission (read, write, or execute). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_permission(File,Permission)

Mode and number of proofs:

file_permission(+atom,+atom) - zero_or_one_or_error

copy_file/2

Copies a file. Throws an error if the original file does not exist or if the copy cannot be created.

Compilation flags:

static

Template:

copy_file(File,Copy)

Mode and number of proofs:

copy_file(+atom,+atom) - one_or_error

rename_file/2

Renames a file or a directory. Throws an error if the file or directory does not exist.

Compilation flags:

static

Template:

rename_file(Old,New)

Mode and number of proofs:

rename_file(+atom,+atom) - one_or_error

delete_file/1

Deletes a file. Throws an error if the file does not exist.

Compilation flags:

static

Template:

delete_file(File)

Mode and number of proofs:

delete_file(+atom) - one_or_error

ensure_file/1

Ensures that a file exists, creating it if necessary.

Compilation flags:

static

Template:

ensure_file(File)

Mode and number of proofs:

ensure_file(+atom) - one

environment_variable/2

Returns an environment variable value. Fails if the variable does not exists.

Compilation flags:

static

Template:

environment_variable(Variable,Value)

Mode and number of proofs:

environment_variable(+atom,?atom) - zero_or_one

time_stamp/1

Returns a system-dependent time stamp, which can be used for sorting, but should be regarded otherwise as an opaque term.

Compilation flags:

static

Template:

time_stamp(Time)

Mode and number of proofs:

time_stamp(-ground) - one

date_time/7

Returns the current date and time. Note that most backends do not provide sub-second accuracy and in those cases the value of the Milliseconds argument is always zero.

Compilation flags:

static

Template:

date_time(Year,Month,Day,Hours,Minutes,Seconds,Milliseconds)

Mode and number of proofs:

date_time(-integer,-integer,-integer,-integer,-integer,-integer,-integer) - one

cpu_time/1

System cpu time in seconds. Accuracy depends on the backend.

Compilation flags:

static

Template:

cpu_time(Seconds)

Mode and number of proofs:

cpu_time(-number) - one

wall_time/1

Wall time in seconds. Accuracy depends on the backend.

Compilation flags:

static

Template:

wall_time(Seconds)

Mode and number of proofs:

wall_time(-number) - one

operating_system_type/1

Operating system type. Possible values are unix, windows, and unknown.

Compilation flags:

static

Template:

operating_system_type(Type)

Mode and number of proofs:

operating_system_type(?atom) - zero_or_one

operating_system_name/1

Operating system name. On POSIX systems, it returns the value of uname -s. On macOS systems, it returns 'Darwin'. On Windows systems, it returns 'Windows'.

Compilation flags:

static

Template:

operating_system_name(Name)

Mode and number of proofs:

operating_system_name(?atom) - zero_or_one

operating_system_machine/1

Operating system hardware platform. On POSIX systems, it returns the value of uname -m. On Windows systems, it returns the value of the PROCESSOR_ARCHITECTURE environment variable.

Compilation flags:

static

Template:

operating_system_machine(Machine)

Mode and number of proofs:

operating_system_machine(?atom) - zero_or_one

operating_system_release/1

Operating system release. On POSIX systems, it returns the value of uname -r. On Windows systems, it uses WMI code.

Compilation flags:

static

Template:

operating_system_release(Release)

Mode and number of proofs:

operating_system_release(?atom) - zero_or_one

command_line_arguments/1

Returns a list with the command line arguments that occur after --.

Compilation flags:

static

Template:

command_line_arguments(Arguments)

Mode and number of proofs:

command_line_arguments(-list(atom)) - one

sleep/1

Suspends execution the given number of seconds.

Compilation flags:

static

Template:

sleep(Seconds)

Mode and number of proofs:

sleep(+number) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

os, os_types

 object

queue

Queue predicates implemented using difference lists.

Availability:

logtalk_load(queues(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-12-09

Compilation flags:

static, context_switching_calls

Implements:

public queuep

Extends:

public compound

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/3 as_list/2 check/1 depth/2 empty/1 ground/1 head/2 join/3 join_all/3 jump/3 jump_all/3 jump_all_block/3 length/2 map/2 map/3 new/1 numbervars/1 numbervars/3 occurs/2 serve/3 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

queuep

Queue protocol.

Availability:

logtalk_load(queues(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-12-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	empty/1

	head/2

	join/3

	join_all/3

	jump/3

	jump_all/3

	jump_all_block/3

	append/3

	length/2

	serve/3

	as_list/2

	map/2

	map/3

	Protected predicates

	Private predicates

	Operators

Public predicates

empty/1

True if the queue is empty.

Compilation flags:

static

Template:

empty(Queue)

Mode and number of proofs:

empty(@queue) - zero_or_one

head/2

Unifies Head with the first element of the queue.

Compilation flags:

static

Template:

head(Queue,Head)

Mode and number of proofs:

head(+queue,?term) - zero_or_one

join/3

Adds the new element at the end of the queue.

Compilation flags:

static

Template:

join(Element,Queue,NewQueue)

Mode and number of proofs:

join(@term,+queue,-queue) - zero_or_one

join_all/3

Adds the new elements at the end of the queue. The elements are added in the same order that they appear in the list.

Compilation flags:

static

Template:

join_all(List,Queue,NewQueue)

Mode and number of proofs:

join_all(+list,+queue,-queue) - zero_or_one

jump/3

Adds the new element at the front of the queue.

Compilation flags:

static

Template:

jump(Element,Queue,NewQueue)

Mode and number of proofs:

jump(@term,+queue,-queue) - zero_or_one

jump_all/3

Adds the new elements at the front of the queue. The last element in the list will be at the front of the queue.

Compilation flags:

static

Template:

jump_all(Elements,Queue,NewQueue)

Mode and number of proofs:

jump_all(+list,+queue,-queue) - zero_or_one

jump_all_block/3

Adds the new elements as a block at the front of the queue. The first element in the list will be at the front of the queue.

Compilation flags:

static

Template:

jump_all_block(Elements,Queue,NewQueue)

Mode and number of proofs:

jump_all_block(+list,+queue,-queue) - zero_or_one

append/3

Appends two queues. The new queue will have the elements of the first queue followed by the elements of the second queue.

Compilation flags:

static

Template:

append(Queue1,Queue2,NewQueue)

Mode and number of proofs:

append(+queue,+queue,-queue) - one

length/2

Queue length.

Compilation flags:

static

Template:

length(Queue,Length)

Mode and number of proofs:

length(+heap,?integer) - zero_or_one

serve/3

Removes the first element of the queue for service.

Compilation flags:

static

Template:

serve(Queue,Head,NewQueue)

Mode and number of proofs:

serve(+queue,?term,-queue) - zero_or_one

as_list/2

Converts a queue to a list.

Compilation flags:

static

Template:

as_list(Queue,List)

Mode and number of proofs:

as_list(+queue,-list) - one

map/2

Applies a closure to all elements of a queue.

Compilation flags:

static

Template:

map(Closure,Queue)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(+callable,+queue) - zero_or_one

map/3

Applies a closure to all elements of a queue constructing a new queue.

Compilation flags:

static

Template:

map(Closure,Queue,NewQueue)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(+callable,+queue,?queue) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

queue

 object

backend_random

Random number generator predicates using the backend Prolog compiler built-in random generator.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:21:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Implementation: The backend Prolog compiler built-in random generator is only used for the basic random/1, get_seed/1, and set_seed/1 predicates.

	Portability: B-Prolog, CxProlog, ECLiPSe, JIProlog, Qu-Prolog, and Quintus Prolog do not provide implementations for the get_seed/1 and set_seed/1 predicates and calling these predicates simply succeed without performing any action.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

random, fast_random

 object

fast_random

Fast portable random number generator predicates. Core predicates originally written by Richard O’Keefe. Based on algorithm AS 183 from Applied Statistics.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 2:12:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Single random number generator: This object provides a faster version of the random library object but does not support being extended to define multiple random number generators.

	Randomness: Loading this object always initializes the random generator seed to the same value, thus providing a pseudo random number generator. The randomize/1 predicate can be used to initialize the seed with a random value.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	reset_seed/0

	randomize/1

	Protected predicates

	Private predicates

	seed_/3

	Operators

Public predicates

reset_seed/0

Resets the random generator seed to its default value. Use get_seed/1 and set_seed/1 instead if you need reproducibility.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_seed - one

randomize/1

Randomizes the random generator using a positive integer to compute a new seed. Use of a large integer is recommended. In alternative, when using a small integer argument, discard the first dozen random values.

Compilation flags:

static, synchronized

Template:

randomize(Seed)

Mode and number of proofs:

randomize(+positive_integer) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

seed_/3

Stores the current random generator seed values.

Compilation flags:

dynamic

Template:

seed_(S0,S1,S2)

Mode and number of proofs:

seed_(-integer,-integer,-integer) - one

Operators

(none)

See also

random, backend_random

 protocol

pseudo_random_protocol

Pseudo-random number generator protocol for seed handling predicates. These predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-02-21

Compilation flags:

static

Extends:

public random_protocol

Remarks:

(none)

Inherited public predicates:

 between/3 enumerate/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 permutation/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 swap/2 swap_consecutive/2

	Public predicates

	get_seed/1

	set_seed/1

	Protected predicates

	Private predicates

	Operators

Public predicates

get_seed/1

Gets the current random generator seed. Seed should be regarded as an opaque ground term.

Compilation flags:

static, synchronized

Template:

get_seed(Seed)

Mode and number of proofs:

get_seed(-ground) - one

set_seed/1

Sets the random generator seed to a given value returned by calling the get_seed/1 predicate.

Compilation flags:

static, synchronized

Template:

set_seed(Seed)

Mode and number of proofs:

set_seed(+ground) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

random, backend_random, fast_random

 object

random

Portable random number generator predicates. Core predicates originally written by Richard O’Keefe. Based on algorithm AS 183 from Applied Statistics.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 2:12:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Multiple random number generators: To define multiple random number generators, simply extend this object. The derived objects must send to self the reset_seed/0 message.

	Randomness: Loading this object always initializes the random generator seed to the same value, thus providing a pseudo random number generator. The randomize/1 predicate can be used to initialize the seed with a random value.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	reset_seed/0

	randomize/1

	Protected predicates

	Private predicates

	seed_/3

	Operators

Public predicates

reset_seed/0

Resets the random generator seed to its default value. Use get_seed/1 and set_seed/1 instead if you need reproducibility.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_seed - one

randomize/1

Randomizes the random generator using a positive integer to compute a new seed. Use of a large integer is recommended. In alternative, when using a small integer argument, discard the first dozen random values.

Compilation flags:

static, synchronized

Template:

randomize(Seed)

Mode and number of proofs:

randomize(+positive_integer) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

seed_/3

Stores the current random generator seed values.

Compilation flags:

dynamic

Template:

seed_(S0,S1,S2)

Mode and number of proofs:

seed_(-integer,-integer,-integer) - one

Operators

(none)

See also

fast_random, backend_random

 protocol

random_protocol

Random number generator protocol. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 3:3:0

Date: 2023-11-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	random/1

	between/3

	member/2

	select/3

	select/4

	swap/2

	swap_consecutive/2

	enumerate/2

	permutation/2

	sequence/4

	set/4

	random/3

	randseq/4

	randset/4

	maybe/0

	maybe/1

	maybe/2

	maybe_call/1

	maybe_call/2

	Protected predicates

	Private predicates

	Operators

Public predicates

random/1

Returns a new random float value in the interval [0.0, 1.0[.

Compilation flags:

static, synchronized

Template:

random(Random)

Mode and number of proofs:

random(-float) - one

between/3

Returns a new random integer in the interval [Lower, Upper]. Fails if Lower or Upper are not integers or if Lower > Upper.

Compilation flags:

static

Template:

between(Lower,Upper,Random)

Mode and number of proofs:

between(+integer,+integer,-integer) - zero_or_one

member/2

Returns a random member of a list. Fails if the list is empty.

Compilation flags:

static

Template:

member(Random,List)

Mode and number of proofs:

member(-term,+list(term)) - zero_or_one

select/3

Returns a random member of a list and the rest of the list. Fails if the list is empty.

Compilation flags:

static

Template:

select(Random,List,Rest)

Mode and number of proofs:

select(-term,+list(term),-list(term)) - zero_or_one

select/4

Returns a random member of a list, replacing it with a new element and returning the resulting list.

Compilation flags:

static

Template:

select(Random,OldList,New,NewList)

Mode and number of proofs:

select(-term,+list(term),@term,-list(term)) - zero_or_one

swap/2

Swaps two randomly selected elements of a list. Fails if the list is empty or contains a single element.

Compilation flags:

static

Template:

swap(OldList,NewList)

Mode and number of proofs:

swap(-term,+list(term)) - zero_or_one

swap_consecutive/2

Swaps two randomly selected consecutive elements of a list. Fails if the list is empty or contains a single element.

Compilation flags:

static

Template:

swap_consecutive(OldList,NewList)

Mode and number of proofs:

swap_consecutive(-term,+list(term)) - zero_or_one

enumerate/2

Enumerates the elements of a list in random order. Fails if the list is empty.

Compilation flags:

static

Template:

enumerate(List,Random)

Mode and number of proofs:

enumerate(+list(term),--term) - zero_or_more

permutation/2

Returns a random permutation of a list.

Compilation flags:

static, synchronized

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(+list,-list) - one

sequence/4

Returns list of random integers of given length in random order in interval [Lower, Upper]. Fails if Length, Lower, or Upper are not integers or if Lower > Upper.

Compilation flags:

static, synchronized

Template:

sequence(Length,Lower,Upper,List)

Mode and number of proofs:

sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

set/4

Returns ordered set of random integers of given size in interval [Lower, Upper]. Fails if Length, Lower, or Upper are not integers, if Lower > Upper, or if Length > Upper - Lower + 1.

Compilation flags:

static, synchronized

Template:

set(Length,Lower,Upper,Set)

Mode and number of proofs:

set(+integer,+integer,+integer,-list(integer)) - zero_or_one

random/3

Returns a new random value in the interval [Lower, Upper[. Fails if Lower > Upper. Deprecated. Use between/3 for integers.

Compilation flags:

static, synchronized

Template:

random(Lower,Upper,Random)

Mode and number of proofs:

random(+integer,+integer,-integer) - zero_or_one

random(+float,+float,-float) - zero_or_one

randseq/4

Returns list of random values of given length in random order in interval [Lower, Upper[. Fails if Lower > Upper or if the arguments are neither integers or floats. Deprecated. Use sequence/4 for integers.

Compilation flags:

static, synchronized

Template:

randseq(Length,Lower,Upper,List)

Mode and number of proofs:

randseq(+integer,+integer,+integer,-list(integer)) - zero_or_one

randseq(+integer,+float,+float,-list(float)) - zero_or_one

randset/4

Returns ordered set of random values of given size in interval [Lower, Upper[. Fails if the arguments are neither integers or floats, Lower > Upper, or Length > Upper - Lower when arguments are integers. Deprecated. Use set/4 for integers.

Compilation flags:

static, synchronized

Template:

randset(Length,Lower,Upper,Set)

Mode and number of proofs:

randset(+integer,+integer,+integer,-list(integer)) - zero_or_one

randset(+integer,+float,+float,-list(float)) - zero_or_one

maybe/0

Succeeds or fails with equal probability.

Compilation flags:

static

Mode and number of proofs:

maybe - zero_or_one

maybe/1

Succeeds with probability Probability or fails with probability 1 - Probability. Fails if Probability is not a float or is outside the interval [0.0, 1.0].

Compilation flags:

static

Template:

maybe(Probability)

Mode and number of proofs:

maybe(+probability) - zero_or_one

maybe/2

Succeeds with probability K/N where K and N are integers satisfying the equation 0 =< K =< N. Fails otherwise.

Compilation flags:

static

Template:

maybe(K,N)

Mode and number of proofs:

maybe(+non_negative_integer,+non_negative_integer) - zero_or_one

maybe_call/1

Calls a goal or fails without calling it with equal probability. When the goal is called, it determines if this predicate succeeds once or fails.

Compilation flags:

static

Template:

maybe_call(Goal)

Meta-predicate template:

maybe_call(0)

Mode and number of proofs:

maybe_call(+callable) - zero_or_one

maybe_call/2

Calls a goal or fails without calling it with probability Probability. When the goal is called, it determines if this predicate succeeds once or fails.

Compilation flags:

static

Template:

maybe_call(Probability,Goal)

Meta-predicate template:

maybe_call(*,0)

Mode and number of proofs:

maybe_call(+probability,+callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

random, backend_random, fast_random

 protocol

sampling_protocol

Predicates for sampling probability distributions.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-02-25

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	normal/3

	lognormal/3

	wald/3

	chi_squared/2

	fisher/3

	logseries/2

	geometric/2

	hypergeometric/4

	exponential/2

	binomial/3

	bernoulli/2

	beta/3

	gamma/3

	logistic/3

	poisson/2

	power/2

	weibull/3

	uniform/3

	uniform/1

	triangular/4

	von_mises/3

	gumbel/3

	dirichlet/2

	circular_uniform_polar/3

	circular_uniform_cartesian/3

	standard_t/2

	standard_cauchy/3

	standard_exponential/1

	standard_gamma/2

	standard_normal/1

	Protected predicates

	Private predicates

	Operators

Public predicates

normal/3

Returns a scaled normally (Gaussian) distributed random value with the given mean and standard deviation.

Compilation flags:

static

Template:

normal(Mean,Deviation,Value)

Mode and number of proofs:

normal(+float,+non_negative_float,-float) - one

lognormal/3

Returns a scaled log normally distributed random value with the given mean and standard deviation for the normal distribution.

Compilation flags:

static

Template:

lognormal(Mean,Deviation,Value)

Mode and number of proofs:

lognormal(+float,+non_negative_float,-float) - one

wald/3

Returns a scaled Wald (inverse Gaussian) distributed random value with the given mean.

Compilation flags:

static

Template:

wald(Mean,Scale,Value)

Mode and number of proofs:

wald(+positive_float,+positive_float,-float) - one

chi_squared/2

Returns a chi-squared distributed random value given the degrees of freedom.

Compilation flags:

static

Template:

chi_squared(DegreesOfFreedom,Value)

Mode and number of proofs:

chi_squared(+positive_integer,-float) - one

fisher/3

Returns a Fisher distributed random value given the degrees of freedom in the numerator and in the denominator.

Compilation flags:

static

Template:

fisher(DegreesOfFreedomNumerator,DegreesOfFreedomDenominator,Value)

Mode and number of proofs:

fisher(+positive_integer,+positive_integer,-float) - one

logseries/2

Returns a logseries distributed random value. Requires 0.0 < Shape < 1 and fails otherwise.

Compilation flags:

static

Template:

logseries(Shape,Value)

Mode and number of proofs:

logseries(+non_negative_integer,-positive_integer) - zero_or_one

geometric/2

Returns a geometric distributed random value (trials until the first success).

Compilation flags:

static

Template:

geometric(Probability,Value)

Mode and number of proofs:

geometric(+probability,-positive_integer) - one

hypergeometric/4

Returns a hypergeometric distributed random value.

Compilation flags:

static

Template:

hypergeometric(Population,Successes,Draws,Value)

Mode and number of proofs:

hypergeometric(+non_negative_integer,+non_negative_integer,+non_negative_integer,-non_negative_integer) - one

exponential/2

Returns a scaled exponentially distributed random value.

Compilation flags:

static

Template:

exponential(Scale,Value)

Mode and number of proofs:

exponential(+positive_float,-float) - one

binomial/3

Returns a binomial distributed random value.

Compilation flags:

static

Template:

binomial(Trials,Probability,Value)

Mode and number of proofs:

binomial(+positive_integer,+positive_float,-float) - one

bernoulli/2

Returns a Bernoulli distributed random value.

Compilation flags:

static

Template:

bernoulli(Probability,Value)

Mode and number of proofs:

bernoulli(+positive_integer,-float) - one

beta/3

Returns a beta distributed random value.

Compilation flags:

static

Template:

beta(Alpha,Beta,Value)

Mode and number of proofs:

beta(+positive_float,+positive_float,-float) - one

gamma/3

Returns a scaled gamma distributed random value.

Compilation flags:

static

Template:

gamma(Shape,Scale,Value)

Mode and number of proofs:

gamma(+positive_float,+positive_float,-float) - one

logistic/3

Returns a scaled logistic distributed random value.

Compilation flags:

static

Template:

logistic(Location,Scale,Value)

Mode and number of proofs:

logistic(+float,+positive_float,-float) - one

poisson/2

Returns a Poisson distributed random value given the expected number of events.

Compilation flags:

static

Template:

poisson(Mean,Value)

Mode and number of proofs:

poisson(+non_negative_float,-non_negative_integer) - one

power/2

Returns a power distributed random value.

Compilation flags:

static

Template:

power(Exponent,Value)

Mode and number of proofs:

power(+positive_float,-float) - one

weibull/3

Returns a scaled Weibull distributed random value.

Compilation flags:

static

Template:

weibull(Shape,Scale,Value)

Mode and number of proofs:

weibull(+float,+positive_float,-float) - one

uniform/3

Returns a uniform distributed random value in the interval``[Lower, Upper[. Fails if ``Lower or Upper are not integers or if Lower > Upper. Same as random/3.

Compilation flags:

static

Template:

uniform(Lower,Upper,Value)

Mode and number of proofs:

uniform(+float,+float,-float) - zero_or_one

uniform/1

Returns a uniform distributed random value in the interval``[0.0, 1.0[. Same as ``random/1.

Compilation flags:

static

Template:

uniform(Value)

Mode and number of proofs:

uniform(-float) - one

triangular/4

Returns a triangular distributed random value. Fails if the Left =< Mode =< Right condition does not hold.

Compilation flags:

static

Template:

triangular(Left,Mode,Right,Value)

Mode and number of proofs:

triangular(+float,+float,+float,-float) - zero_or_one

von_mises/3

Returns a von Mises distributed random value.

Compilation flags:

static

Template:

von_mises(Mode,Concentration,Value)

Mode and number of proofs:

von_mises(+float,+non_negative_float,-float) - zero_or_one

gumbel/3

Returns a Gumbel distributed random value.

Compilation flags:

static

Template:

gumbel(Location,Scale,Value)

Mode and number of proofs:

gumbel(+float,+non_negative_float,-float) - zero_or_one

dirichlet/2

Returns a Dirichlet distributed list of random values.

Compilation flags:

static

Template:

dirichlet(Alphas,Thetas)

Mode and number of proofs:

dirichlet(+list(positive_float),-list(positive_float)) - one

circular_uniform_polar/3

Returns a circular uniform distributed random point in polar coordinates given the circle radius.

Compilation flags:

static

Template:

circular_uniform_polar(Radius,Rho,Theta)

Mode and number of proofs:

circular_uniform_polar(+float,+float,-float) - one

circular_uniform_cartesian/3

Returns a circular uniform distributed random point in cartesian coordinates given the circle radius.

Compilation flags:

static

Template:

circular_uniform_cartesian(Radius,X,Y)

Mode and number of proofs:

circular_uniform_cartesian(+float,+float,-float) - one

standard_t/2

Returns a standard Student’s t distributed random value given the degrees of freedom.

Compilation flags:

static

Template:

standard_t(DegreesOfFreedom,Value)

Mode and number of proofs:

standard_t(+positive_integer,-float) - one

standard_cauchy/3

Returns a standard Cauchy distributed random value.

Compilation flags:

static

Template:

standard_cauchy(Location,Scale,Value)

Mode and number of proofs:

standard_cauchy(+float,+float,-float) - one

standard_exponential/1

Returns a standard exponential distributed random value.

Compilation flags:

static

Template:

standard_exponential(Value)

Mode and number of proofs:

standard_exponential(-float) - one

standard_gamma/2

Returns a standard gamma distributed random value.

Compilation flags:

static

Template:

standard_gamma(Shape,Value)

Mode and number of proofs:

standard_gamma(+positive_float,-float) - one

standard_normal/1

Returns a standard normally (Gaussian) distributed random value (using a default mean of 0.0 and a default deviation of 1.0).

Compilation flags:

static

Template:

standard_normal(Value)

Mode and number of proofs:

standard_normal(-float) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

random_protocol, pseudo_random_protocol

 object

reader

Predicates for reading text file and text stream contents to lists of terms, characters, or character codes and for reading binary file and binary stream contents to lists of bytes.

Availability:

logtalk_load(reader(loader))

Author: Paulo Moura

Version: 2:2:0

Date: 2023-11-14

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	file_to_codes/2

	file_to_codes/3

	file_to_chars/2

	file_to_chars/3

	file_to_terms/2

	file_to_terms/3

	file_to_bytes/2

	file_to_bytes/3

	stream_to_codes/2

	stream_to_codes/3

	stream_to_chars/2

	stream_to_chars/3

	stream_to_terms/2

	stream_to_terms/3

	stream_to_bytes/2

	stream_to_bytes/3

	line_to_chars/2

	line_to_chars/3

	line_to_codes/2

	line_to_codes/3

	Protected predicates

	Private predicates

	Operators

Public predicates

file_to_codes/2

Reads a text file into a list of character codes.

Compilation flags:

static

Template:

file_to_codes(File,Codes)

Mode and number of proofs:

file_to_codes(+atom,-list(character_code)) - one

file_to_codes/3

Reads a text file into a list of character codes. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_codes(File,Codes,Tail)

Mode and number of proofs:

file_to_codes(+atom,-list(character_code),@term) - one

file_to_chars/2

Reads a text file into a list of characters.

Compilation flags:

static

Template:

file_to_chars(File,Chars)

Mode and number of proofs:

file_to_chars(+atom,-list(character)) - one

file_to_chars/3

Reads a text file into a list of characters. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_chars(File,Chars,Tail)

Mode and number of proofs:

file_to_chars(+atom,-list(character),@term) - one

file_to_terms/2

Reads a text file into a list of terms.

Compilation flags:

static

Template:

file_to_terms(File,Terms)

Mode and number of proofs:

file_to_terms(+atom,-list(term)) - one

file_to_terms/3

Reads a text file into a list of terms. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_terms(File,Terms,Tail)

Mode and number of proofs:

file_to_terms(+atom,-list(term),@term) - one

file_to_bytes/2

Reads a binary file into a list of bytes.

Compilation flags:

static

Template:

file_to_bytes(File,Bytes)

Mode and number of proofs:

file_to_bytes(+atom,-list(byte)) - one

file_to_bytes/3

Reads a binary file into a list of bytes. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_bytes(File,Bytes,Tail)

Mode and number of proofs:

file_to_bytes(+atom,-list(byte),@term) - one

stream_to_codes/2

Reads a text stream into a list of character codes. Does not close the stream.

Compilation flags:

static

Template:

stream_to_codes(Stream,Codes)

Mode and number of proofs:

stream_to_codes(+stream_or_alias,-list(character_code)) - one

stream_to_codes/3

Reads a text stream into a list of character codes. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_codes(Stream,Codes,Tail)

Mode and number of proofs:

stream_to_codes(+stream_or_alias,-list(character_code),@term) - one

stream_to_chars/2

Reads a text stream into a list of characters. Does not close the stream.

Compilation flags:

static

Template:

stream_to_chars(Stream,Chars)

Mode and number of proofs:

stream_to_chars(+stream_or_alias,-list(char)) - one

stream_to_chars/3

Reads a text stream into a list of characters. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_chars(Stream,Chars,Tail)

Mode and number of proofs:

stream_to_chars(+stream_or_alias,-list(char),@term) - one

stream_to_terms/2

Reads a text stream into a list of terms. Does not close the stream.

Compilation flags:

static

Template:

stream_to_terms(Stream,Terms)

Mode and number of proofs:

stream_to_terms(+stream_or_alias,-list(term)) - one

stream_to_terms/3

Reads a text stream into a list of terms. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_terms(Stream,Terms,Tail)

Mode and number of proofs:

stream_to_terms(+stream_or_alias,-list(term),@term) - one

stream_to_bytes/2

Reads a binary stream into a list of bytes. Does not close the stream.

Compilation flags:

static

Template:

stream_to_bytes(Stream,Bytes)

Mode and number of proofs:

stream_to_bytes(+stream_or_alias,-list(byte)) - one

stream_to_bytes/3

Reads a binary stream into a list of bytes. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_bytes(Stream,Bytes,Tail)

Mode and number of proofs:

stream_to_bytes(+stream_or_alias,-list(byte),@term) - one

line_to_chars/2

Reads a line from a text stream into a list of characters. Discards the end-of-line characters. Unifies Chars with end_of_file at the end of the file.

Compilation flags:

static

Template:

line_to_chars(Stream,Chars)

Mode and number of proofs:

line_to_chars(+stream_or_alias,-types([atom,list(character)])) - one

line_to_chars/3

Reads a line from a text stream into a list of characters. Keeps the end-of-line marker normalized to the line feed control character. The list is terminated by the given tail, which is unified with the empty list at the end of the file.

Compilation flags:

static

Template:

line_to_chars(Stream,Chars,Tail)

Mode and number of proofs:

line_to_chars(+stream_or_alias,-list(character),?term) - one

line_to_codes/2

Reads a line from a text stream into a list of character codes. Discards the end-of-line character codes. Unifies Codes with end_of_file at the end of the file.

Compilation flags:

static

Template:

line_to_codes(Stream,Codes)

Mode and number of proofs:

line_to_codes(+stream_or_alias,-types([atom,list(character_code)])) - one

line_to_codes/3

Reads a line from a text stream into a list of character codes. Keeps the end-of-line marker normalized to the line feed control character code. The list is terminated by the given tail, which is unified with the empty list at the end of the file.

Compilation flags:

static

Template:

line_to_codes(Stream,Codes,Tail)

Mode and number of proofs:

line_to_codes(+stream_or_alias,-list(character_code),?term) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

recorded_database

Legacy recorded database predicates. Provides an application global database.

Availability:

logtalk_load(recorded_database(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-12-17

Compilation flags:

static, context_switching_calls

Imports:

public recorded_database_core

Remarks:

(none)

Inherited public predicates:

 erase/1 instance/2 recorda/2 recorda/3 recorded/2 recorded/3 recordz/2 recordz/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

recorded_database_core

Legacy recorded database predicates. Can be imported into an object to provide a local database.

Availability:

logtalk_load(recorded_database(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-12-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

	References: Opaque ground terms.

Inherited public predicates:

(none)

	Public predicates

	recorda/3

	recorda/2

	recordz/3

	recordz/2

	recorded/3

	recorded/2

	erase/1

	instance/2

	Protected predicates

	Private predicates

	record_/3

	reference_/1

	Operators

Public predicates

recorda/3

Adds a term as the first term for the given key, returning its reference.

Compilation flags:

static

Template:

recorda(Key,Term,Reference)

Mode and number of proofs:

recorda(+recorded_database_key,+term,--recorded_database_reference) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

Reference is a not a variable:

uninstantiation_error(Reference)

recorda/2

Adds a term as the first term for the given key.

Compilation flags:

static

Template:

recorda(Key,Term)

Mode and number of proofs:

recorda(+recorded_database_key,+term) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

recordz/3

Adds a term as the last term for the given key, returning its reference.

Compilation flags:

static

Template:

recordz(Key,Term,Reference)

Mode and number of proofs:

recordz(+recorded_database_key,+term,--recorded_database_reference) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

Reference is a not a variable:

uninstantiation_error(Reference)

recordz/2

Adds a term as the last term for the given key.

Compilation flags:

static

Template:

recordz(Key,Term)

Mode and number of proofs:

recordz(+recorded_database_key,+term) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

recorded/3

Enumerates, by backtracking, all record key-term pairs and their references.

Compilation flags:

static

Template:

recorded(Key,Term,Reference)

Mode and number of proofs:

recorded(?recorded_database_key,?term,-recorded_database_reference) - zero_or_more

recorded(?recorded_database_key,?term,+recorded_database_reference) - zero_or_one

recorded/2

Enumerates, by backtracking, all record key-term pairs.

Compilation flags:

static

Template:

recorded(Key,Term)

Mode and number of proofs:

recorded(?recorded_database_key,?term) - zero_or_more

erase/1

Erases the record indexed by the given reference. Fails if there is no record with the given reference.

Compilation flags:

static

Template:

erase(Reference)

Mode and number of proofs:

erase(@recorded_database_reference) - zero_or_one_or_error

Exceptions:

Reference is a variable:

instantiation_error

instance/2

.

Compilation flags:

static

Template:

instance(Reference,Term)

Mode and number of proofs:

instance(@recorded_database_reference,?term) - zero_or_one_or_error

Exceptions:

Reference is a variable:

instantiation_error

Protected predicates

(none)

Private predicates

record_/3

Records table.

Compilation flags:

dynamic

Template:

record_(Key,Term,Reference)

Mode and number of proofs:

record_(?recorded_database_key,?term,?recorded_database_reference) - zero_or_more

reference_/1

Reference count.

Compilation flags:

dynamic

Template:

reference_(Reference)

Mode and number of proofs:

reference_(?non_negative_integer) - zero_or_one

Operators

(none)

 object

redis

Redis client. Inspired by Sean Charles GNU Prolog Redis client.

Availability:

logtalk_load(redis(loader))

Author: Paulo Moura

Version: 0:5:1

Date: 2021-12-06

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

	Command representation: Use the Redis command name as the functor of a compound term where the arguments are the command arguments.

	Valid arguments: Atoms, integers, and floats. Always use atoms instead of double-quoted “strings”. This helps portability by not depending on the value of the double_quotes flag.

Inherited public predicates:

(none)

	Public predicates

	connect/1

	connect/3

	disconnect/1

	send/3

	console/1

	Protected predicates

	Private predicates

	Operators

Public predicates

connect/1

Connect to a Redis server running on localhost using the default 6379 port.

Compilation flags:

static

Template:

connect(Connection)

Mode and number of proofs:

connect(--ground) - one

connect/3

Connect to a Redis server running on the given host and port.

Compilation flags:

static

Template:

connect(Host,Port,Connection)

Mode and number of proofs:

connect(+atom,+integer,--ground) - one

disconnect/1

Disconnect from a Redis server.

Compilation flags:

static

Template:

disconnect(Connection)

Mode and number of proofs:

disconnect(++ground) - one

send/3

Sends a request to the a Redis server and returns its reply.

Compilation flags:

static

Template:

send(Connection,Request,Reply)

Mode and number of proofs:

send(++ground,++callable,--callable) - one

console/1

Sends a request to a Redis server running on localhost at the default 6379 port and prints the reply.

Compilation flags:

static

Template:

console(Request)

Mode and number of proofs:

console(++callable) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

set

Set predicates implemented using ordered lists. Uses ==/2 for element comparison and standard term ordering.

Availability:

logtalk_load(sets(loader))

Author: Richard O’Keefe (main predicates); adapted to Logtalk by Paulo Moura.

Version: 2:0:0

Date: 2025-07-08

Compilation flags:

static, context_switching_calls

Implements:

public setp

Extends:

public compound

Aliases:

setp size/2 as length/2

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_list/2 as_set/2 check/1 delete/3 depth/2 disjoint/2 empty/1 equal/2 ground/1 insert/3 insert_all/3 intersect/2 intersection/3 intersection/4 member/2 memberchk/2 new/1 numbervars/1 numbervars/3 occurs/2 powerset/2 product/3 select/3 selectchk/3 singletons/2 size/2 subset/2 subsumes/2 subterm/2 subtract/3 symdiff/3 union/3 union/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

set(Type)

 object

set(Type)

Set predicates with elements constrained to a single type and custom comparing rules.

Availability:

logtalk_load(sets(loader))

Author: Paulo Moura and Adrian Arroyo

Version: 1:24:0

Date: 2022-02-03

Compilation flags:

static, context_switching_calls

Extends:

public set

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_list/2 as_set/2 check/1 delete/3 depth/2 disjoint/2 empty/1 equal/2 ground/1 insert/3 insert_all/3 intersect/2 intersection/3 intersection/4 member/2 memberchk/2 new/1 numbervars/1 numbervars/3 occurs/2 powerset/2 product/3 select/3 selectchk/3 singletons/2 size/2 subset/2 subsumes/2 subterm/2 subtract/3 symdiff/3 union/3 union/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	sort/2

	partition/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sort/2

Sorts a list in ascending order.

Compilation flags:

static

Template:

sort(List,Sorted)

Mode and number of proofs:

sort(+list,-list) - one

partition/4

List partition in two sub-lists using a pivot.

Compilation flags:

static

Template:

partition(List,Pivot,Lowers,Biggers)

Mode and number of proofs:

partition(+list,+nonvar,-list,-list) - one

Operators

(none)

 protocol

setp

Set protocol.

Availability:

logtalk_load(sets(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2025-07-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	as_set/2

	as_list/2

	delete/3

	disjoint/2

	equal/2

	empty/1

	insert/3

	insert_all/3

	intersect/2

	intersection/3

	intersection/4

	size/2

	member/2

	memberchk/2

	powerset/2

	product/3

	select/3

	selectchk/3

	subset/2

	subtract/3

	symdiff/3

	union/3

	union/4

	Protected predicates

	Private predicates

	Operators

Public predicates

as_set/2

Returns a set with all unique elements from the given list.

Compilation flags:

static

Template:

as_set(List,Set)

Mode and number of proofs:

as_set(@list,-set) - one

as_list/2

Returns a list with all elements of the given set.

Compilation flags:

static

Template:

as_list(Set,List)

Mode and number of proofs:

as_list(@set,-list) - one

delete/3

Deletes an element from a set returning the set of the remaining elements.

Compilation flags:

static

Template:

delete(Set,Element,Remaining)

Mode and number of proofs:

delete(@set,@term,-set) - one

disjoint/2

True when the two sets have no element in common.

Compilation flags:

static

Template:

disjoint(Set1,Set2)

Mode and number of proofs:

disjoint(@set,@set) - zero_or_one

equal/2

True when the two sets are equal.

Compilation flags:

static

Template:

equal(Set1,Set2)

Mode and number of proofs:

equal(@set,@set) - zero_or_one

empty/1

True when the set is empty.

Compilation flags:

static

Template:

empty(Set)

Mode and number of proofs:

empty(@set) - zero_or_one

insert/3

Inserts an element in a set, returning the resulting set.

Compilation flags:

static

Template:

insert(In,Element,Out)

Mode and number of proofs:

insert(@set,@term,-set) - one

insert_all/3

Inserts all the elements of the list into a set, returning the resulting set.

Compilation flags:

static

Template:

insert_all(List,In,Out)

Mode and number of proofs:

insert_all(@list,@set,-set) - one

intersect/2

True if the two sets have at least one element in common.

Compilation flags:

static

Template:

intersect(Set1,Set2)

Mode and number of proofs:

intersect(@set,@set) - zero_or_one

intersection/3

Computes the intersection of Set1 and Set2.

Compilation flags:

static

Template:

intersection(Set1,Set2,Intersection)

Mode and number of proofs:

intersection(@set,@set,-set) - one

intersection/4

Computes the intersection and the difference between Set2 and Set1.

Compilation flags:

static

Template:

intersection(Set1,Set2,Intersection,Difference)

Mode and number of proofs:

intersection(@set,@set,-set,-set) - one

size/2

Number of set elements.

Compilation flags:

static

Template:

size(Set,Size)

Mode and number of proofs:

size(@set,?integer) - zero_or_one

member/2

Element is a member of set Set.

Compilation flags:

static

Template:

member(Element,Set)

Mode and number of proofs:

member(?term,+set) - zero_or_more

memberchk/2

True when a term is a member of a set.

Compilation flags:

static

Template:

memberchk(Element,Set)

Mode and number of proofs:

memberchk(@term,@set) - zero_or_one

powerset/2

Returns the power set of a set, represented as a list of sets.

Compilation flags:

static

Template:

powerset(Set,Powerset)

Mode and number of proofs:

powerset(@set,-list(set)) - one

product/3

Returns the cartesian product of two sets.

Compilation flags:

static

Template:

product(Set1,Set2,Product)

Mode and number of proofs:

product(@set,@set,-set) - one

select/3

Selects an element from a set, returning the set of remaining elements.

Compilation flags:

static

Template:

select(Element,Set,Remaining)

Mode and number of proofs:

select(?term,?set,?set) - zero_or_more

selectchk/3

True if an element can be selected from a set, returning the set of remaining elements.

Compilation flags:

static

Template:

selectchk(Element,Set,Remaining)

Mode and number of proofs:

selectchk(@term,@set,-set) - zero_or_one

subset/2

True if Subset is a subset of Set.

Compilation flags:

static

Template:

subset(Subset,Set)

Mode and number of proofs:

subset(@set,@set) - zero_or_one

subtract/3

Computes the set of all the elements of Set1 which are not also in Set2.

Compilation flags:

static

Template:

subtract(Set1,Set2,Difference)

Mode and number of proofs:

subtract(@set,@set,-set) - one

symdiff/3

Computes the symmetric difference of Set1 and Set2, containing all elements that are not in the sets intersection.

Compilation flags:

static

Template:

symdiff(Set1,Set2,Difference)

Mode and number of proofs:

symdiff(@set,@set,-set) - one

union/3

Computes the union of Set1 and Set2.

Compilation flags:

static

Template:

union(Set1,Set2,Union)

Mode and number of proofs:

union(@set,@set,-set) - one

union/4

Computes the union of Set1 and Set2 and the difference between Set2 and Set1.

Compilation flags:

static

Template:

union(Set1,Set2,Union,Difference)

Mode and number of proofs:

union(@set,@set,-set,-set) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

set, set(Type)

 object

population

Statistical population represented as a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-02-02

Compilation flags:

static, context_switching_calls

Imports:

public statistics

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

sample

 object

sample

Statistical sample represented as a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2020-02-02

Compilation flags:

static, context_switching_calls

Imports:

public statistics

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

population

 category

statistics

Statistical calculations over a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:7:1

Date: 2023-05-29

Compilation flags:

static

Implements:

public statisticsp

Uses:

list

numberlist

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	arithmetic_mean/5

	squares_and_cubes/6

	squares_and_hypers/6

	variance/6

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

arithmetic_mean/5

Auxiliary predicate for computing the arithmetic mean.

Compilation flags:

static

Template:

arithmetic_mean(List,Length0,Length,Sum,Mean)

Mode and number of proofs:

arithmetic_mean(+list(number),+integer,-integer,+number,-float) - one

squares_and_cubes/6

Auxiliary predicate for computing the skewness.

Compilation flags:

static

Template:

squares_and_cubes(List,Mean,Squares0,Squares,Cubes0,Cubes)

Mode and number of proofs:

squares_and_cubes(+list(number),+float,+float,-float,+float,-float) - one

squares_and_hypers/6

Auxiliary predicate for computing the kurtosis.

Compilation flags:

static

Template:

squares_and_hypers(List,Mean,Squares0,Squares,Hypers0,Hypers)

Mode and number of proofs:

squares_and_hypers(+list(number),+float,+float,-float,+float,-float) - one

variance/6

Auxiliary predicate for computing the variance.

Compilation flags:

static

Template:

variance(List,Length0,Length,Mean,M20,M2)

Mode and number of proofs:

variance(+list(number),+integer,-integer,+float,+float,-float) - one

Operators

(none)

 protocol

statisticsp

Statistical calculations over a list of numbers protocol.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2022-06-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	product/2

	sum/2

	min/2

	max/2

	min_max/3

	range/2

	arithmetic_mean/2

	geometric_mean/2

	harmonic_mean/2

	weighted_mean/3

	median/2

	modes/2

	average_deviation/3

	mean_deviation/2

	median_deviation/2

	standard_deviation/2

	coefficient_of_variation/2

	relative_standard_deviation/2

	skewness/2

	kurtosis/2

	variance/2

	z_normalization/2

	fractile/3

	valid/1

	Protected predicates

	Private predicates

	Operators

Public predicates

product/2

Calculates the product of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

product(List,Product)

Mode and number of proofs:

product(+list(number),-number) - zero_or_one

sum/2

Calculates the sum of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

sum(List,Sum)

Mode and number of proofs:

sum(+list(number),-number) - zero_or_one

min/2

Determines the minimum value in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list,-number) - zero_or_one

max/2

Determines the list maximum value in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list,-number) - zero_or_one

min_max/3

Determines the minimum and maximum values in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

min_max(List,Minimum,Maximum)

Mode and number of proofs:

min_max(+list(number),-number,-number) - zero_or_one

range/2

Range is the length of the smallest interval which contains all the numbers in List. Fails if the list is empty.

Compilation flags:

static

Template:

range(List,Range)

Mode and number of proofs:

range(+list,-number) - zero_or_one

arithmetic_mean/2

Calculates the arithmetic mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

arithmetic_mean(List,Mean)

Mode and number of proofs:

arithmetic_mean(+list(number),-float) - zero_or_one

geometric_mean/2

Calculates the geometric mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

geometric_mean(List,Mean)

Mode and number of proofs:

geometric_mean(+list(number),-float) - zero_or_one

harmonic_mean/2

Calculates the harmonic mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

harmonic_mean(List,Mean)

Mode and number of proofs:

harmonic_mean(+list(number),-float) - zero_or_one

weighted_mean/3

Calculates the weighted mean of a list of numbers. Fails if the list is empty or if the two lists have different lengths. Wights are assume to be non-negative.

Compilation flags:

static

Template:

weighted_mean(Weights,List,Mean)

Mode and number of proofs:

weighted_mean(+list(number),+list(number),-float) - zero_or_one

median/2

Calculates the median of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median(List,Median)

Mode and number of proofs:

median(+list(number),-float) - zero_or_one

modes/2

Returns the list of modes of a list of numbers in ascending order. Fails if the list is empty.

Compilation flags:

static

Template:

modes(List,Modes)

Mode and number of proofs:

modes(+list(number),-list(number)) - zero_or_one

average_deviation/3

Calculates the average absolute deviation of a list of numbers given a central tendency (e.g., mean, median, or mode). Fails if the list is empty.

Compilation flags:

static

Template:

average_deviation(List,CentralTendency,Deviation)

Mode and number of proofs:

average_deviation(+list(number),+float,-float) - zero_or_one

mean_deviation/2

Calculates the mean absolute deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

mean_deviation(List,Deviation)

Mode and number of proofs:

mean_deviation(+list(number),-float) - zero_or_one

median_deviation/2

Calculates the median absolute deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median_deviation(List,Deviation)

Mode and number of proofs:

median_deviation(+list(number),-float) - zero_or_one

standard_deviation/2

Calculates the standard deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

standard_deviation(List,Deviation)

Mode and number of proofs:

standard_deviation(+list(number),-float) - zero_or_one

coefficient_of_variation/2

Calculates the coefficient of variation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

coefficient_of_variation(List,Coefficient)

Mode and number of proofs:

coefficient_of_variation(+list(number),-float) - zero_or_one

relative_standard_deviation/2

Calculates the relative standard deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

relative_standard_deviation(List,Percentage)

Mode and number of proofs:

relative_standard_deviation(+list(number),-float) - zero_or_one

skewness/2

Calculates the (moment) skewness of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

skewness(List,Skewness)

Mode and number of proofs:

skewness(+list(number),-float) - zero_or_one

kurtosis/2

Calculates the (excess) kurtosis of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

kurtosis(List,Kurtosis)

Mode and number of proofs:

kurtosis(+list(number),-float) - zero_or_one

variance/2

Calculates the unbiased variance of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

variance(List,Variance)

Mode and number of proofs:

variance(+list(number),-float) - zero_or_one

z_normalization/2

Normalizes a list of number such that for the resulting list the mean of is close to zero and the standard deviation is close to 1. Fails if the list is empty.

Compilation flags:

static

Template:

z_normalization(List,NormalizedList)

Mode and number of proofs:

z_normalization(+list(number),-list(float)) - zero_or_one

fractile/3

Calculates the smallest value in a list of numbers such that the list elements in its fraction P are less or equal to that value (with P in the open interval (0.0, 1.0)). Fails if the list is empty.

Compilation flags:

static

Template:

fractile(P,List,Fractile)

Mode and number of proofs:

fractile(+float,+list(integer),-integer) - zero_or_one

fractile(+float,+list(float),-float) - zero_or_one

valid/1

Term is a closed list of numbers.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

statistics, sample, population

 object

term_io

Term input/output from/to atom, chars, and codes.

Availability:

logtalk_load(term_io(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2023-11-14

Compilation flags:

static, context_switching_calls

Implements:

public term_io_protocol

Uses:

os

Remarks:

(none)

Inherited public predicates:

 format_to_atom/3 format_to_chars/3 format_to_chars/4 format_to_codes/3 format_to_codes/4 read_from_atom/2 read_from_chars/2 read_from_codes/2 read_term_from_atom/3 read_term_from_chars/3 read_term_from_chars/4 read_term_from_codes/3 read_term_from_codes/4 with_output_to/2 write_term_to_atom/3 write_term_to_chars/3 write_term_to_chars/4 write_term_to_codes/3 write_term_to_codes/4 write_to_atom/2 write_to_chars/2 write_to_codes/2

	Public predicates

	Protected predicates

	Private predicates

	temporary_file_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

temporary_file_/1

Logtalk session and term_io specific temporary file path.

Compilation flags:

dynamic

Template:

temporary_file_(Path)

Mode and number of proofs:

temporary_file_(-atom) - one

Operators

(none)

 protocol

term_io_protocol

Predicates for term input/output from/to atom, chars, and codes. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(term_io(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2021-10-04

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Portability notes: To keep calls to these library predicates portable, use only standard read/write options and specify output formats using atoms.

Inherited public predicates:

(none)

	Public predicates

	read_term_from_atom/3

	read_from_atom/2

	read_term_from_chars/3

	read_term_from_chars/4

	read_from_chars/2

	read_term_from_codes/3

	read_term_from_codes/4

	read_from_codes/2

	write_term_to_atom/3

	write_to_atom/2

	write_term_to_chars/3

	write_term_to_chars/4

	write_to_chars/2

	write_term_to_codes/3

	write_term_to_codes/4

	write_to_codes/2

	format_to_atom/3

	format_to_chars/3

	format_to_chars/4

	format_to_codes/3

	format_to_codes/4

	with_output_to/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_term_from_atom/3

Reads a term from an atom using the given read options. A period at the end of the atom is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_atom(Atom,Term,Options)

Mode and number of proofs:

read_term_from_atom(+atom,-term,+list(read_option)) - one_or_error

read_from_atom/2

Reads a term from an atom using default read options. Shorthand for read_term_from_atom(Atom,Term,[]). A period at the end of the atom is optional.

Compilation flags:

static

Template:

read_from_atom(Atom,Term)

Mode and number of proofs:

read_from_atom(+atom,-term) - one_or_error

read_term_from_chars/3

Reads a term from a list of characters using the given read options. A period at the end of the list is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_chars(Chars,Term,Options)

Mode and number of proofs:

read_term_from_chars(+list(character),-term,+list(read_option)) - one_or_error

read_term_from_chars/4

Reads a term from a list of characters using the given read options, also returning the remaining characters. A period at the end of the term is required. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static

Template:

read_term_from_chars(Chars,Term,Tail,Options)

Mode and number of proofs:

read_term_from_chars(+list(character),-term,-list(character),+list(read_option)) - one_or_error

read_from_chars/2

Reads a term from a list of characters using default read options. Shorthand for read_term_from_chars(Chars,Term,[]). A period at the end of the list is optional.

Compilation flags:

static

Template:

read_from_chars(Chars,Term)

Mode and number of proofs:

read_from_chars(+list(character),-term) - one_or_error

read_term_from_codes/3

Reads a term from a list of character codes using the given read options. A period at the end of the list is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_codes(Codes,Term,Options)

Mode and number of proofs:

read_term_from_codes(+list(character_code),-term,+list(read_option)) - one_or_error

read_term_from_codes/4

Reads a term from a list of character codes using the given read options, also returning the remaining character codes. A period at the end of the term is required. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static

Template:

read_term_from_codes(Codes,Term,Tail,Options)

Mode and number of proofs:

read_term_from_codes(+list(character_code),-term,-list(character_code),+list(read_option)) - one_or_error

read_from_codes/2

Reads a term from a list of character codes using default read options. Shorthand for read_term_from_codes(Codes,Term,[]). A period at the end of the list is optional.

Compilation flags:

static

Template:

read_from_codes(Codes,Term)

Mode and number of proofs:

read_from_codes(+list(character_code),-term) - one_or_error

write_term_to_atom/3

Writes a term to an atom using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_atom(Term,Atom,Options)

Mode and number of proofs:

write_term_to_atom(@term,-atom,+list(write_option)) - one

write_to_atom/2

Writes a term to an atom using default write options. Shorthand for write_term_to_atom(Term,Atom,[]).

Compilation flags:

static

Template:

write_to_atom(Term,Atom)

Mode and number of proofs:

write_to_atom(@term,-atom) - one

write_term_to_chars/3

Writes a term to a list of characters using the given write options. Shorthand for write_term_to_chars(Term,Chars,[],Options). Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static

Template:

write_term_to_chars(Term,Chars,Options)

Mode and number of proofs:

write_term_to_chars(@term,-list(character),+list(write_option)) - one

write_term_to_chars/4

Writes a term to a list of characters with the given tail using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_chars(Term,Chars,Tail,Options)

Mode and number of proofs:

write_term_to_chars(@term,-list(character),@term,+list(write_option)) - one

write_to_chars/2

Writes a term to a list of characters using default write options. Shorthand for write_term_to_chars(Term,Chars,[],[]).

Compilation flags:

static

Template:

write_to_chars(Term,Chars)

Mode and number of proofs:

write_to_chars(@term,-list(character)) - one

write_term_to_codes/3

Writes a term to a list of character codes using the given write options. Shorthand for write_term_to_codes(Term,Codes,[],Options). Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static

Template:

write_term_to_codes(Term,Codes,Options)

Mode and number of proofs:

write_term_to_codes(@term,-list(character_code),+list(write_option)) - one

write_term_to_codes/4

Writes a term to a list of character codes with the given tail using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_codes(Term,Codes,Tail,Options)

Mode and number of proofs:

write_term_to_codes(@term,-list(character_code),@term,+list(write_option)) - one

write_to_codes/2

Writes a term to a list of character codes using default write options. Shorthand for write_term_to_chars(Term,Codes,[],[]).

Compilation flags:

static

Template:

write_to_codes(Term,Codes)

Mode and number of proofs:

write_to_codes(@term,-list(character_code)) - one

format_to_atom/3

Writes a list of arguments to an atom using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_atom(Format,Arguments,Atom)

Mode and number of proofs:

format_to_atom(@atom,+list(term),-atom) - one

format_to_chars/3

Writes a list of arguments to a list of characters using the given format (specified as in the de facto standard format/2 predicate). Shorthand for format_to_chars(Format,Arguments,Chars,[]).

Compilation flags:

static

Template:

format_to_chars(Format,Arguments,Chars)

Mode and number of proofs:

format_to_chars(@term,+list(term),-list(character)) - one

format_to_chars/4

Writes a term to a list of characters with the given tail using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_chars(Format,Arguments,Chars,Tail)

Mode and number of proofs:

format_to_chars(@term,+list(term),-list(character),@term) - one

format_to_codes/3

Writes a list of arguments to a list of character codes using the given format (specified as in the de facto standard format/2 predicate). Shorthand for format_to_codes(Format,Arguments,Codes,[]).

Compilation flags:

static

Template:

format_to_codes(Format,Arguments,Codes)

Mode and number of proofs:

format_to_codes(@term,+list(term),-list(character_code)) - one

format_to_codes/4

Writes a list of arguments to a list of character codes with the given tail using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_codes(Format,Arguments,Codes,Tail)

Mode and number of proofs:

format_to_codes(@term,+list(term),-list(character_code),@term) - one

with_output_to/2

Calls a goal deterministically with output to the given format: atom(Atom), chars(Chars), chars(Chars,Tail), codes(Codes), or codes(Codes,Tail).

Compilation flags:

static, synchronized

Template:

with_output_to(Output,Goal)

Meta-predicate template:

with_output_to(*,0)

Mode and number of proofs:

with_output_to(+compound,+callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

timeout

Predicates for calling goal with a time limit.

Availability:

logtalk_load(timeout(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2022-06-15

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: B-Prolog, ECLiPSe, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, and YAP.

Inherited public predicates:

(none)

	Public predicates

	call_with_timeout/2

	call_with_timeout/3

	Protected predicates

	Private predicates

	Operators

Public predicates

call_with_timeout/2

Calls a goal deterministically with the given time limit (expressed in seconds). Note that the goal may fail or throw an error before exhausting the time limit.

Compilation flags:

static

Template:

call_with_timeout(Goal,Timeout)

Meta-predicate template:

call_with_timeout(0,*)

Mode and number of proofs:

call_with_timeout(+callable,+positive_number) - zero_or_one

Exceptions:

Goal does not complete in the allowed time:

timeout(Goal)

call_with_timeout/3

Calls a goal deterministically with the given time limit (expressed in seconds) returning a reified result: true, fail, timeout, or error(Error).

Compilation flags:

static

Template:

call_with_timeout(Goal,Timeout,Result)

Meta-predicate template:

call_with_timeout(0,*,*)

Mode and number of proofs:

call_with_timeout(+callable,+positive_number,--atom) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

tsv

TSV files reading and writing predicates using the option Header-keep.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-11-15

Compilation flags:

static, context_switching_calls

Extends:

public tsv(keep)

Remarks:

(none)

Inherited public predicates:

 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

tsv(Header)

	Header - Header handling option with possible values skip and keep (default).

TSV file and stream reading and writing predicates.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2024-03-11

Compilation flags:

static, context_switching_calls

Implements:

public tsv_protocol

Uses:

list

logtalk

reader

type

Remarks:

(none)

Inherited public predicates:

 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

tsv_protocol

TSV file and stream reading and writing protocol.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2025-05-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Type-checking: Some of the predicate file and stream argument type-checking exceptions depend on the Prolog backend compliance with standards.

Inherited public predicates:

(none)

	Public predicates

	read_file/3

	read_stream/3

	read_file/2

	read_stream/2

	read_file_by_line/3

	read_stream_by_line/3

	read_file_by_line/2

	read_stream_by_line/2

	write_file/3

	write_stream/3

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/3

Reads a TSV file saving the data as clauses for the specified object predicate. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Object,Predicate)

Mode and number of proofs:

read_file(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream/3

Reads a TSV stream saving the data as clauses for the specified object predicate. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Object,Predicate)

Mode and number of proofs:

read_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file/2

Reads a TSV file returning the data as a list of rows, each row a list of fields. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Rows)

Mode and number of proofs:

read_file(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream/2

Reads a TSV stream returning the data as a list of rows, each row a list of fields. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Rows)

Mode and number of proofs:

read_stream(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

read_file_by_line/3

Reads a TSV file saving the data as clauses for the specified object predicate. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Object,Predicate)

Mode and number of proofs:

read_file_by_line(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream_by_line/3

Reads a TSV stream saving the data as clauses for the specified object predicate. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Object,Predicate)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file_by_line/2

Reads a TSV file returning the data as a list of rows, each row a list of fields. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Rows)

Mode and number of proofs:

read_file_by_line(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream_by_line/2

Reads a TSV stream returning the data as a list of rows, each row a list of fields. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Rows)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

write_file/3

Writes a TSV file with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_file(File,Object,Predicate)

Mode and number of proofs:

write_file(+atom,+object_identifier,+predicate_indicator) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

write_stream/3

Writes a TSV stream with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_stream(Stream,Object,Predicate)

Mode and number of proofs:

write_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an input stream:

permission_error(output,stream,Stream)

Stream is a binary stream:

permission_error(output,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

atom

Atom data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:9:0

Date: 2023-04-12

Compilation flags:

static, context_switching_calls

Extends:

public atomic

Uses:

user

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	replace_sub_atom/4

	split/3

	Protected predicates

	Private predicates

	Operators

Public predicates

replace_sub_atom/4

Replaces all occurrences of Old by New in Input returning Output. Returns Input if Old is the empty atom. Fails when Output does not unify with the resulting atom.

Compilation flags:

static

Template:

replace_sub_atom(Old,New,Input,Output)

Mode and number of proofs:

replace_sub_atom(+atom,+atom,+atom,?atom) - zero_or_one

split/3

Splits an atom at a given delimiter into a list of sub-atoms.

Compilation flags:

static

Template:

split(Atom,Delimiter,SubAtoms)

Mode and number of proofs:

split(+atom,+atom,-list(atom)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

atomic

Atomic data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

callable

Callable term type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

character

Character predicates (most of them assume an ASCII representation).

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:9:0

Date: 2019-06-29

Compilation flags:

static, context_switching_calls

Implements:

public characterp

Extends:

public atom

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 is_alpha/1 is_alphanumeric/1 is_ascii/1 is_bin_digit/1 is_control/1 is_dec_digit/1 is_end_of_line/1 is_hex_digit/1 is_layout/1 is_letter/1 is_lower_case/1 is_newline/1 is_octal_digit/1 is_period/1 is_punctuation/1 is_quote/1 is_upper_case/1 is_vowel/1 is_white_space/1 lower_upper/2 new/1 numbervars/1 numbervars/3 occurs/2 parenthesis/2 replace_sub_atom/4 singletons/2 split/3 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

characterp

Character protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2019-06-29

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_ascii/1

	is_alphanumeric/1

	is_alpha/1

	is_letter/1

	is_bin_digit/1

	is_octal_digit/1

	is_dec_digit/1

	is_hex_digit/1

	is_lower_case/1

	is_upper_case/1

	is_vowel/1

	is_white_space/1

	is_layout/1

	is_quote/1

	is_punctuation/1

	is_period/1

	is_control/1

	is_newline/1

	is_end_of_line/1

	parenthesis/2

	lower_upper/2

	Protected predicates

	Private predicates

	Operators

Public predicates

is_ascii/1

True if the argument is an ASCII character.

Compilation flags:

static

Template:

is_ascii(Char)

Mode and number of proofs:

is_ascii(+char) - zero_or_one

is_alphanumeric/1

True if the argument is an alphanumeric character.

Compilation flags:

static

Template:

is_alphanumeric(Char)

Mode and number of proofs:

is_alphanumeric(+char) - zero_or_one

is_alpha/1

True if the argument is a letter or an underscore.

Compilation flags:

static

Template:

is_alpha(Char)

Mode and number of proofs:

is_alpha(+char) - zero_or_one

is_letter/1

True if the argument is a letter.

Compilation flags:

static

Template:

is_letter(Char)

Mode and number of proofs:

is_letter(+char) - zero_or_one

is_bin_digit/1

True if the argument is a binary digit.

Compilation flags:

static

Template:

is_bin_digit(Char)

Mode and number of proofs:

is_bin_digit(+char) - zero_or_one

is_octal_digit/1

True if the argument is an octal digit.

Compilation flags:

static

Template:

is_octal_digit(Char)

Mode and number of proofs:

is_octal_digit(+char) - zero_or_one

is_dec_digit/1

True if the argument is a decimal digit.

Compilation flags:

static

Template:

is_dec_digit(Char)

Mode and number of proofs:

is_dec_digit(+char) - zero_or_one

is_hex_digit/1

True if the argument is an hexadecimal digit.

Compilation flags:

static

Template:

is_hex_digit(Char)

Mode and number of proofs:

is_hex_digit(+char) - zero_or_one

is_lower_case/1

True if the argument is a lower case letter.

Compilation flags:

static

Template:

is_lower_case(Char)

Mode and number of proofs:

is_lower_case(+char) - zero_or_one

is_upper_case/1

True if the argument is a upper case letter.

Compilation flags:

static

Template:

is_upper_case(Char)

Mode and number of proofs:

is_upper_case(+char) - zero_or_one

is_vowel/1

True if the argument is a vowel.

Compilation flags:

static

Template:

is_vowel(Char)

Mode and number of proofs:

is_vowel(+char) - zero_or_one

is_white_space/1

True if the argument is a white space character (a space or a tab) inside a line of characters.

Compilation flags:

static

Template:

is_white_space(Char)

Mode and number of proofs:

is_white_space(+char) - zero_or_one

is_layout/1

True if the argument is a layout character.

Compilation flags:

static

Template:

is_layout(Char)

Mode and number of proofs:

is_layout(+char) - zero_or_one

is_quote/1

True if the argument is a quote character.

Compilation flags:

static

Template:

is_quote(Char)

Mode and number of proofs:

is_quote(+char) - zero_or_one

is_punctuation/1

True if the argument is a sentence punctuation character.

Compilation flags:

static

Template:

is_punctuation(Char)

Mode and number of proofs:

is_punctuation(+char) - zero_or_one

is_period/1

True if the argument is a character that ends a sentence.

Compilation flags:

static

Template:

is_period(Char)

Mode and number of proofs:

is_period(+char) - zero_or_one

is_control/1

True if the argument is an ASCII control character.

Compilation flags:

static

Template:

is_control(Char)

Mode and number of proofs:

is_control(+char) - zero_or_one

is_newline/1

True if the argument is the ASCII newline character.

Compilation flags:

static

Template:

is_newline(Char)

Mode and number of proofs:

is_newline(+char) - zero_or_one

is_end_of_line/1

True if the argument is the ASCII end-of-line character (either a carriage return or a line feed).

Compilation flags:

static

Template:

is_end_of_line(Char)

Mode and number of proofs:

is_end_of_line(+char) - zero_or_one

parenthesis/2

Recognizes and converts between open and close parenthesis.

Compilation flags:

static

Template:

parenthesis(Char1,Char2)

Mode and number of proofs:

parenthesis(?char,?char) - zero_or_more

parenthesis(+char,?char) - zero_or_one

parenthesis(?char,+char) - zero_or_one

lower_upper/2

Recognizes and converts between lower and upper case letters.

Compilation flags:

static

Template:

lower_upper(Char1,Char2)

Mode and number of proofs:

lower_upper(?char,?char) - zero_or_more

lower_upper(+char,?char) - zero_or_one

lower_upper(?char,+char) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

character

 protocol

comparingp

Comparing protocol using overloading of standard operators.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	(<)/2

	(=<)/2

	(>)/2

	(>=)/2

	(=:=)/2

	(=\=)/2

	Protected predicates

	Private predicates

	Operators

Public predicates

(<)/2

True if Term1 is less than Term2.

Compilation flags:

static

Template:

Term1<Term2

Mode and number of proofs:

+term< +term - zero_or_one

(=<)/2

True if Term1 is less or equal than Term2.

Compilation flags:

static

Template:

Term1=<Term2

Mode and number of proofs:

+term=< +term - zero_or_one

(>)/2

True if Term1 is greater than Term2.

Compilation flags:

static

Template:

Term1>Term2

Mode and number of proofs:

+term> +term - zero_or_one

(>=)/2

True if Term1 is equal or grater than Term2.

Compilation flags:

static

Template:

Term1>=Term2

Mode and number of proofs:

+term>= +term - zero_or_one

(=:=)/2

True if Term1 is equal to Term2.

Compilation flags:

static

Template:

Term1=:=Term2

Mode and number of proofs:

+term=:= +term - zero_or_one

(=\=)/2

True if Term1 is not equal to Term2.

Compilation flags:

static

Template:

Term1=\=Term2

Mode and number of proofs:

+term=\= +term - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

compound

Compound data type.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

difflist

Difference list predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2020-05-11

Compilation flags:

static, context_switching_calls

Implements:

public listp

Extends:

public compound

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	add/3

	as_list/2

	Protected predicates

	Private predicates

	Operators

Public predicates

add/3

Adds a term to the end of a difference list.

Compilation flags:

static

Template:

add(Term,DiffList,NewDiffList)

Mode and number of proofs:

add(@term,+difference_list,-difference_list) - one

as_list/2

Returns a list with the elements of the difference list.

Compilation flags:

static

Template:

as_list(DiffList,List)

Mode and number of proofs:

as_list(@difference_list,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), numberlist, varlist

 object

float

Floating point numbers data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:7:0

Date: 2025-02-25

Compilation flags:

static, context_switching_calls

Extends:

public number

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	between/4

	sequence/4

	sequence/5

	Protected predicates

	Private predicates

	Operators

Public predicates

between/4

Enumerates by backtracking a sequence of N equally spaced floats in the interval [Lower,Upper]. Assumes N > 0 and Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

between(Lower,Upper,N,Float)

Mode and number of proofs:

between(+float,+float,+positive_integer,-float) - zero_or_more

sequence/4

Generates a list with the sequence of N equally spaced floats in the interval [Lower,Upper]. Assumes N > 0 and Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,N,List)

Mode and number of proofs:

sequence(+float,+float,+positive_integer,-list(float)) - zero_or_one

sequence/5

Generates a list with the sequence of Step spaced floats in the interval [Lower,Upper]. Also returns the length of the list. Assumes Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,Step,List,Length)

Mode and number of proofs:

sequence(+float,+float,+float,-list(float),-positive_integer) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

integer

Integer data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:56:0

Date: 2025-05-26

Compilation flags:

static, context_switching_calls

Extends:

public number

Remarks:

	Portability notes: This object will use the backend Prolog system between/3, plus/3, and succ/2 built-in predicates when available.

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	between/3

	plus/3

	succ/2

	sequence/3

	sequence/4

	power_sequence/4

	Protected predicates

	Private predicates

	Operators

Public predicates

between/3

Returns integers in the interval defined by the two first arguments.

Compilation flags:

static

Template:

between(Lower,Upper,Integer)

Mode and number of proofs:

between(+integer,+integer,+integer) - zero_or_one

between(+integer,+integer,-integer) - zero_or_more

plus/3

Reversible integer sum. At least two of the arguments must be instantiated to integers.

Compilation flags:

static

Template:

plus(I,J,Sum)

Mode and number of proofs:

plus(+integer,+integer,?integer) - zero_or_one

plus(+integer,?integer,+integer) - zero_or_one

plus(?integer,+integer,+integer) - zero_or_one

succ/2

Successor of a natural number. At least one of the arguments must be instantiated to a natural number.

Compilation flags:

static

Template:

succ(I,J)

Mode and number of proofs:

succ(+integer,?integer) - zero_or_one

succ(?integer,+integer) - zero_or_one

sequence/3

Generates a list with the sequence of all integers in the interval [Lower,Upper]. Assumes Lower =< Upper and fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,List)

Mode and number of proofs:

sequence(+integer,+integer,-list(integer)) - zero_or_one

sequence/4

Generates a list with the sequence of integers in the interval [Lower,Upper] by Step. Assumes Lower =< Upper, Step >= 1 and fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,Step,List)

Mode and number of proofs:

sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

power_sequence/4

Generates a list of exponentiation results given [Lower,Upper] sequence of exponents and Base. Assumes Lower =< Upper and Base > 1 and fails otherwise.

Compilation flags:

static

Template:

power_sequence(Lower,Upper,Base,List)

Mode and number of proofs:

power_sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

list

List predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 4:3:0

Date: 2024-05-24

Compilation flags:

static, context_switching_calls

Implements:

public listp

Extends:

public compound

Remarks:

	Portability notes: This object will use the backend Prolog system msort/2 and sort/4 built-in predicates when available.

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	as_difflist/2

	Protected predicates

	Private predicates

	Operators

Public predicates

as_difflist/2

Converts a list to a difference list.

Compilation flags:

static

Template:

as_difflist(List,Diffist)

Mode and number of proofs:

as_difflist(+list,-difference_list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list(Type), numberlist, varlist, difflist

 object

list(Type)

List predicates with elements constrained to a single type.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:22:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 as_difflist/2 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, numberlist, varlist, difflist

 protocol

listp

List protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:18:0

Date: 2024-05-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	append/2

	append/3

	delete/3

	delete_matches/3

	empty/1

	flatten/2

	hamming_distance/3

	keysort/2

	last/2

	length/2

	max/2

	member/2

	memberchk/2

	min/2

	msort/2

	msort/3

	nextto/3

	nth0/3

	nth0/4

	nth1/3

	nth1/4

	sequential_occurrences/2

	sequential_occurrences/3

	occurrences/2

	occurrences/3

	partition/5

	permutation/2

	prefix/2

	prefix/3

	proper_prefix/2

	proper_prefix/3

	remove_duplicates/2

	reverse/2

	same_length/2

	same_length/3

	select/3

	selectchk/3

	select/4

	selectchk/4

	sort/2

	sort/3

	sort/4

	split/4

	sublist/2

	subsequence/3

	subsequence/4

	substitute/4

	subtract/3

	suffix/2

	suffix/3

	proper_suffix/2

	proper_suffix/3

	take/3

	drop/3

	Protected predicates

	Private predicates

	Operators

Public predicates

append/2

Appends all lists in a list of lists.

Compilation flags:

static

Template:

append(Lists,Concatenation)

Mode and number of proofs:

append(+list(list),?list) - zero_or_one

append/3

Appends two lists.

Compilation flags:

static

Template:

append(List1,List2,List)

Mode and number of proofs:

append(?list,?list,?list) - zero_or_more

delete/3

Deletes from a list all occurrences of an element returning the list of remaining elements. Uses ==/2 for element comparison.

Compilation flags:

static

Template:

delete(List,Element,Remaining)

Mode and number of proofs:

delete(@list,@term,?list) - one

delete_matches/3

Deletes all matching elements from a list, returning the list of remaining elements. Uses =/2 for element comparison.

Compilation flags:

static

Template:

delete_matches(List,Element,Remaining)

Mode and number of proofs:

delete_matches(@list,@term,?list) - one

empty/1

True if the argument is an empty list.

Compilation flags:

static

Template:

empty(List)

Mode and number of proofs:

empty(@list) - zero_or_one

flatten/2

Flattens a list of lists into a list.

Compilation flags:

static

Template:

flatten(List,Flatted)

Mode and number of proofs:

flatten(+list,-list) - one

hamming_distance/3

Calculates the Hamming distance between two lists (using equality to compare list elements). Fails if the two lists are not of the same length.

Compilation flags:

static

Template:

hamming_distance(List1,List2,Distance)

Mode and number of proofs:

hamming_distance(+list,+list,-integer) - zero_or_one

keysort/2

Sorts a list of key-value pairs in ascending order.

Compilation flags:

static

Template:

keysort(List,Sorted)

Mode and number of proofs:

keysort(+list(pair),-list(pair)) - one

last/2

List last element (if it exists).

Compilation flags:

static

Template:

last(List,Last)

Mode and number of proofs:

last(?list,?term) - zero_or_more

length/2

List length.

Compilation flags:

static

Template:

length(List,Length)

Mode and number of proofs:

length(?list,?integer) - zero_or_more

max/2

Determines the list maximum value using standard order. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list,-term) - zero_or_one

member/2

Element is a list member.

Compilation flags:

static

Template:

member(Element,List)

Mode and number of proofs:

member(?term,?list) - zero_or_more

memberchk/2

Checks if a term is a member of a list.

Compilation flags:

static

Template:

memberchk(Element,List)

Mode and number of proofs:

memberchk(?term,?list) - zero_or_one

min/2

Determines the minimum value in a list using standard order. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list,-term) - zero_or_one

msort/2

Sorts a list in ascending order (duplicated elements are not removed).

Compilation flags:

static

Template:

msort(List,Sorted)

Mode and number of proofs:

msort(+list,-list) - one

msort/3

Sorts a list using a user-specified comparison predicate modeled on the standard compare/3 predicate (duplicated elements are not removed).

Compilation flags:

static

Template:

msort(Closure,List,Sorted)

Meta-predicate template:

msort(3,*,*)

Mode and number of proofs:

msort(+callable,+list,-list) - one

nextto/3

X and Y are consecutive elements in List.

Compilation flags:

static

Template:

nextto(X,Y,List)

Mode and number of proofs:

nextto(?term,?term,?list) - zero_or_more

nth0/3

Nth element of a list (counting from zero).

Compilation flags:

static

Template:

nth0(Nth,List,Element)

Mode and number of proofs:

nth0(?integer,?list,?term) - zero_or_more

nth0/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth0(Nth,List,Element,Rest)

Mode and number of proofs:

nth0(?integer,?list,?term,?list) - zero_or_more

nth1/3

Nth element of a list (counting from one).

Compilation flags:

static

Template:

nth1(Nth,List,Element)

Mode and number of proofs:

nth1(?integer,?list,?term) - zero_or_more

nth1/4

Nth element of a list (counting from one). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth1(Nth,List,Element,Rest)

Mode and number of proofs:

nth1(?integer,?list,?term,?list) - zero_or_more

sequential_occurrences/2

Counts the number of sequential occurrences of each List element, unifying Occurrences with a list of Element-Count pairs. Uses term equality for element comparison.

Compilation flags:

static

Template:

sequential_occurrences(List,Occurrences)

Mode and number of proofs:

sequential_occurrences(@list,-list(pair(term,positive_integer))) - one

sequential_occurrences/3

Counts the number of sequential occurrences of each List element, unifying Occurrences with a list of Element-Count pairs. Uses Closure for element comparison.

Compilation flags:

static

Template:

sequential_occurrences(List,Closure,Occurrences)

Mode and number of proofs:

sequential_occurrences(@list,@callable,-list(pair(term,positive_integer))) - one

occurrences/2

Counts the number of occurrences of each List element, unifying Occurrences with a sorted list of Element-Count pairs. Uses term equality for element comparison.

Compilation flags:

static

Template:

occurrences(List,Occurrences)

Mode and number of proofs:

occurrences(@list,-list(pair(term,positive_integer))) - one

occurrences/3

Counts the number of occurrences of each List element, unifying Occurrences with a sorted list of Element-Count pairs. Uses Closure for element comparison.

Compilation flags:

static

Template:

occurrences(List,Closure,Occurrences)

Meta-predicate template:

occurrences(*,2,*)

Mode and number of proofs:

occurrences(@list,@callable,-list(pair(term,positive_integer))) - one

partition/5

Partitions a list in lists with values less, equal, and greater than a given value (using standard order).

Compilation flags:

static

Template:

partition(List,Value,Less,Equal,Greater)

Mode and number of proofs:

partition(+list,+number,-list,-list,-list) - one

permutation/2

The two lists are a permutation of the same list.

Compilation flags:

static

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(?list,?list) - zero_or_more

prefix/2

Prefix is a prefix of List.

Compilation flags:

static

Template:

prefix(Prefix,List)

Mode and number of proofs:

prefix(?list,+list) - zero_or_more

prefix/3

Prefix is a prefix of length Length of List.

Compilation flags:

static

Template:

prefix(Prefix,Length,List)

Mode and number of proofs:

prefix(?list,+integer,+list) - zero_or_one

prefix(?list,-integer,+list) - zero_or_more

proper_prefix/2

Prefix is a proper prefix of List.

Compilation flags:

static

Template:

proper_prefix(Prefix,List)

Mode and number of proofs:

proper_prefix(?list,+list) - zero_or_more

proper_prefix/3

Prefix is a proper prefix of length Length of List.

Compilation flags:

static

Template:

proper_prefix(Prefix,Length,List)

Mode and number of proofs:

proper_prefix(?list,+integer,+list) - zero_or_one

proper_prefix(?list,-integer,+list) - zero_or_more

remove_duplicates/2

Removes duplicated list elements using equality (==/2) for comparison and keeping the left-most element when repeated.

Compilation flags:

static

Template:

remove_duplicates(List,Set)

Mode and number of proofs:

remove_duplicates(+list,-list) - one

reverse/2

Reverses a list.

Compilation flags:

static

Template:

reverse(List,Reversed)

Mode and number of proofs:

reverse(+list,?list) - zero_or_one

reverse(?list,+list) - zero_or_one

reverse(-list,-list) - one_or_more

same_length/2

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2)

Mode and number of proofs:

same_length(+list,?list) - zero_or_one

same_length(?list,+list) - zero_or_one

same_length(-list,-list) - one_or_more

same_length/3

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2,Length)

Mode and number of proofs:

same_length(+list,?list,?integer) - zero_or_one

same_length(?list,+list,?integer) - zero_or_one

same_length(-list,-list,-integer) - one_or_more

select/3

Selects an element from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

select(Element,List,Remaining)

Mode and number of proofs:

select(?term,?list,?list) - zero_or_more

selectchk/3

Checks that an element can be selected from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

selectchk(Element,List,Remaining)

Mode and number of proofs:

selectchk(?term,?list,?list) - zero_or_one

select/4

Selects an element from a list, replacing it by a new element and returning the resulting list.

Compilation flags:

static

Template:

select(Old,OldList,New,NewList)

Mode and number of proofs:

select(?term,?list,?term,?list) - zero_or_more

selectchk/4

Checks that an element from a list can be replaced by a new element, returning the resulting list.

Compilation flags:

static

Template:

selectchk(Old,OldList,New,NewList)

Mode and number of proofs:

selectchk(?term,?list,?term,?list) - zero_or_one

sort/2

Sorts a list in ascending order (duplicated elements are removed).

Compilation flags:

static

Template:

sort(List,Sorted)

Mode and number of proofs:

sort(+list,-list) - one

sort/3

Sorts a list using a user-specified comparison predicate modeled on the standard compare/3 predicate (duplicated elements are removed).

Compilation flags:

static

Template:

sort(Closure,List,Sorted)

Meta-predicate template:

sort(3,*,*)

Mode and number of proofs:

sort(+callable,+list,-list) - one

sort/4

Sorts a list using the given key and order. Uses the standard term comparison operators for the order. The key selects the argument in each element in the list to use for comparisons. A key value of zero uses the whole element for comparisons.

Compilation flags:

static

Template:

sort(Key,Order,List,Sorted)

Mode and number of proofs:

sort(+non_negative_integer,+atom,+list,-list) - one

Remarks:

	Removing duplicates: Use one of the @< or @> orders.

	Keeping duplicates: Use one of the @=< or @>= orders.

	Sorting in ascending order: Use one of the @< or @=< orders.

	Sorting in descending order: Use one of the @> or @>= orders.

split/4

Splits a list into sublists of a given length. Also returns a list with the remaining elements. Fails if the length is zero or negative.

Compilation flags:

static

Template:

split(List,Length,Sublists,Remaining)

Mode and number of proofs:

split(+list,+integer,-list(list),-list) - zero_or_one

sublist/2

The first list is a sublist of the second.

Compilation flags:

static

Template:

sublist(Sublist,List)

Mode and number of proofs:

sublist(?list,+list) - zero_or_more

subsequence/3

List is an interleaving of Subsequence and Remaining. Element order is preserved.

Compilation flags:

static

Template:

subsequence(List,Subsequence,Remaining)

Mode and number of proofs:

subsequence(?list,?list,?list) - zero_or_more

subsequence/4

Generates subsequences of a given length from a list. Also returns the remaining elements. Element order is preserved.

Compilation flags:

static

Template:

subsequence(List,Length,Subsequence,Remaining)

Mode and number of proofs:

subsequence(+list,+integer,?list,?list) - zero_or_more

substitute/4

Substitutes all occurrences of Old in List by New, returning NewList. Uses term equality for element comparison.

Compilation flags:

static

Template:

substitute(Old,List,New,NewList)

Mode and number of proofs:

substitute(@term,@list,@term,-list) - one

subtract/3

Removes all elements in the second list from the first list, returning the list of remaining elements.

Compilation flags:

static

Template:

subtract(List,Elements,Remaining)

Mode and number of proofs:

subtract(+list,+list,-list) - one

suffix/2

Suffix is a suffix of List.

Compilation flags:

static

Template:

suffix(Suffix,List)

Mode and number of proofs:

suffix(?list,+list) - zero_or_more

suffix/3

Suffix is a suffix of length Length of List.

Compilation flags:

static

Template:

suffix(Suffix,Length,List)

Mode and number of proofs:

suffix(?list,+integer,+list) - zero_or_one

suffix(?list,-integer,+list) - zero_or_more

proper_suffix/2

Suffix is a proper suffix of List.

Compilation flags:

static

Template:

proper_suffix(Suffix,List)

Mode and number of proofs:

proper_suffix(?list,+list) - zero_or_more

proper_suffix/3

Suffix is a proper suffix of length Length of List.

Compilation flags:

static

Template:

proper_suffix(Suffix,Length,List)

Mode and number of proofs:

proper_suffix(?list,+integer,+list) - zero_or_one

proper_suffix(?list,-integer,+list) - zero_or_more

take/3

Takes the first N elements of a list. Fails if the list have fewer than N elements.

Compilation flags:

static

Template:

take(N,List,Elements)

Mode and number of proofs:

take(+integer,+list,-list) - zero_or_one

drop/3

Drops the first N elements of a list. Fails if the list have fewer than N elements.

Compilation flags:

static

Template:

drop(N,List,Remaining)

Mode and number of proofs:

drop(+integer,+list,-list) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

list, list(Type), numberlistp, varlistp

 object

natural

Natural numbers data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2025-01-16

Compilation flags:

static, context_switching_calls

Extends:

public integer

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 between/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 plus/3 power_sequence/4 sequence/3 sequence/4 singletons/2 subsumes/2 subterm/2 succ/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

number

Number data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:14:0

Date: 2023-12-07

Compilation flags:

static, context_switching_calls

Extends:

public atomic

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	approximately_equal/2

	approximately_equal/3

	essentially_equal/3

	tolerance_equal/4

	=~= / 2

	Protected predicates

	Private predicates

	Operators

	op(700,xfx,=~=)

Public predicates

approximately_equal/2

Compares two numbers for approximate equality given the epsilon arithmetic constant value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * epsilon. No type-checking.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2)

Mode and number of proofs:

approximately_equal(+number,+number) - zero_or_one

approximately_equal/3

Compares two numbers for approximate equality given a user-defined epsilon value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * Epsilon. No type-checking.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

approximately_equal(+number,+number,+number) - zero_or_one

Remarks:

	Epsilon range: Epsilon should be the epsilon arithmetic constant value or a small multiple of it. Only use a larger value if a greater error is expected.

	Comparison with essential equality: For the same epsilon value, approximate equality is weaker requirement than essential equality.

essentially_equal/3

Compares two numbers for essential equality given an epsilon value using the de facto standard formula abs(Number1 - Number2) =< min(abs(Number1), abs(Number2)) * Epsilon. No type-checking.

Compilation flags:

static

Template:

essentially_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

essentially_equal(+number,+number,+number) - zero_or_one

Remarks:

	Comparison with approximate equality: For the same epsilon value, essential equality is a stronger requirement than approximate equality.

tolerance_equal/4

Compares two numbers for close equality given relative and absolute tolerances using the de facto standard formula abs(Number1 - Number2) =< max(RelativeTolerance * max(abs(Number1), abs(Number2)), AbsoluteTolerance). No type-checking.

Compilation flags:

static

Template:

tolerance_equal(Number1,Number2,RelativeTolerance,AbsoluteTolerance)

Mode and number of proofs:

tolerance_equal(+number,+number,+number,+number) - zero_or_one

=~= / 2

Compares two floats (or lists of floats) for approximate equality using 100*epsilon for the absolute error and, if that fails, 99.999% accuracy for the relative error. Note that these precision values may not be adequate for all cases. No type-checking.

Compilation flags:

static

Template:

=~=(Float1,Float2)

Mode and number of proofs:

=~=(+number,+number) - zero_or_one

=~=(+list(number),+list(number)) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

op(700,xfx,=~=)

Scope:

public

 object

numberlist

List of numbers predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:16:0

Date: 2025-03-13

Compilation flags:

static, context_switching_calls

Implements:

public numberlistp

Extends:

public list

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 as_difflist/2 average/2 chebyshev_distance/3 chebyshev_norm/2 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 euclidean_distance/3 euclidean_norm/2 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 least_common_multiple/2 length/2 manhattan_distance/3 manhattan_norm/2 max/2 median/2 member/2 memberchk/2 min/2 min_max/3 modes/2 msort/2 msort/3 new/1 nextto/3 normalize_range/2 normalize_range/4 normalize_scalar/2 normalize_unit/2 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 product/2 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 rescale/3 reverse/2 same_length/2 same_length/3 scalar_product/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 softmax/2 softmax/3 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 sum/2 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), varlist, difflist

 protocol

numberlistp

List of numbers protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:10:0

Date: 2025-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	min/2

	max/2

	min_max/3

	product/2

	sum/2

	average/2

	median/2

	modes/2

	euclidean_norm/2

	chebyshev_norm/2

	manhattan_norm/2

	euclidean_distance/3

	chebyshev_distance/3

	manhattan_distance/3

	scalar_product/3

	normalize_range/2

	normalize_range/4

	normalize_unit/2

	normalize_scalar/2

	rescale/3

	least_common_multiple/2

	softmax/2

	softmax/3

	Protected predicates

	Private predicates

	Operators

Public predicates

min/2

Determines the minimum value in a list using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list(number),-number) - zero_or_one

max/2

Determines the list maximum value using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list(number),-number) - zero_or_one

min_max/3

Determines the minimum and maximum values in a list using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

min_max(List,Minimum,Maximum)

Mode and number of proofs:

min_max(+list(number),-number,-number) - zero_or_one

product/2

Calculates the product of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

product(List,Product)

Mode and number of proofs:

product(+list(number),-number) - zero_or_one

sum/2

Calculates the sum of all list numbers. Returns the integer zero if the list is empty.

Compilation flags:

static

Template:

sum(List,Sum)

Mode and number of proofs:

sum(+list(number),-number) - one

average/2

Calculates the average (i.e., arithmetic mean) of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

average(List,Average)

Mode and number of proofs:

average(+list(number),-float) - zero_or_one

median/2

Calculates the median of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median(List,Median)

Mode and number of proofs:

median(+list(number),-float) - zero_or_one

modes/2

Returns the list of modes of a list of numbers in ascending order. Fails if the list is empty.

Compilation flags:

static

Template:

modes(List,Modes)

Mode and number of proofs:

modes(+list(number),-list(number)) - zero_or_one

euclidean_norm/2

Calculates the Euclidean norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

euclidean_norm(List,Norm)

Mode and number of proofs:

euclidean_norm(+list(number),-float) - zero_or_one

chebyshev_norm/2

Calculates the Chebyshev norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

chebyshev_norm(List,Norm)

Mode and number of proofs:

chebyshev_norm(+list(integer),-integer) - zero_or_one

chebyshev_norm(+list(float),-float) - zero_or_one

manhattan_norm/2

Calculates the Manhattan norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

manhattan_norm(List,Norm)

Mode and number of proofs:

manhattan_norm(+list(integer),-integer) - zero_or_one

manhattan_norm(+list(float),-float) - zero_or_one

euclidean_distance/3

Calculates the Euclidean distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

euclidean_distance(List1,List2,Distance)

Mode and number of proofs:

euclidean_distance(+list(number),+list(number),-float) - zero_or_one

chebyshev_distance/3

Calculates the Chebyshev distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

chebyshev_distance(List1,List2,Distance)

Mode and number of proofs:

chebyshev_distance(+list(integer),+list(integer),-integer) - zero_or_one

chebyshev_distance(+list(float),+list(float),-float) - zero_or_one

manhattan_distance/3

Calculates the Manhattan distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

manhattan_distance(List1,List2,Distance)

Mode and number of proofs:

manhattan_distance(+list(integer),+list(integer),-integer) - zero_or_one

manhattan_distance(+list(float),+list(float),-float) - zero_or_one

scalar_product/3

Calculates the scalar product of two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

scalar_product(List1,List2,Product)

Mode and number of proofs:

scalar_product(+list(integer),+list(integer),-integer) - zero_or_one

scalar_product(+list(float),+list(float),-float) - zero_or_one

normalize_range/2

Normalizes a list of numbers into the [0.0,1.0] range. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_range(List,NormalizedList)

Mode and number of proofs:

normalize_range(+list(number),-list(float)) - one

normalize_range/4

Normalizes a list of numbers into the given range. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_range(List,Minimum,Maximum,NormalizedList)

Mode and number of proofs:

normalize_range(+list(number),+number,+number,-list(float)) - one

normalize_unit/2

Normalizes a list of numbers returning its unit vector (i.e., a list with Euclidean norm equal to one). Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_unit(List,NormalizedList)

Mode and number of proofs:

normalize_unit(+list(number),-list(float)) - one

normalize_scalar/2

Normalizes a list of numbers such that the sum of all numbers is equal to one. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_scalar(List,NormalizedList)

Mode and number of proofs:

normalize_scalar(+list(number),-list(float)) - one

rescale/3

Rescales all numbers in a list by the given factor.

Compilation flags:

static

Template:

rescale(List,Factor,RescaledList)

Mode and number of proofs:

rescale(+list(integer),+integer,-list(integer)) - one

rescale(+list(number),+float,-list(float)) - one

least_common_multiple/2

Computes the least common multiple of a list of two or more positive integers. Fails if the list is empty or contains a single element. Fails also if any of the elements is zero. May require backend support for unbound integer arithmetic.

Compilation flags:

static

Template:

least_common_multiple(Integers,LeastCommonMultiple)

Mode and number of proofs:

least_common_multiple(+list(positive_integer),-positive_integer) - zero_or_one

softmax/2

Computes the softmax of a list of floats, returning a probability distribution.

Compilation flags:

static

Template:

softmax(Floats,Softmax)

Mode and number of proofs:

softmax(+list(float),-list(float)) - one

softmax/3

Computes the softmax of a list of floats with the given temperature, returning a probability distribution.

Compilation flags:

static

Template:

softmax(Floats,Temperature,Softmax)

Mode and number of proofs:

softmax(+list(float),+positive_float,-list(float)) - one

Remarks:

	Temperature > 1.0: Makes the distribution more uniform.

	Temperature < 1.0: Makes the distribution more concentrated on the largest values.

	Temperature = 1.0: Standard softmax behavior.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

numberlist, listp, varlistp

 object

pairs

Useful predicates over lists of pairs (key-value terms).

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:1:1

Date: 2023-11-21

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Usage: This object can be loaded independently of other entities in the types library by using the goal logtalk_load(types(pairs)).

Inherited public predicates:

(none)

	Public predicates

	keys_values/3

	keys/2

	key/2

	values/2

	value/3

	transpose/2

	group_sorted_by_key/2

	group_consecutive_by_key/2

	group_by_key/2

	map/3

	Protected predicates

	Private predicates

	Operators

Public predicates

keys_values/3

Converts between a list of pairs and lists of keys and values. When converting to pairs, this predicate fails if the list of keys and the list of values have different lengths.

Compilation flags:

static

Template:

keys_values(Pairs,Keys,Values)

Mode and number of proofs:

keys_values(+list(pair),-list,-list) - one

keys_values(-list(pair),+list,+list) - zero_or_one

keys/2

Returns a list of keys from a list of pairs.

Compilation flags:

static

Template:

keys(Pairs,Keys)

Mode and number of proofs:

keys(+list(pair),-list) - one

key/2

Enumerates by backtracking all keys from a list of pairs.

Compilation flags:

static

Template:

key(Pairs,Key)

Mode and number of proofs:

key(+list(pair),-term) - zero_or_more

values/2

Returns a list of values from a list of pairs.

Compilation flags:

static

Template:

values(Pairs,Values)

Mode and number of proofs:

values(+list(pair),-list) - one

value/3

Returns a value addressed by the given path (a key or a list of keys in the case of nested list of pairs). Fails if path does not exist.

Compilation flags:

static

Template:

value(Pairs,Path,Value)

Mode and number of proofs:

value(+list(pair),+term,-term) - zero_or_one

value(+list(pair),+list,-term) - zero_or_one

transpose/2

Transposes a list of pairs by swapping each pair key and value. The relative order of the list elements is kept.

Compilation flags:

static

Template:

transpose(Pairs,TransposedPairs)

Mode and number of proofs:

transpose(+list(pair),-list(pair)) - one

group_sorted_by_key/2

Groups pairs by key by sorting them and then constructing new pairs by grouping all values for a given key in a list. Keys are compared using equality. Relative order of values per key is kept. Resulting list of pairs is sorted by key.

Compilation flags:

static

Template:

group_sorted_by_key(Pairs,Groups)

Mode and number of proofs:

group_sorted_by_key(+list(pair),-list(pair)) - one

group_consecutive_by_key/2

Groups pairs by constructing new pairs by grouping all values for consecutive key in a list. Keys are compared using equality. The relative order of the values for the same key is kept.

Compilation flags:

static

Template:

group_consecutive_by_key(Pairs,Groups)

Mode and number of proofs:

group_consecutive_by_key(+list(pair),-list(pair)) - one

group_by_key/2

Same as the group_sorted_by_key/2 predicate. Deprecated.

Compilation flags:

static

Template:

group_by_key(Pairs,Groups)

Mode and number of proofs:

group_by_key(+list(pair),-list(pair)) - one

map/3

Maps a list into pairs using a closure that applies to each list element to compute its key.

Compilation flags:

static

Template:

map(Closure,List,Pairs)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(@callable,+list,-list(pair)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

term

Term utility predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:11:0

Date: 2022-05-13

Compilation flags:

static, context_switching_calls

Implements:

public termp

Aliases:

termp variables/2 as vars/2

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

termp

Term utility predicates protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:35:0

Date: 2022-05-13

Compilation flags:

static

Extends:

public comparingp

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2

	Public predicates

	depth/2

	ground/1

	new/1

	occurs/2

	subsumes/2

	subterm/2

	valid/1

	check/1

	variant/2

	variables/2

	singletons/2

	numbervars/3

	numbervars/1

	varnumbers/3

	varnumbers/2

	Protected predicates

	Private predicates

	Operators

Public predicates

depth/2

True if the depth of Term is Depth. The depth of atomic terms is zero; the depth of a compound term is one plus the maximum depth of its sub-terms.

Compilation flags:

static

Template:

depth(Term,Depth)

Mode and number of proofs:

depth(@term,?integer) - zero_or_one

ground/1

True if the argument is ground. Deprecated. Use the ground/1 standard predicate instead.

Compilation flags:

static

Template:

ground(Term)

Mode and number of proofs:

ground(@term) - zero_or_one

new/1

Creates a new term instance (if meaningful).

Compilation flags:

static

Template:

new(Term)

Mode and number of proofs:

new(-nonvar) - zero_or_one

occurs/2

True if the variable occurs in the term.

Compilation flags:

static

Template:

occurs(Variable,Term)

Mode and number of proofs:

occurs(@var,@term) - zero_or_one

subsumes/2

The first term subsumes the second term. Deprecated. Use the subsumes_term/2 standard predicate instead.

Compilation flags:

static

Template:

subsumes(General,Specific)

Mode and number of proofs:

subsumes(@term,@term) - zero_or_one

subterm/2

The first term is a subterm of the second term.

Compilation flags:

static

Template:

subterm(Subterm,Term)

Mode and number of proofs:

subterm(?term,+term) - zero_or_more

valid/1

Term is valid.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

check/1

Checks if a term is valid. Throws an exception if the term is not valid.

Compilation flags:

static

Template:

check(Term)

Mode and number of proofs:

check(@nonvar) - one

variant/2

Each term is a variant of the other (i.e., they are structurally equivalent).

Compilation flags:

static

Template:

variant(Term1,Term2)

Mode and number of proofs:

variant(@term,@term) - zero_or_one

variables/2

Returns a list of all term variables (ordered as found when doing a depth-first, left-to-right traversal of Term). Deprecated. Use the standard term_variables/2 predicate instead.

Compilation flags:

static

Template:

variables(Term,List)

Mode and number of proofs:

variables(@term,-list) - one

singletons/2

Returns a list of all term singleton variables (ordered as found when doing a depth-first, left-to-right traversal of Term).

Compilation flags:

static

Template:

singletons(Term,Singletons)

Mode and number of proofs:

singletons(@term,-list) - one

numbervars/3

Grounds a term by replacing all variables with '$VAR'(N) terms with N starting at From. The Next argument is unified with the next value for N after binding all variables.

Compilation flags:

static

Template:

numbervars(Term,From,Next)

Mode and number of proofs:

numbervars(?term,+integer,?integer) - zero_or_one

numbervars/1

Grounds a term by replacing all variables with '$VAR'(N) terms with N starting at 0.

Compilation flags:

static

Template:

numbervars(Term)

Mode and number of proofs:

numbervars(?term) - zero_or_one

varnumbers/3

Replaces all '$VAR'(N) sub-terms in a term with fresh variables for all values of N grater or equal to From. Variables in Term are shared with Copy.

Compilation flags:

static

Template:

varnumbers(Term,From,Copy)

Mode and number of proofs:

varnumbers(@term,+integer,?term) - zero_or_one

varnumbers/2

Replaces all '$VAR'(N) sub-terms in a term with fresh variables for all values of N grater or equal to 0. Variables in Term are shared with Copy.

Compilation flags:

static

Template:

varnumbers(Term,Copy)

Mode and number of proofs:

varnumbers(@term,?term) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

term

 object

type

Type checking predicates. User extensible. New types can be defined by adding clauses for the type/1 and check/2 multifile predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:5:1

Date: 2024-09-26

Compilation flags:

static, context_switching_calls, complements(restrict)

Uses:

list

Remarks:

	Logtalk specific types: entity, object, protocol, category, entity_identifier, object_identifier, protocol_identifier, category_identifier, event, predicate.

	Prolog module related types (when the backend compiler supports modules): module, module_identifier, qualified_callable.

	Prolog base types: term, var, nonvar, atomic, atom, number, integer, float, compound, callable, ground.

	Atom derived types: non_quoted_atom, non_empty_atom, boolean, character, in_character, char, operator_specifier, hex_char.

	Atom derived parametric types: atom(CharSet), atom(CharSet,Length), non_empty_atom(CharSet), character(CharSet), in_character(CharSet), char(CharSet).

	Number derived types: positive_number, negative_number, non_positive_number, non_negative_number.

	Float derived types: positive_float, negative_float, non_positive_float, non_negative_float, probability.

	Integer derived types: positive_integer, negative_integer, non_positive_integer, non_negative_integer, byte, in_byte, character_code, in_character_code, code, operator_priority, hex_code.

	Integer derived parametric types: character_code(CharSet), in_character_code(CharSet), code(CharSet).

	List types (compound derived types): list, non_empty_list, partial_list, list_or_partial_list, list(Type), list(Type,Length), list(Type,Min,Max), list(Type,Length,Min,Max), non_empty_list(Type), codes, chars.

	Difference list types (compound derived types): difference_list, difference_list(Type).

	Other compound derived types: compound(Name,Types), predicate_indicator, non_terminal_indicator, predicate_or_non_terminal_indicator, clause, grammar_rule, pair, pair(KeyType,ValueType), cyclic, acyclic.

	Stream types: stream, stream_or_alias, stream(Property), stream_or_alias(Property).

	Other types: Object::Closure, between(Type,Lower,Upper), property(Type,LambdaExpression), one_of(Type,Set), var_or(Type), ground(Type), types(Types), constrain(Type,Closure), type.

	Type predicate notes: This type is used to check for an object public predicate specified as Object::Functor/Arity.

	Type boolean notes: The two value of this type are the atoms true and false.

	Stream types notes: In the case of the stream(Property) and stream_or_alias(Property) types, Property must be a valid stream property.

	Type order notes: The three possible values of this type are the single character atoms <, =, and >.

	Type character_code notes: This type takes into account Unicode support by the backend compiler. When Unicode is supported, it distinguishes between BMP and full support. When Unicode is not supported, it assumes a byte representation for characters.

	Type Object::Closure notes: Allows calling a public object predicate for type-checking. The predicate should provide valid/2 predicate semantics and assume called with a bound argument. The Closure closure is extended with a single argument, the value to be checked.

	Type compound(Name,Types) notes: This type verifies that a compound term have the given Name and its arguments conform to Types.

	Type between(Type, Lower, Upper) notes: The type argument allows distinguishing between numbers and other types. It also allows choosing between mixed integer/float comparisons and strict float or integer comparisons. The term is type-checked before testing for interval membership.

	Type property(Type, Lambda) notes: Verifies that Term satisfies a property described using a lambda expression of the form [Parameter]>>Goal. The lambda expression is applied in the context of user. The term is type-checked before calling the goal.

	Type one_of(Type, Set) notes: For checking if a given term is an element of a set. The set is represented using a list. The term is type-checked before testing for set membership.

	Type var_or(Type) notes: Allows checking if a term is either a variable or a valid value of the given type.

	Type ground(Type) notes: Allows checking if a term is ground and a valid value of the given type.

	Type types(Types) notes: Allows checking if a term is a valid value for one of the types in a list of types.

	Type constrain(Type,Closure) notes: Allows checking if a term is a valid value for the given type and satisfies the given closure.

	Type type notes: Allows checking if a term is a valid type.

	Type qualified_callable notes: Allows checking if a term is a possibly module-qualified callable term. When the term is qualified, it also checks that the qualification modules are type correct. When the term is not qualified, its semantics are the same as the callable type.

	Design choices: The main predicates are valid/2 and check/3. These are defined using the predicate check/2. Defining clauses for check/2 instead of valid/2 gives the user full control of exception terms without requiring an additional predicate.

	Error context: The built-in execution-context method context/1 can be used to provide the calling context for errors when using the predicate check/3.

	Registering new types: New types can be registered by defining clauses for the type/1 and check/2 multifile predicates. Clauses for both predicates must have a bound first argument to avoid introducing spurious choice-points when type-checking terms.

	Meta-types: Meta-types are types that have one or more sub-type arguments. E.g. var_or(Type). The sub-types of a meta-type can be enumerated by defining a clause for the meta_type/3 multifile predicate.

	Character sets: When testing character or character code based terms (e.g., atom), it is possible to choose a character set (ascii_identifier, ascii_printable, ascii_full, byte, unicode_bmp, or unicode_full) using the parameterizable types.

	Caveats: The type argument (and any type parameterization) to the predicates is not type-checked (or checked for consistency) for performance reasons.

	Unicode limitations: Currently, correct character/code type-checking is only ensured for XVM and SWI-Prolog as other backends do not provide support for querying a Unicode code point category.

Inherited public predicates:

 arbitrary/1 arbitrary/2 edge_case/2 get_seed/1 max_size/1 mutation/3 set_seed/1 shrink/3 shrink_sequence/3 shrinker/1

	Public predicates

	type/1

	meta_type/3

	valid/2

	check/3

	check/2

	Protected predicates

	Private predicates

	Operators

Public predicates

type/1

Table of defined types. A new type can be registered by defining a clause for this predicate and adding a clause for the check/2 multifile predicate.

Compilation flags:

static, multifile

Template:

type(Type)

Mode and number of proofs:

type(?callable) - zero_or_more

meta_type/3

Table of defined meta-types. A registered type that is a meta-type can be described by defining a clause for this predicate to enumerate its sub-types and optional values in case of a single sub-type.

Compilation flags:

static, multifile

Template:

meta_type(MetaType,SubTypes,Values)

Mode and number of proofs:

meta_type(?callable,-list,-list) - zero_or_more

valid/2

True if the given term is of the specified type. Fails otherwise.

Compilation flags:

static

Template:

valid(Type,Term)

Mode and number of proofs:

valid(@callable,@term) - zero_or_one

check/3

True if the given term is of the specified type. Throws an error otherwise using the format error(Error, Context). For the possible values of Error see the check/2 predicate.

Compilation flags:

static

Template:

check(Type,Term,Context)

Mode and number of proofs:

check(@callable,@term,@term) - one_or_error

check/2

True if the given term is of the specified type. Throws an error otherwise. A new type can be added by defining a clause for this predicate and registering it by adding a clause for the type/1 multifile predicate.

Compilation flags:

static, multifile

Template:

check(Type,Term)

Meta-predicate template:

check(::,*)

Mode and number of proofs:

check(@callable,@term) - one_or_error

Exceptions:

Term is not bound as required:

instantiation_error

Term is bound but not of the specified type:

type_error(Type,Term)

Term is the of the correct type but not in the specified domain:

domain_error(Domain,Term)

Term is the of the correct type and domain but the resource it represents does not exist:

existence_error(Type,Term)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

arbitrary, os_types, either, maybe

 object

varlist

List of variables predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2020-05-11

Compilation flags:

static, context_switching_calls

Implements:

public varlistp

Remarks:

(none)

Inherited public predicates:

 append/3 check/1 delete/3 empty/1 flatten/2 last/2 length/2 memberchk/2 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 permutation/2 prefix/2 remove_duplicates/2 reverse/2 same_length/2 select/3 sublist/2 subtract/3 suffix/2 valid/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), numberlist, difflist

 protocol

varlistp

List of variables protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2022-09-19

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	append/3

	delete/3

	empty/1

	flatten/2

	last/2

	length/2

	memberchk/2

	nextto/3

	nth0/3

	nth0/4

	nth1/3

	nth1/4

	permutation/2

	prefix/2

	remove_duplicates/2

	reverse/2

	same_length/2

	select/3

	sublist/2

	subtract/3

	suffix/2

	valid/1

	check/1

	Protected predicates

	Private predicates

	Operators

Public predicates

append/3

Appends two lists.

Compilation flags:

static

Template:

append(List1,List2,List)

Mode and number of proofs:

append(?list,?list,?list) - zero_or_more

delete/3

Deletes from a list all occurrences of an element returning the list of remaining elements.

Compilation flags:

static

Template:

delete(List,Element,Remaining)

Mode and number of proofs:

delete(@list,@term,?list) - one

empty/1

True if the argument is an empty list.

Compilation flags:

static

Template:

empty(List)

Mode and number of proofs:

empty(@list) - zero_or_one

flatten/2

Flattens a list of lists into a list.

Compilation flags:

static

Template:

flatten(List,Flatted)

Mode and number of proofs:

flatten(@list,-list) - one

last/2

List last element (if it exists).

Compilation flags:

static

Template:

last(List,Last)

Mode and number of proofs:

last(@list,@var) - zero_or_one

length/2

List length.

Compilation flags:

static

Template:

length(List,Length)

Mode and number of proofs:

length(@list,?integer) - zero_or_one

memberchk/2

Checks if a variable is a member of a list.

Compilation flags:

static

Template:

memberchk(Element,List)

Mode and number of proofs:

memberchk(@var,@list) - zero_or_one

nextto/3

X and Y are consecutive elements in List.

Compilation flags:

static

Template:

nextto(X,Y,List)

Mode and number of proofs:

nextto(@var,@var,?list) - zero_or_more

nth0/3

Nth element of a list (counting from zero).

Compilation flags:

static

Template:

nth0(Nth,List,Element)

Mode and number of proofs:

nth0(?integer,+list,@var) - zero_or_more

nth0/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth0(Nth,List,Element,Rest)

Mode and number of proofs:

nth0(?integer,+list,@var,?list) - zero_or_more

nth1/3

Nth element of a list (counting from one).

Compilation flags:

static

Template:

nth1(Nth,List,Element)

Mode and number of proofs:

nth1(?integer,+list,@var) - zero_or_more

nth1/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth1(Nth,List,Element,Rest)

Mode and number of proofs:

nth1(?integer,+list,@var,?list) - zero_or_more

permutation/2

The two lists are a permutation of the same list.

Compilation flags:

static

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(@list,@list) - zero_or_one

prefix/2

Prefix is a prefix of List.

Compilation flags:

static

Template:

prefix(Prefix,List)

Mode and number of proofs:

prefix(?list,@list) - zero_or_more

remove_duplicates/2

Removes duplicated variables and keeping the left-most variable when repeated.

Compilation flags:

static

Template:

remove_duplicates(List,Set)

Mode and number of proofs:

remove_duplicates(+list,-list) - one

reverse/2

Reverses a list.

Compilation flags:

static

Template:

reverse(List,Reversed)

Mode and number of proofs:

reverse(@list,?list) - zero_or_one

reverse(?list,@list) - zero_or_one

reverse(-list,-list) - one_or_more

same_length/2

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2)

Mode and number of proofs:

same_length(@list,?list) - zero_or_one

same_length(?list,@list) - zero_or_one

same_length(-list,-list) - one_or_more

select/3

Selects an element from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

select(Element,List,Remaining)

Mode and number of proofs:

select(@var,?list,?list) - zero_or_more

sublist/2

The first list is a sublist of the second.

Compilation flags:

static

Template:

sublist(Sublist,List)

Mode and number of proofs:

sublist(?list,@list) - zero_or_more

subtract/3

Removes all elements in the second list from the first list, returning the list of remaining elements.

Compilation flags:

static

Template:

subtract(List,Elements,Remaining)

Mode and number of proofs:

subtract(@list,@list,-list) - one

suffix/2

Suffix is a suffix of List.

Compilation flags:

static

Template:

suffix(Suffix,List)

Mode and number of proofs:

suffix(?list,@list) - zero_or_more

valid/1

Term is a valid list of variables.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

check/1

Checks if a term is a valid list of variables. Throws an exception if the term is not valid.

Compilation flags:

static

Template:

check(Term)

Mode and number of proofs:

check(@nonvar) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

varlist, listp, numberlistp

 object

ulid

Universally Unique Lexicographically Sortable Identifier (ULID) generator using an atom representation.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static, context_switching_calls

Extends:

public ulid(atom)

Remarks:

(none)

Inherited public predicates:

 generate/1 generate/2 generate/8 timestamp/2 timestamp/8

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid(Representation), ulid_types, uuid, uuid(Representation), ids, ids(Representation,Bytes)

 object

ulid(Representation)

	Representation - Text representation for the ULID. Possible values are atom, chars, and codes.

Universally Unique Lexicographically Sortable Identifier (ULID) generator.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static, context_switching_calls

Implements:

public ulid_protocol

Uses:

fast_random

iso8601

list

os

Remarks:

(none)

Inherited public predicates:

 generate/1 generate/2 generate/8 timestamp/2 timestamp/8

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid, ulid_types, uuid(Representation), uuid, ids, ids(Representation,Bytes)

 protocol

ulid_protocol

Universally Unique Lexicographically Sortable Identifier (ULID) generator protocol.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/1

	generate/2

	generate/8

	timestamp/2

	timestamp/8

	Protected predicates

	Private predicates

	Operators

Public predicates

generate/1

Generates a new ULID.

Compilation flags:

static

Template:

generate(ULID)

Mode and number of proofs:

generate(--ulid) - one

generate/2

Generates a new ULID from a timestamp (number of milliseconds since the Unix epoch: 00:00:00 UTC on January 1, 1970).

Compilation flags:

static

Template:

generate(Milliseconds,ULID)

Mode and number of proofs:

generate(+integer,--ulid) - one

generate/8

Generates a new ULID from a timestamp discrete components.

Compilation flags:

static

Template:

generate(Year,Month,Day,Hours,Minutes,Seconds,Milliseconds,ULID)

Mode and number of proofs:

generate(+integer,+integer,+integer,+integer,+integer,+integer,+integer,--ulid) - one

timestamp/2

Returns the given ULID timestamp (number of milliseconds since the Unix epoch: 00:00:00 UTC on January 1, 1970).

Compilation flags:

static

Template:

timestamp(ULID,Milliseconds)

Mode and number of proofs:

timestamp(++ulid,-integer) - one

timestamp/8

Decodes a ULID into its timestamp discrete components.

Compilation flags:

static

Template:

timestamp(ULID,Year,Month,Day,Hours,Minutes,Seconds,Milliseconds)

Mode and number of proofs:

timestamp(++ulid,-integer,-integer,-integer,-integer,-integer,-integer,-integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

ulid_types

ULID type definition.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

type

Remarks:

	Provided types: This category adds a ulid(Representation) type for type-checking when using the ulid library object. Valid representation values are atom, chars, and codes.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid(Representation), ulid

 object

union_find

Union find data structure implementation.

Availability:

logtalk_load(union_find(loader))

Author: José Antonio Riaza Valverde; adapted to Logtalk by Paulo Moura

Version: 1:0:0

Date: 2022-02-18

Compilation flags:

static, context_switching_calls

Implements:

public union_find_protocol

Extends:

public compound

Uses:

avltree

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 disjoint_sets/2 find/4 find/5 ground/1 make_set/3 new/1 new/2 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 union/4 union_all/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

union_find_protocol

Union-find data structure protocol.

Availability:

logtalk_load(union_find(loader))

Author: José Antonio Riaza Valverde; adapted to Logtalk by Paulo Moura

Version: 1:0:0

Date: 2022-02-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/2

	make_set/3

	union/4

	union_all/3

	find/4

	find/5

	disjoint_sets/2

	Protected predicates

	Private predicates

	Operators

Public predicates

new/2

Creates a new union-find data structure with a list of elements as keys.

Compilation flags:

static

Template:

new(Elements,UnionFind)

Mode and number of proofs:

new(+list(element),?union_find) - zero_or_one

make_set/3

Makes a new set by creating a new element with a unique key Element, a rank of 0, and a parent pointer to itself. The parent pointer to itself indicates that the element is the representative member of its own set.

Compilation flags:

static

Template:

make_set(UnionFind,Element,NewUnionFind)

Mode and number of proofs:

make_set(+union_find,+element,?union_find) - zero_or_one

union/4

Merges the two trees, if distinct, that contain the given elements. The trees are joined by attaching the shorter tree (by rank) to the root of the taller tree. Fails if any of the elements is not found.

Compilation flags:

static

Template:

union(UnionFind,Element1,Element2,NewUnionFind)

Mode and number of proofs:

union(+union_find,+element,+element,?union_find) - zero_or_one

union_all/3

Merges the distinct trees for all the given elements returning the resulting union-find data structure. Fails if any of the elements is not found.

Compilation flags:

static

Template:

union_all(UnionFind,Elements,NewUnionFind)

Mode and number of proofs:

union_all(+union_find,+list(element),?union_find) - zero_or_one

find/4

Finds the root element of a set by following the chain of parent pointers from the given element. Root is the representative member of the set to which the element belongs, and may be element itself. Fails if the element is not found.

Compilation flags:

static

Template:

find(UnionFind,Element,Root,NewUnionFind)

Mode and number of proofs:

find(+union_find,+element,?element,?union_find) - zero_or_one

Remarks:

	Path compression: The structure of the tree containing the element is flattened by making every node point to the root whenever this predicate is used on it.

find/5

Same as the find/4 predicate, but returning also the rank of the root. Fails if the element is not found.

Compilation flags:

static

Template:

find(UnionFind,Element,Root,Rank,UnionFindOut)

Mode and number of proofs:

find(+union_find,+element,?element,?rank,?union_find) - zero_or_one

Remarks:

	Path compression: The structure of the tree containing the element is flattened by making every node point to the root whenever this predicate is used on it.

disjoint_sets/2

Returns the list of disjoint sets in the given union-find data structure.

Compilation flags:

static

Template:

disjoint_sets(UnionFind,Sets)

Mode and number of proofs:

disjoint_sets(+union_find,?sets) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

union_find

 object

uuid

Universally unique identifier (UUID) generator using an atom representation.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:2:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Extends:

public uuid(atom)

Remarks:

(none)

Inherited public predicates:

 random_node/1 uuid_null/1 uuid_v1/2 uuid_v4/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

uuid(Representation), ulid, ulid(Representation), ids, ids(Representation,Bytes)

 object

uuid(Representation)

	Representation - Text representation for the UUID. Possible values are atom, chars, and codes.

Universally unique identifier (UUID) generator.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Implements:

public uuid_protocol

Uses:

fast_random

iso8601

list

os

Remarks:

(none)

Inherited public predicates:

 random_node/1 uuid_null/1 uuid_v1/2 uuid_v4/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

uuid, ulid, ulid(Representation), ids, ids(Representation,Bytes)

 protocol

uuid_protocol

Universally unique identifier (UUID) generator protocol.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2021-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	uuid_v1/2

	uuid_v4/1

	uuid_null/1

	random_node/1

	Protected predicates

	Private predicates

	Operators

Public predicates

uuid_v1/2

Returns a version 1 UUID for the given MAC address (a list of six bytes). The MAC address can be replaced by a random 6 bytes node identifier as per RFC 4122 when the MAC address is not available or should not be disclosed.

Compilation flags:

static

Template:

uuid_v1(MAC,UUID)

Mode and number of proofs:

uuid_v1(+list(byte),--ground) - one

uuid_v4/1

Returns a version 4 UUID.

Compilation flags:

static

Template:

uuid_v4(UUID)

Mode and number of proofs:

uuid_v4(--ground) - one

uuid_null/1

Returns the null UUID.

Compilation flags:

static

Template:

uuid_null(UUID)

Mode and number of proofs:

uuid_null(--ground) - one

random_node/1

Generates a list with six random bytes that can be used in alternative to a MAC address when generating version 1 UUIDs.

Compilation flags:

static

Template:

random_node(Node)

Mode and number of proofs:

random_node(--list(byte)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

zipperp

Zipper protocol.

Availability:

logtalk_load(zippers(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-01-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	zip/2

	zip/3

	unzip/2

	current/2

	next/2

	next/3

	previous/2

	previous/3

	rewind/2

	rewind/3

	forward/2

	forward/3

	apply/2

	insert_before/3

	insert_after/3

	replace/3

	delete_and_previous/2

	delete_and_next/2

	delete_and_unzip/2

	delete_all_before/2

	delete_all_before_and_unzip/2

	delete_all_after/2

	delete_all_after_and_unzip/2

	Protected predicates

	Private predicates

	Operators

Public predicates

zip/2

Adds a zipper to a compound term holding a sequence of elements. Fails if the sequence is empty.

Compilation flags:

static

Template:

zip(Sequence,Zipper)

Mode and number of proofs:

zip(+sequence,--zipper) - zero_or_one

zip/3

Adds a zipper to a compound term holding a sequence of elements. Also returns the first element. Fails if the sequence is empty.

Compilation flags:

static

Template:

zip(Sequence,Zipper,First)

Mode and number of proofs:

zip(+sequence,--zipper,--term) - zero_or_one

unzip/2

Removes a zipper from a sequence.

Compilation flags:

static

Template:

unzip(Zipper,Sequence)

Mode and number of proofs:

unzip(@zipper,--sequence) - one

current/2

Current element.

Compilation flags:

static

Template:

current(Zipper,Current)

Mode and number of proofs:

current(+zipper,?term) - zero_or_one

next/2

Moves to the next element. Fails if already at the last elements.

Compilation flags:

static

Template:

next(Zipper,NewZipper)

Mode and number of proofs:

next(+zipper,--zipper) - zero_or_one

next/3

Moves to and returns the next element. Fails if already at the last elements.

Compilation flags:

static

Template:

next(Zipper,NewZipper,Next)

Mode and number of proofs:

next(+zipper,--zipper,-term) - zero_or_one

previous/2

Moves to the previous element. Fails if already at the first elements.

Compilation flags:

static

Template:

previous(Zipper,NewZipper)

Mode and number of proofs:

previous(+zipper,--zipper) - zero_or_one

previous/3

Moves to and returns the previous element. Fails if already at the first element.

Compilation flags:

static

Template:

previous(Zipper,NewZipper,Previous)

Mode and number of proofs:

previous(+zipper,--zipper,-term) - zero_or_one

rewind/2

Rewinds the zipper so that the first element becomes the current element.

Compilation flags:

static

Template:

rewind(Zipper,NewZipper)

Mode and number of proofs:

rewind(+zipper,--zipper) - one

rewind/3

Rewinds the zipper so that the first element becomes the current element. Also returns the first element.

Compilation flags:

static

Template:

rewind(Zipper,NewZipper,First)

Mode and number of proofs:

rewind(+zipper,--zipper,?term) - zero_or_one

forward/2

Forward the zipper so that the last element becomes the current element.

Compilation flags:

static

Template:

forward(Zipper,NewZipper)

Mode and number of proofs:

forward(+zipper,--zipper) - one

forward/3

Forward the zipper so that the last element becomes the current element. Also returns the last element.

Compilation flags:

static

Template:

forward(Zipper,NewZipper,Last)

Mode and number of proofs:

forward(+zipper,--zipper,?term) - zero_or_one

apply/2

Applies a closure to the current element.

Compilation flags:

static

Template:

apply(Closure,Zipper)

Meta-predicate template:

apply(1,*)

Mode and number of proofs:

apply(+callable,+zipper) - zero_or_more

insert_before/3

Inserts an element before the current one.

Compilation flags:

static

Template:

insert_before(Zipper,Element,NewZipper)

Mode and number of proofs:

insert_before(+zipper,?term,--zipper) - zero_or_one

insert_after/3

Inserts an element after the current one.

Compilation flags:

static

Template:

insert_after(Zipper,Element,NewZipper)

Mode and number of proofs:

insert_after(+zipper,?term,--zipper) - zero_or_one

replace/3

Replaces the current element with a new element.

Compilation flags:

static

Template:

replace(Zipper,NewCurrent,NewZipper)

Mode and number of proofs:

replace(+zipper,?term,--zipper) - one

delete_and_previous/2

Deletes the current element and moves to the previous element. Fails if no previous element exists.

Compilation flags:

static

Template:

delete_and_previous(Zipper,NewZipper)

Mode and number of proofs:

delete_and_previous(+zipper,--zipper) - zero_or_one

delete_and_next/2

Deletes the current element and moves to the next element. Fails if no next element exists.

Compilation flags:

static

Template:

delete_and_next(Zipper,NewZipper)

Mode and number of proofs:

delete_and_next(+zipper,--zipper) - zero_or_one

delete_and_unzip/2

Deletes the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_and_unzip(Zipper,Sequence)

Mode and number of proofs:

delete_and_unzip(+zipper,--sequence) - one

delete_all_before/2

Deletes all elements before the current element.

Compilation flags:

static

Template:

delete_all_before(Zipper,NewZipper)

Mode and number of proofs:

delete_all_before(+zipper,--zipper) - one

delete_all_before_and_unzip/2

Deletes all elements before the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_all_before_and_unzip(Zipper,NewZipper)

Mode and number of proofs:

delete_all_before_and_unzip(+zipper,--sequence) - one

delete_all_after/2

Deletes all elements after the current element.

Compilation flags:

static

Template:

delete_all_after(Zipper,NewZipper)

Mode and number of proofs:

delete_all_after(+zipper,--zipper) - one

delete_all_after_and_unzip/2

Deletes all elements after the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_all_after_and_unzip(Zipper,NewZipper)

Mode and number of proofs:

delete_all_after_and_unzip(+zipper,--sequence) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

zlist

 object

zlist

Zipper list predicates. Zippers should be regarded as opaque terms.

Availability:

logtalk_load(zippers(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2019-03-12

Compilation flags:

static, context_switching_calls

Implements:

public zipperp

Remarks:

(none)

Inherited public predicates:

 apply/2 current/2 delete_all_after/2 delete_all_after_and_unzip/2 delete_all_before/2 delete_all_before_and_unzip/2 delete_and_next/2 delete_and_previous/2 delete_and_unzip/2 forward/2 forward/3 insert_after/3 insert_before/3 next/2 next/3 previous/2 previous/3 replace/3 rewind/2 rewind/3 unzip/2 zip/2 zip/3

	Public predicates

	zip_at_index/4

	Protected predicates

	Private predicates

	Operators

Public predicates

zip_at_index/4

Adds a zipper to a list opened at the given index and also returns the element at the index. Fails if the list is empty or the index (starting at 1) does not exist.

Compilation flags:

static

Template:

zip_at_index(Index,List,Zipper,Element)

Mode and number of proofs:

zip_at_index(+natural,+list,--zipper,--term) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

fcube

FCube: An Efficient Prover for Intuitionistic Propositional Logic.

Availability:

logtalk_load(fcube(loader))

Author: Mauro Ferrari, Camillo Fiorentini, Guido Fiorino; ported to Logtalk by Paulo Moura.

Version: 5:0:1

Date: 2024-03-14

Copyright: Copyright 2012 Mauro Ferrari, Camillo Fiorentini, Guido Fiorino; Copyright 2020-2024 Paulo Moura

License: GPL-2.0-or-later

Compilation flags:

static, context_switching_calls

Uses:

integer

list

os

set

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	gnu/0

	fcube/0

	decide/1

	decide/2

	Protected predicates

	Private predicates

	Operators

	op(1200,xfy,<=>)

	op(1110,xfy,=>)

	op(1000,xfy,&&)

	op(500,fy,~)

	op(1100,xfy,v)

Public predicates

gnu/0

Prints banner with copyright and license information.

Compilation flags:

static

Mode and number of proofs:

gnu - one

fcube/0

Reads a formula and applies the prover to it, printing its counter-model.

Compilation flags:

static

Mode and number of proofs:

fcube - one

decide/1

Applies the prover to the given formula and prints its counter-model.

Compilation flags:

static

Template:

decide(Formula)

Mode and number of proofs:

decide(++compound) - one

decide/2

Applies the prover to the given formula and returns its counter-model.

Compilation flags:

static

Template:

decide(Formula,CounterModel)

Mode and number of proofs:

decide(++compound,--compound) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

op(1200,xfy,<=>)

Scope:

public

op(1110,xfy,=>)

Scope:

public

op(1000,xfy,&&)

Scope:

public

op(500,fy,~)

Scope:

public

op(1100,xfy,v)

Scope:

public

 object

metagol

Inductive logic programming (ILP) system based on meta-interpretive learning.

Availability:

logtalk_load(metagol(loader))

Author: Metagol authors; adapted to Logtalk by Paulo Moura.

Version: 0:24:4

Date: 2024-03-15

Copyright: Copyright 2016 Metagol authors; Copyright 2018-2024 Paulo Moura

License: BSD-3-Clause

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_tokens//2

logtalk::message_prefix_stream/4

Uses:

coroutining

integer

list

logtalk

meta

timeout

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	learn/3

	learn/2

	learn_seq/2

	learn_with_timeout/4

	program_to_clauses/2

	pprint/1

	metarule/6

	head_pred/1

	body_pred/1

	ibk/3

	func_test/3

	functional/0

	min_clauses/1

	max_clauses/1

	max_inv_preds/1

	metarule_next_id/1

	timeout/1

	Protected predicates

	pprint_clause/1

	pprint_clauses/1

	compiled_pred_call/2

	body_pred_call/2

	type/3

	Private predicates

	Operators

Public predicates

learn/3

Learns from a set of positive examples and a set of negative examples and returns the learned program.

Compilation flags:

static

Template:

learn(PositiveExamples,NegativeExamples,Program)

Mode and number of proofs:

learn(@list(example),@list(example),-list(term)) - zero_or_more

learn/2

Learns from a set of positive examples and a set of negative examples and pretty prints the learned program.

Compilation flags:

static

Template:

learn(PositiveExamples,NegativeExamples)

Mode and number of proofs:

learn(@list(example),@list(example)) - zero_or_more

learn_seq/2

Learns from a sequence of examples represented as a list of PositiveExamples/NegativeExamples elements and returns the learned program.

Compilation flags:

static

Template:

learn_seq(Examples,Program)

Mode and number of proofs:

learn_seq(@list(example),-list(clause)) - zero_or_one

learn_with_timeout/4

Learns from a set of positive examples and a set of negative examples and returns the learned program constrained by the given timeout or its default value.

Compilation flags:

static

Template:

learn_with_timeout(PositiveExamples,NegativeExamples,Program,Timeout)

Mode and number of proofs:

learn_with_timeout(@list(example),@list(example),-list(term),+number) - zero_or_one_or_error

learn_with_timeout(@list(example),@list(example),-list(term),-number) - zero_or_one_or_error

Exceptions:

Learning does not complete in the allowed time:

timeout(learn(PositiveExamples,NegativeExamples,Program))

program_to_clauses/2

Converts a learned program into a list of clauses.

Compilation flags:

static

Template:

program_to_clauses(Program,Clauses)

Mode and number of proofs:

program_to_clauses(@list(term),-list(clause)) - one

pprint/1

Pretty prints a learned program.

Compilation flags:

static

Template:

pprint(Program)

Mode and number of proofs:

pprint(@list(term)) - one

metarule/6

Compilation flags:

static

head_pred/1

Compilation flags:

static

body_pred/1

Compilation flags:

dynamic

ibk/3

Compilation flags:

static

func_test/3

Compilation flags:

static

functional/0

Compilation flags:

dynamic

min_clauses/1

Compilation flags:

dynamic

max_clauses/1

Compilation flags:

dynamic

max_inv_preds/1

Compilation flags:

dynamic

metarule_next_id/1

Compilation flags:

dynamic

timeout/1

Compilation flags:

dynamic

Protected predicates

pprint_clause/1

Compilation flags:

static

pprint_clauses/1

Compilation flags:

static

compiled_pred_call/2

Compilation flags:

dynamic

body_pred_call/2

Compilation flags:

dynamic

type/3

Compilation flags:

dynamic

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

metagol_example_protocol

Convenient learning predicates for use in examples and unit tests.

Availability:

logtalk_load(metagol(loader))

Author: Paulo Moura.

Version: 0:1:1

Date: 2024-03-15

License: BSD-3-Clause

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	learn/1

	learn/0

	Protected predicates

	Private predicates

	Operators

Public predicates

learn/1

Learns and returns set of clauses.

Compilation flags:

static

Template:

learn(Clauses)

Mode and number of proofs:

learn(-list(clause)) - zero_or_more

learn/0

Learns and prints a set of clauses.

Compilation flags:

static

Mode and number of proofs:

learn - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

toychrdb

Simple CHR interpreter/debugger based on the refined operational semantics of CHRs.

Availability:

logtalk_load(toychr(loader))

Author: Gregory J. Duck; adapted to Logtalk by Paulo Moura.

Version: 0:7:1

Date: 2024-03-15

Copyright: Copright 2004 Gregory J. Duck; Copyright 2019-2024 Paulo Moura

License: GPL-2.0-or-later

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

list

user

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	chr_is/2

	chr_trace/0

	chr_notrace/0

	chr_spy/1

	chr_nospy/0

	chr_no_spy/1

	chr_option/2

	Protected predicates

	current_prog/1

	chr_option_print_trace/0

	chr_option_trace_interactive/0

	chr_option_optimization_level/1

	chr_option_show_stack/0

	chr_option_show_store/0

	chr_option_show_history/0

	chr_option_show_id/0

	chr_option_allow_deep_guards/0

	chr_next_state/1

	chr_spy_point/1

	Private predicates

	chr_rule_/1

	Operators

Public predicates

chr_is/2

Compilation flags:

static

chr_trace/0

Compilation flags:

static

chr_notrace/0

Compilation flags:

static

chr_spy/1

Compilation flags:

static

chr_nospy/0

Compilation flags:

static

chr_no_spy/1

Compilation flags:

static

chr_option/2

Compilation flags:

static

Protected predicates

current_prog/1

Compilation flags:

static

chr_option_print_trace/0

Compilation flags:

dynamic

chr_option_trace_interactive/0

Compilation flags:

dynamic

chr_option_optimization_level/1

Compilation flags:

dynamic

chr_option_show_stack/0

Compilation flags:

dynamic

chr_option_show_store/0

Compilation flags:

dynamic

chr_option_show_history/0

Compilation flags:

dynamic

chr_option_show_id/0

Compilation flags:

dynamic

chr_option_allow_deep_guards/0

Compilation flags:

dynamic

chr_next_state/1

Compilation flags:

dynamic

chr_spy_point/1

Compilation flags:

dynamic

Private predicates

chr_rule_/1

Compilation flags:

dynamic

Operators

(none)

 object

assertions

Proxy object for simplifying the use of the assertion meta-predicates.

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-04-03

Compilation flags:

static, context_switching_calls

Extends:

public assertions(_)

Remarks:

(none)

Inherited public predicates:

 assertion/1 assertion/2 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

assertions(Mode)

A simple assertions framework. Can be used as a hook object for either suppressing assertions (production mode) or expanding them with file context information (debug mode).

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:2:2

Date: 2022-07-04

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	assertion/1

	assertion/2

	Protected predicates

	Private predicates

	Operators

Public predicates

assertion/1

Checks that an assertion is true. Uses the structured message printing mechanism for printing the results using a silent message for assertion success and a error message for assertion failure.

Compilation flags:

static

Template:

assertion(Goal)

Meta-predicate template:

assertion(0)

Mode and number of proofs:

assertion(@callable) - one

assertion/2

Checks that an assertion is true. Uses the structured message printing mechanism for printing the results using a silent message for assertion success and a error message for assertion failure. The context argument can be used to e.g. pass location data.

Compilation flags:

static

Template:

assertion(Context,Goal)

Meta-predicate template:

assertion(*,0)

Mode and number of proofs:

assertion(@term,@callable) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

assertions_messages

Assertions framework default message translations.

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:2:0

Date: 2018-02-20

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

cc_metric

Cyclomatic complexity metric. All defined predicates that are not called or updated are counted as graph connected components (the reasoning being that these predicates can be considered entry points). The score is represented by a non-negative integer.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:5:2

Date: 2024-05-15

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metric

Core predicates for computing source code metrics.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:13:0

Date: 2025-10-06

Compilation flags:

static

Extends:

public code_metrics_utilities

public options

Uses:

list

logtalk

os

type

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	entity/1

	file/2

	file/1

	directory/2

	directory/1

	rdirectory/2

	rdirectory/1

	library/2

	library/1

	rlibrary/2

	rlibrary/1

	all/1

	all/0

	entity_score/2

	library_score/2

	rlibrary_score/2

	file_score/2

	directory_score/2

	rdirectory_score/2

	all_score/1

	format_entity_score//2

	Protected predicates

	process_entity/2

	process_file/2

	process_directory/2

	process_rdirectory/2

	process_library/2

	process_rlibrary/2

	process_all/1

	sub_directory/2

	sub_library/2

	Private predicates

	Operators

Public predicates

entity/1

Scans an entity and prints its metric score.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+term) - zero_or_one

file/2

Prints metric scores for all the entities defined in a loaded source file using the given options.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - zero_or_one

file/1

Prints metric scores for all the entities defined in a loaded source file using default options.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - zero_or_one

directory/2

Scans a directory and prints metric scores for all entities defined in its loaded source files using the given options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Scans a directory and prints metric scores for all entities defined in its loaded source files using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

rdirectory/2

Recursive version of the directory/1 predicate using the given options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Recursive version of the directory/1 predicate using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

library/2

Prints metrics scores for all loaded entities from a given library using the given options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Prints metrics scores for all loaded entities from a given library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rlibrary/2

Recursive version of the library/1 predicate using the given options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Recursive version of the library/1 predicate using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

all/1

Scans all loaded entities and prints their metric scores using the given options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list(compound)) - one

all/0

Scans all loaded entities and prints their metric scores using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

entity_score/2

Score is a term that represents the metric score associated with a loaded entity. Fails if the metric does not apply.

Compilation flags:

static

Template:

entity_score(Entity,Score)

Mode and number of proofs:

entity_score(@entity_identifier,-ground) - zero_or_one

library_score/2

Score is a term that represents the metric score associated with a loaded library source files. Fails if the metric does not apply.

Compilation flags:

static

Template:

library_score(Library,Score)

Mode and number of proofs:

library_score(@atom,-ground) - zero_or_one

rlibrary_score/2

Score is a term that represents the metric score associated with loaded source files from a library and its sub-libraries. Fails if the metric does not apply.

Compilation flags:

static

Template:

rlibrary_score(Library,Score)

Mode and number of proofs:

rlibrary_score(@atom,-ground) - zero_or_one

file_score/2

Score is a term that represents the metric score associated with a loaded source file. Fails if the metric does not apply.

Compilation flags:

static

Template:

file_score(File,Score)

Mode and number of proofs:

file_score(@atom,-ground) - zero_or_one

directory_score/2

Score is a term that represents the metric score associated with loaded source files from a directory. Fails if the metric does not apply.

Compilation flags:

static

Template:

directory_score(Directory,Score)

Mode and number of proofs:

directory_score(@atom,-ground) - zero_or_one

rdirectory_score/2

Score is a term that represents the metric score associated with loaded source files from a directory and its sub-directories. Fails if the metric does not apply.

Compilation flags:

static

Template:

rdirectory_score(Directory,Score)

Mode and number of proofs:

rdirectory_score(@atom,-ground) - zero_or_one

all_score/1

Score is a term that represents the metric score associated with all loaded source files. Fails if the metric does not apply.

Compilation flags:

static

Template:

all_score(Score)

Mode and number of proofs:

all_score(-ground) - zero_or_one

format_entity_score//2

Formats the entity score for pretty printing.

Compilation flags:

static

Template:

format_entity_score(Entity,Score)

Mode and number of proofs:

format_entity_score(@entity_identifier,+ground) - one

Protected predicates

process_entity/2

Processes an entity of the given kind.

Compilation flags:

static

Template:

process_entity(Kind,Entity)

Mode and number of proofs:

process_entity(+atom,@entity_identifier) - one

process_file/2

Processes a source file using the given options.

Compilation flags:

static

Template:

process_file(Path,Options)

Mode and number of proofs:

process_file(+atom,+list(compound)) - one

process_directory/2

Processes a directory of source files using the given options.

Compilation flags:

static

Template:

process_directory(Path,Options)

Mode and number of proofs:

process_directory(+atom,+list(compound)) - one

process_rdirectory/2

Recursively process a directory of source files using the given options.

Compilation flags:

static

Template:

process_rdirectory(Path,Options)

Mode and number of proofs:

process_rdirectory(+atom,+list(compound)) - one

process_library/2

Processes a library of source files using the given options.

Compilation flags:

static

Template:

process_library(Library,Options)

Mode and number of proofs:

process_library(+atom,+list(compound)) - one

process_rlibrary/2

Recursively process a library of source files using the given options.

Compilation flags:

static

Template:

process_rlibrary(Library,Options)

Mode and number of proofs:

process_rlibrary(+atom,+list(compound)) - one

process_all/1

Processes all loaded source code using the given options.

Compilation flags:

static

Template:

process_all(Options)

Mode and number of proofs:

process_all(+list(compound)) - one

sub_directory/2

Enumerates, by backtracking, all directory sub-directories containing loaded files.

Compilation flags:

static

Template:

sub_directory(Directory,SubDirectory)

Mode and number of proofs:

sub_directory(+atom,-atom) - one

sub_library/2

Enumerates, by backtracking, all library sub-libraries.

Compilation flags:

static

Template:

sub_library(Library,SubLibrary)

Mode and number of proofs:

sub_library(+atom,-atom) - one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

code_metrics

Helper object to apply all loaded code metrics.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:1:0

Date: 2017-12-31

Compilation flags:

static, context_switching_calls

Imports:

public code_metric

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metrics_messages

Message translations for the code_metrics tool.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:8:0

Date: 2022-05-05

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metrics_utilities

Internal predicates for analyzing source code.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh

Version: 0:7:0

Date: 2024-03-28

Compilation flags:

static

Uses:

list

logtalk

Remarks:

	Usage: This is meant to be imported by any metric added to the system.

	Predicate Scope: This is meant for internal use by metrics only. As such, all provided predicates are protected.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	ancestor/4

	current_entity/1

	declares_predicate/2

	defines_predicate/2

	defines_predicate/3

	entity_calls/3

	entity_kind/2

	entity_property/2

	entity_updates/3

	not_excluded_file/3

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

ancestor/4

True if Entity descends from Ancestor, and EntityKind and AncestorKind unify with their respective entity types.

Compilation flags:

static

Template:

ancestor(EntityKind,Entity,AncestorKind,Ancestor)

Mode and number of proofs:

ancestor(?entity,?entity_identifier,?entity,?entity_identifier) - zero_or_more

current_entity/1

True if Entity is a currently loaded entity.

Compilation flags:

static

Template:

current_entity(Entity)

Mode and number of proofs:

current_entity(?entity_identifier) - zero_or_more

declares_predicate/2

True if Entity declares Predicate internally.

Compilation flags:

static

Template:

declares_predicate(Entity,Predicate)

Mode and number of proofs:

declares_predicate(?entity_identifier,?predicate_indicator) - zero_or_more

defines_predicate/2

True if Entity defines an implementation of Predicate internally. Auxiliary predicates are excluded from results.

Compilation flags:

static

Template:

defines_predicate(Entity,Predicate)

Mode and number of proofs:

defines_predicate(?entity_identifier,?predicate_indicator) - zero_or_more

defines_predicate/3

Same as defines_predicate/2, except Property is unified with a property of the predicate.

Compilation flags:

static

Template:

defines_predicate(Entity,Predicate,Property)

Mode and number of proofs:

defines_predicate(?entity_identifier,?predicate_indicator,?term) - zero_or_more

entity_calls/3

True if a predicate Caller within Entity makes a Call.

Compilation flags:

static

Template:

entity_calls(Entity,Caller,Call)

Mode and number of proofs:

entity_calls(?entity_identifier,?predicate_indicator,?predicate_indicator) - zero_or_one

entity_kind/2

True if Kind defines Entity and is one of category, protocol, or object.

Compilation flags:

static

Template:

entity_kind(Entity,Kind)

Mode and number of proofs:

entity_kind(+entity_identifier,-entity) - zero_or_one

entity_property/2

True if Property is a valid property of Entity. Entity can be either a category, a protocol, or an object.

Compilation flags:

static

Template:

entity_property(Entity,Property)

Mode and number of proofs:

entity_property(+entity_identifier,-term) - zero_or_more

entity_updates/3

True if a predicate Updater within Entity makes a dynamic update to Updated (by using e.g. the asserta/1 or retract/1 predicates).

Compilation flags:

static

Template:

entity_updates(Entity,Updater,Updated)

Mode and number of proofs:

entity_updates(+entity_identifier,?predicate_indicator,?predicate_indicator) - zero_or_one

not_excluded_file/3

True if the file is not being excluded.

Compilation flags:

static

Template:

not_excluded_file(ExcludedFiles,Path,Basename)

Mode and number of proofs:

not_excluded_file(+list(atom),+atom,+atom) - zero_or_one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coupling_metric

Computes entity efferent coupling, afferent coupling, and instability.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:14:0

Date: 2024-03-27

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

Remarks:

	Efferent coupling (Ce): Number of entities that an entity depends on.

	Afferent coupling (Ca): Number of entities that depend on an entity.

	Instability (I): Computed as Ce / (Ce + Ca). Measures the entity resilience to change. Ranging from 0 to 1, with 0 indicating a maximally stable entity and 1 indicating a maximally unstable entity. Ideally, an entity is either maximally stable or maximally unstable.

	Abstractness (A): Computed as the ratio between the number of static predicates with scope directives without a local definition and the number of static predicates with scope directives. Measures the rigidity of an entity. Ranging from 0 to 1, with 0 indicating a fully concrete entity and 1 indicating a fully abstract entity.

	Entity score: Represented as the compound term ce_ca_i_a(Ce,Ca,I,A).

	Dependencies count: Includes direct entity relations plus calls or dynamic updates to predicates in external objects or categories.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dit_metric

Analyzes the depth of inheritance for objects, protocols, and categories.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh

Version: 0:6:1

Date: 2024-03-28

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

numberlist

Remarks:

	Depth: The depth is the maximum length of a node to the root entity. Lower scores are generally better.

	Inheritance: A level of inheritance defined by either one of specialization, instantiation, extension, importation, or implementation.

	Scoring: The maximum path length is determined for each entity in question.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

doc_metric

Entity and entity predicates documentation score.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

numberlist

Remarks:

	Score range: Score is a integer percentage where a 100% score means that all expected documentation information is present.

	Score weights: The score is split by default between 20% for the entity documentation and 80% for the entity predicates documentation, Can be customized using the predicate entity_predicates_weights_hook/2.

	Score customization: The individual scores of entity info/1 pairs and predicate info/2 pairs can be customized using the entity_info_pair_score_hook/3 and predicate_info_pair_score_hook/4 predicates.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	entity_predicates_weights_hook/2

	entity_info_score_hook/2

	entity_info_pair_score_hook/3

	predicate_mode_score_hook/3

	predicate_mode_score_hook/5

	predicate_info_score_hook/3

	predicate_info_pair_score_hook/4

	Protected predicates

	Private predicates

	Operators

Public predicates

entity_predicates_weights_hook/2

Relative weight between entity documentation and predicates documentation in percentage. The sum of the two values must be equal to 100.

Compilation flags:

dynamic, multifile

Template:

entity_predicates_weights_hook(EntityWeight,PredicatesWeight)

Mode and number of proofs:

entity_predicates_weights_hook(?integer,?integer) - zero_or_one

entity_info_score_hook/2

Maximum score for entity info/1 directives.

Compilation flags:

dynamic, multifile

Template:

entity_info_score_hook(Entity,MaximumScore)

Mode and number of proofs:

entity_info_score_hook(?term,?integer) - zero_or_one

entity_info_pair_score_hook/3

Score for relevant entity info/1 directive pairs. If defined, the entity_info_score_hook/2 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

entity_info_pair_score_hook(Pair,Entity,Score)

Mode and number of proofs:

entity_info_pair_score_hook(?callable,?term,?integer) - zero_or_more

predicate_mode_score_hook/3

Maximum score for predicate mode/2 directives.

Compilation flags:

dynamic, multifile

Template:

predicate_mode_score_hook(Entity,Predicate,MaximumScore)

Mode and number of proofs:

predicate_mode_score_hook(?term,?term,?integer) - zero_or_more

predicate_mode_score_hook/5

Score for a predicate mode/2 directive. If defined, the predicate_mode_score_hook/3 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

predicate_mode_score_hook(Template,Solutions,Entity,Predicate,Score)

Mode and number of proofs:

predicate_mode_score_hook(?term,?term,?term,?term,?integer) - zero_or_one

predicate_info_score_hook/3

Maximum score for predicate info/2 directives.

Compilation flags:

dynamic, multifile

Template:

predicate_info_score_hook(Entity,Predicate,MaximumScore)

Mode and number of proofs:

predicate_info_score_hook(?term,?term,?integer) - zero_or_one

predicate_info_pair_score_hook/4

Score for a predicate info/2 directive pairs. If defined, the predicate_info_score_hook/3 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

predicate_info_pair_score_hook(Pair,Entity,Predicate,Score)

Mode and number of proofs:

predicate_info_pair_score_hook(?callable,?term,?term,?integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

halstead_metric

Computes Halstead complexity numbers for an entity using a Stroud of 18.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2018-06-08

Compilation flags:

static, context_switching_calls

Extends:

public halstead_metric(18)

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

halstead_metric(Stroud)

	Stroud - Coefficient for computing the time required to program.

Computes Halstead complexity numbers for an entity.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2025-01-04

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

numberlist

pairs

Remarks:

	Definition of operators: Predicates declared, user-defined, and called are interpreted as operators. Built-in predicates and built-in control constructs are ignored.

	Definition of operands: Predicate arguments are abstracted and interpreted as operands. Note that this definition of operands is a significant deviation from the original definition, which used syntactic literals.

	Pn: Number of distinct predicates (declared, defined, called, or updated).

	PAn: Number of predicate arguments (assumed distinct).

	Cn: Number of predicate calls/updates + number of clauses.

	CAn: Number of predicate call/update arguments + number of clause head arguments.

	EV: Entity vocabulary: EV = Pn + PAn.

	EL: Entity length: EL = Cn + CAn.

	V: Volume: V = EL * log2(EV).

	D: Difficulty: D = (Pn/2) * (CAn/An).

	E: Effort: E = D * V.

	T: Time required to program: T = E/k seconds (k is the Stroud number; defaults to 18).

	B: Number of delivered bugs: B = V/3000.

	Entity score: Represented as the compound term pn_pan_cn_can_ev_el_v_d_e_t_b/11.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

noc_metric

Number of entity clauses metric. The score is represented using the compound term number_of_clauses(Total, User).

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:14:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

nor_metric

Number of entity rules metric. The score is represented using the compound term number_of_rules(Total, User).

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:5:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

size_metric

Source code size metric. Returned scores are upper bounds and based solely in source file sizes (expressed in bytes).

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:7:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

os

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

upn_metric

Number of unique predicates nodes metric. The nodes include called and updated predicates independently of where they are defined. The score is represented by a non-negative integer.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:6:2

Date: 2024-05-15

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dead_code_scanner

A tool for detecting likely dead code in compiled Logtalk entities and Prolog modules compiled as objects.

Availability:

logtalk_load(dead_code_scanner(loader))

Author: Barry Evans and Paulo Moura

Version: 0:15:2

Date: 2024-10-21

Compilation flags:

static, context_switching_calls

Imports:

public options

Uses:

list

logtalk

os

type

Remarks:

	Dead code: A predicate or non-terminal that is not called (directly or indirectly) by any scoped predicate or non-terminal. These predicates and non-terminals are not used, cannot be called without breaking encapsulation, and are thus considered dead code.

	Known issues: Use of local meta-calls with goal arguments only know at runtime can result in false positives. Calls from non-standard meta-predicates may be missed if the meta-calls are not optimized.

	Requirements: Source files must be compiled with the source_data flag turned on. To avoid false positives do to meta-calls, compilation of source files with the optimized flag turned on is also advised.

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	entity/1

	file/2

	file/1

	directory/2

	directory/1

	rdirectory/2

	rdirectory/1

	library/2

	library/1

	rlibrary/2

	rlibrary/1

	all/1

	all/0

	predicates/2

	predicate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

entity/1

Scans a loaded entity for dead code. Fails if the entity does not exist.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - zero_or_one

file/2

Scans all entities in a loaded source file for dead code using the given options. The file can be given by name, basename, full path, or using library notation. Fails if the file is not loaded.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - zero_or_one

file/1

Scans all entities in a loaded source file for dead code using default options. The file can be given by name, basename, full path, or using library notation. Fails if the file is not loaded.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - zero_or_one

directory/2

Scans all entities in all loaded files from a given directory for dead code using the given options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Scans all entities in all loaded files from a given directory for dead code using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

rdirectory/2

Scans all entities in all loaded files from a given directory and its sub-directories for dead code using the given options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Scans all entities in all loaded files from a given directory and its sub-directories for dead code using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

library/2

Scans all entities in all loaded files from a given library for dead code using the given options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Scans all entities in all loaded files from a given library for dead code using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rlibrary/2

Scans all entities in all loaded files in a loaded library and its sub-libraries for dead code using the given options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Scans all entities in all loaded files in a loaded library and its sub-libraries for dead code using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

all/1

Scans all entities for dead code using the given options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list(compound)) - one

all/0

Scans all entities for dead code using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

predicates/2

Returns an ordered set of local predicates (and non-terminals) that are not used, directly or indirectly, by scoped predicates for a loaded entity.

Compilation flags:

static

Template:

predicates(Entity,Predicates)

Mode and number of proofs:

predicates(+entity_identifier,-list(predicate_indicator)) - one

predicate/2

Enumerates, by backtracking, local predicates (and non-terminals) that are not used, directly or indirectly, by scoped predicates for a loaded entity.

Compilation flags:

static

Template:

predicate(Entity,Predicate)

Mode and number of proofs:

predicate(+entity_identifier,?predicate_indicator) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

dead_code_scanner_messages

Logtalk dead_code_scanner tool default message translations.

Availability:

logtalk_load(dead_code_scanner(loader))

Author: Barry Evans and Paulo Moura

Version: 0:8:0

Date: 2024-05-07

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

debug_messages

Supports selective enabling and disabling of debug and debug(Group) messages.

Availability:

logtalk_load(debug_messages(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

Remarks:

	Limitations: Debug messages are suppressed by the compiler when the optimize flag is turned on and thus cannot be enabled in this case.

Inherited public predicates:

(none)

	Public predicates

	enable/1

	disable/1

	enabled/1

	enable/2

	disable/2

	enabled/2

	Protected predicates

	Private predicates

	enabled_/1

	enabled_/2

	Operators

Public predicates

enable/1

Enables all debug and debug(Group) messages for the given component.

Compilation flags:

static

Template:

enable(Component)

Mode and number of proofs:

enable(@term) - one

disable/1

Disables all debug and debug(Group) messages for the given component.

Compilation flags:

static

Template:

disable(Component)

Mode and number of proofs:

disable(@term) - one

enabled/1

Enumerates by backtracking the components with enabled debug and debug(Group) messages.

Compilation flags:

static

Template:

enabled(Component)

Mode and number of proofs:

enabled(?term) - zero_or_more

enable/2

Enables debug(Group) messages for the given component and group.

Compilation flags:

static

Template:

enable(Component,Group)

Mode and number of proofs:

enable(@term,@term) - one

disable/2

Disables debug(Group) messages for the given component and group.

Compilation flags:

static

Template:

disable(Component,Group)

Mode and number of proofs:

disable(@term,@term) - one

enabled/2

Enumerates by backtracking the enabled debug(Group) messages for each component.

Compilation flags:

static

Template:

enabled(Component,Group)

Mode and number of proofs:

enabled(?term,?term) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

enabled_/1

Table of components with currently enabled debug and debug(Group) messages.

Compilation flags:

dynamic

Template:

enabled_(Component)

Mode and number of proofs:

enabled_(?term) - zero_or_more

enabled_/2

Table of currently enabled debug(Group) per component.

Compilation flags:

dynamic

Template:

enabled_(Component,Group)

Mode and number of proofs:

enabled_(?term,?term) - zero_or_more

Operators

(none)

 object

debugger

Command-line debugger based on an extended procedure box model supporting execution tracing and spy points.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 7:12:2

Date: 2025-09-05

Compilation flags:

static, context_switching_calls

Implements:

public debuggerp

Provides:

logtalk::debug_handler/1

logtalk::debug_handler/3

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 debug/0 debugging/0 debugging/1 leash/1 leashing/1 log/3 logging/3 nodebug/0 nolog/3 nologall/0 nospy/1 nospy/3 nospy/4 nospyall/0 notrace/0 reset/0 set_write_max_depth/1 spy/1 spy/3 spy/4 spying/1 spying/3 spying/4 trace/0 write_max_depth/1

	Public predicates

	Protected predicates

	Private predicates

	debugging_/0

	tracing_/0

	explicit_tracing_/0

	skipping_/0

	skipping_unleashed_/1

	quasi_skipping_/0

	leaping_/1

	leashing_/1

	invocation_number_/1

	jump_to_invocation_number_/1

	zap_to_port_/1

	write_max_depth_/1

	log_point_/3

	clause_breakpoint_/2

	predicate_breakpoint_/3

	entity_predicate_breakpoint_/4

	context_breakpoint_/4

	conditional_breakpoint_/3

	triggered_breakpoint_/4

	triggered_breakpoint_enabled_/2

	file_line_hit_count_/3

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

debugging_/0

True iff debug is on.

Compilation flags:

dynamic

Mode and number of proofs:

debugging_ - zero_or_one

tracing_/0

True iff tracing is on.

Compilation flags:

dynamic

Mode and number of proofs:

tracing_ - zero_or_one

explicit_tracing_/0

True iff tracing is on due to a call to the trace/0 predicate.

Compilation flags:

dynamic

Mode and number of proofs:

explicit_tracing_ - zero_or_one

skipping_/0

True iff skipping.

Compilation flags:

dynamic

Mode and number of proofs:

skipping_ - zero_or_one

skipping_unleashed_/1

True iff skipping (a goal with invocation number N) but showing intermediate ports as unleashed.

Compilation flags:

dynamic

Template:

skipping_unleashed_(N)

Mode and number of proofs:

skipping_unleashed_(?integer) - zero_or_one

quasi_skipping_/0

True iff quasi-skipping.

Compilation flags:

dynamic

Mode and number of proofs:

quasi_skipping_ - zero_or_one

leaping_/1

True iff leaping in tracing or debugging mode.

Compilation flags:

dynamic

Template:

leaping_(Mode)

Mode and number of proofs:

leaping_(?atom) - zero_or_one

leashing_/1

Table of currently leashed ports.

Compilation flags:

dynamic

Template:

leashing_(Port)

Mode and number of proofs:

leashing_(?atom) - zero_or_more

invocation_number_/1

Current call stack invocation number.

Compilation flags:

dynamic

Template:

invocation_number_(N)

Mode and number of proofs:

invocation_number_(?integer) - zero_or_one

jump_to_invocation_number_/1

Invocation number to jump to.

Compilation flags:

dynamic

Template:

jump_to_invocation_number_(N)

Mode and number of proofs:

jump_to_invocation_number_(?integer) - zero_or_one

zap_to_port_/1

Port to zap to.

Compilation flags:

dynamic

Template:

zap_to_port_(Port)

Mode and number of proofs:

zap_to_port_(?integer) - zero_or_one

write_max_depth_/1

Current term write maximum depth.

Compilation flags:

dynamic

Template:

write_max_depth_(MaxDepth)

Mode and number of proofs:

write_max_depth_(?non_negative_integer) - zero_or_one

log_point_/3

Table of log points.

Compilation flags:

dynamic

Template:

log_point_(Entity,Line,Message)

Mode and number of proofs:

log_point_(?object_identifier,?integer,?atom) - zero_or_more

log_point_(?category_identifier,?integer,?atom) - zero_or_more

clause_breakpoint_/2

Table of clause breakpoints.

Compilation flags:

dynamic

Template:

clause_breakpoint_(Entity,Line)

Mode and number of proofs:

clause_breakpoint_(?object_identifier,?integer) - zero_or_more

clause_breakpoint_(?category_identifier,?integer) - zero_or_more

predicate_breakpoint_/3

Table of predicate breakpoints.

Compilation flags:

dynamic

Template:

predicate_breakpoint_(Functor,Arity,Original)

Mode and number of proofs:

predicate_breakpoint_(?atom,?integer,?predicate_indicator) - zero_or_more

predicate_breakpoint_(?atom,?integer,?non_terminal_indicator) - zero_or_more

entity_predicate_breakpoint_/4

Table of entity predicate breakpoints.

Compilation flags:

dynamic

Template:

entity_predicate_breakpoint_(Entity,Functor,Arity,Original)

Mode and number of proofs:

entity_predicate_breakpoint_(?callable,?atom,?integer,?qualified_predicate_indicator) - zero_or_more

entity_predicate_breakpoint_(?callable,?atom,?integer,?qualified_non_terminal_indicator) - zero_or_more

context_breakpoint_/4

Table of context breakpoints.

Compilation flags:

dynamic

Template:

context_breakpoint_(Sender,This,Self,Goal)

Mode and number of proofs:

context_breakpoint_(?object_identifier,?object_identifier,?object_identifier,?callable) - zero_or_more

conditional_breakpoint_/3

Table of conditional breakpoints.

Compilation flags:

dynamic

Template:

conditional_breakpoint_(Entity,Line,Condition)

Mode and number of proofs:

conditional_breakpoint_(?object_identifier,?integer,?callable) - zero_or_more

conditional_breakpoint_(?category_identifier,?integer,?callable) - zero_or_more

triggered_breakpoint_/4

Table of defined triggered breakpoints.

Compilation flags:

dynamic

Template:

triggered_breakpoint_(Entity,Line,TriggerEntity,TriggerLine)

Mode and number of proofs:

triggered_breakpoint_(?object_identifier,?integer,?object_identifier,?integer) - zero_or_more

triggered_breakpoint_(?object_identifier,?integer,?category_identifier,?integer) - zero_or_more

triggered_breakpoint_(?category_identifier,?integer,?object_identifier,?integer) - zero_or_more

triggered_breakpoint_(?category_identifier,?integer,?category_identifier,?integer) - zero_or_more

triggered_breakpoint_enabled_/2

Table of enabled triggered breakpoints.

Compilation flags:

dynamic

Template:

triggered_breakpoint_enabled_(Entity,Line)

Mode and number of proofs:

triggered_breakpoint_enabled_(?object_identifier,?integer) - zero_or_more

triggered_breakpoint_enabled_(?category_identifier,?integer) - zero_or_more

file_line_hit_count_/3

Table of file and line hit counts (successful unifications with clause heads).

Compilation flags:

dynamic

Template:

file_line_hit_count_(File,Line,Count)

Mode and number of proofs:

file_line_hit_count_(?atom,?integer,?integer) - zero_or_one

Operators

(none)

 category

debugger_messages

Logtalk debugger tool default message translations.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 3:9:0

Date: 2025-09-03

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::question_prompt_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

debuggerp

Debugger protocol.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 3:6:0

Date: 2025-09-05

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Debugger help: Type the character h (condensed help) or the character ? (extended help) at a leashed port.

	Predicate breakpoint: Specified as a ground term Functor/Arity.

	Non-terminal breakpoint: Specified as a ground term Functor//Arity.

	Entity predicate breakpoint: Specified as a term Entity::Functor/Arity. Entity must be an object or category and may not be ground if parametric.

	Entity non-terminal breakpoint: Specified as a term Entity::Functor//Arity. Entity must be an object or category and may not be ground if parametric.

	Clause breakpoint: Specified as an Entity-Line term with both Entity and Line bound. Line must be the first source file line of an entity clause.

	Conditional breakpoint: Specified using Entity and Line for the clause head and a condition. Line must be the first source file line of an entity clause.

	Hit count breakpoint: Specified using Entity and Line for the clause head and an unification count expression as a condition. Line must be the first source file line of an entity clause.

	Triggered breakpoint: Specified using Entity and Line for the clause head and another breakpoint as a condition. Line must be the first source file line of an entity clause.

	Context breakpoint: Specified as a (Sender, This, Self, Goal) tuple.

	Log point: Specified using Entity and Line for the clause head and a message.

	Leash port shorthands: none - [], loose - [fact,rule,call], half - [fact,rule,call,redo], tight - [fact,rule,call,redo,fail,exception], and full - [fact,rule,call,exit,redo,fail,exception].

Inherited public predicates:

(none)

	Public predicates

	reset/0

	debug/0

	nodebug/0

	debugging/0

	debugging/1

	trace/0

	notrace/0

	leash/1

	leashing/1

	spy/1

	spying/1

	nospy/1

	spy/3

	spying/3

	nospy/3

	spy/4

	spying/4

	nospy/4

	nospyall/0

	log/3

	logging/3

	nolog/3

	nologall/0

	write_max_depth/1

	set_write_max_depth/1

	Protected predicates

	Private predicates

	Operators

Public predicates

reset/0

Resets all debugging settings (including breakpoints, log points, and leashed ports) and turns off debugging.

Compilation flags:

static

Mode and number of proofs:

reset - one

See also:

nospyall/0

debug/0

Starts debugging for all defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

debug - one

nodebug/0

Stops debugging for all defined breakpoints. Also turns off tracing. Does not remove defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

nodebug - one

See also:

reset/0

debugging/0

Reports current debugging settings, including breakpoints and log points.

Compilation flags:

static

Mode and number of proofs:

debugging - one

debugging/1

Enumerates, by backtracking, all entities compiled in debug mode.

Compilation flags:

static

Template:

debugging(Entity)

Mode and number of proofs:

debugging(?entity_identifier) - zero_or_more

trace/0

Starts tracing all calls compiled in debug mode.

Compilation flags:

static

Mode and number of proofs:

trace - one

notrace/0

Stops tracing of calls compiled in debug mode. Debugger will still stop at defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

notrace - one

leash/1

Sets the debugger leash ports using an abbreviation (none, loose, half, tight, or full) or a list of ports (valid ports are fact, rule, call, exit, redo, fail, and exception).

Compilation flags:

static

Template:

leash(Ports)

Mode and number of proofs:

leash(+atom) - one

leash(+list(atom)) - one

leashing/1

Enumerates, by backtracking, all leashed ports (valid ports are fact, rule, call, exit, redo, fail, and exception).

Compilation flags:

static

Template:

leashing(Port)

Mode and number of proofs:

leashing(?atom) - zero_or_more

spy/1

Sets a predicate or clause breakpoint (removing any existing log point or breakpoint defined for the same location, or a list of breakpoints. Fails if a breakpoint is invalid.

Compilation flags:

static

Template:

spy(Breakpoint)

Mode and number of proofs:

spy(@spy_point) - zero_or_one

spy(@list(spy_point)) - zero_or_one

spying/1

Enumerates, by backtracking, all defined predicate and clause breakpoints.

Compilation flags:

static

Template:

spying(Breakpoint)

Mode and number of proofs:

spying(?spy_point) - zero_or_more

nospy/1

Removes all matching predicate and clause breakpoints.

Compilation flags:

static

Template:

nospy(Breakpoint)

Mode and number of proofs:

nospy(@var) - one

nospy(@spy_point) - one

nospy(@list(spy_point)) - one

spy/3

Sets a conditional or triggered breakpoint (removing any existing log point or breakpoint defined for the same location) at a clause head. The condition can be a unification count expression, a lambda expression, or another breakpoint. Fails if the breakpoint is invalid.

Compilation flags:

static

Template:

spy(Entity,Line,Condition)

Mode and number of proofs:

spy(+atom,+integer,@callable) - zero_or_one

Remarks:

	Unification count expression conditions: >(Count), >=(Count), =:=(Count), =<(Count), <(Count), mod(M), and Count.

	Lambda expression conditions: [Count,N,Goal]>>Condition and [Goal]>>Condition where Count is the unification count, N is the invocation number, and Goal is the goal that unified with the clause head; Condition is called in the context of user.

	Triggered breakpoint conditions: Entity-Line.

spying/3

Enumerates, by backtracking, all conditional and triggered breakpoints.

Compilation flags:

static

Template:

spying(Entity,Line,Condition)

Mode and number of proofs:

spying(?atom,?integer,?callable) - zero_or_more

nospy/3

Removes all matching conditional and triggered breakpoints.

Compilation flags:

static

Template:

nospy(Entity,Line,Condition)

Mode and number of proofs:

nospy(@term,@term,@term) - one

spy/4

Sets a context breakpoint.

Compilation flags:

static

Template:

spy(Sender,This,Self,Goal)

Mode and number of proofs:

spy(@term,@term,@term,@term) - one

spying/4

Enumerates, by backtracking, all defined context breakpoints.

Compilation flags:

static

Template:

spying(Sender,This,Self,Goal)

Mode and number of proofs:

spying(?term,?term,?term,?term) - zero_or_more

nospy/4

Removes all matching context breakpoints.

Compilation flags:

static

Template:

nospy(Sender,This,Self,Goal)

Mode and number of proofs:

nospy(@term,@term,@term,@term) - one

nospyall/0

Removes all breakpoints and log points.

Compilation flags:

static

Mode and number of proofs:

nospyall - one

See also:

reset/0

log/3

Sets a log point (removing any existing breakpoint defined for the same location) at a clause head. Fails if the log point is invalid.

Compilation flags:

static

Template:

log(Entity,Line,Message)

Mode and number of proofs:

log(@object_identifier,+integer,+atom) - zero_or_one

log(@category_identifier,+integer,+atom) - zero_or_one

logging/3

Enumerates, by backtracking, all defined log points.

Compilation flags:

static

Template:

logging(Entity,Line,Message)

Mode and number of proofs:

logging(?object_identifier,?integer,?atom) - zero_or_more

logging(?category_identifier,?integer,?atom) - zero_or_more

nolog/3

Removes all matching log points.

Compilation flags:

static

Template:

nolog(Entity,Line,Message)

Mode and number of proofs:

nolog(@var_or(object_identifier),@var_or(integer),@var_or(atom)) - one

nolog(@var_or(category_identifier),@var_or(integer),@var_or(atom)) - one

nologall/0

Removes all log points.

Compilation flags:

static

Mode and number of proofs:

nologall - one

See also:

reset/0

write_max_depth/1

Current term write maximum depth. When not defined, the backend default is used.

Compilation flags:

static

Template:

write_max_depth(MaxDepth)

Mode and number of proofs:

write_max_depth(?non_negative_integer) - zero_or_one

set_write_max_depth/1

Sets the default term maximum write depth. For most backends, a value of zero means that the whole term is written.

Compilation flags:

static

Template:

set_write_max_depth(MaxDepth)

Mode and number of proofs:

set_write_max_depth(+non_negative_integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

debugger

 object

dump_trace

Simple solution for redirecting a debugger trace to a file.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2021-11-12

Compilation flags:

static, context_switching_calls

Uses:

debugger

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	start_redirect_to_file/2

	stop_redirect_to_file/0

	Protected predicates

	Private predicates

	Operators

Public predicates

start_redirect_to_file/2

Starts redirecting debugger trace messages to a file.

Compilation flags:

static

Template:

start_redirect_to_file(File,Goal)

Meta-predicate template:

start_redirect_to_file(*,0)

Mode and number of proofs:

start_redirect_to_file(+atom,+callable) - zero_or_more

stop_redirect_to_file/0

Stops redirecting debugger trace messages to a file.

Compilation flags:

static

Mode and number of proofs:

stop_redirect_to_file - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

d2_graph_language

Predicates for generating graph files in the DOT language (version 2.36.0 or later).

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

diagram(Format)

	Format - Graph language file format.

Common predicates for generating diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:16:0

Date: 2025-10-27

Compilation flags:

static

Extends:

public options

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Uses:

graph_language_registry

list

logtalk

modules_diagram_support

os

pairs

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	libraries/3

	libraries/2

	libraries/1

	all_libraries/1

	all_libraries/0

	rlibrary/2

	rlibrary/1

	library/2

	library/1

	directories/3

	directories/2

	rdirectory/3

	rdirectory/2

	rdirectory/1

	directory/3

	directory/2

	directory/1

	files/3

	files/2

	files/1

	all_files/1

	all_files/0

	format_object/1

	diagram_description/1

	diagram_name_suffix/1

	Protected predicates

	diagram_caption/3

	output_rlibrary/3

	output_library/3

	output_rdirectory/3

	output_externals/1

	output_files/2

	output_file/4

	output_sub_diagrams/1

	reset/0

	output_node/6

	node/6

	edge/5

	output_edges/1

	save_edge/5

	output_missing_externals/1

	not_excluded_file/4

	output_file_path/4

	locate_library/2

	locate_directory/2

	locate_file/5

	ground_entity_identifier/3

	filter_file_extension/3

	filter_external_file_extension/3

	add_link_options/3

	supported_editor_url_scheme_prefix/1

	omit_path_prefix/3

	add_node_zoom_option/4

	message_diagram_description/1

	Private predicates

	node_/6

	node_path_/2

	edge_/5

	Operators

Public predicates

libraries/3

Creates a diagram for a set of libraries using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

libraries(Project,Libraries,Options)

Mode and number of proofs:

libraries(+atom,+list(atom),+list(compound)) - one

libraries/2

Creates a diagram for a set of libraries using the default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

libraries(Project,Libraries)

Mode and number of proofs:

libraries(+atom,+list(atom)) - one

libraries/1

Creates a diagram for a set of libraries using the default options. The prefix libraries is used for the diagram file name.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

all_libraries/1

Creates a diagram for all loaded libraries using the specified options.

Compilation flags:

static

Template:

all_libraries(Options)

Mode and number of proofs:

all_libraries(+list(compound)) - one

all_libraries/0

Creates a diagram for all loaded libraries using default options.

Compilation flags:

static

Mode and number of proofs:

all_libraries - one

rlibrary/2

Creates a diagram for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Creates a diagram for a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

library/2

Creates a diagram for a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Creates a diagram for a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

directories/3

Creates a diagram for a set of directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directories(Project,Directories,Options)

Mode and number of proofs:

directories(+atom,+list(atom),+list(compound)) - one

directories/2

Creates a diagram for a set of directories using the default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directories(Project,Directories)

Mode and number of proofs:

directories(+atom,+list(atom)) - one

rdirectory/3

Creates a diagram for a directory and its sub-directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+atom,+list(compound)) - one

rdirectory/2

Creates a diagram for a directory and its sub-directories using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory)

Mode and number of proofs:

rdirectory(+atom,+atom) - one

rdirectory/1

Creates a diagram for a directory and its sub-directories using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/3

Creates a diagram for a directory using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Project,Directory,Options)

Mode and number of proofs:

directory(+atom,+atom,+list(compound)) - one

directory/2

Creates a diagram for a directory using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Project,Directory)

Mode and number of proofs:

directory(+atom,+atom) - one

directory/1

Creates a diagram for a directory using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/3

Creates a diagram for a set of files using the specified options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

files(Project,Files,Options)

Mode and number of proofs:

files(+atom,+list(atom),+list(compound)) - one

files/2

Creates a diagram for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

files(Project,Files)

Mode and number of proofs:

files(+atom,+list(atom)) - one

files/1

Creates a diagram for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The prefix files is used for the diagram file name.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

all_files/1

Creates a diagram for all loaded files using the specified options.

Compilation flags:

static

Template:

all_files(Options)

Mode and number of proofs:

all_files(+list(compound)) - one

all_files/0

Creates a diagram for all loaded files using default options.

Compilation flags:

static

Mode and number of proofs:

all_files - one

format_object/1

Returns the identifier of the object implementing the graph language currently being used. Fails if none is specified.

Compilation flags:

static

Template:

format_object(Object)

Mode and number of proofs:

format_object(-object_identifier) - zero_or_one

diagram_description/1

Returns the diagram description.

Compilation flags:

static

Template:

diagram_description(Description)

Mode and number of proofs:

diagram_description(-atom) - one

diagram_name_suffix/1

Returns the diagram name suffix.

Compilation flags:

static

Template:

diagram_name_suffix(Suffix)

Mode and number of proofs:

diagram_name_suffix(-atom) - one

Protected predicates

diagram_caption/3

Creates a diagram caption from the diagram description and the subject and its kind.

Compilation flags:

static

Template:

diagram_caption(Kind,Subject,Description)

Mode and number of proofs:

diagram_caption(+atom,+callable,-atom) - one

output_rlibrary/3

Generates diagram output for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

output_rlibrary(Library,Path,Options)

Mode and number of proofs:

output_rlibrary(+atom,+atom,+list(compound)) - one

output_library/3

Generates diagram output for a library using the specified options.

Compilation flags:

static

Template:

output_library(Library,Path,Options)

Mode and number of proofs:

output_library(+atom,+atom,+list(compound)) - one

output_rdirectory/3

Generates diagram output for a directory and its sub-directories using the specified options.

Compilation flags:

static

Template:

output_rdirectory(Project,Path,Options)

Mode and number of proofs:

output_rdirectory(+atom,+atom,+list(compound)) - one

output_externals/1

Output external nodes using the specified options depending on the value of the boolean option externals/1.

Compilation flags:

static

Template:

output_externals(Options)

Mode and number of proofs:

output_externals(+list(compound)) - one

output_files/2

Generates diagram output for a list of files using the specified options.

Compilation flags:

static

Template:

output_files(Files,Options)

Mode and number of proofs:

output_files(+list,+list(compound)) - one

output_file/4

Generates diagram output for a file using the specified options.

Compilation flags:

static

Template:

output_file(Path,Basename,Directory,Options)

Mode and number of proofs:

output_file(+atom,+atom,+atom,+list(compound)) - one

output_sub_diagrams/1

Outputs sub-diagrams using the specified options.

Compilation flags:

static

Template:

output_sub_diagrams(Options)

Mode and number of proofs:

output_sub_diagrams(+list(compound)) - one

reset/0

Resets all temporary information used when generating a diagram.

Compilation flags:

static

Mode and number of proofs:

reset - one

output_node/6

Outputs a graph node.

Compilation flags:

static

Template:

output_node(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

output_node(+nonvar,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

node/6

Enumerates, by backtracking, all saved nodes.

Compilation flags:

static

Template:

node(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

node(?nonvar,?nonvar,?nonvar,?list(compound),?atom,?list(compound)) - zero_or_more

edge/5

Enumerates, by backtracking, all saved edges.

Compilation flags:

static

Template:

edge(From,To,Labels,Kind,Options)

Mode and number of proofs:

edge(?nonvar,?nonvar,?list(nonvar),?atom,?list(compound)) - zero_or_more

output_edges/1

Outputs all edges.

Compilation flags:

static

Template:

output_edges(Options)

Mode and number of proofs:

output_edges(+list(compound)) - one

save_edge/5

Saves a graph edge.

Compilation flags:

static

Template:

save_edge(From,To,Labels,Kind,Options)

Mode and number of proofs:

save_edge(+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

output_missing_externals/1

Outputs missing external nodes (usually due to unloaded resources) that are referenced from edges.

Compilation flags:

static

Template:

output_missing_externals(Options)

Mode and number of proofs:

output_missing_externals(+list(compound)) - one

not_excluded_file/4

True when the given file is not excluded from the generated output. Excluded files may be specified by full path or by basename and with or without extension. Excluded directories may be listed by full or relative path.

Compilation flags:

static

Template:

not_excluded_file(Path,Basename,ExcludedDirectories,ExcludedFiles)

Mode and number of proofs:

not_excluded_file(+atom,+atom,+list(atom),+list(atom)) - zero_or_one

output_file_path/4

Returns the output file path.

Compilation flags:

static

Template:

output_file_path(Name,Options,Format,Path)

Mode and number of proofs:

output_file_path(+atom,+list(atom),+object_identifier,-atom) - one

locate_library/2

Locates a library given its name.

Compilation flags:

static

Template:

locate_library(Library,Path)

Mode and number of proofs:

locate_library(+atom,-atom) - one

locate_directory/2

Locates a directory given its name or full path.

Compilation flags:

static

Template:

locate_directory(Directory,Path)

Mode and number of proofs:

locate_directory(+atom,-atom) - one

locate_file/5

Locates a file given its name, basename, full path, or library notation representation.

Compilation flags:

static

Template:

locate_file(File,Basename,Extension,Directory,Path)

Mode and number of proofs:

locate_file(+atom,+atom,+atom,+atom,-atom) - one

ground_entity_identifier/3

Converts an entity identifier to a ground term.

Compilation flags:

static

Template:

ground_entity_identifier(Kind,Identifier,GroundIdentifier)

Mode and number of proofs:

ground_entity_identifier(+atom,+callable,-callable) - one

filter_file_extension/3

Filters the file name extension depending on the file_extensions/1 option.

Compilation flags:

static

Template:

filter_file_extension(Basename,Options,Name)

Mode and number of proofs:

filter_file_extension(+atom,+list(compound),-atom) - one

filter_external_file_extension/3

Filters the external file name extension depending on the file_extensions/1 option.

Compilation flags:

static

Template:

filter_external_file_extension(Path,Options,Name)

Mode and number of proofs:

filter_external_file_extension(+atom,+list(compound),-atom) - one

add_link_options/3

Adds url/1, urls/2, and tooltip/1 link options (for use by the graph language) based on the specified path to the list of options.

Compilation flags:

static

Template:

add_link_options(Path,Options,LinkingOptions)

Mode and number of proofs:

add_link_options(+atom,+list(compound),-list(compound)) - one

supported_editor_url_scheme_prefix/1

Table of prefixes for text editors that supports a URL scheme to open diagram links.

Compilation flags:

static

Template:

supported_editor_url_scheme_prefix(Prefix)

Mode and number of proofs:

supported_editor_url_scheme_prefix(?atom) - zero_or_more

omit_path_prefix/3

Removes a prefix from a path, returning the relative path, when using the option omit_path_prefixes/1. Used mainly for constructing directory and file node identifiers and captions.

Compilation flags:

static

Template:

omit_path_prefix(Path,Options,Relative)

Mode and number of proofs:

omit_path_prefix(+atom,+list(compound),-atom) - one

add_node_zoom_option/4

Adds node zoom options when using the zoom option.

Compilation flags:

static

Template:

add_node_zoom_option(Identifier,Suffix,Options,NodeOptions)

Mode and number of proofs:

add_node_zoom_option(+atom,+atom,+list(compound),-list(compound)) - one

message_diagram_description/1

Diagram description for progress messages.

Compilation flags:

static

Template:

message_diagram_description(Description)

Mode and number of proofs:

message_diagram_description(?atom) - one

Private predicates

node_/6

Table of saved nodes.

Compilation flags:

dynamic

Template:

node_(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

node_(?nonvar,?nonvar,?nonvar,?list(compound),?atom,?list(compound)) - zero_or_more

node_path_/2

Table of node paths.

Compilation flags:

dynamic

Template:

node_path_(Node,Path)

Mode and number of proofs:

node_path_(?ground,?list(ground)) - zero_or_more

edge_/5

Table of saved edges.

Compilation flags:

dynamic

Template:

edge_(From,To,Labels,Kind,Options)

Mode and number of proofs:

edge_(?nonvar,?nonvar,?list(nonvar),?atom,?list(compound)) - zero_or_more

Operators

(none)

 object

diagrams

Predicates for generating all supported diagrams for libraries, directories, and files in one step using the DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public diagrams(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 libraries/1 libraries/2 libraries/3 library/1 library/2 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

diagrams(Format)

	Format - Graph language file format.

Predicates for generating all supported diagrams for libraries, directories, or files in one step using the specified format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:8:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Uses:

list

os

Remarks:

	Common options: title/1, date/1, output_directory/1, relation_labels/1, node_type_captions/1, exclude_files/1, exclude_libraries/1, url_prefixes/1, omit_path_prefix/1, entity_url_suffix_target/2, and layout/1.

	Limitations: Some of the provided predicates only make sense for some types of diagrams. Also, fine tuning may require generating individual diagrams directly instead of as a batch using this utility object.

Inherited public predicates:

(none)

	Public predicates

	libraries/3

	libraries/2

	libraries/1

	all_libraries/1

	all_libraries/0

	rlibrary/2

	rlibrary/1

	library/2

	library/1

	directories/3

	directories/2

	rdirectory/3

	rdirectory/2

	rdirectory/1

	directory/3

	directory/2

	directory/1

	files/3

	files/2

	files/1

	all_files/1

	all_files/0

	Protected predicates

	Private predicates

	Operators

Public predicates

libraries/3

Creates all supported diagrams for a set of libraries using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

libraries(Project,Libraries,Options)

Mode and number of proofs:

libraries(+atom,+list(atom),+list(compound)) - one

libraries/2

Creates all supported diagrams for a set of libraries using the default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

libraries(Project,Libraries)

Mode and number of proofs:

libraries(+atom,+list(atom)) - one

libraries/1

Creates all supported diagrams for a set of libraries using the default options. The prefix libraries is used for the diagram file names.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

all_libraries/1

Creates all supported diagrams for all loaded libraries using the specified options.

Compilation flags:

static

Template:

all_libraries(Options)

Mode and number of proofs:

all_libraries(+list(compound)) - one

all_libraries/0

Creates all supported diagrams for all loaded libraries using default options.

Compilation flags:

static

Mode and number of proofs:

all_libraries - one

rlibrary/2

Creates all supported diagrams for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Creates all supported diagrams for a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

library/2

Creates all supported diagrams for a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Creates all supported diagrams for a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

directories/3

Creates all supported diagrams for a set of directories using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directories(Project,Directories,Options)

Mode and number of proofs:

directories(+atom,+list(atom),+list(compound)) - one

directories/2

Creates all supported diagrams for a directory using default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directories(Project,Directories)

Mode and number of proofs:

directories(+atom,+list(atom)) - one

rdirectory/3

Creates all supported diagrams for a directory and its sub-directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+atom,+list(compound)) - one

rdirectory/2

Creates all supported diagrams for a directory and its sub-directories using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory)

Mode and number of proofs:

rdirectory(+atom,+atom) - one

rdirectory/1

Creates all supported diagrams for a directory and its sub-directories using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/3

Creates all supported diagrams for a directory using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Project,Directory,Options)

Mode and number of proofs:

directory(+atom,+atom,+list(compound)) - one

directory/2

Creates all supported diagrams for a directory using default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Project,Directory)

Mode and number of proofs:

directory(+atom,+atom) - one

directory/1

Creates all supported diagrams for a directory using default options. The name of the directory is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/3

Creates all supported diagrams for a set of files using the specified options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

files(Project,Files,Options)

Mode and number of proofs:

files(+atom,+list(atom),+list(compound)) - one

files/2

Creates all supported diagrams for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

files(Project,Files)

Mode and number of proofs:

files(+atom,+list(atom)) - one

files/1

Creates all supported diagrams for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The prefix “files” is used for the diagram file names.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

all_files/1

Creates all supported diagrams for all loaded files using the specified options.

Compilation flags:

static

Template:

all_files(Options)

Mode and number of proofs:

all_files(+list(compound)) - one

all_files/0

Creates all supported diagrams for all loaded files using default options.

Compilation flags:

static

Mode and number of proofs:

all_files - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

directory_dependency_diagram

Predicates for generating directory dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public directory_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

directory_load_diagram, file_load_diagram

 object

directory_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating directory dependency diagrams. A dependency exists when an entity in one directory makes a reference to an entity in another directory.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:0:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public directory_diagram(Format)

Uses:

file_dependency_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/2

Table of directory sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Project,Directory)

Mode and number of proofs:

sub_diagram_(?atom,?atom) - zero_or_more

Operators

(none)

See also

directory_load_diagram(Format), file_load_diagram(Format), library_load_diagram(Format)

 category

directory_diagram(Format)

	Format - Graph language file format.

Common predicates for generating directory diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:13:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	remember_included_directory/1

	remember_referenced_logtalk_directory/1

	remember_referenced_prolog_directory/1

	Private predicates

	included_directory_/1

	referenced_logtalk_directory_/1

	referenced_prolog_directory_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

remember_included_directory/1

Remember included Logtalk directory in the diagram.

Compilation flags:

static

Template:

remember_included_directory(Path)

Mode and number of proofs:

remember_included_directory(+atom) - one

remember_referenced_logtalk_directory/1

Remember referenced Logtalk directory in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_directory(Path)

Mode and number of proofs:

remember_referenced_logtalk_directory(+atom) - one

remember_referenced_prolog_directory/1

Remember referenced Prolog directory in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_directory(Path)

Mode and number of proofs:

remember_referenced_prolog_directory(+atom) - one

Private predicates

included_directory_/1

Table of Logtalk directories already included in the diagram.

Compilation flags:

dynamic

Template:

included_directory_(Path)

Mode and number of proofs:

included_directory_(?atom) - zero_or_more

referenced_logtalk_directory_/1

Table of referenced Logtalk directories in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_directory_(Path)

Mode and number of proofs:

referenced_logtalk_directory_(?atom) - zero_or_more

referenced_prolog_directory_/1

Table of referenced Prolog directories in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_directory_(Path)

Mode and number of proofs:

referenced_prolog_directory_(?atom) - zero_or_more

Operators

(none)

 object

directory_load_diagram

Predicates for generating directory loading dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public directory_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

directory_dependency_diagram, file_dependency_diagram

 object

directory_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating directory loading dependency diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:0:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public directory_diagram(Format)

Uses:

file_dependency_diagram(Format)

file_load_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/2

Table of directory sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Project,Directory)

Mode and number of proofs:

sub_diagram_(?atom,?atom) - zero_or_more

Operators

(none)

See also

directory_dependency_diagram(Format), file_dependency_diagram(Format), library_dependency_diagram(Format)

 object

dot_graph_language

Predicates for generating graph files in the DOT language (version 2.36.0 or later).

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:12:0

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

entity_diagram

Predicates for generating entity diagrams in DOT format with both inheritance and cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-01

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

inheritance_diagram, uses_diagram, xref_diagram

 object

entity_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams in the specified format with both inheritance and cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:60:0

Date: 2024-12-04

Compilation flags:

static, context_switching_calls

Imports:

public diagram(Format)

Uses:

list

logtalk

modules_diagram_support

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	file/2

	file/1

	Protected predicates

	Private predicates

	included_entity_/1

	included_module_/1

	referenced_entity_/2

	referenced_module_/2

	Operators

Public predicates

file/2

Creates a diagram for all entities in a loaded source file using the specified options. The file can be specified by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - one

file/1

Creates a diagram for all entities in a loaded source file using default options. The file can be specified by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

included_entity_/1

Table of Logtalk entities already included in the diagram.

Compilation flags:

dynamic

Template:

included_entity_(Entity)

Mode and number of proofs:

included_entity_(?entity_identifier) - zero_or_more

included_module_/1

Table of Prolog modules already included in the diagram.

Compilation flags:

dynamic

Template:

included_module_(Module)

Mode and number of proofs:

included_module_(?module_identifier) - zero_or_more

referenced_entity_/2

Table of referenced Logtalk entities in the diagram.

Compilation flags:

dynamic

Template:

referenced_entity_(Referencer,Entity)

Mode and number of proofs:

referenced_entity_(?entity_identifier,?entity_identifier) - zero_or_more

referenced_module_/2

Table of referenced Logtalk entities in the diagram.

Compilation flags:

dynamic

Template:

referenced_module_(Referencer,Entity)

Mode and number of proofs:

referenced_module_(?entity_identifier,?module_identifier) - zero_or_more

Operators

(none)

See also

inheritance_diagram(Format), uses_diagram(Format), xref_diagram(Format), library_diagram(Format)

 object

file_dependency_diagram

Predicates for generating file contents dependency diagrams in DOT format. A dependency exists when an entity in one file makes a reference to an entity in another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public file_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

file_load_diagram, directory_load_diagram, library_load_diagram

 object

file_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating file contents dependency diagrams. A dependency exists when an entity in one file makes a reference to an entity in another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:28:3

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public file_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

os

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of file sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(File)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

file_load_diagram(Format), directory_load_diagram(Format), library_load_diagram(Format)

 category

file_diagram(Format)

	Format - Graph language file format.

Common predicates for generating file diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:14:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	remember_included_file/1

	remember_referenced_logtalk_file/1

	remember_referenced_prolog_file/1

	Private predicates

	included_file_/1

	referenced_logtalk_file_/1

	referenced_prolog_file_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

remember_included_file/1

Remember included Logtalk file in the diagram.

Compilation flags:

static

Template:

remember_included_file(Path)

Mode and number of proofs:

remember_included_file(+atom) - one

remember_referenced_logtalk_file/1

Remember referenced Logtalk file in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_file(Path)

Mode and number of proofs:

remember_referenced_logtalk_file(+atom) - one

remember_referenced_prolog_file/1

Remember referenced Prolog file in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_file(Path)

Mode and number of proofs:

remember_referenced_prolog_file(+atom) - one

Private predicates

included_file_/1

Table of Logtalk files already included in the diagram.

Compilation flags:

dynamic

Template:

included_file_(Path)

Mode and number of proofs:

included_file_(?atom) - zero_or_more

referenced_logtalk_file_/1

Table of referenced Logtalk files in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_file_(Path)

Mode and number of proofs:

referenced_logtalk_file_(?atom) - zero_or_more

referenced_prolog_file_/1

Table of referenced Prolog files in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_file_(Path)

Mode and number of proofs:

referenced_prolog_file_(?atom) - zero_or_more

Operators

(none)

 object

file_load_diagram

Predicates for generating file loading dependency diagrams in DOT format. A dependency exists when a file loads or includes another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public file_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

file_dependency_diagram, directory_dependency_diagram, library_dependency_diagram

 object

file_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating file loading dependency diagrams. A dependency exists when a file loads or includes another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:30:3

Date: 2024-12-05

Compilation flags:

static, context_switching_calls

Imports:

public file_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

os

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of file sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(File)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

file_dependency_diagram(Format), directory_dependency_diagram(Format), library_dependency_diagram(Format)

 protocol

graph_language_protocol

Predicates for generating graph files.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-12-30

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	output_file_name/2

	file_header/3

	file_footer/3

	graph_header/5

	graph_footer/5

	node/7

	edge/6

	Protected predicates

	Private predicates

	Operators

Public predicates

output_file_name/2

Constructs the diagram file basename by adding a graph language dependent extension to the given name.

Compilation flags:

static

Template:

output_file_name(Name,Basename)

Mode and number of proofs:

output_file_name(+atom,-atom) - one

file_header/3

Writes the output file header using the specified options.

Compilation flags:

static

Template:

file_header(Stream,Identifier,Options)

Mode and number of proofs:

file_header(+stream_or_alias,+atom,+list(compound)) - one

file_footer/3

Writes the output file footer using the specified options.

Compilation flags:

static

Template:

file_footer(Stream,Identifier,Options)

Mode and number of proofs:

file_footer(+stream_or_alias,+atom,+list(compound)) - one

graph_header/5

Writes a graph header using the specified options.

Compilation flags:

static

Template:

graph_header(Stream,Identifier,Label,Kind,Options)

Mode and number of proofs:

graph_header(+stream_or_alias,+atom,+atom,+atom,+list(compound)) - one

graph_footer/5

Writes a graph footer using the specified options.

Compilation flags:

static

Template:

graph_footer(Stream,Identifier,Label,Kind,Options)

Mode and number of proofs:

graph_footer(+stream_or_alias,+atom,+atom,+atom,+list(compound)) - one

node/7

Writes a node using the specified options.

Compilation flags:

static

Template:

node(Stream,Identifier,Label,Caption,Lines,Kind,Options)

Mode and number of proofs:

node(+stream_or_alias,+nonvar,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

edge/6

Writes an edge between two nodes using the specified options.

Compilation flags:

static

Template:

edge(Stream,Start,End,Labels,Kind,Options)

Mode and number of proofs:

edge(+stream_or_alias,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

graph_language_registry

Registry of implemented graph languages.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2020-03-25

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	language_object/2

	Protected predicates

	Private predicates

	Operators

Public predicates

language_object/2

Table of defined graph languages and their implementation objects.

Compilation flags:

static, multifile

Template:

language_object(Language,Object)

Mode and number of proofs:

language_object(?atom,?object_identifier) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

inheritance_diagram

Predicates for generating entity diagrams in DOT format with inheritance relation edges but no cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-15

Compilation flags:

static, context_switching_calls

Extends:

public inheritance_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, uses_diagram, xref_diagram

 object

inheritance_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams in the specified format with inheritance relation edges but no cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:20:0

Date: 2024-03-20

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram(Format), uses_diagram(Format), xref_diagram(Format)

 object

library_dependency_diagram

Predicates for generating library dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public library_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

library_load_diagram, file_load_diagram, entity_diagram

 object

library_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating library dependency diagrams. A dependency exists when an entity in one library makes a reference to an entity in another library.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:33:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public library_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of library sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Library)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

library_load_diagram(Format), directory_load_diagram(Format), file_load_diagram(Format), entity_diagram(Format)

 category

library_diagram(Format)

	Format - Graph language file format.

Common predicates for generating library diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:17:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	add_library_documentation_url/4

	remember_included_library/2

	remember_referenced_logtalk_library/2

	remember_referenced_prolog_library/2

	Private predicates

	included_library_/2

	referenced_logtalk_library_/2

	referenced_prolog_library_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

add_library_documentation_url/4

Adds a documentation URL when using the option url_prefixes/2.

Compilation flags:

static

Template:

add_library_documentation_url(Kind,Options,Library,NodeOptions)

Mode and number of proofs:

add_library_documentation_url(+atom,+list(compound),+atom,-list(compound)) - one

remember_included_library/2

Remember included Logtalk library in the diagram.

Compilation flags:

static

Template:

remember_included_library(Library,Path)

Mode and number of proofs:

remember_included_library(+atom,+atom) - one

remember_referenced_logtalk_library/2

Remember referenced Logtalk library in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_library(Library,Path)

Mode and number of proofs:

remember_referenced_logtalk_library(+atom,+atom) - one

remember_referenced_prolog_library/2

Remember referenced Prolog library in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_library(Library,Path)

Mode and number of proofs:

remember_referenced_prolog_library(+atom,+atom) - one

Private predicates

included_library_/2

Table of Logtalk libraries already included in the diagram.

Compilation flags:

dynamic

Template:

included_library_(Library,Path)

Mode and number of proofs:

included_library_(?atom,?atom) - zero_or_more

referenced_logtalk_library_/2

Table of referenced Logtalk libraries in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_library_(Library,Path)

Mode and number of proofs:

referenced_logtalk_library_(?atom,?atom) - zero_or_more

referenced_prolog_library_/2

Table of referenced Prolog libraries in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_library_(Library,Path)

Mode and number of proofs:

referenced_prolog_library_(?atom,?atom) - zero_or_more

Operators

(none)

See also

inheritance_diagram(Format), uses_diagram(Format), xref_diagram(Format), entity_diagram(Format)

 object

library_load_diagram

Predicates for generating library loading dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public library_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

library_dependency_diagram, file_dependency_diagram, entity_diagram

 object

library_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating library loading dependency diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:33:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public library_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of library sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Library)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

library_dependency_diagram(Format), directory_dependency_diagram(Format), file_dependency_diagram(Format), entity_diagram(Format)

 object

mermaid_graph_language

Predicates for generating graph files using Mermaid.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2025-09-25

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

modules_diagram_support

Utility predicates for supporting Prolog modules in diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 0:19:5

Date: 2022-07-08

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: ECLiPSe, SICStus Prolog, SWI-Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	module_property/2

	loaded_file_property/2

	source_file_extension/1

	Protected predicates

	Private predicates

	Operators

Public predicates

module_property/2

Access to module properties, at least exports/1, file/1, and file/2 but also declares/2, defines/2, calls/2, and provides/3 when possible.

Compilation flags:

static

Template:

module_property(Module,Property)

Mode and number of proofs:

module_property(?atom,?callable) - zero_or_more

loaded_file_property/2

Access to loaded source file properties, at least basename/1, directory/1 but also parent/1 when possible.

Compilation flags:

static

Template:

loaded_file_property(File,Property)

Mode and number of proofs:

loaded_file_property(?atom,?callable) - zero_or_more

source_file_extension/1

Valid source file extension for Prolog source files.

Compilation flags:

static

Template:

source_file_extension(Extension)

Mode and number of proofs:

source_file_extension(?atom) - one_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

uses_diagram

Predicates for generating entity diagrams in DOT format with only uses/2 and use_module/2 relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:1

Date: 2020-03-27

Compilation flags:

static, context_switching_calls

Extends:

public uses_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, inheritance_diagram, xref_diagram

 object

uses_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams with only uses/2 and use_module/2 relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:21:0

Date: 2024-03-20

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram(Format), inheritance_diagram(Format), xref_diagram(Format)

 object

xref_diagram

Predicates for generating predicate call cross-referencing diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-01

Compilation flags:

static, context_switching_calls

Extends:

public xref_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 entity/1 entity/2 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, inheritance_diagram, uses_diagram

 object

xref_diagram(Format)

	Format - Graph language file format.

Predicates for generating predicate call cross-referencing diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:85:1

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

atom

list

logtalk

modules_diagram_support

os

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	entity/2

	entity/1

	Protected predicates

	Private predicates

	included_predicate_/1

	referenced_predicate_/1

	external_predicate_/1

	Operators

Public predicates

entity/2

Creates a diagram for a single entity using the specified options.

Compilation flags:

static

Template:

entity(Entity,Options)

Mode and number of proofs:

entity(+entity_identifier,+list(compound)) - one

entity/1

Creates a diagram for a single entity using default options.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

included_predicate_/1

Table of predicates already included in the diagram for the entity under processing.

Compilation flags:

dynamic

Template:

included_predicate_(Predicate)

Mode and number of proofs:

included_predicate_(?predicate_indicator) - zero_or_more

referenced_predicate_/1

Table of referenced predicates for the entity under processing.

Compilation flags:

dynamic

Template:

referenced_predicate_(Predicate)

Mode and number of proofs:

referenced_predicate_(?predicate_indicator) - zero_or_more

external_predicate_/1

Table of external predicate references for all the entities under processing.

Compilation flags:

dynamic

Template:

external_predicate_(Reference)

Mode and number of proofs:

external_predicate_(?compound) - zero_or_more

Operators

(none)

See also

entity_diagram(Format), inheritance_diagram(Format), uses_diagram(Format)

 object

doclet

Utility object to help automate (re)generating documentation for a project.

Availability:

logtalk_load(doclet(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2017-01-05

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_tokens//2

Uses:

logtalk

os

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	update/0

	doc_goal/1

	shell_command/1

	Protected predicates

	Private predicates

	Operators

Public predicates

update/0

Updates the project documentation, first by calling a sequence of goals and second by executing a sequence of shell commands. Fails if any goal or shell command fails.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

doc_goal/1

Table of goals, typically using the diagrams and the lgtdoc tools, used to generate the documentation. Goals are called in the order they are defined and in the context of the user pseudo-object.

Compilation flags:

static

Template:

doc_goal(Goal)

Mode and number of proofs:

doc_goal(?callable) - one_or_more

shell_command/1

Table of shell commands to convert intermediate documentation files into user-friendly documentation. Commands are executed in the order they are defined.

Compilation flags:

static

Template:

shell_command(Command)

Mode and number of proofs:

shell_command(?atom) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

lgtdocp, diagram(Format)

 object

help

Command-line help for Logtalk libraries, entities, plus built-in control constructs, predicates, non-terminals, and methods.

Availability:

logtalk_load(help(loader))

Author: Paulo Moura

Version: 0:38:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls, complements(allow)

Implements:

public forwarding

Uses:

atom

os

user

Remarks:

(none)

Inherited public predicates:

 apis/0 apis/1 forward/1 handbook/0 handbook/1 man/1

	Public predicates

	help/0

	(/)/2

	(//)/2

	completion/2

	completions/2

	built_in_directive/4

	built_in_predicate/4

	built_in_method/4

	control_construct/4

	built_in_non_terminal/4

	library/0

	library/1

	entity/1

	manuals/0

	Protected predicates

	Private predicates

	Operators

Public predicates

help/0

Prints instructions on how to use the help tool.

Compilation flags:

static

Mode and number of proofs:

help - one

(/)/2

Provides help on the Functor/Arity built-in control construct, directive, predicate, or method.

Compilation flags:

static

Template:

Functor/Arity

Mode and number of proofs:

+atom/ +integer - zero_or_one

(//)/2

Provides help on the Functor//Arity built-in non-terminal.

Compilation flags:

static

Template:

Functor//Arity

Mode and number of proofs:

+atom// +integer - zero_or_one

completion/2

Provides a completion pair, Completion-Page, for a given prefix.

Compilation flags:

static

Template:

completion(Prefix,Completion)

Mode and number of proofs:

completion(+atom,-pair) - zero_or_more

completions/2

Provides a list of completions pairs, Completion-Page, for a given prefix.

Compilation flags:

static

Template:

completions(Prefix,Completions)

Mode and number of proofs:

completions(+atom,-lists(pair)) - zero_or_more

built_in_directive/4

Provides access to the HTML documenting files describing built-in directives.

Compilation flags:

static

Template:

built_in_directive(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_directive(?atom,?integer,-atom,-atom) - zero_or_more

built_in_predicate/4

Provides access to the HTML documenting files describing built-in predicates.

Compilation flags:

static

Template:

built_in_predicate(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_predicate(?atom,?integer,-atom,-atom) - zero_or_more

built_in_method/4

Provides access to the HTML documenting files describing built-in methods.

Compilation flags:

static

Template:

built_in_method(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_method(?atom,?integer,-atom,-atom) - zero_or_more

control_construct/4

Provides access to the HTML documenting files describing built-in control constructs.

Compilation flags:

static

Template:

control_construct(Functor,Arity,Directory,Basename)

Mode and number of proofs:

control_construct(?atom,?integer,-atom,-atom) - zero_or_more

built_in_non_terminal/4

Provides access to the HTML documenting files describing built-in DCG non-terminals.

Compilation flags:

static

Template:

built_in_non_terminal(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_non_terminal(?atom,?integer,-atom,-atom) - zero_or_more

library/0

Provides help on the standard Logtalk library.

Compilation flags:

static

Mode and number of proofs:

library - one

library/1

Provides help on the standard Logtalk libraries, library predicates, and library non-terminals.

Compilation flags:

static

Template:

library(Topic)

Mode and number of proofs:

library(+atom) - zero_or_one

library(+predicate_indicator) - zero_or_one

library(+non_terminal_indicator) - zero_or_one

entity/1

Provides help on Logtalk entities (objects, protocols, or categories).

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - zero_or_one

manuals/0

Provides access to the Logtalk User and Reference manuals.

Compilation flags:

static

Mode and number of proofs:

manuals - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

help_info_support

Experimental help predicates for inline browsing of the Texinfo versions of the Handbook and APIs documentation. Currently requires Ciao Prolog, ECLiPSe, GNU Prolog, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, or YAP as the backend running on a POSIX system.

Availability:

logtalk_load(help(loader))

Author: Paulo Moura

Version: 0:9:0

Date: 2025-05-02

Compilation flags:

static

Complements:

help

Uses:

os

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	handbook/0

	handbook/1

	apis/0

	apis/1

	man/1

	Protected predicates

	Private predicates

	Operators

Public predicates

handbook/0

Opens inline the Texinfo version of the Handbook.

Compilation flags:

static

Mode and number of proofs:

handbook - one

handbook/1

Opens inline the Texinfo version of the Handbook at the given topic.

Compilation flags:

static

Template:

handbook(Topic)

Mode and number of proofs:

handbook(+atom) - one

handbook(+predicate_indicator) - one

handbook(+non_terminal_indicator) - one

apis/0

Opens inline the Texinfo version of the APIs documentation.

Compilation flags:

static

Mode and number of proofs:

apis - one

apis/1

Opens inline the Texinfo version of the APIs documentation at the given topic.

Compilation flags:

static

Template:

apis(Topic)

Mode and number of proofs:

apis(+atom) - one

apis(+predicate_indicator) - one

apis(+non_terminal_indicator) - one

man/1

Opens inline the man page of the given script.

Compilation flags:

static

Template:

man(Script)

Mode and number of proofs:

man(+atom) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

issue_creator

Support for automatically creating bug report issues for failed tests in GitHub or GitLab servers.

Availability:

logtalk_load(issue_creator(loader))

Author: Paulo Moura

Version: 0:12:1

Date: 2025-03-03

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

git

os

term_io

user

Remarks:

	Usage: This tool is automatically loaded and used from the logtalk_tester automation script when using its -b option. See the script man page for details.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

lgtdoc

Documenting tool. Generates XML documenting files for loaded entities and for library, directory, entity, and predicate indexes.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 11:2:1

Date: 2025-10-07

Compilation flags:

static, context_switching_calls

Implements:

public lgtdocp

Imports:

public options

Uses:

date

list

logtalk

os

type

user

varlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 check_option/1 check_options/1 default_option/1 default_options/1 directories/1 directories/2 directory/1 directory/2 file/1 file/2 files/1 files/2 fix_option/2 fix_options/2 libraries/1 libraries/2 library/1 library/2 merge_options/2 option/2 option/3 rdirectories/1 rdirectories/2 rdirectory/1 rdirectory/2 rlibraries/1 rlibraries/2 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	library_entity_/4

	directory_entity_/4

	type_entity_/4

	predicate_entity_/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

library_entity_/4

Table of documented entities per library.

Compilation flags:

dynamic

Template:

library_entity_(Library,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

library_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

directory_entity_/4

Table of documented entities per directory.

Compilation flags:

dynamic

Template:

directory_entity_(Directory,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

directory_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

type_entity_/4

Table of documented entities per type.

Compilation flags:

dynamic

Template:

type_entity_(Type,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

type_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

predicate_entity_/4

Table of public predicates for all documented entities.

Compilation flags:

dynamic

Template:

predicate_entity_(Predicate,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

predicate_entity_(?predicate_indicator,?nonvar,?nonvar,?entity_identifier) - zero_or_more

Operators

(none)

 category

lgtdoc_messages

Logtalk documentation tool default message translations.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 4:0:1

Date: 2024-12-02

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

lgtdocp

Documenting tool protocol.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2024-03-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Compiling files for generating XML documentation: All source files must be compiled with the source_data flag turned on.

	xml_spec(Specification) option: XML documenting files specification format. Possible option values are dtd (DTD specification; default) and xsd (XML Schema specification).

	xml_spec_reference(Reference) option: Reference to the XML specification file in XML documenting files. Possible values are local (default; DTD/XSD file in same folder as XML files), web (logtalk.org website DTD/XSD file), and standalone (no reference to specification files).

	entity_xsl_file(File) option: XSLT file to use with generated XML documenting files. Default is logtalk_entity_to_xml.xsl, allowing the XML files to be viewed by opening them with a browser supporting XSLT (after running the lgt2xml.sh script on the output directory).

	index_xsl_file(File) option: XSLT file to use with generated XML documenting files. Default is logtalk_index_to_xml.xsl, allowing the XML files to be viewed by opening them with a browser supporting XSLT (after running the lgt2xml.sh script on the output directory).

	xml_docs_directory(Directory) option: Directory where the XML documenting files will be generated. The default value is ./xml_docs, a sub-directory of the source files directory.

	bom(Boolean) option: Defines if a BOM should be added to the generated XML documenting files.

	encoding(Encoding) option: Encoding to be used for the generated XML documenting files.

	omit_path_prefixes(Prefixes) option: List of path prefixes (atoms) to omit when writing directory paths. The default value is to omit the home directory.

	exclude_files(List) option: List of files to exclude when generating the XML documenting files.

	exclude_paths(List) option: List of relative library paths to exclude when generating the XML documenting files (default is []). All sub-directories of the excluded directories are also excluded.

	exclude_prefixes(List) option: List of path prefixes to exclude when generating the XML documenting files (default is []).

	exclude_entities(List) option: List of entities to exclude when generating the XML documenting files (default is []).

	sort_predicates(Boolean) option: Sort entity predicates (default is false).

	Known issues: Some options may depend on the used XSL processor. Most XSL processors support DTDs but only some of them support XML Schemas. Some processors (e.g., fop2) reject reference to a DTD.

Inherited public predicates:

(none)

	Public predicates

	rlibraries/2

	rlibraries/1

	rlibrary/2

	rlibrary/1

	libraries/2

	libraries/1

	library/2

	library/1

	rdirectories/2

	rdirectories/1

	rdirectory/2

	rdirectory/1

	directories/2

	directories/1

	directory/2

	directory/1

	files/2

	files/1

	file/2

	file/1

	all/1

	all/0

	Protected predicates

	Private predicates

	Operators

Public predicates

rlibraries/2

Creates XML documenting files for all entities in all given libraries and their sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibraries(Libraries,Options)

Mode and number of proofs:

rlibraries(+list(atom),+list) - one

rlibraries/1

Creates XML documenting files for all entities in all given libraries and their sub-libraries using default options.

Compilation flags:

static

Template:

rlibraries(Libraries)

Mode and number of proofs:

rlibraries(+list(atom)) - one

rlibrary/2

Creates XML documenting files for all entities in a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list) - one

Examples:

Generate XML documenting files for all tool entities for later conversion to Markdown files

rlibrary(tools,[xslfile('lgtmd.xsl')])

yes

rlibrary/1

Creates XML documenting files for all entities in a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

Examples:

Generate XML documenting files for all tool entities for direct viewing in a browser (after indexing using the lgt2xml script)

rlibrary(tools)

yes

libraries/2

Creates XML documenting files for all entities in all given libraries using the specified options.

Compilation flags:

static

Template:

libraries(Libraries,Options)

Mode and number of proofs:

libraries(+list(atom),+list) - one

libraries/1

Creates XML documenting files for all entities in all given libraries using default options.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

library/2

Creates XML documenting files for all entities in a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list) - one

Examples:

Generate XML documenting files for all library entities for later conversion to PDF A4 files

library(library,[xslfile('logtalk_entity_to_pdf_a4.xsl')])

yes

library/1

Creates XML documenting files for all entities in a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rdirectories/2

Creates XML documenting files for all entities in all given directories and their sub-directories using the specified options.

Compilation flags:

static

Template:

rdirectories(Directories,Options)

Mode and number of proofs:

rdirectories(+list(atom),+list) - one

rdirectories/1

Creates XML documenting files for all entities in all given directories and their sub-directories using default options.

Compilation flags:

static

Template:

rdirectories(Directories)

Mode and number of proofs:

rdirectories(+list(atom)) - one

rdirectory/2

Creates XML documenting files for all entities in a directory and its sub-directories using the specified options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list) - one

Examples:

Generate XML documenting files for all entities in the tools directory for later conversion to Markdown files

rdirectory('./tools',[xslfile('lgtmd.xsl')])

yes

rdirectory/1

Creates XML documenting files for all entities in a directory and its sub-directories using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

Examples:

Generate XML documenting files for all entities in the tools directory for direct viewing in a browser (after indexing using the lgt2xml script)

rdirectory('./tools')

yes

directories/2

Creates XML documenting files for all entities in all given directories using the specified options.

Compilation flags:

static

Template:

directories(Directories,Options)

Mode and number of proofs:

directories(+list(atom),+list) - one

directories/1

Creates XML documenting files for all entities in all given directories using default options.

Compilation flags:

static

Template:

directories(Directories)

Mode and number of proofs:

directories(+list(atom)) - one

directory/2

Creates XML documenting files for all entities in a directory using the specified options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list) - one

Examples:

Generate XML documenting files for all the entities in the current directory for later conversion to PDF A4 files

directory('.',[xslfile('logtalk_entity_to_pdf_a4.xsl')])

yes

directory/1

Creates XML documenting files for all entities in a directory using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/2

Creates XML documenting files for all entities in loaded source files using the specified options. The files can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

files(Files,Options)

Mode and number of proofs:

files(+list(atom),+list) - one

files/1

Creates XML documenting files for all entities in loaded source files using default options. The files can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

file/2

Creates XML documenting files for all entities in a loaded source file using the specified options. The file can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list) - one

file/1

Creates XML documenting files for all entities in a loaded source file using default options. The file can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

all/1

Creates XML documenting files for all loaded entities using the specified options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list) - one

all/0

Creates XML documenting files for all loaded entities using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

lgtdoc

 object

automation_report

Intercepts unit test execution messages and generates a *.totals files for parsing by the logtalk_tester.sh automation shell script.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

user

Remarks:

	Usage: Automatically loaded by the logtalk_tester.sh shell script.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coverage_report

Intercepts unit test execution messages and generates a coverage_report.xml file with a test suite code coverage results.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 3:2:0

Date: 2023-04-11

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(coverage_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	timestamp_/6

	object_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

timestamp_/6

Cache of the starting tests timestamp.

Compilation flags:

dynamic

Template:

timestamp_(Year,Month,Day,Hours,Minutes,Seconds)

Mode and number of proofs:

timestamp_(-integer,-integer,-integer,-integer,-integer,-integer) - one

object_file_/2

Cache of test object - file pairs.

Compilation flags:

dynamic

Template:

object_file_(Object,File)

Mode and number of proofs:

object_file_(?object_identifier,?atom) - zero_or_more

Operators

(none)

 object

lgtunit

A unit test framework supporting predicate clause coverage, determinism testing, input/output testing, property-based testing, and multiple test dialects.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 22:3:0

Date: 2025-10-20

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public lgtunit_messages

Provides:

logtalk::trace_event/2

Uses:

fast_random

list

logtalk

os

type

user

Remarks:

	Usage: Define test objects as extensions of the lgtunit object and compile their source files using the compiler option hook(lgtunit).

	Portability: Deterministic unit tests are currently not available when using Quintus Prolog as the backend compiler.

	Known issues: Parameter variables cannot currently be used in the definition of test options.

Inherited public predicates:

 failed_test_reason//1 goal_expansion/2 term_expansion/2

	Public predicates

	cover/1

	run/0

	run/1

	run/2

	run_test_sets/1

	test/1

	number_of_tests/1

	deterministic/1

	deterministic/2

	assertion/1

	assertion/2

	quick_check/3

	quick_check/2

	quick_check/1

	benchmark/2

	benchmark_reified/3

	benchmark/3

	benchmark/4

	variant/2

	approximately_equal/2

	approximately_equal/3

	essentially_equal/3

	tolerance_equal/4

	=~= / 2

	epsilon/1

	Protected predicates

	run_tests/0

	run_tests/1

	run_test_set/0

	run_quick_check_tests/5

	condition/0

	setup/0

	cleanup/0

	make/1

	note/1

	file_path/2

	suppress_text_output/0

	suppress_binary_output/0

	set_text_input/3

	set_text_input/2

	set_text_input/1

	check_text_input/2

	check_text_input/1

	text_input_assertion/3

	text_input_assertion/2

	clean_text_input/0

	set_binary_input/3

	set_binary_input/2

	set_binary_input/1

	check_binary_input/2

	check_binary_input/1

	binary_input_assertion/3

	binary_input_assertion/2

	clean_binary_input/0

	set_text_output/3

	set_text_output/2

	set_text_output/1

	check_text_output/3

	check_text_output/2

	check_text_output/1

	text_output_assertion/4

	text_output_assertion/3

	text_output_assertion/2

	text_output_contents/3

	text_output_contents/2

	text_output_contents/1

	clean_text_output/0

	set_binary_output/3

	set_binary_output/2

	set_binary_output/1

	check_binary_output/2

	check_binary_output/1

	binary_output_assertion/3

	binary_output_assertion/2

	binary_output_contents/2

	binary_output_contents/1

	clean_binary_output/0

	create_text_file/3

	create_text_file/2

	create_binary_file/2

	check_text_file/3

	check_text_file/2

	text_file_assertion/4

	text_file_assertion/3

	check_binary_file/2

	binary_file_assertion/3

	clean_file/1

	clean_directory/1

	closed_input_stream/2

	closed_output_stream/2

	stream_position/1

	test/2

	Private predicates

	running_test_sets_/0

	test/3

	auxiliary_predicate_counter_/1

	test_/2

	selected_test_/1

	skipped_/1

	passed_/3

	failed_/3

	flaky_/1

	fired_/3

	covered_/4

	Operators

	op(700,xfx,=~=)

Public predicates

cover/1

Declares entities being tested for which code coverage information should be collected.

Compilation flags:

static

Template:

cover(Entity)

Mode and number of proofs:

cover(?entity_identifier) - zero_or_more

run/0

Runs the unit tests, writing the results to the current output stream.

Compilation flags:

static

Mode and number of proofs:

run - one

run/1

Runs a unit test or a list of unit tests, writing the results to the current output stream. Runs the global setup and cleanup steps when defined. Fails when given a partial list of tests or when one of the test identifiers is not valid.

Compilation flags:

static

Template:

run(Tests)

Mode and number of proofs:

run(++callable) - zero_or_one

run(++list(callable)) - zero_or_one

run/2

Runs the unit tests, writing the results to the specified file. Mode can be either write (to create a new file) or append (to add results to an existing file).

Compilation flags:

static

Template:

run(File,Mode)

Mode and number of proofs:

run(+atom,+atom) - one

run_test_sets/1

Runs two or more test sets as a unified set generating a single code coverage report if one is requested. When there is a single test set, it is equivalent to sending the message run/0 to the test set. Trivially succeeds when the argument is an empty list.

Compilation flags:

static

Template:

run_test_sets(TestObjects)

Mode and number of proofs:

run_test_sets(+list(object)) - one

Exceptions:

TestObjects is a partial list or a list with an element which is a variable:

instantiation_error

TestObjects is neither a partial list nor a list:

type_error(list(object),TestObjects)

An element TestObject of the TestObjects list is not an existing object:

existence_error(object,TestObject)

test/1

Enumerates, by backtracking, the identifiers of all defined unit tests.

Compilation flags:

static

Template:

test(Identifier)

Mode and number of proofs:

test(?callable) - zero_or_more

number_of_tests/1

Number of defined unit tests.

Compilation flags:

static

Template:

number_of_tests(NumerOfTests)

Mode and number of proofs:

number_of_tests(?integer) - zero_or_one

deterministic/1

True if the goal succeeds once without leaving choice-points.

Compilation flags:

static

Template:

deterministic(Goal)

Meta-predicate template:

deterministic(0)

Mode and number of proofs:

deterministic(+callable) - zero_or_one

deterministic/2

Reified version of the deterministic/1 predicate. True if the goal succeeds. Returns a boolean value (true or false) indicating if the goal succeeded without leaving choice-points.

Compilation flags:

static

Template:

deterministic(Goal,Deterministic)

Meta-predicate template:

deterministic(0,*)

Mode and number of proofs:

deterministic(+callable,--atom) - zero_or_one

assertion/1

True if the assertion goal succeeds. Throws an error using the assertion goal as argument if the assertion goal throws an error or fails.

Compilation flags:

static

Template:

assertion(Assertion)

Meta-predicate template:

assertion(::)

Mode and number of proofs:

assertion(@callable) - one

Exceptions:

Assertion goal fails:

assertion_failure(Assertion)

Assertion goal throws Error:

assertion_error(Assertion,Error)

assertion/2

True if the assertion goal succeeds. Throws an error using the description as argument if the assertion goal throws an error or fails. The description argument helps to distinguish between different assertions in the same test body.

Compilation flags:

static

Template:

assertion(Description,Assertion)

Meta-predicate template:

assertion(*,0)

Mode and number of proofs:

assertion(+nonvar,@callable) - one

Exceptions:

Assertion goal fails:

assertion_failure(Description)

Assertion goal throws Error:

assertion_error(Description,Error)

quick_check/3

Reified version of the quick_check/2 predicate. Reports passed(SequenceSeed,Discarded,Labels), failed(Goal,SequenceSeed,TestSeed), error(Error,Goal,SequenceSeed,TestSeed), or broken(Why,Culprit). Goal is the failed test.

Compilation flags:

static

Template:

quick_check(Template,Result,Options)

Meta-predicate template:

quick_check(::,*,::)

Mode and number of proofs:

quick_check(@callable,-callable,++list(compound)) - one

Remarks:

	SequenceSeed argument: Can be used to re-run the same exact sequence of pseudo-random tests by using the rs/1 option after changes to the code being tested.

	TestSeed argument: Can be used to re-run the test that failed by using the rs/1 option after changes to the code being tested.

	Discarded argument: Number of generated tests that were discarded for failing to comply a pre-condition specified using the pc/1 option.

	Labels argument: List of pairs Label-N where N is the number of generated tests that are classified as Label by a closure specified using the l/1 option.

	broken(Why,Culprit) result: This result signals a broken setup. For example, an invalid template, a broken pre-condition or label goal, or broken test generation.

quick_check/2

Generates and runs random tests for a predicate given its mode template and a set of options. Fails when a generated test fails printing the test. Also fails on an invalid option, printing the option.

Compilation flags:

static

Template:

quick_check(Template,Options)

Meta-predicate template:

quick_check(::,::)

Mode and number of proofs:

quick_check(@callable,++list(compound)) - zero_or_one

Remarks:

	Number of tests: Use the n(NumberOfTests) option to specify the number of random tests. Default is 100.

	Maximum number of shrink operations: Use the s(MaxShrinks) option to specify the number of shrink operations when a counter example is found. Default is 64.

	Type edge cases: Use the ec(Boolean) option to specify if type edge cases are tested (before generating random tests). Default is true.

	Starting seed: Use the rs(Seed) option to specify the random generator starting seed to be used when generating tests. No default. Seeds should be regarded as opaque terms.

	Test generation filtering: Use the pc/1 option to specify a pre-condition closure for filtering generated tests (extended with the test arguments; no default).

	Generated tests classification: Use the l/1 option to specify a label closure for classifying the generated tests (extended with the test arguments plus the labels argument; no default). The labelling predicate can return a single test label or a list of test labels.

	Verbose test generation: Use the v(Boolean) option to specify verbose reporting of generated random tests. Default is false.

	Progress bar: Use the pb(Boolean,Tick) option to print a progress bar for the executed tests, advancing at every Tick tests. Default is false. Only applies when the verbose option is false.

quick_check/1

Generates and runs random tests using default options for a predicate given its mode template. Fails when a generated test fails printing the test.

Compilation flags:

static

Template:

quick_check(Template)

Mode and number of proofs:

quick_check(@callable) - zero_or_one

benchmark/2

Benchmarks a goal and returns the total execution time in seconds. Uses CPU clock. Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Time)

Meta-predicate template:

benchmark(0,*)

Mode and number of proofs:

benchmark(+callable,-float) - one

benchmark_reified/3

Benchmarks a goal and returns the total execution time in seconds plus its result (success, failure, or error(Error)). Uses CPU clock.

Compilation flags:

static

Template:

benchmark_reified(Goal,Time,Result)

Meta-predicate template:

benchmark_reified(0,*,*)

Mode and number of proofs:

benchmark_reified(+callable,-float,-callable) - one

benchmark/3

Benchmarks a goal by repeating it the specified number of times and returning the total execution time in seconds. Uses CPU clock. Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Repetitions,Time)

Meta-predicate template:

benchmark(0,*,*)

Mode and number of proofs:

benchmark(@callable,+positive_integer,-float) - one

benchmark/4

Benchmarks a goal by repeating it the specified number of times and returning the total execution time in seconds using the given clock (cpu or wall). Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Repetitions,Clock,Time)

Meta-predicate template:

benchmark(0,*,*,*)

Mode and number of proofs:

benchmark(@callable,+positive_integer,+atom,-float) - one

variant/2

True when the two arguments are a variant of each other. I.e. if is possible to rename the term variables to make them identical. Useful for checking expected test results that contain variables.

Compilation flags:

static

Template:

variant(Term1,Term2)

Mode and number of proofs:

variant(@term,@term) - zero_or_one

approximately_equal/2

Compares two numbers for approximate equality given the epsilon arithmetic constant value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * epsilon. Type-checked.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2)

Mode and number of proofs:

approximately_equal(+number,+number) - zero_or_one

approximately_equal/3

Compares two numbers for approximate equality given a user-defined epsilon value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * Epsilon. Type-checked.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

approximately_equal(+number,+number,+number) - zero_or_one

Remarks:

	Epsilon range: Epsilon should be the epsilon arithmetic constant value or a small multiple of it. Only use a larger value if a greater error is expected.

	Comparison with essential equality: For the same epsilon value, approximate equality is weaker requirement than essential equality.

essentially_equal/3

Compares two numbers for essential equality given an epsilon value using the de facto standard formula abs(Number1 - Number2) =< min(abs(Number1), abs(Number2)) * Epsilon. Type-checked.

Compilation flags:

static

Template:

essentially_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

essentially_equal(+number,+number,+number) - zero_or_one

Remarks:

	Comparison with approximate equality: For the same epsilon value, essential equality is a stronger requirement than approximate equality.

tolerance_equal/4

Compares two numbers for close equality given relative and absolute tolerances using the de facto standard formula abs(Number1 - Number2) =< max(RelativeTolerance * max(abs(Number1), abs(Number2)), AbsoluteTolerance). Type-checked.

Compilation flags:

static

Template:

tolerance_equal(Number1,Number2,RelativeTolerance,AbsoluteTolerance)

Mode and number of proofs:

tolerance_equal(+number,+number,+number,+number) - zero_or_one

=~= / 2

Compares two numbers (or lists of numbers) for approximate equality using 100*epsilon for the absolute error and, if that fails, 99.999% accuracy for the relative error. But these precision values may not be adequate for all cases. Type-checked.

Compilation flags:

static

Template:

=~=(Number1,Number2)

Mode and number of proofs:

=~=(+number,+number) - zero_or_one

=~=(+list(number),+list(number)) - zero_or_one

epsilon/1

Returns the value of epsilon used in the definition of the (=~=)/2 predicate.

Compilation flags:

static

Template:

epsilon(Epsilon)

Mode and number of proofs:

epsilon(-float) - one

Protected predicates

run_tests/0

Runs all defined unit tests.

Compilation flags:

static

Mode and number of proofs:

run_tests - one

run_tests/1

Runs all the tests defined in the given file.

Compilation flags:

static

Template:

run_tests(File)

Mode and number of proofs:

run_tests(+atom) - one

run_test_set/0

Runs a test set as part of running two or more test sets as a unified set.

Compilation flags:

static

Mode and number of proofs:

run_test_set - one

run_quick_check_tests/5

Runs a QuickCheck test using the given options. Returns the starting seed used to generate the random tests, the number of discarded tests, and the test label statistics.

Compilation flags:

static

Template:

run_quick_check_tests(Template,Options,Seed,Discarded,Labels)

Meta-predicate template:

run_quick_check_tests(::,::,*,*,*)

Mode and number of proofs:

run_quick_check_tests(@callable,+list,--nonvar,--number,--list(pair)) - one_or_error

condition/0

Verifies conditions for running the tests. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

condition - zero_or_one

setup/0

Setup environment before running the test set. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

setup - zero_or_one

cleanup/0

Cleanup environment after running the test set. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

cleanup - zero_or_one

make/1

Make target for automatically running the test set when calling the logtalk_make/1 built-in predicate. No default. Possible values are all and check.

Compilation flags:

static

Template:

make(Target)

Mode and number of proofs:

make(?atom) - zero_or_one

note/1

Note to be printed after the test results. Defaults to the empty atom.

Compilation flags:

static

Template:

note(Note)

Mode and number of proofs:

note(?atom) - zero_or_one

file_path/2

Returns the absolute path for a file path that is relative to the tests object path. When the file path is already an absolute path, it is expanded to resolve any remaining relative file path parts.

Compilation flags:

static

Template:

file_path(File,Path)

Mode and number of proofs:

file_path(+atom,-atom) - one

See also:

clean_file/1

clean_directory/1

suppress_text_output/0

Suppresses text output. Useful to avoid irrelevant text output from predicates being tested to clutter the test logs.

Compilation flags:

static

Mode and number of proofs:

suppress_text_output - one

suppress_binary_output/0

Suppresses binary output. Useful to avoid irrelevant binary output from predicates being tested to clutter the test logs.

Compilation flags:

static

Mode and number of proofs:

suppress_binary_output - one

set_text_input/3

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for reading referenced by the given alias and using the additional options. If no eof_action/1 option is specified, its value will be the default used by the backend compiler.

Compilation flags:

static

Template:

set_text_input(Alias,Contents,Options)

Mode and number of proofs:

set_text_input(+atom,+atom,+list(stream_option)) - one

set_text_input(+atom,+list(atom),+list(stream_option)) - one

See also:

text_input_assertion/3

check_text_input/2

clean_text_input/0

set_text_input/2

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for reading referenced by the given alias and using the default end-of-file action for the used backend compiler.

Compilation flags:

static

Template:

set_text_input(Alias,Contents)

Mode and number of proofs:

set_text_input(+atom,+atom) - one

set_text_input(+atom,+list(atom)) - one

See also:

text_input_assertion/3

check_text_input/2

clean_text_input/0

set_text_input/1

Creates a temporary file, in the same directory as the tests object, with the given text contents, opens it for reading using the default end-of-file action for the used backend compiler, and sets the current input stream to the file.

Compilation flags:

static

Template:

set_text_input(Contents)

Mode and number of proofs:

set_text_input(+atom) - one

set_text_input(+list(atom)) - one

See also:

text_input_assertion/2

check_text_input/1

clean_text_input/0

check_text_input/2

Checks that the temporary file (referenced by the given alias) being read have the expected text contents.

Compilation flags:

static

Template:

check_text_input(Alias,Contents)

Mode and number of proofs:

check_text_input(+atom,+atom) - zero_or_one

See also:

set_text_input/2

set_text_input/2

text_input_assertion/3

clean_text_input/0

check_text_input/1

Checks that the temporary file being read have the expected text contents.

Compilation flags:

static

Template:

check_text_input(Contents)

Mode and number of proofs:

check_text_input(+atom) - zero_or_one

See also:

set_text_input/1

text_input_assertion/2

clean_text_input/0

text_input_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) being read have the expected text contents.

Compilation flags:

static

Template:

text_input_assertion(Alias,Contents,Assertion)

Mode and number of proofs:

text_input_assertion(+atom,+atom,--callable) - one

See also:

set_text_input/3

check_text_input/2

clean_text_input/0

text_input_assertion/2

Returns an assertion for checking that the temporary file being read have the expected text contents.

Compilation flags:

static

Template:

text_input_assertion(Contents,Assertion)

Mode and number of proofs:

text_input_assertion(+atom,--callable) - one

See also:

set_text_input/1

check_text_input/1

clean_text_input/0

clean_text_input/0

Cleans the temporary file used when testing text input.

Compilation flags:

static

Mode and number of proofs:

clean_text_input - one

See also:

set_text_input/3

set_text_input/2

set_text_input/1

set_binary_input/3

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading referenced by the given alias and using the additional options. If no eof_action/1 option is specified, its value will be the default used by the backend compiler.

Compilation flags:

static

Template:

set_binary_input(Alias,Bytes,Options)

Mode and number of proofs:

set_binary_input(+atom,+list(byte),+list(stream_option)) - one

See also:

binary_input_assertion/3

check_binary_input/2

clean_binary_input/0

set_binary_input/2

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading referenced by the given alias and using the default end-of-file action for the used backend compiler.

Compilation flags:

static

Template:

set_binary_input(Alias,Bytes)

Mode and number of proofs:

set_binary_input(+atom,+list(byte)) - one

See also:

binary_input_assertion/3

check_binary_input/2

clean_binary_input/0

set_binary_input/1

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading using the default end-of-file action for the used backend compiler, and sets the current input stream to the file.

Compilation flags:

static

Template:

set_binary_input(Bytes)

Mode and number of proofs:

set_binary_input(+list(byte)) - one

See also:

binary_input_assertion/2

check_binary_input/1

clean_binary_input/0

check_binary_input/2

Checks that the temporary file (referenced by the given alias) being read have the expected binary contents.

Compilation flags:

static

Template:

check_binary_input(Alias,Bytes)

Mode and number of proofs:

check_binary_input(+atom,+list(byte)) - zero_or_one

See also:

set_binary_input/3

set_binary_input/2

binary_input_assertion/3

clean_binary_input/0

check_binary_input/1

Checks that the temporary file being read have the expected binary contents.

Compilation flags:

static

Template:

check_binary_input(Bytes)

Mode and number of proofs:

check_binary_input(+list(byte)) - zero_or_one

See also:

binary_input_assertion/2

set_binary_input/1

clean_binary_input/0

binary_input_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) being read have the expected binary contents.

Compilation flags:

static

Template:

binary_input_assertion(Alias,Bytes,Assertion)

Mode and number of proofs:

binary_input_assertion(+atom,+list(byte),--callable) - one

See also:

check_binary_input/2

set_binary_input/3

set_binary_input/2

clean_binary_input/0

binary_input_assertion/2

Returns an assertion for checking that the temporary file being read have the expected binary contents.

Compilation flags:

static

Template:

binary_input_assertion(Bytes,Assertion)

Mode and number of proofs:

binary_input_assertion(+list(byte),--callable) - one

See also:

check_binary_input/1

set_binary_input/1

clean_binary_input/0

clean_binary_input/0

Cleans the temporary file used when testing binary input.

Compilation flags:

static

Mode and number of proofs:

clean_binary_input - one

See also:

set_binary_input/3

set_binary_input/2

set_binary_input/1

set_text_output/3

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for writing referenced by the given alias and using the additional options.

Compilation flags:

static

Template:

set_text_output(Alias,Contents,Options)

Mode and number of proofs:

set_text_output(+atom,+atom,+list(stream_option)) - one

set_text_output(+atom,+list(atom),+list(stream_option)) - one

See also:

text_output_assertion/4

check_text_output/3

clean_text_output/0

set_text_output/2

Creates a temporary file, in the same directory as the tests object, with the given text contents, and referenced by the given alias.

Compilation flags:

static

Template:

set_text_output(Alias,Contents)

Mode and number of proofs:

set_text_output(+atom,+atom) - one

set_text_output(+atom,+list(atom)) - one

See also:

text_output_assertion/3

check_text_output/2

clean_text_output/0

set_text_output/1

Creates a temporary file, in the same directory as the tests object, with the given text contents, and sets the current output stream to the file.

Compilation flags:

static

Template:

set_text_output(Contents)

Mode and number of proofs:

set_text_output(+atom) - one

set_text_output(+list(atom)) - one

See also:

text_output_assertion/2

check_text_output/1

clean_text_output/0

check_text_output/3

Checks that the temporary file (open with the given options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Alias,Contents,Options)

Mode and number of proofs:

check_text_output(+atom,+atom,+list(stream_option)) - zero_or_one

See also:

set_text_output/3

text_output_assertion/4

clean_text_output/0

check_text_output/2

Checks that the temporary file (open with default options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Alias,Contents)

Mode and number of proofs:

check_text_output(+atom,+atom) - zero_or_one

See also:

set_text_output/2

text_output_assertion/3

clean_text_output/0

check_text_output/1

Checks that the temporary file being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Contents)

Mode and number of proofs:

check_text_output(+atom) - zero_or_one

See also:

set_text_output/1

text_output_assertion/2

clean_text_output/0

text_output_assertion/4

Returns an assertion for checking that the temporary file (open with the given options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Alias,Contents,Options,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,+atom,+list(stream_option),--callable) - one

See also:

set_text_output/3

check_text_output/3

clean_text_output/0

text_output_assertion/3

Returns an assertion for checking that the temporary file (open with default options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Alias,Contents,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,+atom,--callable) - one

See also:

set_text_output/2

check_text_output/2

clean_text_output/0

text_output_assertion/2

Returns an assertion for checking that the temporary file (open with default options in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Contents,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,--callable) - one

See also:

set_text_output/1

check_text_output/1

clean_text_output/0

text_output_contents/3

Returns the contents of the temporary file (open with the given options and alias in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Alias,Contents,Options)

Mode and number of proofs:

text_output_contents(+atom,-list(character),+list(stream_option)) - one

text_output_contents/2

Returns the contents of the temporary file (open with default options and alias in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Alias,Contents)

Mode and number of proofs:

text_output_contents(+atom,-list(character)) - one

text_output_contents/1

Returns the contents of the temporary file (open with default options in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Contents)

Mode and number of proofs:

text_output_contents(-list(character)) - one

clean_text_output/0

Cleans the temporary file used when testing text output.

Compilation flags:

static

Mode and number of proofs:

clean_text_output - one

See also:

set_text_output/3

set_text_output/2

set_text_output/1

set_binary_output/3

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for writing referenced by the given alias and using the additional options.

Compilation flags:

static

Template:

set_binary_output(Alias,Contents,Options)

Mode and number of proofs:

set_binary_output(+atom,+list(byte),+list(stream_option)) - one

See also:

binary_output_assertion/3

check_binary_output/2

clean_binary_output/0

set_binary_output/2

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for writing referenced with the given alias.

Compilation flags:

static

Template:

set_binary_output(Alias,Bytes)

Mode and number of proofs:

set_binary_output(+atom,+list(byte)) - one

See also:

binary_output_assertion/3

check_binary_output/2

clean_binary_output/0

set_binary_output/1

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and sets the current output stream to the file.

Compilation flags:

static

Template:

set_binary_output(Bytes)

Mode and number of proofs:

set_binary_output(+list(byte)) - one

See also:

binary_output_assertion/2

check_binary_output/1

clean_binary_output/0

check_binary_output/2

Checks that the temporary file (referenced by the given alias) have the expected binary contents.

Compilation flags:

static

Template:

check_binary_output(Alias,Bytes)

Mode and number of proofs:

check_binary_output(+atom,+list(byte)) - zero_or_one

See also:

set_binary_output/3

set_binary_output/2

binary_output_assertion/3

clean_binary_output/0

check_binary_output/1

Checks that the temporary file (open in the same directory as the tests object) have the expected binary contents.

Compilation flags:

static

Template:

check_binary_output(Bytes)

Mode and number of proofs:

check_binary_output(+list(byte)) - zero_or_one

See also:

set_binary_output/1

binary_output_assertion/2

clean_binary_output/0

binary_output_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) have the expected binary contents.

Compilation flags:

static

Template:

binary_output_assertion(Alias,Bytes,Assertion)

Mode and number of proofs:

binary_output_assertion(+atom,+list(byte),--callable) - one

See also:

set_binary_output/2

check_binary_output/2

clean_binary_output/0

binary_output_assertion/2

Returns an assertion for checking that the temporary file (open in the same directory as the tests object) have the expected binary contents.

Compilation flags:

static

Template:

binary_output_assertion(Bytes,Assertion)

Mode and number of proofs:

binary_output_assertion(+list(byte),--callable) - one

See also:

set_binary_output/1

check_binary_output/1

clean_binary_output/0

binary_output_contents/2

Returns the binary contents of the temporary file (referenced by the given alias) being written.

Compilation flags:

static

Template:

binary_output_contents(Alias,Bytes)

Mode and number of proofs:

binary_output_contents(+atom,-list(byte)) - one

binary_output_contents/1

Returns the binary contents of the temporary file being written.

Compilation flags:

static

Template:

binary_output_contents(Bytes)

Mode and number of proofs:

binary_output_contents(-list(byte)) - one

clean_binary_output/0

Cleans the temporary file used when testing binary output.

Compilation flags:

static

Mode and number of proofs:

clean_binary_output - one

See also:

set_binary_output/3

set_binary_output/2

set_binary_output/1

create_text_file/3

Creates a text file with the given contents. The file is open for writing using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_text_file(File,Contents,Options)

Mode and number of proofs:

create_text_file(+atom,+atom,+list(stream_option)) - one

create_text_file(+atom,+list(atom),+list(stream_option)) - one

create_text_file/2

Creates a text file with the given contents. The file is open for writing using default options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_text_file(File,Contents)

Mode and number of proofs:

create_text_file(+atom,+atom) - one

create_text_file(+atom,+list(atom)) - one

create_binary_file/2

Creates a binary file with the given contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_binary_file(File,Bytes)

Mode and number of proofs:

create_binary_file(+atom,+list(byte)) - one

check_text_file/3

Checks that the contents of a text file match the expected contents. The file is open for reading using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_text_file(File,Contents,Options)

Mode and number of proofs:

check_text_file(+atom,+atom,+list(stream_option)) - zero_or_one

See also:

text_file_assertion/4

check_text_file/2

Checks that the contents of a text file (open for reading using default options) match the expected contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_text_file(File,Contents)

Mode and number of proofs:

check_text_file(+atom,+atom) - zero_or_one

See also:

text_file_assertion/3

text_file_assertion/4

Returns an assertion for checking that the given file have the expected text contents. The file is open for reading using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

text_file_assertion(File,Contents,Options,Assertion)

Mode and number of proofs:

text_file_assertion(+atom,+atom,+list(stream_option),--callable) - one

See also:

check_text_file/3

text_file_assertion/3

Returns an assertion for checking that the given file have the expected text contents. The file is open for reading using default options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

text_file_assertion(File,Contents,Assertion)

Mode and number of proofs:

text_file_assertion(+atom,+atom,--callable) - one

See also:

check_text_file/2

check_binary_file/2

Checks the contents of a binary file match the expected contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_binary_file(File,Bytes)

Mode and number of proofs:

check_binary_file(+atom,+list(byte)) - zero_or_one

See also:

binary_file_assertion/3

binary_file_assertion/3

Returns an assertion for checking that the given file have the expected binary contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

binary_file_assertion(File,Bytes,Assertion)

Mode and number of proofs:

binary_file_assertion(+atom,+list(byte),--callable) - one

See also:

check_binary_file/2

clean_file/1

Closes any existing stream associated with the file and deletes the file if it exists. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

clean_file(File)

Mode and number of proofs:

clean_file(+atom) - one

See also:

clean_directory/1

file_path/2

clean_directory/1

Deletes an empty directory if it exists. Relative directory paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

clean_directory(Directory)

Mode and number of proofs:

clean_directory(+atom) - one

See also:

clean_file/1

file_path/2

closed_input_stream/2

Opens a temporary file in the same directory as the tests object with the given options for reading, closes it, and returns its stream handle.

Compilation flags:

static

Template:

closed_input_stream(Stream,Options)

Mode and number of proofs:

closed_input_stream(-stream,+list(stream_option)) - one

closed_output_stream/2

Opens a temporary file in the same directory as the tests object with the given options for writing, closes it, and returns its stream handle.

Compilation flags:

static

Template:

closed_output_stream(Stream,Options)

Mode and number of proofs:

closed_output_stream(-stream,+list(stream_option)) - zero_or_one

stream_position/1

Returns a syntactically valid stream position by opening a temporary file in the same directory as the tests object.

Compilation flags:

static

Template:

stream_position(Position)

Mode and number of proofs:

stream_position(-stream_position) - one

test/2

Table of defined tests.

Compilation flags:

static

Template:

test(Identifier,Test)

Mode and number of proofs:

test(?callable,?compound) - zero_or_more

Private predicates

running_test_sets_/0

Internal flag used when running two or more test sets as a unified set.

Compilation flags:

dynamic

Mode and number of proofs:

running_test_sets_ - zero_or_one

test/3

Compiled unit tests. The list of variables is used to ensure variable sharing between a test with its test options.

Compilation flags:

static

Template:

test(Identifier,Variables,Outcome)

Mode and number of proofs:

test(?callable,?list(variable),?nonvar) - zero_or_more

auxiliary_predicate_counter_/1

Counter for generating unique auxiliary predicate names.

Compilation flags:

dynamic

Template:

auxiliary_predicate_counter_(Counter)

Mode and number of proofs:

auxiliary_predicate_counter_(?integer) - one_or_more

test_/2

Table of compiled tests.

Compilation flags:

dynamic

Template:

test_(Identifier,Test)

Mode and number of proofs:

test_(?callable,?compound) - zero_or_more

selected_test_/1

Table of selected tests for execution.

Compilation flags:

dynamic

Template:

selected_test_(Identifier)

Mode and number of proofs:

selected_test_(?callable) - zero_or_more

skipped_/1

Counter for skipped tests.

Compilation flags:

dynamic

Template:

skipped_(Counter)

Mode and number of proofs:

skipped_(?integer) - zero_or_one

passed_/3

Counter and total time for passed tests.

Compilation flags:

dynamic

Template:

passed_(Counter,CPUTime,WallTime)

Mode and number of proofs:

passed_(?integer,-float,-float) - zero_or_one

failed_/3

Counter and total time for failed tests.

Compilation flags:

dynamic

Template:

failed_(Counter,CPUTime,WallTime)

Mode and number of proofs:

failed_(?integer,-float,-float) - zero_or_one

flaky_/1

Counter for failed tests that are marked as flaky.

Compilation flags:

dynamic

Template:

flaky_(Counter)

Mode and number of proofs:

flaky_(?integer) - zero_or_one

fired_/3

Fired clauses when running the unit tests.

Compilation flags:

dynamic

Template:

fired_(Entity,Predicate,Clause)

Mode and number of proofs:

fired_(?entity_identifier,?predicate_indicator,?integer) - zero_or_more

covered_/4

Auxiliary predicate for collecting statistics on clause coverage.

Compilation flags:

dynamic

Template:

covered_(Entity,Predicate,Covered,Total)

Mode and number of proofs:

covered_(?entity_identifier,?callable,?integer,?integer) - zero_or_more

Operators

op(700,xfx,=~=)

Scope:

public

 category

lgtunit_messages

Logtalk unit test framework default message translations.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 12:2:0

Date: 2025-10-20

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	failed_test_reason//1

	Protected predicates

	Private predicates

	Operators

Public predicates

failed_test_reason//1

Used to rewrite a term representing the reason why a term failed into a list of tokens.

Compilation flags:

static

Template:

failed_test_reason(Reason)

Mode and number of proofs:

failed_test_reason(@nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

minimal_output

Intercepts unit test execution messages and outputs a minimal report.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 3:0:0

Date: 2021-05-27

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(minimal_output)).

	Limitations: Cannot be used when the test objects also intercept lgtunit messages.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

tap_output

Intercepts unit test execution messages and outputs a report using the TAP format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(tap_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	generating_/0

	partial_/1

	test_count_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

generating_/0

Flag to detect report in progress when processing two or more test sets as a unified set.

Compilation flags:

dynamic

Mode and number of proofs:

generating_ - zero_or_one

partial_/1

Cache of total of tests per test set.

Compilation flags:

dynamic

Template:

partial_(Count)

Mode and number of proofs:

partial_(?integer) - zero_or_more

test_count_/1

Test counter.

Compilation flags:

dynamic

Template:

test_count_(Count)

Mode and number of proofs:

test_count_(?integer) - zero_or_one

Operators

(none)

 object

tap_report

Intercepts unit test execution messages and generates a tap_report.txt file using the TAP output format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(tap_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	partial_/1

	test_count_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

partial_/1

Cache of total of tests per test set.

Compilation flags:

dynamic

Template:

partial_(Count)

Mode and number of proofs:

partial_(?integer) - zero_or_more

test_count_/1

Test counter.

Compilation flags:

dynamic

Template:

test_count_(Count)

Mode and number of proofs:

test_count_(?integer) - zero_or_one

Operators

(none)

 object

xunit_net_v2_output

Intercepts unit test execution messages and outputs a report using the xUnit.net v2 XML format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_net_v2_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_net_v2_report

Intercepts unit test execution messages and generates a xunit_report.xml file using the xUnit.net v2 XML format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_net_v2_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_output

Intercepts unit test execution messages and outputs a report using the xUnit XML format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:1

Date: 2025-04-11

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_report

Intercepts unit test execution messages and generates a xunit_report.xml file using the xUnit XML format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 protocol

pack_protocol

Pack specification protocol. Objects implementing this protocol should be named after the pack with a _pack suffix and saved in a file with the same name as the object.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:18:0

Date: 2025-05-21

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	name/1

	description/1

	license/1

	home/1

	version/6

	note/3

	Protected predicates

	Private predicates

	Operators

Public predicates

name/1

Pack name.

Compilation flags:

static

Template:

name(Name)

Mode and number of proofs:

name(?atom) - zero_or_one

description/1

Pack one line description.

Compilation flags:

static

Template:

description(Description)

Mode and number of proofs:

description(?atom) - zero_or_one

license/1

Pack license. Specified using the identifier from the SPDX License List (https://spdx.org/licenses/) when possible.

Compilation flags:

static

Template:

license(License)

Mode and number of proofs:

license(?atom) - zero_or_one

home/1

Pack home HTTPS or file URL.

Compilation flags:

static

Template:

home(Home)

Mode and number of proofs:

home(?atom) - zero_or_one

version/6

Table of available versions.

Compilation flags:

static

Template:

version(Version,Status,URL,Checksum,Dependencies,Portability)

Mode and number of proofs:

version(?compound,?atom,-atom,-pair(atom,atom),-list(pair(atom,callable)),?atom) - zero_or_more

version(?compound,?atom,-atom,-pair(atom,atom),-list(pair(atom,callable)),-list(atom)) - zero_or_more

Remarks:

	Version: This argument uses the same format as entity versions: Major:Minor:Patch. Semantic versioning should be used.

	Status: Version development status: stable, rc, beta, alpha, experimental, or deprecated.

	URL: File URL for a local directory, file URL for a local archive, download HTTPS URL for the pack archive, or download git archive URL for the pack archive.

	Checksum: A pair where the key is the hash algorithm and the value is the checksum. Currently, the hash algorithm must be sha256. For file:// URLs of local directories, use none instead of a pair.

	Dependencies: Pack dependencies list. Each dependency is a Dependency Operator Version term. Operator is a term comparison operator. Valid Dependency values are Registry::Pack, os(Name,Machine), logtalk, and a backend identifier atom.

	Portability: Either the atom all or a list of the supported backend Prolog compilers (using the identifier atoms used by the prolog_dialect flag).

	Clause order: Versions must be listed ordered from newest to oldest.

note/3

Table of notes per action and version.

Compilation flags:

static

Template:

note(Action,Version,Note)

Mode and number of proofs:

note(?atom,?term,-atom) - zero_or_more

Remarks:

	Action: Possible values are install, update, and uninstall. When unbound, the note apply to all actions.

	Version: Version being installed, updated, or uninstalled. When unbound, the note apply to all versions.

	Note: Note to print when performing an action on a pack version.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

packs

Pack handling predicates.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:87:1

Date: 2025-08-20

Compilation flags:

static, context_switching_calls

Imports:

public packs_common

public options

Uses:

list

logtalk

os

registries

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 help/0 logtalk_packs/0 logtalk_packs/1 option/2 option/3 pin/0 pin/1 pinned/1 prefix/0 prefix/1 readme/1 readme/2 reset/0 setup/0 unpin/0 unpin/1 valid_option/1 valid_options/1 verify_commands_availability/0

	Public predicates

	available/2

	available/1

	available/0

	installed/4

	installed/3

	installed/1

	installed/0

	outdated/5

	outdated/4

	outdated/2

	outdated/1

	outdated/0

	orphaned/2

	orphaned/0

	versions/3

	describe/2

	describe/1

	search/1

	install/4

	install/3

	install/2

	install/1

	update/3

	update/2

	update/1

	update/0

	uninstall/2

	uninstall/1

	uninstall/0

	clean/2

	clean/1

	clean/0

	save/2

	save/1

	restore/2

	restore/1

	dependents/3

	dependents/2

	dependents/1

	lint/2

	lint/1

	lint/0

	Protected predicates

	Private predicates

	Operators

Public predicates

available/2

Enumerates, by backtracking, all available packs.

Compilation flags:

static

Template:

available(Registry,Pack)

Mode and number of proofs:

available(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

available/1

Lists all the packs that are available for installation from the given registry.

Compilation flags:

static

Template:

available(Registry)

Mode and number of proofs:

available(+atom) - one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

available/0

Lists all the packs that are available for installation from all defined registries.

Compilation flags:

static

Mode and number of proofs:

available - one

installed/4

Enumerates by backtracking all installed packs.

Compilation flags:

static

Template:

installed(Registry,Pack,Version,Pinned)

Mode and number of proofs:

installed(?atom,?atom,?compound,?boolean) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

Pinned is neither a variable nor a boolean:

type_error(boolean,Pinned)

installed/3

Enumerates by backtracking all installed packs.

Compilation flags:

static

Template:

installed(Registry,Pack,Version)

Mode and number of proofs:

installed(?atom,?atom,?compound) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

installed/1

Lists all the packs that are installed from the given registry. Fails if the registry is unknown.

Compilation flags:

static

Template:

installed(Registry)

Mode and number of proofs:

installed(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

installed/0

Lists all the packs that are installed.

Compilation flags:

static

Mode and number of proofs:

installed - one

outdated/5

Enumerates by backtracking all installed but outdated packs (together with the current version installed and the latest version available) using the given options.

Compilation flags:

static

Template:

outdated(Registry,Pack,Version,LatestVersion,Options)

Mode and number of proofs:

outdated(?atom,?atom,?compound,?compound,++list(compound)) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

LatestVersion is neither a variable nor a compound term:

type_error(compound,LatestVersion)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	compatible(Boolean) option: Restrict listing to compatible packs. Default is true.

	status(Status) option: Restrict listing to updates with the given status. Default is [stable,rc,beta,alpha]. Set to all to also list experimental and deprecated updates.

outdated/4

Enumerates by backtracking all installed but outdated packs (together with the current version installed and the latest version available) using default options.

Compilation flags:

static

Template:

outdated(Registry,Pack,Version,LatestVersion)

Mode and number of proofs:

outdated(?atom,?atom,?compound,?compound) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

LatestVersion is neither a variable nor a compound term:

type_error(compound,LatestVersion)

See also:

outdated/5

outdated/2

Lists all the packs from the given registry that are installed but outdated using the given options.

Compilation flags:

static

Template:

outdated(Registry,Options)

Mode and number of proofs:

outdated(+atom,++list(compound)) - one

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	status(Status) option: Restrict listing to updates with the given status. Default is [stable,rc,beta,alpha]. Set to all to also list experimental and deprecated updates.

outdated/1

Lists all the packs from the given registry that are installed but outdated using default options.

Compilation flags:

static

Template:

outdated(Registry)

Mode and number of proofs:

outdated(+atom) - one

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

outdated/2

outdated/0

Lists all the packs that are installed but outdated using default options.

Compilation flags:

static

Mode and number of proofs:

outdated - one

See also:

outdated/1

orphaned/2

Lists all the packs that are installed but whose registry is no longer defined.

Compilation flags:

static

Template:

orphaned(Registry,Pack)

Mode and number of proofs:

orphaned(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

orphaned/0

Lists all the packs that are installed but whose registry is no longer defined.

Compilation flags:

static

Mode and number of proofs:

orphaned - one

versions/3

Returns a list of all available pack versions. Fails if the pack is unknown.

Compilation flags:

static

Template:

versions(Registry,Pack,Versions)

Mode and number of proofs:

versions(+atom,+atom,-list) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

describe/2

Describes a registered pack, including installed version if applicable. Fails if the pack is unknown.

Compilation flags:

static

Template:

describe(Registry,Pack)

Mode and number of proofs:

describe(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

describe/1

Describes a registered pack, including installed version if applicable. Fails if the pack is unknown.

Compilation flags:

static

Template:

describe(Pack)

Mode and number of proofs:

describe(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

search/1

Searches packs whose name or description includes the search term (case sensitive).

Compilation flags:

static

Template:

search(Term)

Mode and number of proofs:

search(+atom) - one

Exceptions:

Term is a variable:

instantiation_error

Term is neither a variable nor an atom:

type_error(atom,Term)

install/4

Installs a new pack using the specified options. Fails if the pack is unknown or already installed but not using update(true) or force(true) options. Fails also if the pack version is unknown.

Compilation flags:

static

Template:

install(Registry,Pack,Version,Options)

Mode and number of proofs:

install(+atom,+atom,++compound,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	update(Boolean) option: Update pack if already installed. Default is false. Overrides the force/1 option.

	force(Boolean) option: Force pack re-installation if already installed. Default is false.

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	clean(Boolean) option: Clean pack archive after installation. Default is false.

	verbose(Boolean) option: Verbose installing steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

install/3

Installs the specified version of a pack from the given registry using default options. Fails if the pack is already installed or unknown. Fails also if the pack version is unknown.

Compilation flags:

static

Template:

install(Registry,Pack,Version)

Mode and number of proofs:

install(+atom,+atom,?compound) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

See also:

install/4

install/2

Installs the latest version of a pack from the given registry using default options. Fails if the pack is already installed or unknown.

Compilation flags:

static

Template:

install(Registry,Pack)

Mode and number of proofs:

install(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

install/3

install/1

Installs a pack (if its name is unique among all registries) using default options. Fails if the pack is already installed or unknown. Fails also if the pack is available from multiple registries.

Compilation flags:

static

Template:

install(Pack)

Mode and number of proofs:

install(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is not an atom:

type_error(atom,Pack)

See also:

install/2

update/3

Updates an outdated pack to the specified version using the specified options. Fails if the pack or the pack version is unknown or if the pack is not installed. Fails also if the pack is orphaned or pinned and not using a force(true) option.

Compilation flags:

static

Template:

update(Pack,Version,Options)

Mode and number of proofs:

update(+atom,++callable,++list(callable)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	install(Boolean) option: Install pack latest version if not already installed. Default is false.

	force(Boolean) option: Force update if the pack is pinned or breaks installed packs. Default is false.

	compatible(Boolean) option: Restrict updating to compatible packs. Default is true.

	status(Status) option: Specify allowed pack status. Default is [stable,rc,beta,alpha]. Set to all to also allow experimental and deprecated.

	clean(Boolean) option: Clean pack archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/2

Updates an outdated pack to its latest version using the specified options. Fails if the pack is orphaned, unknown, or not installed. Fails also if the pack is pinned and not using a force(true) option.

Compilation flags:

static

Template:

update(Pack,Options)

Mode and number of proofs:

update(+atom,++list(callable)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	install(Boolean) option: Install pack latest version if not already installed. Default is false.

	force(Boolean) option: Force update if the pack is pinned or breaks installed packs. Default is false.

	compatible(Boolean) option: Restrict updating to compatible packs. Default is true.

	status(Status) option: Specify allowed pack update status. Default is [stable,rc,beta,alpha]. Set to all to also allow experimental and deprecated.

	clean(Boolean) option: Clean pack archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/1

Updates an outdated pack to its latest version using default options. Fails if the pack is pinned, orphaned, not installed, unknown, or breaks installed packs.

Compilation flags:

static

Template:

update(Pack)

Mode and number of proofs:

update(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

update/2

update/3

update/0

Updates all outdated packs (that are not pinned) using default options.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

uninstall/2

Uninstalls a pack using the specified options. Fails if the pack is unknown or not installed. Fails also if the pack is pinned or have dependents and not using a force(true) option.

Compilation flags:

static

Template:

uninstall(Pack,Options)

Mode and number of proofs:

uninstall(+atom,++list(compound)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force deletion if the pack is pinned. Default is false.

	clean(Boolean) option: Clean pack archive after deleting. Default is false.

	verbose(Boolean) option: Verbose uninstalling steps. Default is false.

uninstall/1

Uninstalls a pack using default options. Fails if the pack is pinned, have dependents, not installed, or unknown.

Compilation flags:

static

Template:

uninstall(Pack)

Mode and number of proofs:

uninstall(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

uninstall/2

uninstall/0

Uninstalls all packs using the force(true) option.

Compilation flags:

static

Mode and number of proofs:

uninstall - zero_or_one

clean/2

Cleans all pack archives. Fails if the the pack is unknown.

Compilation flags:

static

Template:

clean(Registry,Pack)

Mode and number of proofs:

clean(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

clean/1

Cleans all pack archives. Fails if the pack is unknown.

Compilation flags:

static

Template:

clean(Pack)

Mode and number of proofs:

clean(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

clean/2

clean/0

Cleans all archives for all packs.

Compilation flags:

static

Mode and number of proofs:

clean - one

save/2

Saves a list of all installed packs and registries plus pinning status to a file using the given options. Registries without installed packs are saved when using the option save(all) and skipped when using the option save(installed) (default).

Compilation flags:

static

Template:

save(File,Options)

Mode and number of proofs:

save(+atom,++list(compound)) - one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an existing file but cannot be written:

permission_error(open,source_sink,File)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

save/1

Saves a list of all installed packs and their registries plus pinning status to a file using default options.

Compilation flags:

static

Template:

save(File)

Mode and number of proofs:

save(+atom) - one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an existing file but cannot be written:

permission_error(open,source_sink,File)

See also:

save/2

restore/2

Restores a list of registries and packs plus their pinning status from a file using the given options. Fails if restoring is not possible.

Compilation flags:

static

Template:

restore(File,Options)

Mode and number of proofs:

restore(+atom,++list(compound)) - zero_or_one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be read:

permission_error(open,source_sink,File)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force restoring if a registry is already defined or a pack is already installed. Default is true.

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	clean(Boolean) option: Clean registry and pack archives after restoring. Default is false.

	verbose(Boolean) option: Verbose restoring steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksums. Default is true.

	checksig(Boolean) option: Verify pack archive signatures. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

restore/1

Restores a list of registries and packs plus their pinning status from a file using default options. Fails if restoring is not possible.

Compilation flags:

static

Template:

restore(File)

Mode and number of proofs:

restore(+atom) - zero_or_one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be read:

permission_error(open,source_sink,File)

See also:

restore/2

dependents/3

Returns a list of all installed packs that depend on the given pack from the given registry. Fails if the pack is unknown.

Compilation flags:

static

Template:

dependents(Registry,Pack,Dependents)

Mode and number of proofs:

dependents(+atom,+atom,-list(atom)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

dependents/2

Prints a list of all installed packs that depend on the given pack from the given registry. Fails if the pack is unknown.

Compilation flags:

static

Template:

dependents(Registry,Pack)

Mode and number of proofs:

dependents(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

dependents/1

Prints a list of all installed packs that depend on the given pack if unique from all defined registries. Fails if the pack is unknown or available from multiple registries.

Compilation flags:

static

Template:

dependents(Pack)

Mode and number of proofs:

dependents(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/2

Checks the pack specification. Fails if the pack is unknown or if linting detects errors.

Compilation flags:

static

Template:

lint(Registry,Pack)

Mode and number of proofs:

lint(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/1

Checks the pack specification. Fails if the pack is unknown, or available from multiple registries, or if linting detects errors.

Compilation flags:

static

Template:

lint(Pack)

Mode and number of proofs:

lint(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/0

Checks all pack specifications.

Compilation flags:

static

Mode and number of proofs:

lint - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

packs_common

Common predicates for the packs tool objects.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:33:0

Date: 2025-01-23

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

logtalk

os

type

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	setup/0

	reset/0

	verify_commands_availability/0

	help/0

	pin/1

	pin/0

	unpin/1

	unpin/0

	pinned/1

	directory/2

	directory/1

	readme/2

	readme/1

	logtalk_packs/1

	logtalk_packs/0

	prefix/1

	prefix/0

	Protected predicates

	readme_file_path/2

	print_readme_file_path/1

	command/2

	load_registry/1

	sha256sum_command/1

	tar_command/1

	supported_archive/1

	supported_url_archive/1

	decode_url_spaces/2

	Private predicates

	Operators

Public predicates

setup/0

Ensures that registries and packs directory structure exists. Preserves any defined registries and installed packs.

Compilation flags:

static

Mode and number of proofs:

setup - one

reset/0

Resets registries and packs directory structure. Deletes any defined registries and installed packs.

Compilation flags:

static

Mode and number of proofs:

reset - one

verify_commands_availability/0

Verifies required shell commands availability. Fails printing an error message if a command is missing.

Compilation flags:

static

Mode and number of proofs:

verify_commands_availability - zero_or_one

help/0

Provides help about the main predicates.

Compilation flags:

static

Mode and number of proofs:

help - one

pin/1

Pins a resource (pack or registry) preventing it from being updated, uninstalled, or deleted. Fails if the resource is not found.

Compilation flags:

static

Template:

pin(Resource)

Mode and number of proofs:

pin(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

pin/0

Pins all resource (packs or registries) preventing them from being updated, uninstalled, or deleted. Note that resources added after calling this predicate will not be pinned.

Compilation flags:

static

Mode and number of proofs:

pin - one

unpin/1

Unpins a resource (pack or registry), allowing it to be updated, uninstalled, or deleted. Fails if the resource is not found.

Compilation flags:

static

Template:

unpin(Resource)

Mode and number of proofs:

unpin(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

unpin/0

Unpins all resources (packs or registries), allowing them to be updated, uninstalled, or deleted.

Compilation flags:

static

Mode and number of proofs:

unpin - one

pinned/1

True iff the resource (pack or registry) is defined or installed and if it is pinned.

Compilation flags:

static

Template:

pinned(Resource)

Mode and number of proofs:

pinned(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

directory/2

Enumerates by backtracking all packs or registries and respective installation or definition directories (using the internal backend format).

Compilation flags:

static

Template:

directory(Resource,Directory)

Mode and number of proofs:

directory(?atom,?atom) - zero_or_more

Exceptions:

Resource is neither a variable nor an atom:

type_error(atom,Resource)

Directory is neither a variable nor an atom:

type_error(atom,Directory)

directory/1

Prints the directory where the registry or the pack is installed (using the native operating-system format).

Compilation flags:

static

Template:

directory(Resource)

Mode and number of proofs:

directory(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

readme/2

Returns the path to the resource (pack or registry) readme file (using the internal backend format). Fails if the resource is not defined or installed or if no readme file is found for it.

Compilation flags:

static

Template:

readme(Resource,ReadMeFile)

Mode and number of proofs:

readme(+atom,-atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

ReadMeFile is neither a variable nor an atom:

type_error(atom,ReadMeFile)

readme/1

Prints the path to the resource (pack or registry) readme file (using the native operating-system format). Fails if the resource is not defined or installed or if no readme file is found for it.

Compilation flags:

static

Template:

readme(Resource)

Mode and number of proofs:

readme(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

logtalk_packs/1

Returns the directory prefix (using the internal backend format) where the registries, packs, and archives are installed.

Compilation flags:

static

Template:

logtalk_packs(LogtalkPacks)

Mode and number of proofs:

logtalk_packs(-atom) - one

Exceptions:

LogtalkPacks is neither a variable nor an atom:

type_error(atom,LogtalkPacks)

logtalk_packs/0

Prints the directory prefix (using the native operating-system format) where the registries, packs, and archives are installed.

Compilation flags:

static

Mode and number of proofs:

logtalk_packs - one

prefix/1

Returns the directory prefix (using the internal backend format) where the registries or packs are installed.

Compilation flags:

static

Template:

prefix(Prefix)

Mode and number of proofs:

prefix(-atom) - one

Exceptions:

Prefix is neither a variable nor an atom:

type_error(atom,Prefix)

prefix/0

Prints the directory prefix (using the native operating-system format) where the registries or packs are installed.

Compilation flags:

static

Mode and number of proofs:

prefix - one

Protected predicates

readme_file_path/2

Returns the absolute path for the given directory readme file if it exists.

Compilation flags:

static

Template:

readme_file_path(Directory,ReadMeFile)

Mode and number of proofs:

readme_file_path(+atom,-atom) - zero_or_one

Remarks:

	Valid file names: Case variations of README and NOTES with or without a .md or .txt extension. The recommended file name is README.md.

print_readme_file_path/1

Prints the absolute path for the given directory readme file if it exists. Succeeds otherwise.

Compilation flags:

static

Template:

print_readme_file_path(Directory)

Mode and number of proofs:

print_readme_file_path(+atom) - one

command/2

Executes a shell command. Prints an error message and fails if the command fails.

Compilation flags:

static

Template:

command(Command,FailureMessage)

Mode and number of proofs:

command(+atom,@nonvar) - zero_or_one

load_registry/1

Loads all registry files from the given directory.

Compilation flags:

static

Template:

load_registry(Directory)

Mode and number of proofs:

load_registry(+atom) - zero_or_one

sha256sum_command/1

Returns the name of the sha256sum command to be used on POSIX systems. Fails if neither gsha256sum or sha256sum commands are found.

Compilation flags:

static

Template:

sha256sum_command(Command)

Mode and number of proofs:

sha256sum_command(-atom) - zero_or_one

tar_command/1

Returns the name of the tar command to be used depending on the operating-system.

Compilation flags:

static

Template:

tar_command(Command)

Mode and number of proofs:

tar_command(-atom) - one

supported_archive/1

True iff the archive format is supported.

Compilation flags:

static

Template:

supported_archive(Extension)

Mode and number of proofs:

supported_archive(+atom) - zero_or_one

supported_url_archive/1

True iff the URL archive is supported.

Compilation flags:

static

Template:

supported_url_archive(URL)

Mode and number of proofs:

supported_url_archive(+atom) - zero_or_one

decode_url_spaces/2

Decodes encoded spaces (%20) in URLs to spaces.

Compilation flags:

static

Template:

decode_url_spaces(URL,Decoded)

Mode and number of proofs:

decode_url_spaces(+atom,-atom) - one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

packs_messages

Packs default message translations.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:41:0

Date: 2025-05-23

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

packs_specs_hook

Hook object for filtering registry and pack specification file contents.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-06-28

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

character

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

registries

Registry handling predicates.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:62:0

Date: 2025-08-20

Compilation flags:

static, context_switching_calls

Imports:

public packs_common

public options

Uses:

list

logtalk

os

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 help/0 logtalk_packs/0 logtalk_packs/1 option/2 option/3 pin/0 pin/1 pinned/1 prefix/0 prefix/1 readme/1 readme/2 reset/0 setup/0 unpin/0 unpin/1 valid_option/1 valid_options/1 verify_commands_availability/0

	Public predicates

	list/0

	describe/1

	defined/4

	add/3

	add/2

	add/1

	update/2

	update/1

	update/0

	delete/2

	delete/1

	delete/0

	clean/1

	clean/0

	provides/2

	lint/1

	lint/0

	Protected predicates

	Private predicates

	Operators

Public predicates

list/0

Prints a list of all defined registries, including how defined (git, archive, or directory) and if they are pinned.

Compilation flags:

static

Mode and number of proofs:

list - one

describe/1

Prints all registry entries.

Compilation flags:

static

Template:

describe(Registry)

Mode and number of proofs:

describe(+atom) - one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

defined/4

Enumerates by backtracking all defined registries, their definition URL, how they are defined (git, archive, or directory), and if they are pinned.

Compilation flags:

static

Template:

defined(Registry,URL,HowDefined,Pinned)

Mode and number of proofs:

defined(?atom,?atom,?atom,?boolean) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is neither a variable nor an atom:

type_error(atom,URL)

HowDefined is neither a variable nor an atom:

type_error(atom,HowDefined)

Pinned is neither a variable nor a boolean:

type_error(boolean,Pinned)

add/3

Adds a new registry using the given options. Fails if the registry cannot be added or if it is already defined but not using update(true) or force(true) options. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(Registry,URL,Options)

Mode and number of proofs:

add(+atom,+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	Registry name: Must be the URL basename when using a git URL or a local directory URL. Must also be the declared registry name in the registry specification object.

	HTTPS URLs: Must end with either a .git extension or an archive extension.

	update(Boolean) option: Update registry if already defined. Default is false. Overrides the force/1 option.

	force(Boolean) option: Force registry re-installation if already defined by first deleting the previous installation. Default is false.

	clean(Boolean) option: Clean registry archive after updating. Default is false.

	verbose(Boolean) option: Verbose adding steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

add/2

Adds a new registry using default options. Fails if the registry cannot be added or if it is already defined. HTTPS URLs must end with either a .git extension or an archive extension. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(Registry,URL)

Mode and number of proofs:

add(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Remarks:

	Registry name: Must be the URL basename when using a git URL or a local directory URL. Must also be the declared registry name in the registry specification object.

See also:

add/3

add/1

Adds a new registry using default options. Fails if the registry cannot be added or if it is already defined. HTTPS URLs must end with a .git extension or an archive extension. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(URL)

Mode and number of proofs:

add(+atom) - zero_or_one

Exceptions:

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Remarks:

	Registry name: Taken from the URL basename.

See also:

add/2

update/2

Updates a defined registry using the specified options. Fails if the registry is not defined.

Compilation flags:

static

Template:

update(Registry,Options)

Mode and number of proofs:

update(+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force update if the registry is pinned. Default is false.

	clean(Boolean) option: Clean registry archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/1

Updates a defined registry using default options. Fails if the registry is not defined.

Compilation flags:

static

Template:

update(Registry)

Mode and number of proofs:

update(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

update/2

update/0

Updates all defined registries using default options.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

delete/2

Deletes a registry using the specified options (if not pinned).

Compilation flags:

static

Template:

delete(Registry,Options)

Mode and number of proofs:

delete(+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force deletion if the registry is pinned or there are installed registry packs. Default is false.

	clean(Boolean) option: Clean registry archive after deleting. Default is false.

	verbose(Boolean) option: Verbose deleting steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

delete/1

Deletes a registry using default options.

Compilation flags:

static

Template:

delete(Registry)

Mode and number of proofs:

delete(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

delete/2

delete/0

Deletes all registries using the force(true) option.

Compilation flags:

static

Mode and number of proofs:

delete - zero_or_one

clean/1

Cleans all registry archives. Fails if the registry is not defined.

Compilation flags:

static

Template:

clean(Registry)

Mode and number of proofs:

clean(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

clean/0

Cleans all archives for all registries.

Compilation flags:

static

Mode and number of proofs:

clean - one

provides/2

Enumerates by backtracking all packs provided by a registry.

Compilation flags:

static

Template:

provides(Registry,Pack)

Mode and number of proofs:

provides(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/1

Checks the registry specification. Fails if the registry is not defined or if linting detects errors.

Compilation flags:

static

Template:

lint(Registry)

Mode and number of proofs:

lint(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

lint/0

Checks all registry specifications.

Compilation flags:

static

Mode and number of proofs:

lint - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

registry_loader_hook

Hook object for filtering registry loader file contents.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-11-20

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

character

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

registry_protocol

Registry specification protocol. Objects implementing this protocol should be named after the pack with a _registry suffix and saved in a file with the same name as the object.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:12:0

Date: 2022-06-28

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	name/1

	description/1

	home/1

	clone/1

	archive/1

	note/2

	Protected predicates

	Private predicates

	Operators

Public predicates

name/1

Registry name. Preferably a valid unquoted atom.

Compilation flags:

static

Template:

name(Name)

Mode and number of proofs:

name(?atom) - zero_or_one

description/1

Registry one line description.

Compilation flags:

static

Template:

description(Description)

Mode and number of proofs:

description(?atom) - zero_or_one

home/1

Registry home HTTPS or file URL.

Compilation flags:

static

Template:

home(Home)

Mode and number of proofs:

home(?atom) - zero_or_one

clone/1

Registry git clone HTTPS URL (must end with the .git extension). Git repos should have the same name as the registry.

Compilation flags:

static

Template:

clone(URL)

Mode and number of proofs:

clone(?atom) - zero_or_one

archive/1

Registry archive download HTTPS URL.

Compilation flags:

static

Template:

archive(URL)

Mode and number of proofs:

archive(?atom) - zero_or_one

note/2

Table of notes per action.

Compilation flags:

static

Template:

note(Action,Note)

Mode and number of proofs:

note(?atom,-atom) - zero_or_more

Remarks:

	Action: Possible values are add, update, and delete. When unbound, the note apply to all actions.

	Note: Note to print when performing an action on a registry.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

ports_profiler

Predicate execution box model port profiler.

Availability:

logtalk_load(ports_profiler(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-05-18

Compilation flags:

static, context_switching_calls

Provides:

logtalk::debug_handler/1

logtalk::debug_handler/3

Uses:

logtalk

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	start/0

	stop/0

	data/0

	data/1

	data/2

	reset/0

	reset/1

	port/5

	clause_location/6

	clause/5

	Protected predicates

	Private predicates

	clause_location_/6

	port_/5

	clause_/5

	entity_defines_/2

	Operators

Public predicates

start/0

Activates the ports profiler for followup goals.

Compilation flags:

static

Mode and number of proofs:

start - one

stop/0

Deactivates the ports profiler.

Compilation flags:

static

Mode and number of proofs:

stop - one

data/0

Prints a table with all port profiling data.

Compilation flags:

static

Mode and number of proofs:

data - one

data/1

Prints a table with all port profiling data for the specified entity.

Compilation flags:

static

Template:

data(Entity)

Mode and number of proofs:

data(+entity_identifier) - one

data/2

Prints a table with all port profiling data for the specified entity predicate (or non-terminal).

Compilation flags:

static

Template:

data(Entity,Predicate)

Mode and number of proofs:

data(+entity_identifier,+predicate_indicator) - one

data(+entity_identifier,+non_terminal_indicator) - one

reset/0

Resets all port profiling data.

Compilation flags:

static

Mode and number of proofs:

reset - one

reset/1

Resets all port profiling data for the specified entity.

Compilation flags:

static

Template:

reset(Entity)

Mode and number of proofs:

reset(+entity_identifier) - one

port/5

Enumerates, by backtracking, all collected port profiling data.

Compilation flags:

static

Template:

port(Port,Entity,Functor,Arity,Count)

Mode and number of proofs:

port(?atom,?entity_identifier,?atom,?integer,?integer) - zero_or_more

clause_location/6

Enumerates, by backtracking, all collected profiled clause location data.

Compilation flags:

static

Template:

clause_location(Entity,Functor,Arity,ClauseNumber,File,BeginLine)

Mode and number of proofs:

clause_location(?entity_identifier,?atom,?integer,?integer,?atom,?integer) - zero_or_more

clause/5

Enumerates, by backtracking, all collected clause profiling data.

Compilation flags:

dynamic

Template:

clause(Entity,Functor,Arity,ClauseNumber,Count)

Mode and number of proofs:

clause(?entity_identifier,?atom,?integer,?integer,?integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

clause_location_/6

Internal table of collected profiled clause location data.

Compilation flags:

dynamic

Template:

clause_location_(Entity,Functor,Arity,ClauseNumber,File,BeginLine)

Mode and number of proofs:

clause_location_(?entity_identifier,?atom,?integer,?integer,?atom,?integer) - zero_or_more

port_/5

Internal table of collected port profiling data.

Compilation flags:

dynamic

Template:

port_(Port,Entity,Functor,Arity,Count)

Mode and number of proofs:

port_(?atom,?entity_identifier,?atom,?integer,?integer) - zero_or_more

clause_/5

Internal table of collected clause profiling data.

Compilation flags:

dynamic

Template:

clause_(Entity,Functor,Arity,ClauseNumber,Count)

Mode and number of proofs:

clause_(?entity_identifier,?atom,?integer,?integer,?integer) - zero_or_more

entity_defines_/2

Internal cache for profiled predicates.

Compilation flags:

dynamic

Template:

entity_defines_(Entity,Predicate)

Mode and number of proofs:

entity_defines_(?entity_identifier,?predicate_indicator) - zero_or_more

Operators

(none)

 object

tutor

This object adds explanations and suggestions to selected compiler warning and error messages.

Availability:

logtalk_load(tutor(loader))

Author: Paulo Moura

Version: 0:84:0

Date: 2025-10-20

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

list

logtalk

Remarks:

	Usage: Simply load this object at startup using the goal logtalk_load(tutor(loader)).

Inherited public predicates:

(none)

	Public predicates

	explain//1

	Protected predicates

	Private predicates

	Operators

Public predicates

explain//1

Generates an explanation for a message.

Compilation flags:

static

Template:

explain(Message)

Mode and number of proofs:

explain(@callable) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

wrapper

Adviser tool for porting and wrapping plain Prolog applications.

Availability:

logtalk_load(wrapper(loader))

Author: Paulo Moura

Version: 0:12:3

Date: 2025-10-28

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_hook/4

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Uses:

logtalk

os

Remarks:

	prolog_extensions(Extensions) option: List of file name extensions used to recognize Prolog source files (default is ['.pl','.pro','.prolog']).

	logtalk_extension(Extension) option: Logtalk file name extension to be used for the generated wrapper files (default is '.lgt').

	exclude_files(Files) option: List of Prolog source files names to exclude (default is []).

	exclude_directories(Files) option: List of sub-directory names to exclude (default is []).

	include_wrapped_files(Boolean): Generate include/1 directives for the wrapped Prolog source files (default is true).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	rdirectory/2

	rdirectory/1

	directory/2

	directory/1

	directories/2

	directories/1

	files/2

	files/1

	file/2

	file/1

	save/1

	save/0

	default_option/1

	default_options/1

	Protected predicates

	Private predicates

	merge_options/2

	predicate_called_but_not_defined_/2

	object_predicate_called_/3

	module_predicate_called_/3

	unknown_predicate_called_/2

	missing_predicate_directive_/3

	non_standard_predicate_call_/2

	dynamic_directive_/3

	multifile_directive_/3

	add_directive_before_entity_/2

	add_directive_/2

	add_directive_/3

	remove_directive_/2

	file_being_advised_/4

	Operators

Public predicates

rdirectory/2

Advises the user on missing directives for converting all plain Prolog files in a directory and its sub-directories to Logtalk objects using the specified options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Advises the user on missing directives for converting all plain Prolog files in a directory and its sub-directories to Logtalk objects using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/2

Advises the user on missing directives for converting all plain Prolog files in a directory to Logtalk objects using the specified options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Advises the user on missing directives for converting all plain Prolog files in a directory to Logtalk objects using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

directories/2

Advises the user on missing directives for converting all Prolog files in a set of directories to Logtalk objects using the specified options.

Compilation flags:

static

Template:

directories(Directories,Options)

Mode and number of proofs:

directories(+list(atom),+list(compound)) - one

directories/1

Advises the user on missing directives for converting all Prolog files in a set of directories to Logtalk objects using default options.

Compilation flags:

static

Template:

directories(Directories)

Mode and number of proofs:

directories(+list(atom)) - one

files/2

Advises the user on missing directives for converting a list of plain Prolog files to Logtalk objects using the specified options.

Compilation flags:

static

Template:

files(Files,Options)

Mode and number of proofs:

files(+list(atom),+list(compound)) - one

files/1

Advises the user on missing directives for converting a list of plain Prolog files to Logtalk objects using default options.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

file/2

Advises the user on missing directives for converting a plain Prolog file to Logtalk objects using the specified options.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - one

file/1

Advises the user on missing directives for converting a plain Prolog file to Logtalk objects using default options.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

save/1

Saves the generated wrapper objects (plus a loader file per directory) for all advised files using the specified options. The wrapper objects are saved to the same directories that contain the wrapped Prolog files.

Compilation flags:

static

Template:

save(Options)

Mode and number of proofs:

save(+list(compound)) - one

save/0

Saves the generated wrapper objects (plus a loader file per directory) for all advised files using default options. The wrapper objects are saved to the same directories that contain the wrapped Prolog files.

Compilation flags:

static

Mode and number of proofs:

save - one

default_option/1

Enumerates by backtracking the default options used when generating the wrapper objects.

Compilation flags:

static

Template:

default_option(DefaultOption)

Mode and number of proofs:

default_option(?compound) - zero_or_more

default_options/1

Returns a list of the default options used when generating the wrapper objects.

Compilation flags:

static

Template:

default_options(DefaultOptions)

Mode and number of proofs:

default_options(-list(compound)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

merge_options/2

Merges the user options with the default options, returning the list of options used when generating the wrapper objects.

Compilation flags:

static

Template:

merge_options(UserOptions,Options)

Mode and number of proofs:

merge_options(+list(compound),-list(compound)) - one

predicate_called_but_not_defined_/2

Table of called object predicates that are not locally defined.

Compilation flags:

dynamic

Template:

predicate_called_but_not_defined_(Object,Predicate)

Mode and number of proofs:

predicate_called_but_not_defined_(?atom,?predicate_indicator) - zero_or_more

object_predicate_called_/3

Table of called object predicates.

Compilation flags:

dynamic

Template:

object_predicate_called_(Object,Other,Predicate)

Mode and number of proofs:

object_predicate_called_(?atom,?atom,?predicate_indicator) - zero_or_more

module_predicate_called_/3

Table of called module predicates.

Compilation flags:

dynamic

Template:

module_predicate_called_(Object,Module,Predicate)

Mode and number of proofs:

module_predicate_called_(?atom,?atom,?predicate_indicator) - zero_or_more

unknown_predicate_called_/2

Table of predicates called but not defined.

Compilation flags:

dynamic

Template:

unknown_predicate_called_(Object,Predicate)

Mode and number of proofs:

unknown_predicate_called_(?atom,?predicate_indicator) - zero_or_more

missing_predicate_directive_/3

Table of missing predicate directives.

Compilation flags:

dynamic

Template:

missing_predicate_directive_(Object,Directive,Predicate)

Mode and number of proofs:

missing_predicate_directive_(?atom,?predicate_indicator,?predicate_indicator) - zero_or_more

non_standard_predicate_call_/2

Table of called non-standard predicates.

Compilation flags:

dynamic

Template:

non_standard_predicate_call_(Object,Predicate)

Mode and number of proofs:

non_standard_predicate_call_(?atom,?predicate_indicator) - zero_or_more

dynamic_directive_/3

Table of declared dynamic predicates.

Compilation flags:

dynamic

Template:

dynamic_directive_(Object,Line,Predicate)

Mode and number of proofs:

dynamic_directive_(?atom,?integer,?predicate_indicator) - zero_or_more

multifile_directive_/3

Table of declared multifile predicates.

Compilation flags:

dynamic

Template:

multifile_directive_(Object,Line,Predicate)

Mode and number of proofs:

multifile_directive_(?atom,?integer,?predicate_indicator) - zero_or_more

add_directive_before_entity_/2

Table of directives to be added before the entity opening directive.

Compilation flags:

dynamic

Template:

add_directive_before_entity_(Object,Directive)

Mode and number of proofs:

add_directive_before_entity_(?atom,?predicate_indicator) - zero_or_more

add_directive_/2

Table of directives to be added.

Compilation flags:

dynamic

Template:

add_directive_(Object,Directive)

Mode and number of proofs:

add_directive_(?atom,?predicate_indicator) - zero_or_more

add_directive_/3

Table of directives to be added to complement existing directives.

Compilation flags:

dynamic

Template:

add_directive_(Object,Directive,NewDirective)

Mode and number of proofs:

add_directive_(?atom,?predicate_indicator,?predicate_indicator) - zero_or_more

remove_directive_/2

Table of directives to be removed.

Compilation flags:

dynamic

Template:

remove_directive_(Object,Directive)

Mode and number of proofs:

remove_directive_(?atom,?predicate_indicator) - zero_or_more

file_being_advised_/4

Table of files being advised are respective directories and names (basename without extension).

Compilation flags:

dynamic

Template:

file_being_advised_(File,Path,Directory,Name)

Mode and number of proofs:

file_being_advised_(?atom,?atom,?atom,?atom) - zero_or_more

Operators

(none)

Entities

To load an entity, always load the library that includes it using the goal logtalk_load(library_name(loader)) instead of loading just the entity. The library loader file ensures that all the required dependencies are also loaded and that any required flags are used. The loading goal can be found in the entity documentation.

Categories

	arbitrary

	assertions_messages

	best_first

	class_hierarchy

	code_metric

	code_metrics_messages

	code_metrics_utilities

	core_messages

	counters

	csv_guess_questions

	dead_code_scanner_messages

	debugger_messages

	diagram(Format)

	directory_diagram(Format)

	file_diagram(Format)

	flags

	flatting

	genint_core

	gensym_core

	help_info_support

	html

	lgtdoc_messages

	lgtunit_messages

	library_diagram(Format)

	listing

	logging

	monitor

	mutations

	observer

	options

	os_types

	packs_common

	packs_messages

	proto_hierarchy

	read_file

	recorded_database_core

	statistics

	subject

	ulid_types

Objects

	a_star_interpreter(W)

	after_event_registry

	assertions

	assertions(Mode)

	assignvars

	atom

	atomic

	automation_report

	avltree

	backend_adapter_hook

	backend_random

	base64

	base64url

	before_event_registry

	benchmark_generators

	bfs_interpreter

	bintree

	blank_grammars(Format)

	bup_interpreter

	callable

	cbor

	cbor(StringRepresentation)

	cc_metric

	character

	code_metrics

	compound

	coroutining

	counter

	coupling_metric

	coverage_report

	csv

	csv(Header,Separator,IgnoreQuotes)

	d2_graph_language

	date

	dead_code_scanner

	debug_expansion(Mode)

	debug_messages

	debugger

	default_atom_mutations

	default_compound_mutations

	default_float_mutations

	default_integer_mutations

	default_list_mutations

	default_workflow_hook

	demodb

	dfs_interpreter

	diagrams

	diagrams(Format)

	dif

	difflist

	directory_dependency_diagram

	directory_dependency_diagram(Format)

	directory_load_diagram

	directory_load_diagram(Format)

	dit_metric

	doc_metric

	doclet

	dot_graph_language

	dump_trace

	edcg

	either

	entity_diagram

	entity_diagram(Format)

	event_registry

	expand_library_alias_paths

	expected

	expected(Expected)

	fast_random

	fcube

	file_dependency_diagram

	file_dependency_diagram(Format)

	file_load_diagram

	file_load_diagram(Format)

	float

	format

	genint

	gensym

	git

	grammar_rules_hook

	graph_language_registry

	halstead_metric

	halstead_metric(Stroud)

	heap(Order)

	help

	heuristic_expansion(Mode)

	hook_pipeline(Pipeline)

	hook_set(Set)

	html5

	iddfs_interpreter(Increment)

	identity_hook

	ids

	ids(Representation,Bytes)

	inheritance_diagram

	inheritance_diagram(Format)

	integer

	interval

	ip_grammars(Format)

	iso8601

	issue_creator

	java

	java(Reference)

	java(Reference,ReturnValue)

	java_hook

	json

	json(StringRepresentation)

	json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	json_lines

	json_lines(StringRepresentation)

	json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	lgtdoc

	lgtunit

	library_dependency_diagram

	library_dependency_diagram(Format)

	library_load_diagram

	library_load_diagram(Format)

	list

	list(Type)

	logger

	logtalk

	loop

	magic

	magic_expansion(Mode)

	maxheap

	maybe

	mermaid_graph_language

	meta

	meta_compiler

	metagol

	minheap

	minimal_output

	modules_diagram_support

	mutations_store

	natural

	navltree

	nbintree

	noc_metric

	nor_metric

	nrbtree

	number

	number_grammars(Format)

	numberlist

	object_wrapper_hook

	object_wrapper_hook(Protocol)

	object_wrapper_hook(Name,Relations)

	optional

	optional(Optional)

	os

	packs

	packs_specs_hook

	pairs

	pddl

	population

	ports_profiler

	print_goal_hook

	prolog_module_hook(Module)

	queue

	random

	rbtree

	reader

	recorded_database

	redis

	registries

	registry_loader_hook

	rule_expansion(Mode)

	sample

	sequence_grammars

	set

	set(Type)

	shell

	shell(Interpreters)

	shell_expansion(Mode)

	size_metric

	streamvars

	suppress_goal_hook

	tap_output

	tap_report

	term

	term_io

	time

	timeout

	toychrdb

	tsv

	tsv(Header)

	tutor

	type

	ulid

	ulid(Representation)

	union_find

	upn_metric

	user

	uses_diagram

	uses_diagram(Format)

	uuid

	uuid(Representation)

	varlist

	wrapper

	write_to_file_hook(File)

	write_to_file_hook(File,Options)

	write_to_stream_hook(Stream)

	write_to_stream_hook(Stream,Options)

	xhtml11

	xml

	xref_diagram

	xref_diagram(Format)

	xunit_net_v2_output

	xunit_net_v2_report

	xunit_output

	xunit_report

	zlist

Protocols

	assignvarsp

	characterp

	class_hierarchyp

	cloning

	comparingp

	csv_protocol

	databasep

	datep

	debuggerp

	dictionaryp

	event_registryp

	expanding

	flags_validator

	forwarding

	git_protocol

	graph_language_protocol

	heapp

	hierarchyp

	interpreterp

	intervalp

	java_access_protocol

	java_utils_protocol

	json_lines_protocol

	json_protocol

	lgtdocp

	listp

	loggingp

	loopp

	metagol_example_protocol

	metap

	monitoring

	monitorp

	nested_dictionary_protocol

	numberlistp

	options_protocol

	osp

	pack_protocol

	proto_hierarchyp

	pseudo_random_protocol

	queuep

	random_protocol

	registry_protocol

	sampling_protocol

	setp

	statisticsp

	term_io_protocol

	termp

	timep

	tsv_protocol

	ulid_protocol

	union_find_protocol

	uuid_protocol

	varlistp

	zipperp

 category

arbitrary

Adds predicates for generating and shrinking random values for selected types to the library type object. User extensible.

Availability:

logtalk_load(arbitrary(loader))

Author: Paulo Moura

Version: 2:35:1

Date: 2024-08-13

Compilation flags:

static

Complements:

type

Uses:

fast_random

integer

list

type

Remarks:

	Logtalk specific types: entity, object, protocol, category, entity_identifier, object_identifier, protocol_identifier, category_identifier, event, predicate.

	Prolog module related types (when the backend compiler supports modules): module, module_identifier, qualified_callable.

	Prolog base types: term, var, nonvar, atomic, atom, number, integer, float, compound, callable, ground.

	Atom derived types: non_quoted_atom, non_empty_atom, non_empty_atom(CharSet), boolean, character, in_character, char, operator_specifier, hex_char.

	Atom derived parametric types: atom(CharSet), atom(CharSet,Length), non_empty_atom(CharSet), character(CharSet), in_character(CharSet), char(CharSet).

	Number derived types: positive_number, negative_number, non_positive_number, non_negative_number.

	Float derived types: positive_float, negative_float, non_positive_float, non_negative_float, probability.

	Integer derived types: positive_integer, negative_integer, non_positive_integer, non_negative_integer, byte, in_byte, character_code, in_character_code, code, operator_priority, hex_code.

	Integer derived parametric types: character_code(CharSet), in_character_code(CharSet), code(CharSet).

	List types (compound derived types): list, non_empty_list, partial_list, list_or_partial_list, list(Type), list(Type,Length), list(Type,Min,Max), list(Type,Length,Min,Max), non_empty_list(Type), codes, chars.

	Difference list types (compound derived types): difference_list, difference_list(Type).

	List and difference list types length: The types that do not take a fixed length generate lists with a length in the [0,MaxSize] interval ([1,MaxSize] for non-empty list types).

	Predicate and non-terminal indicator types arity: These types generate indicators with an arity in the [0,MaxSize] interval.

	Other compound derived types: compound(Name,Types), predicate_indicator, non_terminal_indicator, predicate_or_non_terminal_indicator, clause, grammar_rule, pair, pair(KeyType,ValueType).

	Other types: Object::Closure, between(Type,Lower,Upper), property(Type,LambdaExpression), one_of(Type,Set), var_or(Type), ground(Type), types(Types), types_frequency(Pairs), transform(Type,Closure), constrain(Type,Closure).

	Type Object::Closure notes: Allows calling public object predicates as generators and shrinkers. The Closure closure is extended with either a single argument, the generated arbitrary value, or with two arguments, when shrinking a value.

	Type compound(Name,Types) notes: Generate a random compound term with the given name with a random argument for each type.

	Type types_frequency(Pairs) notes: Generate a random term for one of the types in a list of Type-Frequency pairs. The type is randomly selected taking into account the types frequency.

	Type transform(Type,Closure) notes: Generate a random term by transforming the term generated for the given type using the given closure.

	Type constrain(Type,Closure) notes: Generate a random term for the given type that satisfy the given closure.

	Registering new types: Add clauses for the arbitrary/1-2 multifile predicates and optionally for the shrinker/1 and shrink/3 multifile predicates. The clauses must have a bound first argument to avoid introducing spurious choice-points.

	Shrinking values: The shrink/3 should either succeed or fail but never throw an exception.

	Character sets: ascii_identifier, ascii_printable, ascii_full, byte, unicode_bmp, unicode_full.

	Default character sets: The default character set when using a parameterizable type that takes a character set parameter depends on the type.

	Default character sets: Entity, predicate, and non-terminal identifier types plus compound and callable types default to an ascii_identifier functor. Character and character code types default to ascii_full. Other types default to ascii_printable.

	Caveats: The type argument (and any type parameterization) to the predicates is not type-checked (or checked for consistency) for performance reasons.

	Unicode limitations: Currently, correct character/code generation is only ensured for XVM and SWI-Prolog as other backends do not provide support for querying a Unicode code point category.

Inherited public predicates:

(none)

	Public predicates

	arbitrary/1

	arbitrary/2

	shrinker/1

	shrink/3

	shrink_sequence/3

	edge_case/2

	get_seed/1

	set_seed/1

	max_size/1

	Protected predicates

	Private predicates

	Operators

Public predicates

arbitrary/1

Table of defined types for which an arbitrary value can be generated. A new type can be registered by defining a clause for this predicate and adding a clause for the arbitrary/2 multifile predicate.

Compilation flags:

static, multifile

Template:

arbitrary(Type)

Mode and number of proofs:

arbitrary(?callable) - zero_or_more

arbitrary/2

Generates an arbitrary term of the specified type. Fails if the type is not supported. A new generator can be defined by adding a clause for this predicate and registering it via the arbitrary/1 predicate.

Compilation flags:

static, multifile

Template:

arbitrary(Type,Term)

Meta-predicate template:

arbitrary(::,*)

Mode and number of proofs:

arbitrary(@callable,-term) - zero_or_one

shrinker/1

Table of defined types for which a shrinker is provided. A new shrinker can be registered by defining a clause for this predicate and adding a definition for the shrink/3 multifile predicate.

Compilation flags:

static, multifile

Template:

shrinker(Type)

Mode and number of proofs:

shrinker(?callable) - zero_or_more

shrink/3

Shrinks a value to a smaller value if possible. Must generate a finite number of solutions. Fails if the type is not supported. A new shrinker can be defined by adding a clause for this predicate and registering it via the shrinker/1 predicate.

Compilation flags:

static, multifile

Template:

shrink(Type,Large,Small)

Mode and number of proofs:

shrink(@callable,@term,-term) - zero_or_more

shrink_sequence/3

Shrinks a value repeatedly until shrinking is no longer possible returning the sequence of values (ordered from larger to smaller value). Fails if the type is not supported.

Compilation flags:

static

Template:

shrink_sequence(Type,Value,Sequence)

Mode and number of proofs:

shrink_sequence(@callable,@term,-list(term)) - zero_or_one

edge_case/2

Table of type edge cases. Fails if the given type have no defined edge cases. New edge cases for existing or new types can be added by defining a clause for this multifile predicate.

Compilation flags:

static, multifile

Template:

edge_case(Type,Term)

Mode and number of proofs:

edge_case(?callable,?term) - zero_or_more

get_seed/1

Gets the current random generator seed. Seed should be regarded as an opaque ground term.

Compilation flags:

static

Template:

get_seed(Seed)

Mode and number of proofs:

get_seed(-ground) - one

set_seed/1

Sets the random generator seed to a given value returned by calling the get_seed/1 predicate.

Compilation flags:

static

Template:

set_seed(Seed)

Mode and number of proofs:

set_seed(+ground) - one

max_size/1

User defined maximum size for types where its meaningful and implicit. When not defined, defaults to 42. When multiple definitions exist, the first valid one found is used.

Compilation flags:

static, multifile

Template:

max_size(Size)

Mode and number of proofs:

max_size(?positive_integer) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 category

assertions_messages

Assertions framework default message translations.

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:2:0

Date: 2018-02-20

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

best_first

Best-first framework for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:1:0

Date: 2019-03-08

Compilation flags:

static

Implements:

public interpreterp

Uses:

counter

minheap

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	f/4

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

f/4

.

Compilation flags:

static

Template:

f(Length1,Length2,Depth,Cost)

Mode and number of proofs:

f(+float,+float,+float,-float) - zero_or_more

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

class_hierarchy

Class hierarchy predicates.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Implements:

public class_hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 class/1 classes/1 descendant/1 descendant_class/1 descendant_classes/1 descendant_instance/1 descendant_instances/1 descendants/1 instance/1 instances/1 leaf/1 leaf_class/1 leaf_classes/1 leaf_instance/1 leaf_instances/1 leaves/1 subclass/1 subclasses/1 superclass/1 superclasses/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metric

Core predicates for computing source code metrics.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:13:0

Date: 2025-10-06

Compilation flags:

static

Extends:

public code_metrics_utilities

public options

Uses:

list

logtalk

os

type

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	entity/1

	file/2

	file/1

	directory/2

	directory/1

	rdirectory/2

	rdirectory/1

	library/2

	library/1

	rlibrary/2

	rlibrary/1

	all/1

	all/0

	entity_score/2

	library_score/2

	rlibrary_score/2

	file_score/2

	directory_score/2

	rdirectory_score/2

	all_score/1

	format_entity_score//2

	Protected predicates

	process_entity/2

	process_file/2

	process_directory/2

	process_rdirectory/2

	process_library/2

	process_rlibrary/2

	process_all/1

	sub_directory/2

	sub_library/2

	Private predicates

	Operators

Public predicates

entity/1

Scans an entity and prints its metric score.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+term) - zero_or_one

file/2

Prints metric scores for all the entities defined in a loaded source file using the given options.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - zero_or_one

file/1

Prints metric scores for all the entities defined in a loaded source file using default options.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - zero_or_one

directory/2

Scans a directory and prints metric scores for all entities defined in its loaded source files using the given options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Scans a directory and prints metric scores for all entities defined in its loaded source files using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

rdirectory/2

Recursive version of the directory/1 predicate using the given options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Recursive version of the directory/1 predicate using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

library/2

Prints metrics scores for all loaded entities from a given library using the given options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Prints metrics scores for all loaded entities from a given library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rlibrary/2

Recursive version of the library/1 predicate using the given options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Recursive version of the library/1 predicate using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

all/1

Scans all loaded entities and prints their metric scores using the given options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list(compound)) - one

all/0

Scans all loaded entities and prints their metric scores using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

entity_score/2

Score is a term that represents the metric score associated with a loaded entity. Fails if the metric does not apply.

Compilation flags:

static

Template:

entity_score(Entity,Score)

Mode and number of proofs:

entity_score(@entity_identifier,-ground) - zero_or_one

library_score/2

Score is a term that represents the metric score associated with a loaded library source files. Fails if the metric does not apply.

Compilation flags:

static

Template:

library_score(Library,Score)

Mode and number of proofs:

library_score(@atom,-ground) - zero_or_one

rlibrary_score/2

Score is a term that represents the metric score associated with loaded source files from a library and its sub-libraries. Fails if the metric does not apply.

Compilation flags:

static

Template:

rlibrary_score(Library,Score)

Mode and number of proofs:

rlibrary_score(@atom,-ground) - zero_or_one

file_score/2

Score is a term that represents the metric score associated with a loaded source file. Fails if the metric does not apply.

Compilation flags:

static

Template:

file_score(File,Score)

Mode and number of proofs:

file_score(@atom,-ground) - zero_or_one

directory_score/2

Score is a term that represents the metric score associated with loaded source files from a directory. Fails if the metric does not apply.

Compilation flags:

static

Template:

directory_score(Directory,Score)

Mode and number of proofs:

directory_score(@atom,-ground) - zero_or_one

rdirectory_score/2

Score is a term that represents the metric score associated with loaded source files from a directory and its sub-directories. Fails if the metric does not apply.

Compilation flags:

static

Template:

rdirectory_score(Directory,Score)

Mode and number of proofs:

rdirectory_score(@atom,-ground) - zero_or_one

all_score/1

Score is a term that represents the metric score associated with all loaded source files. Fails if the metric does not apply.

Compilation flags:

static

Template:

all_score(Score)

Mode and number of proofs:

all_score(-ground) - zero_or_one

format_entity_score//2

Formats the entity score for pretty printing.

Compilation flags:

static

Template:

format_entity_score(Entity,Score)

Mode and number of proofs:

format_entity_score(@entity_identifier,+ground) - one

Protected predicates

process_entity/2

Processes an entity of the given kind.

Compilation flags:

static

Template:

process_entity(Kind,Entity)

Mode and number of proofs:

process_entity(+atom,@entity_identifier) - one

process_file/2

Processes a source file using the given options.

Compilation flags:

static

Template:

process_file(Path,Options)

Mode and number of proofs:

process_file(+atom,+list(compound)) - one

process_directory/2

Processes a directory of source files using the given options.

Compilation flags:

static

Template:

process_directory(Path,Options)

Mode and number of proofs:

process_directory(+atom,+list(compound)) - one

process_rdirectory/2

Recursively process a directory of source files using the given options.

Compilation flags:

static

Template:

process_rdirectory(Path,Options)

Mode and number of proofs:

process_rdirectory(+atom,+list(compound)) - one

process_library/2

Processes a library of source files using the given options.

Compilation flags:

static

Template:

process_library(Library,Options)

Mode and number of proofs:

process_library(+atom,+list(compound)) - one

process_rlibrary/2

Recursively process a library of source files using the given options.

Compilation flags:

static

Template:

process_rlibrary(Library,Options)

Mode and number of proofs:

process_rlibrary(+atom,+list(compound)) - one

process_all/1

Processes all loaded source code using the given options.

Compilation flags:

static

Template:

process_all(Options)

Mode and number of proofs:

process_all(+list(compound)) - one

sub_directory/2

Enumerates, by backtracking, all directory sub-directories containing loaded files.

Compilation flags:

static

Template:

sub_directory(Directory,SubDirectory)

Mode and number of proofs:

sub_directory(+atom,-atom) - one

sub_library/2

Enumerates, by backtracking, all library sub-libraries.

Compilation flags:

static

Template:

sub_library(Library,SubLibrary)

Mode and number of proofs:

sub_library(+atom,-atom) - one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metrics_messages

Message translations for the code_metrics tool.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:8:0

Date: 2022-05-05

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

code_metrics_utilities

Internal predicates for analyzing source code.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh

Version: 0:7:0

Date: 2024-03-28

Compilation flags:

static

Uses:

list

logtalk

Remarks:

	Usage: This is meant to be imported by any metric added to the system.

	Predicate Scope: This is meant for internal use by metrics only. As such, all provided predicates are protected.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	ancestor/4

	current_entity/1

	declares_predicate/2

	defines_predicate/2

	defines_predicate/3

	entity_calls/3

	entity_kind/2

	entity_property/2

	entity_updates/3

	not_excluded_file/3

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

ancestor/4

True if Entity descends from Ancestor, and EntityKind and AncestorKind unify with their respective entity types.

Compilation flags:

static

Template:

ancestor(EntityKind,Entity,AncestorKind,Ancestor)

Mode and number of proofs:

ancestor(?entity,?entity_identifier,?entity,?entity_identifier) - zero_or_more

current_entity/1

True if Entity is a currently loaded entity.

Compilation flags:

static

Template:

current_entity(Entity)

Mode and number of proofs:

current_entity(?entity_identifier) - zero_or_more

declares_predicate/2

True if Entity declares Predicate internally.

Compilation flags:

static

Template:

declares_predicate(Entity,Predicate)

Mode and number of proofs:

declares_predicate(?entity_identifier,?predicate_indicator) - zero_or_more

defines_predicate/2

True if Entity defines an implementation of Predicate internally. Auxiliary predicates are excluded from results.

Compilation flags:

static

Template:

defines_predicate(Entity,Predicate)

Mode and number of proofs:

defines_predicate(?entity_identifier,?predicate_indicator) - zero_or_more

defines_predicate/3

Same as defines_predicate/2, except Property is unified with a property of the predicate.

Compilation flags:

static

Template:

defines_predicate(Entity,Predicate,Property)

Mode and number of proofs:

defines_predicate(?entity_identifier,?predicate_indicator,?term) - zero_or_more

entity_calls/3

True if a predicate Caller within Entity makes a Call.

Compilation flags:

static

Template:

entity_calls(Entity,Caller,Call)

Mode and number of proofs:

entity_calls(?entity_identifier,?predicate_indicator,?predicate_indicator) - zero_or_one

entity_kind/2

True if Kind defines Entity and is one of category, protocol, or object.

Compilation flags:

static

Template:

entity_kind(Entity,Kind)

Mode and number of proofs:

entity_kind(+entity_identifier,-entity) - zero_or_one

entity_property/2

True if Property is a valid property of Entity. Entity can be either a category, a protocol, or an object.

Compilation flags:

static

Template:

entity_property(Entity,Property)

Mode and number of proofs:

entity_property(+entity_identifier,-term) - zero_or_more

entity_updates/3

True if a predicate Updater within Entity makes a dynamic update to Updated (by using e.g. the asserta/1 or retract/1 predicates).

Compilation flags:

static

Template:

entity_updates(Entity,Updater,Updated)

Mode and number of proofs:

entity_updates(+entity_identifier,?predicate_indicator,?predicate_indicator) - zero_or_one

not_excluded_file/3

True if the file is not being excluded.

Compilation flags:

static

Template:

not_excluded_file(ExcludedFiles,Path,Basename)

Mode and number of proofs:

not_excluded_file(+list(atom),+atom,+atom) - zero_or_one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

core_messages

Logtalk core (compiler and runtime) default message tokenization.

Availability:

built_in

Author: Paulo Moura

Version: 1:144:0

Date: 2025-09-30

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

counters

Named integer counters. Counter names can be any nonvar term.

Availability:

logtalk_load(library(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2022-02-11

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	counter/2

	increment_counter/1

	decrement_counter/1

	reset_counter/1

	reset_counters/0

	Protected predicates

	Private predicates

	counter_/2

	Operators

Public predicates

counter/2

True if Counter is a counter with value Value.

Compilation flags:

static

Template:

counter(Counter,Value)

Mode and number of proofs:

counter(?nonvar,?integer) - zero_or_more

increment_counter/1

Increments the named counter.

Compilation flags:

static

Template:

increment_counter(Counter)

Mode and number of proofs:

increment_counter(+nonvar) - one

decrement_counter/1

Decrements the named counter.

Compilation flags:

static

Template:

decrement_counter(Counter)

Mode and number of proofs:

decrement_counter(+nonvar) - one

reset_counter/1

Resets the named counter to zero. Creates the counter if it does not exist.

Compilation flags:

static

Template:

reset_counter(Counter)

Mode and number of proofs:

reset_counter(+nonvar) - one

reset_counters/0

Resets all existing named counters to zero.

Compilation flags:

static

Mode and number of proofs:

reset_counters - one

Protected predicates

(none)

Private predicates

counter_/2

Table of named counters.

Compilation flags:

dynamic

Template:

counter_(Counter,Value)

Mode and number of proofs:

counter_(?nonvar,?integer) - zero_or_more

Operators

(none)

 category

csv_guess_questions

Support for asking questions when guessing the separator and the record arity of CSV files.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila

Version: 1:0:0

Date: 2021-02-03

Compilation flags:

static

Provides:

logtalk::message_tokens//2

logtalk::question_prompt_stream/4

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

dead_code_scanner_messages

Logtalk dead_code_scanner tool default message translations.

Availability:

logtalk_load(dead_code_scanner(loader))

Author: Barry Evans and Paulo Moura

Version: 0:8:0

Date: 2024-05-07

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

debugger_messages

Logtalk debugger tool default message translations.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 3:9:0

Date: 2025-09-03

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::question_prompt_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

diagram(Format)

	Format - Graph language file format.

Common predicates for generating diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:16:0

Date: 2025-10-27

Compilation flags:

static

Extends:

public options

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Uses:

graph_language_registry

list

logtalk

modules_diagram_support

os

pairs

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	libraries/3

	libraries/2

	libraries/1

	all_libraries/1

	all_libraries/0

	rlibrary/2

	rlibrary/1

	library/2

	library/1

	directories/3

	directories/2

	rdirectory/3

	rdirectory/2

	rdirectory/1

	directory/3

	directory/2

	directory/1

	files/3

	files/2

	files/1

	all_files/1

	all_files/0

	format_object/1

	diagram_description/1

	diagram_name_suffix/1

	Protected predicates

	diagram_caption/3

	output_rlibrary/3

	output_library/3

	output_rdirectory/3

	output_externals/1

	output_files/2

	output_file/4

	output_sub_diagrams/1

	reset/0

	output_node/6

	node/6

	edge/5

	output_edges/1

	save_edge/5

	output_missing_externals/1

	not_excluded_file/4

	output_file_path/4

	locate_library/2

	locate_directory/2

	locate_file/5

	ground_entity_identifier/3

	filter_file_extension/3

	filter_external_file_extension/3

	add_link_options/3

	supported_editor_url_scheme_prefix/1

	omit_path_prefix/3

	add_node_zoom_option/4

	message_diagram_description/1

	Private predicates

	node_/6

	node_path_/2

	edge_/5

	Operators

Public predicates

libraries/3

Creates a diagram for a set of libraries using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

libraries(Project,Libraries,Options)

Mode and number of proofs:

libraries(+atom,+list(atom),+list(compound)) - one

libraries/2

Creates a diagram for a set of libraries using the default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

libraries(Project,Libraries)

Mode and number of proofs:

libraries(+atom,+list(atom)) - one

libraries/1

Creates a diagram for a set of libraries using the default options. The prefix libraries is used for the diagram file name.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

all_libraries/1

Creates a diagram for all loaded libraries using the specified options.

Compilation flags:

static

Template:

all_libraries(Options)

Mode and number of proofs:

all_libraries(+list(compound)) - one

all_libraries/0

Creates a diagram for all loaded libraries using default options.

Compilation flags:

static

Mode and number of proofs:

all_libraries - one

rlibrary/2

Creates a diagram for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Creates a diagram for a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

library/2

Creates a diagram for a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Creates a diagram for a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

directories/3

Creates a diagram for a set of directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directories(Project,Directories,Options)

Mode and number of proofs:

directories(+atom,+list(atom),+list(compound)) - one

directories/2

Creates a diagram for a set of directories using the default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directories(Project,Directories)

Mode and number of proofs:

directories(+atom,+list(atom)) - one

rdirectory/3

Creates a diagram for a directory and its sub-directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+atom,+list(compound)) - one

rdirectory/2

Creates a diagram for a directory and its sub-directories using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory)

Mode and number of proofs:

rdirectory(+atom,+atom) - one

rdirectory/1

Creates a diagram for a directory and its sub-directories using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/3

Creates a diagram for a directory using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Project,Directory,Options)

Mode and number of proofs:

directory(+atom,+atom,+list(compound)) - one

directory/2

Creates a diagram for a directory using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Project,Directory)

Mode and number of proofs:

directory(+atom,+atom) - one

directory/1

Creates a diagram for a directory using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/3

Creates a diagram for a set of files using the specified options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

files(Project,Files,Options)

Mode and number of proofs:

files(+atom,+list(atom),+list(compound)) - one

files/2

Creates a diagram for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

files(Project,Files)

Mode and number of proofs:

files(+atom,+list(atom)) - one

files/1

Creates a diagram for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The prefix files is used for the diagram file name.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

all_files/1

Creates a diagram for all loaded files using the specified options.

Compilation flags:

static

Template:

all_files(Options)

Mode and number of proofs:

all_files(+list(compound)) - one

all_files/0

Creates a diagram for all loaded files using default options.

Compilation flags:

static

Mode and number of proofs:

all_files - one

format_object/1

Returns the identifier of the object implementing the graph language currently being used. Fails if none is specified.

Compilation flags:

static

Template:

format_object(Object)

Mode and number of proofs:

format_object(-object_identifier) - zero_or_one

diagram_description/1

Returns the diagram description.

Compilation flags:

static

Template:

diagram_description(Description)

Mode and number of proofs:

diagram_description(-atom) - one

diagram_name_suffix/1

Returns the diagram name suffix.

Compilation flags:

static

Template:

diagram_name_suffix(Suffix)

Mode and number of proofs:

diagram_name_suffix(-atom) - one

Protected predicates

diagram_caption/3

Creates a diagram caption from the diagram description and the subject and its kind.

Compilation flags:

static

Template:

diagram_caption(Kind,Subject,Description)

Mode and number of proofs:

diagram_caption(+atom,+callable,-atom) - one

output_rlibrary/3

Generates diagram output for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

output_rlibrary(Library,Path,Options)

Mode and number of proofs:

output_rlibrary(+atom,+atom,+list(compound)) - one

output_library/3

Generates diagram output for a library using the specified options.

Compilation flags:

static

Template:

output_library(Library,Path,Options)

Mode and number of proofs:

output_library(+atom,+atom,+list(compound)) - one

output_rdirectory/3

Generates diagram output for a directory and its sub-directories using the specified options.

Compilation flags:

static

Template:

output_rdirectory(Project,Path,Options)

Mode and number of proofs:

output_rdirectory(+atom,+atom,+list(compound)) - one

output_externals/1

Output external nodes using the specified options depending on the value of the boolean option externals/1.

Compilation flags:

static

Template:

output_externals(Options)

Mode and number of proofs:

output_externals(+list(compound)) - one

output_files/2

Generates diagram output for a list of files using the specified options.

Compilation flags:

static

Template:

output_files(Files,Options)

Mode and number of proofs:

output_files(+list,+list(compound)) - one

output_file/4

Generates diagram output for a file using the specified options.

Compilation flags:

static

Template:

output_file(Path,Basename,Directory,Options)

Mode and number of proofs:

output_file(+atom,+atom,+atom,+list(compound)) - one

output_sub_diagrams/1

Outputs sub-diagrams using the specified options.

Compilation flags:

static

Template:

output_sub_diagrams(Options)

Mode and number of proofs:

output_sub_diagrams(+list(compound)) - one

reset/0

Resets all temporary information used when generating a diagram.

Compilation flags:

static

Mode and number of proofs:

reset - one

output_node/6

Outputs a graph node.

Compilation flags:

static

Template:

output_node(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

output_node(+nonvar,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

node/6

Enumerates, by backtracking, all saved nodes.

Compilation flags:

static

Template:

node(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

node(?nonvar,?nonvar,?nonvar,?list(compound),?atom,?list(compound)) - zero_or_more

edge/5

Enumerates, by backtracking, all saved edges.

Compilation flags:

static

Template:

edge(From,To,Labels,Kind,Options)

Mode and number of proofs:

edge(?nonvar,?nonvar,?list(nonvar),?atom,?list(compound)) - zero_or_more

output_edges/1

Outputs all edges.

Compilation flags:

static

Template:

output_edges(Options)

Mode and number of proofs:

output_edges(+list(compound)) - one

save_edge/5

Saves a graph edge.

Compilation flags:

static

Template:

save_edge(From,To,Labels,Kind,Options)

Mode and number of proofs:

save_edge(+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

output_missing_externals/1

Outputs missing external nodes (usually due to unloaded resources) that are referenced from edges.

Compilation flags:

static

Template:

output_missing_externals(Options)

Mode and number of proofs:

output_missing_externals(+list(compound)) - one

not_excluded_file/4

True when the given file is not excluded from the generated output. Excluded files may be specified by full path or by basename and with or without extension. Excluded directories may be listed by full or relative path.

Compilation flags:

static

Template:

not_excluded_file(Path,Basename,ExcludedDirectories,ExcludedFiles)

Mode and number of proofs:

not_excluded_file(+atom,+atom,+list(atom),+list(atom)) - zero_or_one

output_file_path/4

Returns the output file path.

Compilation flags:

static

Template:

output_file_path(Name,Options,Format,Path)

Mode and number of proofs:

output_file_path(+atom,+list(atom),+object_identifier,-atom) - one

locate_library/2

Locates a library given its name.

Compilation flags:

static

Template:

locate_library(Library,Path)

Mode and number of proofs:

locate_library(+atom,-atom) - one

locate_directory/2

Locates a directory given its name or full path.

Compilation flags:

static

Template:

locate_directory(Directory,Path)

Mode and number of proofs:

locate_directory(+atom,-atom) - one

locate_file/5

Locates a file given its name, basename, full path, or library notation representation.

Compilation flags:

static

Template:

locate_file(File,Basename,Extension,Directory,Path)

Mode and number of proofs:

locate_file(+atom,+atom,+atom,+atom,-atom) - one

ground_entity_identifier/3

Converts an entity identifier to a ground term.

Compilation flags:

static

Template:

ground_entity_identifier(Kind,Identifier,GroundIdentifier)

Mode and number of proofs:

ground_entity_identifier(+atom,+callable,-callable) - one

filter_file_extension/3

Filters the file name extension depending on the file_extensions/1 option.

Compilation flags:

static

Template:

filter_file_extension(Basename,Options,Name)

Mode and number of proofs:

filter_file_extension(+atom,+list(compound),-atom) - one

filter_external_file_extension/3

Filters the external file name extension depending on the file_extensions/1 option.

Compilation flags:

static

Template:

filter_external_file_extension(Path,Options,Name)

Mode and number of proofs:

filter_external_file_extension(+atom,+list(compound),-atom) - one

add_link_options/3

Adds url/1, urls/2, and tooltip/1 link options (for use by the graph language) based on the specified path to the list of options.

Compilation flags:

static

Template:

add_link_options(Path,Options,LinkingOptions)

Mode and number of proofs:

add_link_options(+atom,+list(compound),-list(compound)) - one

supported_editor_url_scheme_prefix/1

Table of prefixes for text editors that supports a URL scheme to open diagram links.

Compilation flags:

static

Template:

supported_editor_url_scheme_prefix(Prefix)

Mode and number of proofs:

supported_editor_url_scheme_prefix(?atom) - zero_or_more

omit_path_prefix/3

Removes a prefix from a path, returning the relative path, when using the option omit_path_prefixes/1. Used mainly for constructing directory and file node identifiers and captions.

Compilation flags:

static

Template:

omit_path_prefix(Path,Options,Relative)

Mode and number of proofs:

omit_path_prefix(+atom,+list(compound),-atom) - one

add_node_zoom_option/4

Adds node zoom options when using the zoom option.

Compilation flags:

static

Template:

add_node_zoom_option(Identifier,Suffix,Options,NodeOptions)

Mode and number of proofs:

add_node_zoom_option(+atom,+atom,+list(compound),-list(compound)) - one

message_diagram_description/1

Diagram description for progress messages.

Compilation flags:

static

Template:

message_diagram_description(Description)

Mode and number of proofs:

message_diagram_description(?atom) - one

Private predicates

node_/6

Table of saved nodes.

Compilation flags:

dynamic

Template:

node_(Identifier,Label,Caption,Contents,Kind,Options)

Mode and number of proofs:

node_(?nonvar,?nonvar,?nonvar,?list(compound),?atom,?list(compound)) - zero_or_more

node_path_/2

Table of node paths.

Compilation flags:

dynamic

Template:

node_path_(Node,Path)

Mode and number of proofs:

node_path_(?ground,?list(ground)) - zero_or_more

edge_/5

Table of saved edges.

Compilation flags:

dynamic

Template:

edge_(From,To,Labels,Kind,Options)

Mode and number of proofs:

edge_(?nonvar,?nonvar,?list(nonvar),?atom,?list(compound)) - zero_or_more

Operators

(none)

 category

directory_diagram(Format)

	Format - Graph language file format.

Common predicates for generating directory diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:13:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	remember_included_directory/1

	remember_referenced_logtalk_directory/1

	remember_referenced_prolog_directory/1

	Private predicates

	included_directory_/1

	referenced_logtalk_directory_/1

	referenced_prolog_directory_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

remember_included_directory/1

Remember included Logtalk directory in the diagram.

Compilation flags:

static

Template:

remember_included_directory(Path)

Mode and number of proofs:

remember_included_directory(+atom) - one

remember_referenced_logtalk_directory/1

Remember referenced Logtalk directory in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_directory(Path)

Mode and number of proofs:

remember_referenced_logtalk_directory(+atom) - one

remember_referenced_prolog_directory/1

Remember referenced Prolog directory in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_directory(Path)

Mode and number of proofs:

remember_referenced_prolog_directory(+atom) - one

Private predicates

included_directory_/1

Table of Logtalk directories already included in the diagram.

Compilation flags:

dynamic

Template:

included_directory_(Path)

Mode and number of proofs:

included_directory_(?atom) - zero_or_more

referenced_logtalk_directory_/1

Table of referenced Logtalk directories in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_directory_(Path)

Mode and number of proofs:

referenced_logtalk_directory_(?atom) - zero_or_more

referenced_prolog_directory_/1

Table of referenced Prolog directories in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_directory_(Path)

Mode and number of proofs:

referenced_prolog_directory_(?atom) - zero_or_more

Operators

(none)

 category

file_diagram(Format)

	Format - Graph language file format.

Common predicates for generating file diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:14:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	remember_included_file/1

	remember_referenced_logtalk_file/1

	remember_referenced_prolog_file/1

	Private predicates

	included_file_/1

	referenced_logtalk_file_/1

	referenced_prolog_file_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

remember_included_file/1

Remember included Logtalk file in the diagram.

Compilation flags:

static

Template:

remember_included_file(Path)

Mode and number of proofs:

remember_included_file(+atom) - one

remember_referenced_logtalk_file/1

Remember referenced Logtalk file in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_file(Path)

Mode and number of proofs:

remember_referenced_logtalk_file(+atom) - one

remember_referenced_prolog_file/1

Remember referenced Prolog file in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_file(Path)

Mode and number of proofs:

remember_referenced_prolog_file(+atom) - one

Private predicates

included_file_/1

Table of Logtalk files already included in the diagram.

Compilation flags:

dynamic

Template:

included_file_(Path)

Mode and number of proofs:

included_file_(?atom) - zero_or_more

referenced_logtalk_file_/1

Table of referenced Logtalk files in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_file_(Path)

Mode and number of proofs:

referenced_logtalk_file_(?atom) - zero_or_more

referenced_prolog_file_/1

Table of referenced Prolog files in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_file_(Path)

Mode and number of proofs:

referenced_prolog_file_(?atom) - zero_or_more

Operators

(none)

 category

flags

Implementation of persistent object flags.

Availability:

logtalk_load(flags(loader))

Author: Theofrastos Mantadelis

Version: 1:0:0

Date: 2010-11-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	get_flag_value/2

	set_flag_value/2

	set_flag_value/3

	reset_flags/0

	reset_flags/1

	flag_groups/1

	flag_group_chk/1

	print_flags/0

	print_flags/1

	defined_flag/6

	built_in_flag/2

	Protected predicates

	unsafe_set_flag_value/2

	define_flag/1

	define_flag/2

	Private predicates

	defined_flag_/6

	flag_value_/2

	validate/3

	validate_type/1

	is_validator/1

	Operators

Public predicates

get_flag_value/2

Gets or tests the value of a flag.

Compilation flags:

static

Template:

get_flag_value(Flag,Value)

Mode and number of proofs:

get_flag_value(+atom,?nonvar) - zero_or_one

set_flag_value/2

Sets the value of a flag.

Compilation flags:

static

Template:

set_flag_value(Flag,NewValue)

Mode and number of proofs:

set_flag_value(+atom,@nonvar) - one

set_flag_value/3

Sets the value of a flag, returning the old value.

Compilation flags:

static

Template:

set_flag_value(Flag,OldValue,NewValue)

Mode and number of proofs:

set_flag_value(+atom,?nonvar,@nonvar) - one

reset_flags/0

Resets all flags to their default values.

Compilation flags:

static

Mode and number of proofs:

reset_flags - one

reset_flags/1

Resets all flags in a group to their default values.

Compilation flags:

static

Template:

reset_flags(Group)

Mode and number of proofs:

reset_flags(+atom) - one

flag_groups/1

Returns a list of all flag groups.

Compilation flags:

static

Template:

flag_groups(Groups)

Mode and number of proofs:

flag_groups(-list(atom)) - one

flag_group_chk/1

Checks if a given atom is a flag group.

Compilation flags:

static

Template:

flag_group_chk(Group)

Mode and number of proofs:

flag_group_chk(+atom) - zero_or_one

print_flags/0

Prints a listing of all flags.

Compilation flags:

static

Mode and number of proofs:

print_flags - one

print_flags/1

Prints a listing of all flags in a group.

Compilation flags:

static

Template:

print_flags(Group)

Mode and number of proofs:

print_flags(+atom) - one

defined_flag/6

Gets or test the existing (visible) flag definitions.

Compilation flags:

static

Template:

defined_flag(Flag,Group,Type,DefaultValue,Description,Access)

Mode and number of proofs:

defined_flag(?atom,?atom,?nonvar,?nonvar,?atom,?atom) - zero_or_more

built_in_flag/2

True if the argument is a built-in flag type with the specified default value.

Compilation flags:

static

Template:

built_in_flag(Type,DefaultValue)

Mode and number of proofs:

built_in_flag(?atom,?nonvar) - zero_or_more

Protected predicates

unsafe_set_flag_value/2

Sets the value of a flag without performing any validation checks.

Compilation flags:

static

Template:

unsafe_set_flag_value(Flag,NewValue)

Mode and number of proofs:

unsafe_set_flag_value(+atom,@nonvar) - one

define_flag/1

Defines a new flag using default options.

Compilation flags:

static

Template:

define_flag(Flag)

Mode and number of proofs:

define_flag(+atom) - one

define_flag/2

Defines a new flag using a given set of options (for example, [group(general), type(nonvar), default(true), description(Flag), access(read_write)]).

Compilation flags:

static

Template:

define_flag(Flag,Options)

Mode and number of proofs:

define_flag(+atom,@list) - one

Private predicates

defined_flag_/6

Gets or test the existing flag definitions.

Compilation flags:

dynamic

Template:

defined_flag_(Flag,Group,Type,DefaultValue,Description,Access)

Mode and number of proofs:

defined_flag_(?atom,?atom,?nonvar,?nonvar,?atom,?atom) - zero_or_more

flag_value_/2

Table of flag values.

Compilation flags:

dynamic

Template:

flag_value_(Flag,Value)

Mode and number of proofs:

flag_value_(?atom,?nonvar) - zero_or_more

validate/3

Compilation flags:

static

validate_type/1

Compilation flags:

static

is_validator/1

Compilation flags:

static

Operators

(none)

 category

flatting

Flattens conjunction of goals with the form f and g into a list [f,g].

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:1:0

Date: 2025-10-06

Compilation flags:

static

source: Based on source code from The Craft of Prolog, by Richard O’Keefe.

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	flatten_goals//1

	Private predicates

	Operators

Public predicates

(none)

Protected predicates

flatten_goals//1

Flattens a conjunction of goals.

Compilation flags:

static

Template:

flatten_goals(Conjunction)

Mode and number of proofs:

flatten_goals(+callable) - one

Private predicates

(none)

Operators

(none)

 category

genint_core

Predicates for generating increasing non-negative integers. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(genint(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	reset_genint/0

	reset_genint/1

	genint/2

	Protected predicates

	Private predicates

	counter_/2

	Operators

Public predicates

reset_genint/0

Resets all counters.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_genint - one

reset_genint/1

Resets the given counter.

Compilation flags:

static, synchronized

Template:

reset_genint(Counter)

Mode and number of proofs:

reset_genint(+atom) - one

genint/2

Returns the next integer for a given counter.

Compilation flags:

static, synchronized

Template:

genint(Counter,Integer)

Mode and number of proofs:

genint(+atom,-non_negative_integer) - one

Protected predicates

(none)

Private predicates

counter_/2

Table of current state of counters.

Compilation flags:

dynamic

Template:

counter_(Counter,Latest)

Mode and number of proofs:

counter_(?atom,?non_negative_integer) - zero_or_more

Operators

(none)

 category

gensym_core

Predicates for generating unique atoms. Protocol based on the gensym module of SWI-Prolog. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(gensym(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2022-07-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	reset_gensym/0

	reset_gensym/1

	gensym/2

	Protected predicates

	Private predicates

	base_/2

	Operators

Public predicates

reset_gensym/0

Resets the generator counter for all bases.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_gensym - one

reset_gensym/1

Resets the generator counter for a given base.

Compilation flags:

static, synchronized

Template:

reset_gensym(Base)

Mode and number of proofs:

reset_gensym(+atom) - one

gensym/2

Returns a new unique atom with a given base (prefix).

Compilation flags:

static, synchronized

Template:

gensym(Base,Unique)

Mode and number of proofs:

gensym(+atom,-atom) - one

Protected predicates

(none)

Private predicates

base_/2

Table of generator bases and respective counters.

Compilation flags:

dynamic

Template:

base_(Base,Counter)

Mode and number of proofs:

base_(?atom,?integer) - zero_or_more

Operators

(none)

 category

help_info_support

Experimental help predicates for inline browsing of the Texinfo versions of the Handbook and APIs documentation. Currently requires Ciao Prolog, ECLiPSe, GNU Prolog, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, or YAP as the backend running on a POSIX system.

Availability:

logtalk_load(help(loader))

Author: Paulo Moura

Version: 0:9:0

Date: 2025-05-02

Compilation flags:

static

Complements:

help

Uses:

os

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	handbook/0

	handbook/1

	apis/0

	apis/1

	man/1

	Protected predicates

	Private predicates

	Operators

Public predicates

handbook/0

Opens inline the Texinfo version of the Handbook.

Compilation flags:

static

Mode and number of proofs:

handbook - one

handbook/1

Opens inline the Texinfo version of the Handbook at the given topic.

Compilation flags:

static

Template:

handbook(Topic)

Mode and number of proofs:

handbook(+atom) - one

handbook(+predicate_indicator) - one

handbook(+non_terminal_indicator) - one

apis/0

Opens inline the Texinfo version of the APIs documentation.

Compilation flags:

static

Mode and number of proofs:

apis - one

apis/1

Opens inline the Texinfo version of the APIs documentation at the given topic.

Compilation flags:

static

Template:

apis(Topic)

Mode and number of proofs:

apis(+atom) - one

apis(+predicate_indicator) - one

apis(+non_terminal_indicator) - one

man/1

Opens inline the man page of the given script.

Compilation flags:

static

Template:

man(Script)

Mode and number of proofs:

man(+atom) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

html

HTML generation.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 0:3:0

Date: 2021-03-30

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/2

	void_element/1

	normal_element/2

	Protected predicates

	Private predicates

	doctype/1

	Operators

Public predicates

generate/2

Generates HTML content using the representation specified in the first argument (stream(Stream) or file(Path)) for the term in the second argument.

Compilation flags:

static

Template:

generate(Sink,Term)

Mode and number of proofs:

generate(+compound,++term) - one_or_error

void_element/1

Enumerates, by backtracking, all void elements.

Compilation flags:

static

Template:

void_element(Element)

Mode and number of proofs:

void_element(?atom) - zero_or_more

normal_element/2

Enumerates, by backtracking, all normal elements. The value of the Display argument is either inline or block.

Compilation flags:

static

Template:

normal_element(Element,Display)

Mode and number of proofs:

normal_element(?atom,?atom) - zero_or_more

Protected predicates

(none)

Private predicates

doctype/1

Doctype text.

Compilation flags:

static

Template:

doctype(DocType)

Mode and number of proofs:

doctype(?atom) - one

Operators

(none)

 category

lgtdoc_messages

Logtalk documentation tool default message translations.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 4:0:1

Date: 2024-12-02

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

lgtunit_messages

Logtalk unit test framework default message translations.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 12:2:0

Date: 2025-10-20

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	failed_test_reason//1

	Protected predicates

	Private predicates

	Operators

Public predicates

failed_test_reason//1

Used to rewrite a term representing the reason why a term failed into a list of tokens.

Compilation flags:

static

Template:

failed_test_reason(Reason)

Mode and number of proofs:

failed_test_reason(@nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

library_diagram(Format)

	Format - Graph language file format.

Common predicates for generating library diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:17:0

Date: 2024-12-04

Compilation flags:

static

Extends:

public diagram(Format)

Uses:

list

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	add_library_documentation_url/4

	remember_included_library/2

	remember_referenced_logtalk_library/2

	remember_referenced_prolog_library/2

	Private predicates

	included_library_/2

	referenced_logtalk_library_/2

	referenced_prolog_library_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

add_library_documentation_url/4

Adds a documentation URL when using the option url_prefixes/2.

Compilation flags:

static

Template:

add_library_documentation_url(Kind,Options,Library,NodeOptions)

Mode and number of proofs:

add_library_documentation_url(+atom,+list(compound),+atom,-list(compound)) - one

remember_included_library/2

Remember included Logtalk library in the diagram.

Compilation flags:

static

Template:

remember_included_library(Library,Path)

Mode and number of proofs:

remember_included_library(+atom,+atom) - one

remember_referenced_logtalk_library/2

Remember referenced Logtalk library in the diagram.

Compilation flags:

static

Template:

remember_referenced_logtalk_library(Library,Path)

Mode and number of proofs:

remember_referenced_logtalk_library(+atom,+atom) - one

remember_referenced_prolog_library/2

Remember referenced Prolog library in the diagram.

Compilation flags:

static

Template:

remember_referenced_prolog_library(Library,Path)

Mode and number of proofs:

remember_referenced_prolog_library(+atom,+atom) - one

Private predicates

included_library_/2

Table of Logtalk libraries already included in the diagram.

Compilation flags:

dynamic

Template:

included_library_(Library,Path)

Mode and number of proofs:

included_library_(?atom,?atom) - zero_or_more

referenced_logtalk_library_/2

Table of referenced Logtalk libraries in the diagram.

Compilation flags:

dynamic

Template:

referenced_logtalk_library_(Library,Path)

Mode and number of proofs:

referenced_logtalk_library_(?atom,?atom) - zero_or_more

referenced_prolog_library_/2

Table of referenced Prolog libraries in the diagram.

Compilation flags:

dynamic

Template:

referenced_prolog_library_(Library,Path)

Mode and number of proofs:

referenced_prolog_library_(?atom,?atom) - zero_or_more

Operators

(none)

See also

inheritance_diagram(Format), uses_diagram(Format), xref_diagram(Format), entity_diagram(Format)

 category

listing

Listing predicates.

Availability:

logtalk_load(listing(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2024-01-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	listing/0

	listing/1

	portray_clause/1

	Protected predicates

	Private predicates

	Operators

Public predicates

listing/0

Lists all clauses of all visible dynamic predicates to the current output stream.

Compilation flags:

static

Mode and number of proofs:

listing - one

listing/1

Lists all clauses of a visible dynamic predicate or non-terminal to the current output stream. When the argument is a clause head, lists all matching clauses.

Compilation flags:

static

Template:

listing(Spec)

Mode and number of proofs:

listing(+predicate_indicator) - one_or_error

listing(+non_terminal_indicator) - one_or_error

listing(+callable) - one_or_error

Exceptions:

Spec is not ground:

instantiation_error

Spec is ground but not a valid predicate indicator:

type_error(predicate_indicator,Spec)

Spec is ground but not a valid non-terminal indicator:

type_error(non_terminal_indicator,Spec)

Spec is a predicate indicator but not a visible predicate:

existence_error(predicate,Spec)

Spec is a non-terminal indicator but not a visible non-terminal:

existence_error(non_terminal,Spec)

Spec is a callable term with a Functor/Arity indicator but not a visible predicate:

existence_error(predicate,Functor/Arity)

Spec is a predicate indicator of a visible predicate but not a dynamic predicate:

permission_error(access,predicate,Spec)

Spec is a non-terminal indicator of a visible non-terminal but not a dynamic non-terminal:

permission_error(access,non_terminal,Spec)

Spec is a callable term for a visible predicate with a Functor/Arity indicator but not a dynamic predicate:

permission_error(access,predicate,Functor/Arity)

portray_clause/1

Pretty prints a clause to the current output stream.

Compilation flags:

static

Template:

portray_clause(Clause)

Mode and number of proofs:

portray_clause(+clause) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

logging

Logging events to files category.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static

Implements:

public loggingp

Remarks:

(none)

Inherited public predicates:

 define_log_file/2 disable_logging/1 enable_logging/1 init_log_file/2 log_event/2 log_file/2 logging/1

	Public predicates

	Protected predicates

	Private predicates

	log_file_/2

	logging_to_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

log_file_/2

Table of log files.

Compilation flags:

dynamic

Template:

log_file_(Alias,File)

Mode and number of proofs:

log_file_(?atom,?nonvar) - zero_or_more

logging_to_file_/2

Table of logging file status for log files.

Compilation flags:

dynamic

Template:

logging_to_file_(Alias,Status)

Mode and number of proofs:

logging_to_file_(?atom,?atom) - zero_or_more

Operators

(none)

 category

monitor

Monitor predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2019-03-08

Compilation flags:

static, events

Implements:

public monitorp

Remarks:

(none)

Inherited public predicates:

 activate_monitor/0 del_spy_points/4 monitor_activated/0 reset_monitor/0 set_spy_point/4 spy_point/4 suspend_monitor/0

	Public predicates

	Protected predicates

	Private predicates

	spy_point_/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

spy_point_/4

Stores current spy points.

Compilation flags:

dynamic

Template:

spy_point_(Event,Object,Message,Sender)

Mode and number of proofs:

spy_point_(?event,?object,?callable,?object) - zero_or_more

Operators

(none)

 category

mutations

Adds mutations support to the library type object.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-11-23

Compilation flags:

static

Complements:

type

Uses:

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	mutation/3

	Protected predicates

	Private predicates

	Operators

Public predicates

mutation/3

Returns a random mutation of a term into another term of the same type. The input Term is assume to be valid for the given Type.

Compilation flags:

static

Template:

mutation(Type,Term,Mutation)

Mode and number of proofs:

mutation(@callable,@term,-term) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

observer

Smalltalk dependent protocol.

Availability:

logtalk_load(dependents(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2003-02-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	update/1

	Protected predicates

	Private predicates

	Operators

Public predicates

update/1

Called when an observed object is updated.

Compilation flags:

static

Template:

update(Change)

Mode and number of proofs:

update(?nonvar) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

subject

 category

options

Options processing predicates. Options are represented by compound terms where the functor is the option name.

Availability:

logtalk_load(options(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2022-01-03

Compilation flags:

static

Implements:

public options_protocol

Uses:

list

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

os_types

A set of operating-system related types.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2021-02-12

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

os

Remarks:

	Provided types: This category adds file, file(Extensions), file(Extensions,Permissions), directory, directory(Permissions), and environment_variable types for type-checking when using the type library object.

	Type file: For checking if a term is an atom and an existing file.

	Type file(Extensions): For checking if a term is an atom and an existing file with one of the listed extensions (specified as '.ext').

	Type file(Extensions,Permissions): For checking if a term is an atom and an existing file with one of the listed extensions (specified as '.ext') and listed permissions ({read, write, execute}).

	Type directory: For checking if a term is an atom and an existing directory.

	Type directory(Permissions): For checking if a term is an atom and an existing directory with the listed permissions ({read, write, execute}).

	Type environment_variable: For checking if a term is an atom and an existing environment variable.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

osp, os, type

 category

packs_common

Common predicates for the packs tool objects.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:33:0

Date: 2025-01-23

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

logtalk

os

type

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	setup/0

	reset/0

	verify_commands_availability/0

	help/0

	pin/1

	pin/0

	unpin/1

	unpin/0

	pinned/1

	directory/2

	directory/1

	readme/2

	readme/1

	logtalk_packs/1

	logtalk_packs/0

	prefix/1

	prefix/0

	Protected predicates

	readme_file_path/2

	print_readme_file_path/1

	command/2

	load_registry/1

	sha256sum_command/1

	tar_command/1

	supported_archive/1

	supported_url_archive/1

	decode_url_spaces/2

	Private predicates

	Operators

Public predicates

setup/0

Ensures that registries and packs directory structure exists. Preserves any defined registries and installed packs.

Compilation flags:

static

Mode and number of proofs:

setup - one

reset/0

Resets registries and packs directory structure. Deletes any defined registries and installed packs.

Compilation flags:

static

Mode and number of proofs:

reset - one

verify_commands_availability/0

Verifies required shell commands availability. Fails printing an error message if a command is missing.

Compilation flags:

static

Mode and number of proofs:

verify_commands_availability - zero_or_one

help/0

Provides help about the main predicates.

Compilation flags:

static

Mode and number of proofs:

help - one

pin/1

Pins a resource (pack or registry) preventing it from being updated, uninstalled, or deleted. Fails if the resource is not found.

Compilation flags:

static

Template:

pin(Resource)

Mode and number of proofs:

pin(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

pin/0

Pins all resource (packs or registries) preventing them from being updated, uninstalled, or deleted. Note that resources added after calling this predicate will not be pinned.

Compilation flags:

static

Mode and number of proofs:

pin - one

unpin/1

Unpins a resource (pack or registry), allowing it to be updated, uninstalled, or deleted. Fails if the resource is not found.

Compilation flags:

static

Template:

unpin(Resource)

Mode and number of proofs:

unpin(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

unpin/0

Unpins all resources (packs or registries), allowing them to be updated, uninstalled, or deleted.

Compilation flags:

static

Mode and number of proofs:

unpin - one

pinned/1

True iff the resource (pack or registry) is defined or installed and if it is pinned.

Compilation flags:

static

Template:

pinned(Resource)

Mode and number of proofs:

pinned(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

directory/2

Enumerates by backtracking all packs or registries and respective installation or definition directories (using the internal backend format).

Compilation flags:

static

Template:

directory(Resource,Directory)

Mode and number of proofs:

directory(?atom,?atom) - zero_or_more

Exceptions:

Resource is neither a variable nor an atom:

type_error(atom,Resource)

Directory is neither a variable nor an atom:

type_error(atom,Directory)

directory/1

Prints the directory where the registry or the pack is installed (using the native operating-system format).

Compilation flags:

static

Template:

directory(Resource)

Mode and number of proofs:

directory(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

readme/2

Returns the path to the resource (pack or registry) readme file (using the internal backend format). Fails if the resource is not defined or installed or if no readme file is found for it.

Compilation flags:

static

Template:

readme(Resource,ReadMeFile)

Mode and number of proofs:

readme(+atom,-atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

ReadMeFile is neither a variable nor an atom:

type_error(atom,ReadMeFile)

readme/1

Prints the path to the resource (pack or registry) readme file (using the native operating-system format). Fails if the resource is not defined or installed or if no readme file is found for it.

Compilation flags:

static

Template:

readme(Resource)

Mode and number of proofs:

readme(+atom) - zero_or_one

Exceptions:

Resource is a variable:

instantiation_error

Resource is neither a variable nor an atom:

type_error(atom,Resource)

logtalk_packs/1

Returns the directory prefix (using the internal backend format) where the registries, packs, and archives are installed.

Compilation flags:

static

Template:

logtalk_packs(LogtalkPacks)

Mode and number of proofs:

logtalk_packs(-atom) - one

Exceptions:

LogtalkPacks is neither a variable nor an atom:

type_error(atom,LogtalkPacks)

logtalk_packs/0

Prints the directory prefix (using the native operating-system format) where the registries, packs, and archives are installed.

Compilation flags:

static

Mode and number of proofs:

logtalk_packs - one

prefix/1

Returns the directory prefix (using the internal backend format) where the registries or packs are installed.

Compilation flags:

static

Template:

prefix(Prefix)

Mode and number of proofs:

prefix(-atom) - one

Exceptions:

Prefix is neither a variable nor an atom:

type_error(atom,Prefix)

prefix/0

Prints the directory prefix (using the native operating-system format) where the registries or packs are installed.

Compilation flags:

static

Mode and number of proofs:

prefix - one

Protected predicates

readme_file_path/2

Returns the absolute path for the given directory readme file if it exists.

Compilation flags:

static

Template:

readme_file_path(Directory,ReadMeFile)

Mode and number of proofs:

readme_file_path(+atom,-atom) - zero_or_one

Remarks:

	Valid file names: Case variations of README and NOTES with or without a .md or .txt extension. The recommended file name is README.md.

print_readme_file_path/1

Prints the absolute path for the given directory readme file if it exists. Succeeds otherwise.

Compilation flags:

static

Template:

print_readme_file_path(Directory)

Mode and number of proofs:

print_readme_file_path(+atom) - one

command/2

Executes a shell command. Prints an error message and fails if the command fails.

Compilation flags:

static

Template:

command(Command,FailureMessage)

Mode and number of proofs:

command(+atom,@nonvar) - zero_or_one

load_registry/1

Loads all registry files from the given directory.

Compilation flags:

static

Template:

load_registry(Directory)

Mode and number of proofs:

load_registry(+atom) - zero_or_one

sha256sum_command/1

Returns the name of the sha256sum command to be used on POSIX systems. Fails if neither gsha256sum or sha256sum commands are found.

Compilation flags:

static

Template:

sha256sum_command(Command)

Mode and number of proofs:

sha256sum_command(-atom) - zero_or_one

tar_command/1

Returns the name of the tar command to be used depending on the operating-system.

Compilation flags:

static

Template:

tar_command(Command)

Mode and number of proofs:

tar_command(-atom) - one

supported_archive/1

True iff the archive format is supported.

Compilation flags:

static

Template:

supported_archive(Extension)

Mode and number of proofs:

supported_archive(+atom) - zero_or_one

supported_url_archive/1

True iff the URL archive is supported.

Compilation flags:

static

Template:

supported_url_archive(URL)

Mode and number of proofs:

supported_url_archive(+atom) - zero_or_one

decode_url_spaces/2

Decodes encoded spaces (%20) in URLs to spaces.

Compilation flags:

static

Template:

decode_url_spaces(URL,Decoded)

Mode and number of proofs:

decode_url_spaces(+atom,-atom) - one

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

packs_messages

Packs default message translations.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:41:0

Date: 2025-05-23

Compilation flags:

static

Provides:

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

proto_hierarchy

Prototype hierarchy predicates.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Implements:

public proto_hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 extension/1 extensions/1 leaf/1 leaves/1 parent/1 parents/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 category

read_file

Utility predicates for parsing a file as a list of atoms.

Availability:

logtalk_load(pddl_parser(loader))

Author: Robert Sasak, Charles University in Prague. Adapted to Logtalk by Paulo Moura.

Version: 1:0:0

Date: 2011-08-04

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	read_file/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/2

Reads a file character by character, parsing it into a list of atoms.

Compilation flags:

static

Template:

read_file(File,List)

Mode and number of proofs:

read_file(+atom,-list(atom)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 category

recorded_database_core

Legacy recorded database predicates. Can be imported into an object to provide a local database.

Availability:

logtalk_load(recorded_database(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-12-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

	References: Opaque ground terms.

Inherited public predicates:

(none)

	Public predicates

	recorda/3

	recorda/2

	recordz/3

	recordz/2

	recorded/3

	recorded/2

	erase/1

	instance/2

	Protected predicates

	Private predicates

	record_/3

	reference_/1

	Operators

Public predicates

recorda/3

Adds a term as the first term for the given key, returning its reference.

Compilation flags:

static

Template:

recorda(Key,Term,Reference)

Mode and number of proofs:

recorda(+recorded_database_key,+term,--recorded_database_reference) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

Reference is a not a variable:

uninstantiation_error(Reference)

recorda/2

Adds a term as the first term for the given key.

Compilation flags:

static

Template:

recorda(Key,Term)

Mode and number of proofs:

recorda(+recorded_database_key,+term) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

recordz/3

Adds a term as the last term for the given key, returning its reference.

Compilation flags:

static

Template:

recordz(Key,Term,Reference)

Mode and number of proofs:

recordz(+recorded_database_key,+term,--recorded_database_reference) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

Reference is a not a variable:

uninstantiation_error(Reference)

recordz/2

Adds a term as the last term for the given key.

Compilation flags:

static

Template:

recordz(Key,Term)

Mode and number of proofs:

recordz(+recorded_database_key,+term) - one_or_error

Exceptions:

Key is a variable:

instantiation_error

Key is neither a variable nor an atomic term or compound term:

type_error(recorded_database_key,Key)

recorded/3

Enumerates, by backtracking, all record key-term pairs and their references.

Compilation flags:

static

Template:

recorded(Key,Term,Reference)

Mode and number of proofs:

recorded(?recorded_database_key,?term,-recorded_database_reference) - zero_or_more

recorded(?recorded_database_key,?term,+recorded_database_reference) - zero_or_one

recorded/2

Enumerates, by backtracking, all record key-term pairs.

Compilation flags:

static

Template:

recorded(Key,Term)

Mode and number of proofs:

recorded(?recorded_database_key,?term) - zero_or_more

erase/1

Erases the record indexed by the given reference. Fails if there is no record with the given reference.

Compilation flags:

static

Template:

erase(Reference)

Mode and number of proofs:

erase(@recorded_database_reference) - zero_or_one_or_error

Exceptions:

Reference is a variable:

instantiation_error

instance/2

.

Compilation flags:

static

Template:

instance(Reference,Term)

Mode and number of proofs:

instance(@recorded_database_reference,?term) - zero_or_one_or_error

Exceptions:

Reference is a variable:

instantiation_error

Protected predicates

(none)

Private predicates

record_/3

Records table.

Compilation flags:

dynamic

Template:

record_(Key,Term,Reference)

Mode and number of proofs:

record_(?recorded_database_key,?term,?recorded_database_reference) - zero_or_more

reference_/1

Reference count.

Compilation flags:

dynamic

Template:

reference_(Reference)

Mode and number of proofs:

reference_(?non_negative_integer) - zero_or_one

Operators

(none)

 category

statistics

Statistical calculations over a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:7:1

Date: 2023-05-29

Compilation flags:

static

Implements:

public statisticsp

Uses:

list

numberlist

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	arithmetic_mean/5

	squares_and_cubes/6

	squares_and_hypers/6

	variance/6

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

arithmetic_mean/5

Auxiliary predicate for computing the arithmetic mean.

Compilation flags:

static

Template:

arithmetic_mean(List,Length0,Length,Sum,Mean)

Mode and number of proofs:

arithmetic_mean(+list(number),+integer,-integer,+number,-float) - one

squares_and_cubes/6

Auxiliary predicate for computing the skewness.

Compilation flags:

static

Template:

squares_and_cubes(List,Mean,Squares0,Squares,Cubes0,Cubes)

Mode and number of proofs:

squares_and_cubes(+list(number),+float,+float,-float,+float,-float) - one

squares_and_hypers/6

Auxiliary predicate for computing the kurtosis.

Compilation flags:

static

Template:

squares_and_hypers(List,Mean,Squares0,Squares,Hypers0,Hypers)

Mode and number of proofs:

squares_and_hypers(+list(number),+float,+float,-float,+float,-float) - one

variance/6

Auxiliary predicate for computing the variance.

Compilation flags:

static

Template:

variance(List,Length0,Length,Mean,M20,M2)

Mode and number of proofs:

variance(+list(number),+integer,-integer,+float,+float,-float) - one

Operators

(none)

 category

subject

Smalltalk dependent handling predicates.

Availability:

logtalk_load(dependents(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2003-02-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	changed/0

	changed/1

	dependents/1

	addDependent/1

	removeDependent/1

	Protected predicates

	Private predicates

	dependent_/1

	Operators

Public predicates

changed/0

Receiver changed in some way. Notify all dependents.

Compilation flags:

static

Mode and number of proofs:

changed - one

changed/1

Receiver changed as specified in the argument. Notify all dependents.

Compilation flags:

static

Template:

changed(Change)

Mode and number of proofs:

changed(?nonvar) - one

dependents/1

Returns a list of all dependent objects.

Compilation flags:

static

Template:

dependents(Dependents)

Mode and number of proofs:

dependents(-list) - one

addDependent/1

Adds a new dependent object.

Compilation flags:

static

Template:

addDependent(Dependent)

Mode and number of proofs:

addDependent(@object) - one

removeDependent/1

Removes a dependent object.

Compilation flags:

static

Template:

removeDependent(Dependent)

Mode and number of proofs:

removeDependent(?object) - zero_or_more

Protected predicates

(none)

Private predicates

dependent_/1

Table of dependent objects.

Compilation flags:

dynamic

Template:

dependent_(Dependent)

Mode and number of proofs:

dependent_(?object) - zero_or_more

Operators

(none)

See also

observer

 category

ulid_types

ULID type definition.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static

Provides:

type::type/1

type::check/2

Uses:

list

type

Remarks:

	Provided types: This category adds a ulid(Representation) type for type-checking when using the ulid library object. Valid representation values are atom, chars, and codes.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid(Representation), ulid

 object

a_star_interpreter(W)

A* interpreter for general logic programs. The parameter W is used to fine tune the behavior. W = 0 gives us a breadth-first search and W = 1 gives us a greedy best-first search. The default value for W is 0.5.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Imports:

public best_first

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

after_event_registry

After events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

before_event_registry, monitorp

 object

assertions

Proxy object for simplifying the use of the assertion meta-predicates.

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-04-03

Compilation flags:

static, context_switching_calls

Extends:

public assertions(_)

Remarks:

(none)

Inherited public predicates:

 assertion/1 assertion/2 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

assertions(Mode)

A simple assertions framework. Can be used as a hook object for either suppressing assertions (production mode) or expanding them with file context information (debug mode).

Availability:

logtalk_load(assertions(loader))

Author: Paulo Moura

Version: 2:2:2

Date: 2022-07-04

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	assertion/1

	assertion/2

	Protected predicates

	Private predicates

	Operators

Public predicates

assertion/1

Checks that an assertion is true. Uses the structured message printing mechanism for printing the results using a silent message for assertion success and a error message for assertion failure.

Compilation flags:

static

Template:

assertion(Goal)

Meta-predicate template:

assertion(0)

Mode and number of proofs:

assertion(@callable) - one

assertion/2

Checks that an assertion is true. Uses the structured message printing mechanism for printing the results using a silent message for assertion success and a error message for assertion failure. The context argument can be used to e.g. pass location data.

Compilation flags:

static

Template:

assertion(Context,Goal)

Meta-predicate template:

assertion(*,0)

Mode and number of proofs:

assertion(@term,@callable) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

assignvars

Assignable variables (supporting backtracable assignment of non-variable terms).

Availability:

logtalk_load(assignvars(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:7:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Implements:

public assignvarsp

Remarks:

(none)

Inherited public predicates:

 (<=)/2 (=>)/2 assignable/1 assignable/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

atom

Atom data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:9:0

Date: 2023-04-12

Compilation flags:

static, context_switching_calls

Extends:

public atomic

Uses:

user

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	replace_sub_atom/4

	split/3

	Protected predicates

	Private predicates

	Operators

Public predicates

replace_sub_atom/4

Replaces all occurrences of Old by New in Input returning Output. Returns Input if Old is the empty atom. Fails when Output does not unify with the resulting atom.

Compilation flags:

static

Template:

replace_sub_atom(Old,New,Input,Output)

Mode and number of proofs:

replace_sub_atom(+atom,+atom,+atom,?atom) - zero_or_one

split/3

Splits an atom at a given delimiter into a list of sub-atoms.

Compilation flags:

static

Template:

split(Atom,Delimiter,SubAtoms)

Mode and number of proofs:

split(+atom,+atom,-list(atom)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

atomic

Atomic data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

automation_report

Intercepts unit test execution messages and generates a *.totals files for parsing by the logtalk_tester.sh automation shell script.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

user

Remarks:

	Usage: Automatically loaded by the logtalk_tester.sh shell script.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

avltree

AVL tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: R.A.O’Keefe, L.Damas, V.S.Costa, Glenn Burgess, Jiri Spitz, and Jan Wielemaker; Logtalk port and additional predicates by Paulo Moura

Version: 1:4:1

Date: 2025-05-28

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

bintree, rbtree

 object

backend_adapter_hook

This hook object applies the expansion rules defined in the Prolog backend adapter file.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-17

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

backend_random

Random number generator predicates using the backend Prolog compiler built-in random generator.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:21:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Implementation: The backend Prolog compiler built-in random generator is only used for the basic random/1, get_seed/1, and set_seed/1 predicates.

	Portability: B-Prolog, CxProlog, ECLiPSe, JIProlog, Qu-Prolog, and Quintus Prolog do not provide implementations for the get_seed/1 and set_seed/1 predicates and calling these predicates simply succeed without performing any action.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

random, fast_random

 object

base64

Base64 parser and generator.

Availability:

logtalk_load(base64(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2021-03-22

Compilation flags:

static, context_switching_calls

Uses:

reader

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the Base64 data from the given source (atom(Atom), chars(List), codes(List), stream(Stream), or file(Path) into a list of bytes.

Compilation flags:

static

Template:

parse(Source,Bytes)

Mode and number of proofs:

parse(++compound,--list(byte)) - one_or_error

generate/2

Generates Base64 in the representation specified in the first argument (atom(Atom), chars(List), codes(List), stream(Stream), or file(Path) for the list of bytes in the second argument.

Compilation flags:

static

Template:

generate(Sink,Bytes)

Mode and number of proofs:

generate(+compound,+list(byte)) - one_or_error

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

base64url

Base64URL parser and generator.

Availability:

logtalk_load(base64(loader))

Author: Paulo Moura

Version: 0:9:0

Date: 2021-03-10

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the Base64URL data from the given source (atom(Atom), chars(List), or codes(List) into a URL (using the same format as the source).

Compilation flags:

static

Template:

parse(Source,URL)

Mode and number of proofs:

parse(++compound,--types([atom,chars,codes])) - one_or_error

generate/2

Generates Base64URL data in the representation specified in the first argument (atom(Atom), chars(List), or codes(List) for the given URL (given in the same format as the sink).

Compilation flags:

static

Template:

generate(Sink,URL)

Mode and number of proofs:

generate(+compound,+types([atom,chars,codes])) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

before_event_registry

Before events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

after_event_registry, monitorp

 object

benchmark_generators

Generates random data structures for use in benchmarks.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Uses:

random

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	random_tree/1

	Protected predicates

	Private predicates

	Operators

Public predicates

random_tree/1

Generates a random tree.

Compilation flags:

static

Template:

random_tree(Tree)

Mode and number of proofs:

random_tree(-tree) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

bfs_interpreter

Breadth-first interpreter for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

queue

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

bintree

Simple binary tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: Paulo Moura and Paul Fodor

Version: 2:11:1

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	preorder/2

	inorder/2

	postorder/2

	Protected predicates

	Private predicates

	Operators

Public predicates

preorder/2

Preorder tree traversal.

Compilation flags:

static

Template:

preorder(Tree,List)

Mode and number of proofs:

preorder(@tree,-list) - one

inorder/2

Inorder tree traversal.

Compilation flags:

static

Template:

inorder(Tree,List)

Mode and number of proofs:

inorder(@tree,-list) - one

postorder/2

Postorder tree traversal.

Compilation flags:

static

Template:

postorder(Tree,List)

Mode and number of proofs:

postorder(@tree,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

avltree, rbtree

 object

blank_grammars(Format)

Blank grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:4:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	white_space//0

	white_spaces//0

	space//0

	spaces//0

	tab//0

	tabs//0

	new_line//0

	new_lines//0

	blank//0

	blanks//0

	non_blank//1

	non_blanks//1

	control//0

	controls//0

	Protected predicates

	Private predicates

	Operators

Public predicates

white_space//0

Consumes a single space or tab.

Compilation flags:

static

Mode and number of proofs:

white_space - zero_or_one

white_spaces//0

Consumes zero or more spaces and tabs.

Compilation flags:

static

Mode and number of proofs:

white_spaces - one

space//0

Consumes a single space.

Compilation flags:

static

Mode and number of proofs:

space - zero_or_one

spaces//0

Consumes zero or more spaces.

Compilation flags:

static

Mode and number of proofs:

spaces - one

tab//0

Consumes a single tab.

Compilation flags:

static

Mode and number of proofs:

tab - zero_or_one

tabs//0

Consumes zero or more tabs.

Compilation flags:

static

Mode and number of proofs:

tabs - one

new_line//0

Consumes a single new line.

Compilation flags:

static

Mode and number of proofs:

new_line - zero_or_one

new_lines//0

Consumes zero or more new lines.

Compilation flags:

static

Mode and number of proofs:

new_lines - one

blank//0

Consumes a single space, tab, vertical tab, line feed, or new line.

Compilation flags:

static

Mode and number of proofs:

blank - zero_or_one

blanks//0

Consumes zero or more spaces, tabs, vertical tabs, line feeds, or new lines.

Compilation flags:

static

Mode and number of proofs:

blanks - one

non_blank//1

Returns a single non-blank character or character code.

Compilation flags:

static

Template:

non_blank(NonBlank)

Mode and number of proofs:

non_blank(-atomic) - zero_or_one

non_blanks//1

Returns a (possibly empty) list of non-blank characters or character codes.

Compilation flags:

static

Template:

non_blanks(NonBlanks)

Mode and number of proofs:

non_blanks(-list(atomic)) - one

control//0

Consumes a single control character or character code. Support for the null control character depends on the Prolog backend.

Compilation flags:

static

Mode and number of proofs:

control - zero_or_one

controls//0

Consumes zero or more control characters or character codes. Support for the null control character depends on the Prolog backend.

Compilation flags:

static

Mode and number of proofs:

controls - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

bup_interpreter

Semi-naive bottom-up interpreter for general (stratified) logic programs. Magic transformation is realized through an expansion hook.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Ulf Nilsson. Ported to Logtalk and augmented with negation by Victor Lagerkvist.

Version: 1:1:3

Date: 2023-11-30

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

list

magic

term

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

callable

Callable term type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

cbor

Concise Binary Object Representation (CBOR) format exporter and importer. Uses atoms to represent decoded CBOR strings.

Availability:

logtalk_load(cbor(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-03-04

Compilation flags:

static, context_switching_calls

Extends:

public cbor(atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

cbor(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding CBOR strings. Possible values are atom (default), chars, and codes.

Concise Binary Object Representation (CBOR) format exporter and importer.

Availability:

logtalk_load(cbor(loader))

Author: Paulo Moura

Version: 0:11:1

Date: 2021-12-06

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses a list of bytes in the CBOR format returning the corresponding term representation. Throws an error when parsing is not possible (usually due to an invalid byte sequence).

Compilation flags:

static

Template:

parse(Bytes,Term)

Mode and number of proofs:

parse(@list(byte),-ground) - one_or_error

generate/2

Generates a list of bytes in the CBOR format representing the given term. Throws an error when generating is not possible (usually due to a term that have no CBOR corresponding representation).

Compilation flags:

static

Template:

generate(Term,Bytes)

Mode and number of proofs:

generate(@ground,-list(byte)) - one_or_error

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

cc_metric

Cyclomatic complexity metric. All defined predicates that are not called or updated are counted as graph connected components (the reasoning being that these predicates can be considered entry points). The score is represented by a non-negative integer.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:5:2

Date: 2024-05-15

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

character

Character predicates (most of them assume an ASCII representation).

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:9:0

Date: 2019-06-29

Compilation flags:

static, context_switching_calls

Implements:

public characterp

Extends:

public atom

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 is_alpha/1 is_alphanumeric/1 is_ascii/1 is_bin_digit/1 is_control/1 is_dec_digit/1 is_end_of_line/1 is_hex_digit/1 is_layout/1 is_letter/1 is_lower_case/1 is_newline/1 is_octal_digit/1 is_period/1 is_punctuation/1 is_quote/1 is_upper_case/1 is_vowel/1 is_white_space/1 lower_upper/2 new/1 numbervars/1 numbervars/3 occurs/2 parenthesis/2 replace_sub_atom/4 singletons/2 split/3 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

code_metrics

Helper object to apply all loaded code metrics.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:1:0

Date: 2017-12-31

Compilation flags:

static, context_switching_calls

Imports:

public code_metric

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

compound

Compound data type.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coroutining

Coroutining predicates.

Availability:

logtalk_load(coroutining(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2021-12-17

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: ECLiPSe, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	dif/2

	dif/1

	freeze/2

	frozen/2

	when/2

	Protected predicates

	Private predicates

	Operators

Public predicates

dif/2

Sets a constraint that is true iff the two terms are different.

Compilation flags:

static

Template:

dif(Term1,Term2)

Mode and number of proofs:

dif(+term,+term) - zero_or_one

dif/1

Sets a set of constraints that are true iff all terms in a list are different.

Compilation flags:

static

Template:

dif(Terms)

Mode and number of proofs:

dif(+list(term)) - zero_or_one

freeze/2

Delays the execution of a goal until a variable is bound.

Compilation flags:

static

Template:

freeze(Variable,Goal)

Meta-predicate template:

freeze(*,0)

Mode and number of proofs:

freeze(+term,+callable) - zero_or_more

frozen/2

Unifies Goal with the goal delayed by Variable. When no goals are frozen on Variable, Goal is unified with true.

Compilation flags:

static

Template:

frozen(Variable,Goal)

Mode and number of proofs:

frozen(@var,--callable) - one

when/2

Calls Goal when Condition becomes true. The portable conditions are: nonvar/1, ground/1, (,)/2, and (;)/2.

Compilation flags:

static

Template:

when(Condition,Goal)

Meta-predicate template:

when(*,0)

Mode and number of proofs:

when(+callable,+callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

counter

Counter implemented with asserta/retract.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:1

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	increment/0

	increase/1

	set/1

	value/1

	reset/0

	Protected predicates

	Private predicates

	c/1

	Operators

Public predicates

increment/0

Increment the counter by 1.

Compilation flags:

static

Mode and number of proofs:

increment - one

increase/1

Increments the counter by the specified amount.

Compilation flags:

static

Template:

increase(I)

Mode and number of proofs:

increase(+number) - one

set/1

Sets the counter to the specified amount.

Compilation flags:

static

Template:

set(N)

Mode and number of proofs:

set(+number) - one

value/1

Gets the current value of the counter.

Compilation flags:

static

Template:

value(N)

Mode and number of proofs:

value(?number) - one

reset/0

Resets the counter to zero.

Compilation flags:

static

Mode and number of proofs:

reset - one

Protected predicates

(none)

Private predicates

c/1

Stores the current value of the counter.

Compilation flags:

dynamic

Template:

c(N)

Mode and number of proofs:

c(?number) - zero_or_one

Operators

(none)

 object

coupling_metric

Computes entity efferent coupling, afferent coupling, and instability.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:14:0

Date: 2024-03-27

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

Remarks:

	Efferent coupling (Ce): Number of entities that an entity depends on.

	Afferent coupling (Ca): Number of entities that depend on an entity.

	Instability (I): Computed as Ce / (Ce + Ca). Measures the entity resilience to change. Ranging from 0 to 1, with 0 indicating a maximally stable entity and 1 indicating a maximally unstable entity. Ideally, an entity is either maximally stable or maximally unstable.

	Abstractness (A): Computed as the ratio between the number of static predicates with scope directives without a local definition and the number of static predicates with scope directives. Measures the rigidity of an entity. Ranging from 0 to 1, with 0 indicating a fully concrete entity and 1 indicating a fully abstract entity.

	Entity score: Represented as the compound term ce_ca_i_a(Ce,Ca,I,A).

	Dependencies count: Includes direct entity relations plus calls or dynamic updates to predicates in external objects or categories.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

coverage_report

Intercepts unit test execution messages and generates a coverage_report.xml file with a test suite code coverage results.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 3:2:0

Date: 2023-04-11

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(coverage_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	timestamp_/6

	object_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

timestamp_/6

Cache of the starting tests timestamp.

Compilation flags:

dynamic

Template:

timestamp_(Year,Month,Day,Hours,Minutes,Seconds)

Mode and number of proofs:

timestamp_(-integer,-integer,-integer,-integer,-integer,-integer) - one

object_file_/2

Cache of test object - file pairs.

Compilation flags:

dynamic

Template:

object_file_(Object,File)

Mode and number of proofs:

object_file_(?object_identifier,?atom) - zero_or_more

Operators

(none)

 object

csv

CSV files reading and writing predicates using the options Header - keep, Separator - comma, and IgnoreQuotes - false.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila

Version: 1:0:0

Date: 2021-02-02

Compilation flags:

static, context_switching_calls

Extends:

public csv(keep,comma,false)

Remarks:

(none)

Inherited public predicates:

 guess_arity/2 guess_separator/2 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

csv(Header,Separator,IgnoreQuotes)

	Header - Header handling option with possible values missing, skip, and keep (default).

	Separator - Separator handling option with possible values comma (default for non .tsv and non .tab files or when no file name extension is available), tab (default for .tsv and .tab files), semicolon, and colon.

	IgnoreQuotes - Double-quotes handling option to ignore (true) or preserve (false; default) double quotes surrounding data.

CSV file and stream reading and writing predicates.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila and Paulo Moura

Version: 2:1:0

Date: 2023-11-15

Compilation flags:

static, context_switching_calls

Implements:

public csv_protocol

Uses:

list

logtalk

os

reader

type

Remarks:

(none)

Inherited public predicates:

 guess_arity/2 guess_separator/2 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

d2_graph_language

Predicates for generating graph files in the DOT language (version 2.36.0 or later).

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

date

Date predicates.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2014-09-27

Compilation flags:

static, context_switching_calls

Implements:

public datep

Uses:

os

Remarks:

(none)

Inherited public predicates:

 days_in_month/3 leap_year/1 name_of_day/3 name_of_month/3 today/3 valid/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dead_code_scanner

A tool for detecting likely dead code in compiled Logtalk entities and Prolog modules compiled as objects.

Availability:

logtalk_load(dead_code_scanner(loader))

Author: Barry Evans and Paulo Moura

Version: 0:15:2

Date: 2024-10-21

Compilation flags:

static, context_switching_calls

Imports:

public options

Uses:

list

logtalk

os

type

Remarks:

	Dead code: A predicate or non-terminal that is not called (directly or indirectly) by any scoped predicate or non-terminal. These predicates and non-terminals are not used, cannot be called without breaking encapsulation, and are thus considered dead code.

	Known issues: Use of local meta-calls with goal arguments only know at runtime can result in false positives. Calls from non-standard meta-predicates may be missed if the meta-calls are not optimized.

	Requirements: Source files must be compiled with the source_data flag turned on. To avoid false positives do to meta-calls, compilation of source files with the optimized flag turned on is also advised.

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 option/2 option/3 valid_option/1 valid_options/1

	Public predicates

	entity/1

	file/2

	file/1

	directory/2

	directory/1

	rdirectory/2

	rdirectory/1

	library/2

	library/1

	rlibrary/2

	rlibrary/1

	all/1

	all/0

	predicates/2

	predicate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

entity/1

Scans a loaded entity for dead code. Fails if the entity does not exist.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - zero_or_one

file/2

Scans all entities in a loaded source file for dead code using the given options. The file can be given by name, basename, full path, or using library notation. Fails if the file is not loaded.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - zero_or_one

file/1

Scans all entities in a loaded source file for dead code using default options. The file can be given by name, basename, full path, or using library notation. Fails if the file is not loaded.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - zero_or_one

directory/2

Scans all entities in all loaded files from a given directory for dead code using the given options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Scans all entities in all loaded files from a given directory for dead code using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

rdirectory/2

Scans all entities in all loaded files from a given directory and its sub-directories for dead code using the given options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Scans all entities in all loaded files from a given directory and its sub-directories for dead code using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

library/2

Scans all entities in all loaded files from a given library for dead code using the given options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Scans all entities in all loaded files from a given library for dead code using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rlibrary/2

Scans all entities in all loaded files in a loaded library and its sub-libraries for dead code using the given options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Scans all entities in all loaded files in a loaded library and its sub-libraries for dead code using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

all/1

Scans all entities for dead code using the given options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list(compound)) - one

all/0

Scans all entities for dead code using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

predicates/2

Returns an ordered set of local predicates (and non-terminals) that are not used, directly or indirectly, by scoped predicates for a loaded entity.

Compilation flags:

static

Template:

predicates(Entity,Predicates)

Mode and number of proofs:

predicates(+entity_identifier,-list(predicate_indicator)) - one

predicate/2

Enumerates, by backtracking, local predicates (and non-terminals) that are not used, directly or indirectly, by scoped predicates for a loaded entity.

Compilation flags:

static

Template:

predicate(Entity,Predicate)

Mode and number of proofs:

predicate(+entity_identifier,?predicate_indicator) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

debug_expansion(Mode)

Expands debug/1 calls. The parameter Mode can be either the atom “debug” or “production”.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2010-04-15

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

debug_messages

Supports selective enabling and disabling of debug and debug(Group) messages.

Availability:

logtalk_load(debug_messages(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

Remarks:

	Limitations: Debug messages are suppressed by the compiler when the optimize flag is turned on and thus cannot be enabled in this case.

Inherited public predicates:

(none)

	Public predicates

	enable/1

	disable/1

	enabled/1

	enable/2

	disable/2

	enabled/2

	Protected predicates

	Private predicates

	enabled_/1

	enabled_/2

	Operators

Public predicates

enable/1

Enables all debug and debug(Group) messages for the given component.

Compilation flags:

static

Template:

enable(Component)

Mode and number of proofs:

enable(@term) - one

disable/1

Disables all debug and debug(Group) messages for the given component.

Compilation flags:

static

Template:

disable(Component)

Mode and number of proofs:

disable(@term) - one

enabled/1

Enumerates by backtracking the components with enabled debug and debug(Group) messages.

Compilation flags:

static

Template:

enabled(Component)

Mode and number of proofs:

enabled(?term) - zero_or_more

enable/2

Enables debug(Group) messages for the given component and group.

Compilation flags:

static

Template:

enable(Component,Group)

Mode and number of proofs:

enable(@term,@term) - one

disable/2

Disables debug(Group) messages for the given component and group.

Compilation flags:

static

Template:

disable(Component,Group)

Mode and number of proofs:

disable(@term,@term) - one

enabled/2

Enumerates by backtracking the enabled debug(Group) messages for each component.

Compilation flags:

static

Template:

enabled(Component,Group)

Mode and number of proofs:

enabled(?term,?term) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

enabled_/1

Table of components with currently enabled debug and debug(Group) messages.

Compilation flags:

dynamic

Template:

enabled_(Component)

Mode and number of proofs:

enabled_(?term) - zero_or_more

enabled_/2

Table of currently enabled debug(Group) per component.

Compilation flags:

dynamic

Template:

enabled_(Component,Group)

Mode and number of proofs:

enabled_(?term,?term) - zero_or_more

Operators

(none)

 object

debugger

Command-line debugger based on an extended procedure box model supporting execution tracing and spy points.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 7:12:2

Date: 2025-09-05

Compilation flags:

static, context_switching_calls

Implements:

public debuggerp

Provides:

logtalk::debug_handler/1

logtalk::debug_handler/3

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 debug/0 debugging/0 debugging/1 leash/1 leashing/1 log/3 logging/3 nodebug/0 nolog/3 nologall/0 nospy/1 nospy/3 nospy/4 nospyall/0 notrace/0 reset/0 set_write_max_depth/1 spy/1 spy/3 spy/4 spying/1 spying/3 spying/4 trace/0 write_max_depth/1

	Public predicates

	Protected predicates

	Private predicates

	debugging_/0

	tracing_/0

	explicit_tracing_/0

	skipping_/0

	skipping_unleashed_/1

	quasi_skipping_/0

	leaping_/1

	leashing_/1

	invocation_number_/1

	jump_to_invocation_number_/1

	zap_to_port_/1

	write_max_depth_/1

	log_point_/3

	clause_breakpoint_/2

	predicate_breakpoint_/3

	entity_predicate_breakpoint_/4

	context_breakpoint_/4

	conditional_breakpoint_/3

	triggered_breakpoint_/4

	triggered_breakpoint_enabled_/2

	file_line_hit_count_/3

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

debugging_/0

True iff debug is on.

Compilation flags:

dynamic

Mode and number of proofs:

debugging_ - zero_or_one

tracing_/0

True iff tracing is on.

Compilation flags:

dynamic

Mode and number of proofs:

tracing_ - zero_or_one

explicit_tracing_/0

True iff tracing is on due to a call to the trace/0 predicate.

Compilation flags:

dynamic

Mode and number of proofs:

explicit_tracing_ - zero_or_one

skipping_/0

True iff skipping.

Compilation flags:

dynamic

Mode and number of proofs:

skipping_ - zero_or_one

skipping_unleashed_/1

True iff skipping (a goal with invocation number N) but showing intermediate ports as unleashed.

Compilation flags:

dynamic

Template:

skipping_unleashed_(N)

Mode and number of proofs:

skipping_unleashed_(?integer) - zero_or_one

quasi_skipping_/0

True iff quasi-skipping.

Compilation flags:

dynamic

Mode and number of proofs:

quasi_skipping_ - zero_or_one

leaping_/1

True iff leaping in tracing or debugging mode.

Compilation flags:

dynamic

Template:

leaping_(Mode)

Mode and number of proofs:

leaping_(?atom) - zero_or_one

leashing_/1

Table of currently leashed ports.

Compilation flags:

dynamic

Template:

leashing_(Port)

Mode and number of proofs:

leashing_(?atom) - zero_or_more

invocation_number_/1

Current call stack invocation number.

Compilation flags:

dynamic

Template:

invocation_number_(N)

Mode and number of proofs:

invocation_number_(?integer) - zero_or_one

jump_to_invocation_number_/1

Invocation number to jump to.

Compilation flags:

dynamic

Template:

jump_to_invocation_number_(N)

Mode and number of proofs:

jump_to_invocation_number_(?integer) - zero_or_one

zap_to_port_/1

Port to zap to.

Compilation flags:

dynamic

Template:

zap_to_port_(Port)

Mode and number of proofs:

zap_to_port_(?integer) - zero_or_one

write_max_depth_/1

Current term write maximum depth.

Compilation flags:

dynamic

Template:

write_max_depth_(MaxDepth)

Mode and number of proofs:

write_max_depth_(?non_negative_integer) - zero_or_one

log_point_/3

Table of log points.

Compilation flags:

dynamic

Template:

log_point_(Entity,Line,Message)

Mode and number of proofs:

log_point_(?object_identifier,?integer,?atom) - zero_or_more

log_point_(?category_identifier,?integer,?atom) - zero_or_more

clause_breakpoint_/2

Table of clause breakpoints.

Compilation flags:

dynamic

Template:

clause_breakpoint_(Entity,Line)

Mode and number of proofs:

clause_breakpoint_(?object_identifier,?integer) - zero_or_more

clause_breakpoint_(?category_identifier,?integer) - zero_or_more

predicate_breakpoint_/3

Table of predicate breakpoints.

Compilation flags:

dynamic

Template:

predicate_breakpoint_(Functor,Arity,Original)

Mode and number of proofs:

predicate_breakpoint_(?atom,?integer,?predicate_indicator) - zero_or_more

predicate_breakpoint_(?atom,?integer,?non_terminal_indicator) - zero_or_more

entity_predicate_breakpoint_/4

Table of entity predicate breakpoints.

Compilation flags:

dynamic

Template:

entity_predicate_breakpoint_(Entity,Functor,Arity,Original)

Mode and number of proofs:

entity_predicate_breakpoint_(?callable,?atom,?integer,?qualified_predicate_indicator) - zero_or_more

entity_predicate_breakpoint_(?callable,?atom,?integer,?qualified_non_terminal_indicator) - zero_or_more

context_breakpoint_/4

Table of context breakpoints.

Compilation flags:

dynamic

Template:

context_breakpoint_(Sender,This,Self,Goal)

Mode and number of proofs:

context_breakpoint_(?object_identifier,?object_identifier,?object_identifier,?callable) - zero_or_more

conditional_breakpoint_/3

Table of conditional breakpoints.

Compilation flags:

dynamic

Template:

conditional_breakpoint_(Entity,Line,Condition)

Mode and number of proofs:

conditional_breakpoint_(?object_identifier,?integer,?callable) - zero_or_more

conditional_breakpoint_(?category_identifier,?integer,?callable) - zero_or_more

triggered_breakpoint_/4

Table of defined triggered breakpoints.

Compilation flags:

dynamic

Template:

triggered_breakpoint_(Entity,Line,TriggerEntity,TriggerLine)

Mode and number of proofs:

triggered_breakpoint_(?object_identifier,?integer,?object_identifier,?integer) - zero_or_more

triggered_breakpoint_(?object_identifier,?integer,?category_identifier,?integer) - zero_or_more

triggered_breakpoint_(?category_identifier,?integer,?object_identifier,?integer) - zero_or_more

triggered_breakpoint_(?category_identifier,?integer,?category_identifier,?integer) - zero_or_more

triggered_breakpoint_enabled_/2

Table of enabled triggered breakpoints.

Compilation flags:

dynamic

Template:

triggered_breakpoint_enabled_(Entity,Line)

Mode and number of proofs:

triggered_breakpoint_enabled_(?object_identifier,?integer) - zero_or_more

triggered_breakpoint_enabled_(?category_identifier,?integer) - zero_or_more

file_line_hit_count_/3

Table of file and line hit counts (successful unifications with clause heads).

Compilation flags:

dynamic

Template:

file_line_hit_count_(File,Line,Count)

Mode and number of proofs:

file_line_hit_count_(?atom,?integer,?integer) - zero_or_one

Operators

(none)

 object

default_atom_mutations

Default atom mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

type

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_compound_mutations

Default compound mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_float_mutations

Default float mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_integer_mutations

Default integer mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_list_mutations

Default list mutations.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-24

Compilation flags:

static, context_switching_calls

Provides:

mutations_store::mutation/4

Uses:

fast_random

list

mutations_store

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

type

 object

default_workflow_hook

Use this object as the default hook object to restore the default expansion pipeline semantics used by the compiler.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2020-03-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

demodb

Availability:

logtalk_load(verdi_neruda(loader))

Compilation flags:

static, context_switching_calls

Implements:

public databasep

Remarks:

(none)

Inherited public predicates:

 bench_goal/1 rule/2 rule/3 rule/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dfs_interpreter

Depth-first interpreter for general logic programs.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

diagrams

Predicates for generating all supported diagrams for libraries, directories, and files in one step using the DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public diagrams(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 libraries/1 libraries/2 libraries/3 library/1 library/2 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

diagrams(Format)

	Format - Graph language file format.

Predicates for generating all supported diagrams for libraries, directories, or files in one step using the specified format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:8:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Uses:

list

os

Remarks:

	Common options: title/1, date/1, output_directory/1, relation_labels/1, node_type_captions/1, exclude_files/1, exclude_libraries/1, url_prefixes/1, omit_path_prefix/1, entity_url_suffix_target/2, and layout/1.

	Limitations: Some of the provided predicates only make sense for some types of diagrams. Also, fine tuning may require generating individual diagrams directly instead of as a batch using this utility object.

Inherited public predicates:

(none)

	Public predicates

	libraries/3

	libraries/2

	libraries/1

	all_libraries/1

	all_libraries/0

	rlibrary/2

	rlibrary/1

	library/2

	library/1

	directories/3

	directories/2

	rdirectory/3

	rdirectory/2

	rdirectory/1

	directory/3

	directory/2

	directory/1

	files/3

	files/2

	files/1

	all_files/1

	all_files/0

	Protected predicates

	Private predicates

	Operators

Public predicates

libraries/3

Creates all supported diagrams for a set of libraries using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

libraries(Project,Libraries,Options)

Mode and number of proofs:

libraries(+atom,+list(atom),+list(compound)) - one

libraries/2

Creates all supported diagrams for a set of libraries using the default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

libraries(Project,Libraries)

Mode and number of proofs:

libraries(+atom,+list(atom)) - one

libraries/1

Creates all supported diagrams for a set of libraries using the default options. The prefix libraries is used for the diagram file names.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

all_libraries/1

Creates all supported diagrams for all loaded libraries using the specified options.

Compilation flags:

static

Template:

all_libraries(Options)

Mode and number of proofs:

all_libraries(+list(compound)) - one

all_libraries/0

Creates all supported diagrams for all loaded libraries using default options.

Compilation flags:

static

Mode and number of proofs:

all_libraries - one

rlibrary/2

Creates all supported diagrams for a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list(compound)) - one

rlibrary/1

Creates all supported diagrams for a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

library/2

Creates all supported diagrams for a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list(compound)) - one

library/1

Creates all supported diagrams for a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

directories/3

Creates all supported diagrams for a set of directories using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directories(Project,Directories,Options)

Mode and number of proofs:

directories(+atom,+list(atom),+list(compound)) - one

directories/2

Creates all supported diagrams for a directory using default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directories(Project,Directories)

Mode and number of proofs:

directories(+atom,+list(atom)) - one

rdirectory/3

Creates all supported diagrams for a directory and its sub-directories using the specified options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+atom,+list(compound)) - one

rdirectory/2

Creates all supported diagrams for a directory and its sub-directories using default options. The Project argument is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Project,Directory)

Mode and number of proofs:

rdirectory(+atom,+atom) - one

rdirectory/1

Creates all supported diagrams for a directory and its sub-directories using default options. The name of the directory is used as a prefix for the diagram file name.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/3

Creates all supported diagrams for a directory using the specified options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Project,Directory,Options)

Mode and number of proofs:

directory(+atom,+atom,+list(compound)) - one

directory/2

Creates all supported diagrams for a directory using default options. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Project,Directory)

Mode and number of proofs:

directory(+atom,+atom) - one

directory/1

Creates all supported diagrams for a directory using default options. The name of the directory is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/3

Creates all supported diagrams for a set of files using the specified options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

files(Project,Files,Options)

Mode and number of proofs:

files(+atom,+list(atom),+list(compound)) - one

files/2

Creates all supported diagrams for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The Project argument is used as a prefix for the diagram file names.

Compilation flags:

static

Template:

files(Project,Files)

Mode and number of proofs:

files(+atom,+list(atom)) - one

files/1

Creates all supported diagrams for a set of files using the default options. The file can be specified by name, basename, full path, or using library notation. The prefix “files” is used for the diagram file names.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

all_files/1

Creates all supported diagrams for all loaded files using the specified options.

Compilation flags:

static

Template:

all_files(Options)

Mode and number of proofs:

all_files(+list(compound)) - one

all_files/0

Creates all supported diagrams for all loaded files using default options.

Compilation flags:

static

Mode and number of proofs:

all_files - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dif

Provides dif/2 and derived predicates.

Availability:

logtalk_load(dif(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2023-10-02

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: B-Prolog, ECLiPSe, SICStus Prolog, SWI-Prolog, Trealla Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	dif/2

	dif/1

	Protected predicates

	Private predicates

	Operators

Public predicates

dif/2

Sets a constraint that is true iff the two terms are different.

Compilation flags:

static

Template:

dif(Term1,Term2)

Mode and number of proofs:

dif(+term,+term) - zero_or_one

dif/1

Sets a set of constraints that are true iff all terms in a list are different.

Compilation flags:

static

Template:

dif(Terms)

Mode and number of proofs:

dif(+list(term)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

difflist

Difference list predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2020-05-11

Compilation flags:

static, context_switching_calls

Implements:

public listp

Extends:

public compound

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	add/3

	as_list/2

	Protected predicates

	Private predicates

	Operators

Public predicates

add/3

Adds a term to the end of a difference list.

Compilation flags:

static

Template:

add(Term,DiffList,NewDiffList)

Mode and number of proofs:

add(@term,+difference_list,-difference_list) - one

as_list/2

Returns a list with the elements of the difference list.

Compilation flags:

static

Template:

as_list(DiffList,List)

Mode and number of proofs:

as_list(@difference_list,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), numberlist, varlist

 object

directory_dependency_diagram

Predicates for generating directory dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public directory_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

directory_load_diagram, file_load_diagram

 object

directory_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating directory dependency diagrams. A dependency exists when an entity in one directory makes a reference to an entity in another directory.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:0:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public directory_diagram(Format)

Uses:

file_dependency_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/2

Table of directory sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Project,Directory)

Mode and number of proofs:

sub_diagram_(?atom,?atom) - zero_or_more

Operators

(none)

See also

directory_load_diagram(Format), file_load_diagram(Format), library_load_diagram(Format)

 object

directory_load_diagram

Predicates for generating directory loading dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-04-07

Compilation flags:

static, context_switching_calls

Extends:

public directory_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

directory_dependency_diagram, file_dependency_diagram

 object

directory_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating directory loading dependency diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:0:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public directory_diagram(Format)

Uses:

file_dependency_diagram(Format)

file_load_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/2

Table of directory sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Project,Directory)

Mode and number of proofs:

sub_diagram_(?atom,?atom) - zero_or_more

Operators

(none)

See also

directory_dependency_diagram(Format), file_dependency_diagram(Format), library_dependency_diagram(Format)

 object

dit_metric

Analyzes the depth of inheritance for objects, protocols, and categories.

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh

Version: 0:6:1

Date: 2024-03-28

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

numberlist

Remarks:

	Depth: The depth is the maximum length of a node to the root entity. Lower scores are generally better.

	Inheritance: A level of inheritance defined by either one of specialization, instantiation, extension, importation, or implementation.

	Scoring: The maximum path length is determined for each entity in question.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

doc_metric

Entity and entity predicates documentation score.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-05-05

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

numberlist

Remarks:

	Score range: Score is a integer percentage where a 100% score means that all expected documentation information is present.

	Score weights: The score is split by default between 20% for the entity documentation and 80% for the entity predicates documentation, Can be customized using the predicate entity_predicates_weights_hook/2.

	Score customization: The individual scores of entity info/1 pairs and predicate info/2 pairs can be customized using the entity_info_pair_score_hook/3 and predicate_info_pair_score_hook/4 predicates.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	entity_predicates_weights_hook/2

	entity_info_score_hook/2

	entity_info_pair_score_hook/3

	predicate_mode_score_hook/3

	predicate_mode_score_hook/5

	predicate_info_score_hook/3

	predicate_info_pair_score_hook/4

	Protected predicates

	Private predicates

	Operators

Public predicates

entity_predicates_weights_hook/2

Relative weight between entity documentation and predicates documentation in percentage. The sum of the two values must be equal to 100.

Compilation flags:

dynamic, multifile

Template:

entity_predicates_weights_hook(EntityWeight,PredicatesWeight)

Mode and number of proofs:

entity_predicates_weights_hook(?integer,?integer) - zero_or_one

entity_info_score_hook/2

Maximum score for entity info/1 directives.

Compilation flags:

dynamic, multifile

Template:

entity_info_score_hook(Entity,MaximumScore)

Mode and number of proofs:

entity_info_score_hook(?term,?integer) - zero_or_one

entity_info_pair_score_hook/3

Score for relevant entity info/1 directive pairs. If defined, the entity_info_score_hook/2 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

entity_info_pair_score_hook(Pair,Entity,Score)

Mode and number of proofs:

entity_info_pair_score_hook(?callable,?term,?integer) - zero_or_more

predicate_mode_score_hook/3

Maximum score for predicate mode/2 directives.

Compilation flags:

dynamic, multifile

Template:

predicate_mode_score_hook(Entity,Predicate,MaximumScore)

Mode and number of proofs:

predicate_mode_score_hook(?term,?term,?integer) - zero_or_more

predicate_mode_score_hook/5

Score for a predicate mode/2 directive. If defined, the predicate_mode_score_hook/3 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

predicate_mode_score_hook(Template,Solutions,Entity,Predicate,Score)

Mode and number of proofs:

predicate_mode_score_hook(?term,?term,?term,?term,?integer) - zero_or_one

predicate_info_score_hook/3

Maximum score for predicate info/2 directives.

Compilation flags:

dynamic, multifile

Template:

predicate_info_score_hook(Entity,Predicate,MaximumScore)

Mode and number of proofs:

predicate_info_score_hook(?term,?term,?integer) - zero_or_one

predicate_info_pair_score_hook/4

Score for a predicate info/2 directive pairs. If defined, the predicate_info_score_hook/3 predicate should be defined accordingly.

Compilation flags:

dynamic, multifile

Template:

predicate_info_pair_score_hook(Pair,Entity,Predicate,Score)

Mode and number of proofs:

predicate_info_pair_score_hook(?callable,?term,?term,?integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

doclet

Utility object to help automate (re)generating documentation for a project.

Availability:

logtalk_load(doclet(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2017-01-05

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_tokens//2

Uses:

logtalk

os

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	update/0

	doc_goal/1

	shell_command/1

	Protected predicates

	Private predicates

	Operators

Public predicates

update/0

Updates the project documentation, first by calling a sequence of goals and second by executing a sequence of shell commands. Fails if any goal or shell command fails.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

doc_goal/1

Table of goals, typically using the diagrams and the lgtdoc tools, used to generate the documentation. Goals are called in the order they are defined and in the context of the user pseudo-object.

Compilation flags:

static

Template:

doc_goal(Goal)

Mode and number of proofs:

doc_goal(?callable) - one_or_more

shell_command/1

Table of shell commands to convert intermediate documentation files into user-friendly documentation. Commands are executed in the order they are defined.

Compilation flags:

static

Template:

shell_command(Command)

Mode and number of proofs:

shell_command(?atom) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

lgtdocp, diagram(Format)

 object

dot_graph_language

Predicates for generating graph files in the DOT language (version 2.36.0 or later).

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 3:12:0

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

dump_trace

Simple solution for redirecting a debugger trace to a file.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2021-11-12

Compilation flags:

static, context_switching_calls

Uses:

debugger

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	start_redirect_to_file/2

	stop_redirect_to_file/0

	Protected predicates

	Private predicates

	Operators

Public predicates

start_redirect_to_file/2

Starts redirecting debugger trace messages to a file.

Compilation flags:

static

Template:

start_redirect_to_file(File,Goal)

Meta-predicate template:

start_redirect_to_file(*,0)

Mode and number of proofs:

start_redirect_to_file(+atom,+callable) - zero_or_more

stop_redirect_to_file/0

Stops redirecting debugger trace messages to a file.

Compilation flags:

static

Mode and number of proofs:

stop_redirect_to_file - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

edcg

Multiple hidden parameters: an extension to Prolog’s DCG notation. Ported to Logtalk as a hook object.

Availability:

logtalk_load(edcg(loader))

Author: Peter Van Roy; adapted to Logtalk by Paulo Moura.

Version: 1:4:2

Date: 2020-04-08

Copyright: Copyright (C) 1992 Peter Van Roy

License: MIT

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

	Usage: Compile source files with objects (or categories) defining EDCGs using the compiler option hook(edcg).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	pred_info/3

	acc_info/7

	acc_info/5

	pass_info/2

	pass_info/1

	Operators

	op(1200,xfx,-->>)

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

pred_info/3

Declares predicates that have the listed hidden parameters.

Compilation flags:

dynamic

Template:

pred_info(Name,Arity,HiddenParameters)

Mode and number of proofs:

pred_info(?atom,?integer,?list(atom)) - zero_or_more

acc_info/7

Long form for declaring accumulators.

Compilation flags:

dynamic

Template:

acc_info(Accumulator,Term,Left,Right,Joiner,LStart,RStart)

Mode and number of proofs:

acc_info(?atom,?term,?term,?term,?callable,?term,?term) - zero_or_more

acc_info/5

Short form for declaring accumulators.

Compilation flags:

dynamic

Template:

acc_info(Accumulator,Term,Left,Right,Joiner)

Mode and number of proofs:

acc_info(?atom,?term,?term,?term,?callable) - zero_or_more

pass_info/2

Long form for declaring passed arguments. Passed arguments are conceptually the same as accumulators with =/2 as the joiner function.

Compilation flags:

dynamic

Template:

pass_info(Argument,PStart)

Mode and number of proofs:

pass_info(?atom,?term) - zero_or_more

pass_info/1

Short form for declaring passed arguments. Passed arguments are conceptually the same as accumulators with =/2 as the joiner function.

Compilation flags:

dynamic

Template:

pass_info(Argument)

Mode and number of proofs:

pass_info(?atom) - zero_or_more

Operators

op(1200,xfx,-->>)

Scope:

public

 object

either

Types and predicates for extended type-checking and handling of expected terms.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 0:7:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

arbitrary::arbitrary/1

arbitrary::arbitrary/2

Uses:

expected

expected(Expected)

random

type

Remarks:

	Type-checking support: Defines a either(ValueType, ErrorType) type for checking expected terms where the value and error terms must be of the given types.

	QuickCheck support: Defines clauses for the type::arbitrary/1-2 predicates to allow generating random values for the either(ValueType, ErrorType) type.

Inherited public predicates:

(none)

	Public predicates

	expecteds/2

	unexpecteds/2

	partition/3

	Protected predicates

	Private predicates

	Operators

Public predicates

expecteds/2

Returns the values stored in the expected terms that hold a value.

Compilation flags:

static

Template:

expecteds(Expecteds,Values)

Mode and number of proofs:

expecteds(+list(expected),-list) - one

unexpecteds/2

Returns the errors stored in the expected terms that hold an error.

Compilation flags:

static

Template:

unexpecteds(Expecteds,Errors)

Mode and number of proofs:

unexpecteds(+list(expected),-list) - one

partition/3

Retrieves and partitions the values and errors hold by the expected terms.

Compilation flags:

static

Template:

partition(Expecteds,Values,Errors)

Mode and number of proofs:

partition(+list(expected),-list,-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

expected, expected(Expected), type, arbitrary

 object

entity_diagram

Predicates for generating entity diagrams in DOT format with both inheritance and cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-01

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

inheritance_diagram, uses_diagram, xref_diagram

 object

entity_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams in the specified format with both inheritance and cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:60:0

Date: 2024-12-04

Compilation flags:

static, context_switching_calls

Imports:

public diagram(Format)

Uses:

list

logtalk

modules_diagram_support

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	file/2

	file/1

	Protected predicates

	Private predicates

	included_entity_/1

	included_module_/1

	referenced_entity_/2

	referenced_module_/2

	Operators

Public predicates

file/2

Creates a diagram for all entities in a loaded source file using the specified options. The file can be specified by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - one

file/1

Creates a diagram for all entities in a loaded source file using default options. The file can be specified by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

included_entity_/1

Table of Logtalk entities already included in the diagram.

Compilation flags:

dynamic

Template:

included_entity_(Entity)

Mode and number of proofs:

included_entity_(?entity_identifier) - zero_or_more

included_module_/1

Table of Prolog modules already included in the diagram.

Compilation flags:

dynamic

Template:

included_module_(Module)

Mode and number of proofs:

included_module_(?module_identifier) - zero_or_more

referenced_entity_/2

Table of referenced Logtalk entities in the diagram.

Compilation flags:

dynamic

Template:

referenced_entity_(Referencer,Entity)

Mode and number of proofs:

referenced_entity_(?entity_identifier,?entity_identifier) - zero_or_more

referenced_module_/2

Table of referenced Logtalk entities in the diagram.

Compilation flags:

dynamic

Template:

referenced_module_(Referencer,Entity)

Mode and number of proofs:

referenced_module_(?entity_identifier,?module_identifier) - zero_or_more

Operators

(none)

See also

inheritance_diagram(Format), uses_diagram(Format), xref_diagram(Format), library_diagram(Format)

 object

event_registry

Before and after events registry predicates.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static, context_switching_calls, events

Implements:

public event_registryp

Remarks:

(none)

Inherited public predicates:

 del_monitors/0 del_monitors/4 monitor/1 monitor/4 monitored/1 monitors/1 set_monitor/4

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

expand_library_alias_paths

Hook object for expanding library alias paths in logtalk_library_path/2 facts when compiling a source file.

Availability:

logtalk_load(expand_library_alias_paths(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2018-04-12

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

logtalk

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

expected

Constructors for expected terms. An expected term contains either a value or an error. Expected terms should be regarded as opaque terms and always used with the expected/1 object by passing the expected term as a parameter.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

Remarks:

	Type-checking support: This object also defines a type expected for use with the type library object.

Inherited public predicates:

(none)

	Public predicates

	of_unexpected/2

	of_expected/2

	from_goal/4

	from_goal/3

	from_goal/2

	from_generator/4

	from_generator/3

	from_generator/2

	Protected predicates

	Private predicates

	Operators

Public predicates

of_unexpected/2

Constructs an expected term from an error that represent that the expected value is missing.

Compilation flags:

static

Template:

of_unexpected(Error,Expected)

Mode and number of proofs:

of_unexpected(@term,--nonvar) - one

of_expected/2

Constructs an expected term from an expected value.

Compilation flags:

static

Template:

of_expected(Value,Expected)

Mode and number of proofs:

of_expected(@term,--nonvar) - one

from_goal/4

Constructs an expected term holding a value bound by calling the given goal. Otherwise returns an expected term with the unexpected goal error or failure represented by the Error argument.

Compilation flags:

static

Template:

from_goal(Goal,Value,Error,Expected)

Meta-predicate template:

from_goal(0,*,*,*)

Mode and number of proofs:

from_goal(+callable,--term,@term,--nonvar) - one

from_goal/3

Constructs an expected term holding a value bound by calling the given goal. Otherwise returns an expected term with the unexpected goal error or the atom fail representing the unexpected failure.

Compilation flags:

static

Template:

from_goal(Goal,Value,Expected)

Meta-predicate template:

from_goal(0,*,*)

Mode and number of proofs:

from_goal(+callable,--term,--nonvar) - one

from_goal/2

Constructs an expected term holding a value bound by calling the given closure. Otherwise returns an expected term holding the unexpected closure error or the atom fail representing the unexpected failure.

Compilation flags:

static

Template:

from_goal(Closure,Expected)

Meta-predicate template:

from_goal(1,*)

Mode and number of proofs:

from_goal(+callable,--nonvar) - one

from_generator/4

Constructs expected terms with the values generated by calling the given goal. On goal error or failure, returns an expected term with the unexpected goal error or failure represented by the Error argument.

Compilation flags:

static

Template:

from_generator(Goal,Value,Error,Expected)

Meta-predicate template:

from_generator(0,*,*,*)

Mode and number of proofs:

from_generator(+callable,--term,@term,--nonvar) - one_or_more

from_generator/3

Constructs expected terms with the values generated by calling the given goal. On goal error or failure, returns an expected term with, respectively, the unexpected goal error or the atom fail representing the unexpected goal failure.

Compilation flags:

static

Template:

from_generator(Goal,Value,Expected)

Meta-predicate template:

from_generator(0,*,*)

Mode and number of proofs:

from_generator(+callable,--term,--nonvar) - one_or_more

from_generator/2

Constructs expected terms with the values generated by calling the given closure. On closure error or failure, returns an expected term with, respectively, the unexpected closure error or the atom fail representing the unexpected closure failure.

Compilation flags:

static

Template:

from_generator(Closure,Expected)

Meta-predicate template:

from_generator(1,*)

Mode and number of proofs:

from_generator(+callable,--nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

expected(Expected), type

 object

expected(Expected)

Expected term predicates. Requires passing an expected term (constructed using the expected object predicates) as a parameter.

Availability:

logtalk_load(expecteds(loader))

Author: Paulo Moura

Version: 1:5:0

Date: 2020-01-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_expected/0

	is_unexpected/0

	if_expected/1

	if_unexpected/1

	if_expected_or_else/2

	unexpected/1

	expected/1

	map/2

	flat_map/2

	either/3

	or_else/2

	or_else_get/2

	or_else_call/2

	or_else_throw/1

	or_else_fail/1

	Protected predicates

	Private predicates

	Operators

Public predicates

is_expected/0

True if the expected term holds a value. See also the if_expected/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_expected - zero_or_one

is_unexpected/0

True if the expected term holds an error. See also the if_unexpected/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_unexpected - zero_or_one

if_expected/1

Applies a closure when the expected term holds a value using the value as argument. Succeeds otherwise.

Compilation flags:

static

Template:

if_expected(Closure)

Meta-predicate template:

if_expected(1)

Mode and number of proofs:

if_expected(+callable) - zero_or_more

if_unexpected/1

Applies a closure when the expected term holds an error using the error as argument. Succeeds otherwise. Can be used to throw the exception hold by the expected term by calling it the atom throw.

Compilation flags:

static

Template:

if_unexpected(Closure)

Meta-predicate template:

if_unexpected(1)

Mode and number of proofs:

if_unexpected(+callable) - zero_or_more

if_expected_or_else/2

Applies either ExpectedClosure or UnexpectedClosure depending on the expected term holding a value or an error.

Compilation flags:

static

Template:

if_expected_or_else(ExpectedClosure,UnexpectedClosure)

Meta-predicate template:

if_expected_or_else(1,1)

Mode and number of proofs:

if_expected_or_else(+callable,+callable) - zero_or_more

unexpected/1

Returns the error hold by the expected term. Throws an error otherwise.

Compilation flags:

static

Template:

unexpected(Error)

Mode and number of proofs:

unexpected(--term) - one_or_error

Exceptions:

Expected term holds a value:

existence_error(unexpected_error,Expected)

expected/1

Returns the value hold by the expected term. Throws an error otherwise.

Compilation flags:

static

Template:

expected(Value)

Mode and number of proofs:

expected(--term) - one_or_error

Exceptions:

Expected term holds an error:

existence_error(expected_value,Expected)

map/2

When the expected term does not hold an error and mapping a closure with the expected value and the new value as additional arguments is successful, returns an expected term with the new value. Otherwise returns the same expected term.

Compilation flags:

static

Template:

map(Closure,NewExpected)

Meta-predicate template:

map(2,*)

Mode and number of proofs:

map(+callable,--nonvar) - one

flat_map/2

When the expected term does not hold an error and mapping a closure with the expected value and the new expected term as additional arguments is successful, returns the new expected term. Otherwise returns the same expected term.

Compilation flags:

static

Template:

flat_map(Closure,NewExpected)

Meta-predicate template:

flat_map(2,*)

Mode and number of proofs:

flat_map(+callable,--nonvar) - one

either/3

Applies either ExpectedClosure if the expected term holds a value or UnexpectedClosure if the expected term holds an error. Returns a new expected term if the applied closure is successful. Otherwise returns the same expected term.

Compilation flags:

static

Template:

either(ExpectedClosure,UnexpectedClosure,NewExpected)

Meta-predicate template:

either(2,2,*)

Mode and number of proofs:

either(+callable,+callable,--nonvar) - one

or_else/2

Returns the value hold by the expected term if it does not hold an error or the given default term if the expected term holds an error.

Compilation flags:

static

Template:

or_else(Value,Default)

Mode and number of proofs:

or_else(--term,@term) - one

or_else_get/2

Returns the value hold by the expected term if it does not hold an error. Otherwise applies a closure to compute the expected value. Throws an error when the expected term holds an error and a value cannot be computed.

Compilation flags:

static

Template:

or_else_get(Value,Closure)

Meta-predicate template:

or_else_get(*,1)

Mode and number of proofs:

or_else_get(--term,+callable) - one_or_error

Exceptions:

Expected term holds an unexpected error and an expected value cannot be computed:

existence_error(expected_value,Expected)

or_else_call/2

Returns the value hold by the expected term if it does not hold an error. Calls a goal deterministically otherwise.

Compilation flags:

static

Template:

or_else_call(Value,Goal)

Meta-predicate template:

or_else_call(*,0)

Mode and number of proofs:

or_else_call(--term,+callable) - zero_or_one

or_else_throw/1

Returns the value hold by the expected term if present. Throws the error hold by the expected term as an exception otherwise.

Compilation flags:

static

Template:

or_else_throw(Value)

Mode and number of proofs:

or_else_throw(--term) - one_or_error

or_else_fail/1

Returns the value hold by the expected term if it does not hold an error. Fails otherwise. Usually called to skip over expected terms holding errors.

Compilation flags:

static

Template:

or_else_fail(Value)

Mode and number of proofs:

or_else_fail(--term) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

expected

 object

fast_random

Fast portable random number generator predicates. Core predicates originally written by Richard O’Keefe. Based on algorithm AS 183 from Applied Statistics.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 2:12:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Single random number generator: This object provides a faster version of the random library object but does not support being extended to define multiple random number generators.

	Randomness: Loading this object always initializes the random generator seed to the same value, thus providing a pseudo random number generator. The randomize/1 predicate can be used to initialize the seed with a random value.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	reset_seed/0

	randomize/1

	Protected predicates

	Private predicates

	seed_/3

	Operators

Public predicates

reset_seed/0

Resets the random generator seed to its default value. Use get_seed/1 and set_seed/1 instead if you need reproducibility.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_seed - one

randomize/1

Randomizes the random generator using a positive integer to compute a new seed. Use of a large integer is recommended. In alternative, when using a small integer argument, discard the first dozen random values.

Compilation flags:

static, synchronized

Template:

randomize(Seed)

Mode and number of proofs:

randomize(+positive_integer) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

seed_/3

Stores the current random generator seed values.

Compilation flags:

dynamic

Template:

seed_(S0,S1,S2)

Mode and number of proofs:

seed_(-integer,-integer,-integer) - one

Operators

(none)

See also

random, backend_random

 object

fcube

FCube: An Efficient Prover for Intuitionistic Propositional Logic.

Availability:

logtalk_load(fcube(loader))

Author: Mauro Ferrari, Camillo Fiorentini, Guido Fiorino; ported to Logtalk by Paulo Moura.

Version: 5:0:1

Date: 2024-03-14

Copyright: Copyright 2012 Mauro Ferrari, Camillo Fiorentini, Guido Fiorino; Copyright 2020-2024 Paulo Moura

License: GPL-2.0-or-later

Compilation flags:

static, context_switching_calls

Uses:

integer

list

os

set

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	gnu/0

	fcube/0

	decide/1

	decide/2

	Protected predicates

	Private predicates

	Operators

	op(1200,xfy,<=>)

	op(1110,xfy,=>)

	op(1000,xfy,&&)

	op(500,fy,~)

	op(1100,xfy,v)

Public predicates

gnu/0

Prints banner with copyright and license information.

Compilation flags:

static

Mode and number of proofs:

gnu - one

fcube/0

Reads a formula and applies the prover to it, printing its counter-model.

Compilation flags:

static

Mode and number of proofs:

fcube - one

decide/1

Applies the prover to the given formula and prints its counter-model.

Compilation flags:

static

Template:

decide(Formula)

Mode and number of proofs:

decide(++compound) - one

decide/2

Applies the prover to the given formula and returns its counter-model.

Compilation flags:

static

Template:

decide(Formula,CounterModel)

Mode and number of proofs:

decide(++compound,--compound) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

op(1200,xfy,<=>)

Scope:

public

op(1110,xfy,=>)

Scope:

public

op(1000,xfy,&&)

Scope:

public

op(500,fy,~)

Scope:

public

op(1100,xfy,v)

Scope:

public

 object

file_dependency_diagram

Predicates for generating file contents dependency diagrams in DOT format. A dependency exists when an entity in one file makes a reference to an entity in another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public file_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

file_load_diagram, directory_load_diagram, library_load_diagram

 object

file_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating file contents dependency diagrams. A dependency exists when an entity in one file makes a reference to an entity in another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:28:3

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public file_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

os

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of file sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(File)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

file_load_diagram(Format), directory_load_diagram(Format), library_load_diagram(Format)

 object

file_load_diagram

Predicates for generating file loading dependency diagrams in DOT format. A dependency exists when a file loads or includes another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public file_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

file_dependency_diagram, directory_dependency_diagram, library_dependency_diagram

 object

file_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating file loading dependency diagrams. A dependency exists when a file loads or includes another file.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:30:3

Date: 2024-12-05

Compilation flags:

static, context_switching_calls

Imports:

public file_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

os

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of file sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(File)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

file_dependency_diagram(Format), directory_dependency_diagram(Format), library_dependency_diagram(Format)

 object

float

Floating point numbers data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:7:0

Date: 2025-02-25

Compilation flags:

static, context_switching_calls

Extends:

public number

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	between/4

	sequence/4

	sequence/5

	Protected predicates

	Private predicates

	Operators

Public predicates

between/4

Enumerates by backtracking a sequence of N equally spaced floats in the interval [Lower,Upper]. Assumes N > 0 and Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

between(Lower,Upper,N,Float)

Mode and number of proofs:

between(+float,+float,+positive_integer,-float) - zero_or_more

sequence/4

Generates a list with the sequence of N equally spaced floats in the interval [Lower,Upper]. Assumes N > 0 and Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,N,List)

Mode and number of proofs:

sequence(+float,+float,+positive_integer,-list(float)) - zero_or_one

sequence/5

Generates a list with the sequence of Step spaced floats in the interval [Lower,Upper]. Also returns the length of the list. Assumes Lower =< Upper; fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,Step,List,Length)

Mode and number of proofs:

sequence(+float,+float,+float,-list(float),-positive_integer) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

format

Formatted output predicates.

Availability:

logtalk_load(format(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2023-10-02

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	format/3

	format/2

	Protected predicates

	Private predicates

	Operators

Public predicates

format/3

Writes a list of arguments after a format specification to the specified output stream.

Compilation flags:

static

Template:

format(Stream,Format,Arguments)

Mode and number of proofs:

format(@stream_or_alias,+atom,@list) - zero_or_one

format(@stream_or_alias,+list(character_code),@list) - zero_or_one

format(@stream_or_alias,+list(character),@list) - zero_or_one

format/2

Writes a list of arguments after a format specification to the current output stream.

Compilation flags:

static

Template:

format(Format,Arguments)

Mode and number of proofs:

format(+atom,@list) - zero_or_one

format(+list(character_code),@list) - zero_or_one

format(+list(character),@list) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

genint

Global object for generating increasing non-negative integers for named counters. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(genint(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-21

Compilation flags:

static, context_switching_calls

Imports:

public genint_core

Remarks:

(none)

Inherited public predicates:

 genint/2 reset_genint/0 reset_genint/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

gensym

Global object for generating unique atoms. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(gensym(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2022-07-21

Compilation flags:

static, context_switching_calls

Imports:

public gensym_core

Remarks:

(none)

Inherited public predicates:

 gensym/2 reset_gensym/0 reset_gensym/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

git

Predicates for accessing a git project current branch and latest commit data.

Availability:

logtalk_load(git(loader))

Author: Paulo Moura

Version: 2:1:2

Date: 2024-03-11

Compilation flags:

static, context_switching_calls

Implements:

public git_protocol

Uses:

os

user

Remarks:

(none)

Inherited public predicates:

 branch/2 commit_author/2 commit_date/2 commit_hash/2 commit_hash_abbreviated/2 commit_log/3 commit_message/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

grammar_rules_hook

This hook object expands grammar rules into clauses.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-14

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

graph_language_registry

Registry of implemented graph languages.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2020-03-25

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	language_object/2

	Protected predicates

	Private predicates

	Operators

Public predicates

language_object/2

Table of defined graph languages and their implementation objects.

Compilation flags:

static, multifile

Template:

language_object(Language,Object)

Mode and number of proofs:

language_object(?atom,?object_identifier) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

halstead_metric

Computes Halstead complexity numbers for an entity using a Stroud of 18.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2018-06-08

Compilation flags:

static, context_switching_calls

Extends:

public halstead_metric(18)

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

halstead_metric(Stroud)

	Stroud - Coefficient for computing the time required to program.

Computes Halstead complexity numbers for an entity.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2025-01-04

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Uses:

list

numberlist

pairs

Remarks:

	Definition of operators: Predicates declared, user-defined, and called are interpreted as operators. Built-in predicates and built-in control constructs are ignored.

	Definition of operands: Predicate arguments are abstracted and interpreted as operands. Note that this definition of operands is a significant deviation from the original definition, which used syntactic literals.

	Pn: Number of distinct predicates (declared, defined, called, or updated).

	PAn: Number of predicate arguments (assumed distinct).

	Cn: Number of predicate calls/updates + number of clauses.

	CAn: Number of predicate call/update arguments + number of clause head arguments.

	EV: Entity vocabulary: EV = Pn + PAn.

	EL: Entity length: EL = Cn + CAn.

	V: Volume: V = EL * log2(EV).

	D: Difficulty: D = (Pn/2) * (CAn/An).

	E: Effort: E = D * V.

	T: Time required to program: T = E/k seconds (k is the Stroud number; defaults to 18).

	B: Number of delivered bugs: B = V/3000.

	Entity score: Represented as the compound term pn_pan_cn_can_ev_el_v_d_e_t_b/11.

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

heap(Order)

Heap implementation, parameterized by the order to be used to compare keys (< or >).

Availability:

logtalk_load(heaps(loader))

Author: Richard O’Keefe; adapted to Logtalk by Paulo Moura and Victor Lagerkvist.

Version: 1:1:0

Date: 2019-05-18

Compilation flags:

static, context_switching_calls

Implements:

public heapp

Extends:

public compound

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

minheap, maxheap

 object

help

Command-line help for Logtalk libraries, entities, plus built-in control constructs, predicates, non-terminals, and methods.

Availability:

logtalk_load(help(loader))

Author: Paulo Moura

Version: 0:38:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls, complements(allow)

Implements:

public forwarding

Uses:

atom

os

user

Remarks:

(none)

Inherited public predicates:

 apis/0 apis/1 forward/1 handbook/0 handbook/1 man/1

	Public predicates

	help/0

	(/)/2

	(//)/2

	completion/2

	completions/2

	built_in_directive/4

	built_in_predicate/4

	built_in_method/4

	control_construct/4

	built_in_non_terminal/4

	library/0

	library/1

	entity/1

	manuals/0

	Protected predicates

	Private predicates

	Operators

Public predicates

help/0

Prints instructions on how to use the help tool.

Compilation flags:

static

Mode and number of proofs:

help - one

(/)/2

Provides help on the Functor/Arity built-in control construct, directive, predicate, or method.

Compilation flags:

static

Template:

Functor/Arity

Mode and number of proofs:

+atom/ +integer - zero_or_one

(//)/2

Provides help on the Functor//Arity built-in non-terminal.

Compilation flags:

static

Template:

Functor//Arity

Mode and number of proofs:

+atom// +integer - zero_or_one

completion/2

Provides a completion pair, Completion-Page, for a given prefix.

Compilation flags:

static

Template:

completion(Prefix,Completion)

Mode and number of proofs:

completion(+atom,-pair) - zero_or_more

completions/2

Provides a list of completions pairs, Completion-Page, for a given prefix.

Compilation flags:

static

Template:

completions(Prefix,Completions)

Mode and number of proofs:

completions(+atom,-lists(pair)) - zero_or_more

built_in_directive/4

Provides access to the HTML documenting files describing built-in directives.

Compilation flags:

static

Template:

built_in_directive(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_directive(?atom,?integer,-atom,-atom) - zero_or_more

built_in_predicate/4

Provides access to the HTML documenting files describing built-in predicates.

Compilation flags:

static

Template:

built_in_predicate(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_predicate(?atom,?integer,-atom,-atom) - zero_or_more

built_in_method/4

Provides access to the HTML documenting files describing built-in methods.

Compilation flags:

static

Template:

built_in_method(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_method(?atom,?integer,-atom,-atom) - zero_or_more

control_construct/4

Provides access to the HTML documenting files describing built-in control constructs.

Compilation flags:

static

Template:

control_construct(Functor,Arity,Directory,Basename)

Mode and number of proofs:

control_construct(?atom,?integer,-atom,-atom) - zero_or_more

built_in_non_terminal/4

Provides access to the HTML documenting files describing built-in DCG non-terminals.

Compilation flags:

static

Template:

built_in_non_terminal(Functor,Arity,Directory,Basename)

Mode and number of proofs:

built_in_non_terminal(?atom,?integer,-atom,-atom) - zero_or_more

library/0

Provides help on the standard Logtalk library.

Compilation flags:

static

Mode and number of proofs:

library - one

library/1

Provides help on the standard Logtalk libraries, library predicates, and library non-terminals.

Compilation flags:

static

Template:

library(Topic)

Mode and number of proofs:

library(+atom) - zero_or_one

library(+predicate_indicator) - zero_or_one

library(+non_terminal_indicator) - zero_or_one

entity/1

Provides help on Logtalk entities (objects, protocols, or categories).

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - zero_or_one

manuals/0

Provides access to the Logtalk User and Reference manuals.

Compilation flags:

static

Mode and number of proofs:

manuals - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

heuristic_expansion(Mode)

Expands rules of the form p if f and g to rule(p, [f,g|Tail], Length, Tail).

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Extends:

public rule_expansion(Mode)

Uses:

list

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

hook_pipeline(Pipeline)

	Pipeline - List of hook objects.

Use a pipeline (represented using a list) of hook objects to expand terms and goals. The expansion results from a hook object are passed to the next hook object in the pipeline.

Availability:

logtalk_load(hook_flows(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-09-27

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files that should be expanded using the pipeline of hook objects using the compiler option hook(hook_pipeline(Pipeline)).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

hook_set(Set)

 object

hook_set(Set)

	Set - Set (list) of hook objects.

Use a set (represented using a list) of hook objects to expand terms and goals. The hook objects are tried in sequence until one of them succeeds in expanding the current term (goal) into a different term (goal).

Availability:

logtalk_load(hook_flows(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-09-27

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files that should be expanded using the set of hook objects using the compiler option hook(hook_set(Set)).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

hook_pipeline(Pipeline)

 object

html5

HTML content generation using the HTML 5 doctype.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 1:0:0

Date: 2021-03-29

Compilation flags:

static, context_switching_calls

Imports:

public html

Remarks:

(none)

Inherited public predicates:

 generate/2 normal_element/2 void_element/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

iddfs_interpreter(Increment)

Iterative deepening depth-first interpreter for general logic programs. Based on source code from The Craft of Prolog, by Richard O’Keefe. The default value for the increment is 1.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Implements:

public interpreterp

Uses:

counter

dfs_interpreter

Remarks:

(none)

Inherited public predicates:

 prove/2 prove/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

identity_hook

Use this object as a file specific hook object to prevent any (other) user-defined expansion rules to be applied when compiling the file.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-15

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

ids

Generator of random identifiers represented as atoms with 160 bits (20 bytes) of randomness.

Availability:

logtalk_load(ids(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2025-06-03

Compilation flags:

static, context_switching_calls

Extends:

public ids(atom,20)

Remarks:

(none)

Inherited public predicates:

 generate/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ids(Representation,Bytes), uuid, ulid

 object

ids(Representation,Bytes)

	Representation - Text representation for the identifier. Possible values are atom, chars, and codes.

	Bytes - Number of bytes of randomness.

Generator of random identifiers.

Availability:

logtalk_load(ids(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Uses:

base64

fast_random

list

os

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/1

	Protected predicates

	Private predicates

	Operators

Public predicates

generate/1

Generate a random identifier.

Compilation flags:

static

Template:

generate(Identifier)

Mode and number of proofs:

generate(--textids) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ids, uuid, ulid

 object

inheritance_diagram

Predicates for generating entity diagrams in DOT format with inheritance relation edges but no cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-15

Compilation flags:

static, context_switching_calls

Extends:

public inheritance_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, uses_diagram, xref_diagram

 object

inheritance_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams in the specified format with inheritance relation edges but no cross-referencing relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:20:0

Date: 2024-03-20

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram(Format), uses_diagram(Format), xref_diagram(Format)

 object

integer

Integer data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:56:0

Date: 2025-05-26

Compilation flags:

static, context_switching_calls

Extends:

public number

Remarks:

	Portability notes: This object will use the backend Prolog system between/3, plus/3, and succ/2 built-in predicates when available.

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	between/3

	plus/3

	succ/2

	sequence/3

	sequence/4

	power_sequence/4

	Protected predicates

	Private predicates

	Operators

Public predicates

between/3

Returns integers in the interval defined by the two first arguments.

Compilation flags:

static

Template:

between(Lower,Upper,Integer)

Mode and number of proofs:

between(+integer,+integer,+integer) - zero_or_one

between(+integer,+integer,-integer) - zero_or_more

plus/3

Reversible integer sum. At least two of the arguments must be instantiated to integers.

Compilation flags:

static

Template:

plus(I,J,Sum)

Mode and number of proofs:

plus(+integer,+integer,?integer) - zero_or_one

plus(+integer,?integer,+integer) - zero_or_one

plus(?integer,+integer,+integer) - zero_or_one

succ/2

Successor of a natural number. At least one of the arguments must be instantiated to a natural number.

Compilation flags:

static

Template:

succ(I,J)

Mode and number of proofs:

succ(+integer,?integer) - zero_or_one

succ(?integer,+integer) - zero_or_one

sequence/3

Generates a list with the sequence of all integers in the interval [Lower,Upper]. Assumes Lower =< Upper and fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,List)

Mode and number of proofs:

sequence(+integer,+integer,-list(integer)) - zero_or_one

sequence/4

Generates a list with the sequence of integers in the interval [Lower,Upper] by Step. Assumes Lower =< Upper, Step >= 1 and fails otherwise.

Compilation flags:

static

Template:

sequence(Lower,Upper,Step,List)

Mode and number of proofs:

sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

power_sequence/4

Generates a list of exponentiation results given [Lower,Upper] sequence of exponents and Base. Assumes Lower =< Upper and Base > 1 and fails otherwise.

Compilation flags:

static

Template:

power_sequence(Lower,Upper,Base,List)

Mode and number of proofs:

power_sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

interval

Basic temporal interval relations. An interval is represented by a compound term, i/2, with two ground arguments, the start and end points.

Availability:

logtalk_load(intervals(loader))

Author: Paulo Moura

Version: 1:2:1

Date: 2022-01-15

Compilation flags:

static, context_switching_calls

Implements:

public intervalp

Aliases:

intervalp before/2 as b/2

intervalp after/2 as bi/2

intervalp meets/2 as m/2

intervalp met_by/2 as mi/2

intervalp overlaps/2 as o/2

intervalp overlapped_by/2 as oi/2

intervalp starts/2 as s/2

intervalp started_by/2 as si/2

intervalp during/2 as d/2

intervalp contains/2 as di/2

intervalp finishes/2 as f/2

intervalp finished_by/2 as fi/2

intervalp equal/2 as eq/2

Remarks:

(none)

Inherited public predicates:

 after/2 before/2 contains/2 during/2 equal/2 finished_by/2 finishes/2 meets/2 met_by/2 new/3 overlapped_by/2 overlaps/2 started_by/2 starts/2 valid/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

ip_grammars(Format)

IP address grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:2:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Uses:

number_grammars(Format)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	ipv4//1

	ipv6//1

	Protected predicates

	Private predicates

	Operators

Public predicates

ipv4//1

Parses an IPv4 network address in the format XXX.XXX.XXX.XXX where each XXX is an octet (i.e., an integer between 0 and 255).

Compilation flags:

static

Template:

ipv4(Octets)

Mode and number of proofs:

ipv4(?list(integer)) - zero_or_one

ipv6//1

Parses an IPv6 network address in the format XXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XXXX where each X is a hexadecimal digit.

Compilation flags:

static

Template:

ipv6(HexDigits)

Mode and number of proofs:

ipv6(?list(integer)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

iso8601

ISO 8601 (and European civil calendar) compliant library of date predicates.

Availability:

logtalk_load(iso8601(loader))

Author: Daniel L. Dudley

Version: 1:0:3

Date: 2019-10-09

Compilation flags:

static, context_switching_calls

Uses:

os

Remarks:

	Scope: This object currently provides a powerful, versatile and efficient set of date-handling predicates, which–thanks to Logtalk–may be used as is on a wide range of Prolog compilers. Besides taking time to familiarize oneself with each predicate, the user should take note of the following information.

	Validation of dates: Date parts are not validated–that is the caller’s responsibility! However, not being quite heartless yet, we do provide a predicate for this purpose.

	Date arithmetic: Many of the examples illustrate a simplified method of doing date arithmetic. Note, however, that we do not generally recommend this practice–it is all too easy to make mistakes. The safest way of finding the day difference between two dates is to first convert the dates to their Julian day numbers and then subtract one from the other. Similarly, the safe way to add or subtract a day offset to a particular date is to first convert the date to its Julian day number, add or subtract the day offset, and then convert the result to its corresponding date.

	BC years: ISO 8601 specifies that the Gregorian calendar be used, yet requires that years prior to 1 AD be handled arithmetically, i.e., the year we know as 1 BC is year 0, 2 BC is year -1, 3 BC is year -2 and so on. We do not follow ISO 8601 with regard to the handling of BC years. Our date predicates will accept and interpret an input year 0 as 1 BC; however, a negative year, Year, should always be interpreted as abs(Year) =:= Year BC. We believe that the average person will find our handling of BC years more user-friendly than the ISO 8601 one, but we encourage feedback from users with a view to a possible change in future versions.

	Week numbers: It is possible for a day (date) to have a week number that belongs to another year. Up to three of the first days of a calendar year may belong to the last week (number) of the prior calendar year, and up to three days of the last days of a calendar year may belong to the first week (number) of the next calendar year. It for this reason that the Week parameter in date/6-7 is a compound term, namely week(WeekNo,ActualYear).

	Computation of Gregorian Easter Sunday: The algorithm is based upon the “Gaussian rule”. Proleptic use is limited to years > 1582 AD, that is, after the introduction of the Gregorian calendar.

	Some Christian feast day offsets from Easter Sunday: Carnival Monday: -48 days, Mardi Gras (Shrove Tuesday): -47 days, Ash Wednesday: -46 days, Palm Sunday: -7 days, Easter Friday: -2 days, Easter Saturday: -1 day, Easter Monday: +1 day, Ascension of Christ: +39 days, Whitsunday: +49 days, Whitmonday: +50 days, Feast of Corpus Christi: +60 days.

Inherited public predicates:

(none)

	Public predicates

	date/4

	date/5

	date/6

	date/7

	date_string/3

	valid_date/3

	leap_year/1

	calendar_month/3

	easter_day/3

	Protected predicates

	Private predicates

	Operators

Public predicates

date/4

Get the system date and/or its Julian Day # or convert a Julian Day # to/from given date parts.

Compilation flags:

static

Template:

date(JD,Year,Month,Day)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer) - zero_or_one

Examples:

Current date (i.e., today)

date(JD,Year,Month,Day)

JD=2453471,Year=2005,Month=4,Day=10

Convert a date to its Julian day number

date(JD,2000,2,29)

JD=2451604

Convert a Julian day number to its date

date(2451604,Year,Month,Day)

Year=2000,Month=2,Day=29

What is the date of day # 60 in year 2000?

date(JD,2000,1,60)

JD=2451604

What is the Julian of the 1st day prior to 2000-1-1?

date(JD,2000,1,0)

JD=2451544

What is the Julian of the 60th day prior to 2000-1-1?

date(JD,2000,1,-59)

JD=2451485

Illegal date is auto-adjusted (see also next query)

date(JD,1900,2,29)

JD=2415080

This is the correct date!

date(2415080,Year,Month,Day)

Year=1900,Month=3,Day=1

date/5

Ditto date/4 + get/check its day-of-week #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer) - zero_or_one

Examples:

Get the Julian and the day-of-week # of a date

date(JD,2000,2,29,DoW)

JD=2451604,DoW=2

Check the validity of a given date (day-of-week is 2, not 4)

date(_,2002,3,5,4)

no

Get the Julian day of a given date if it is a Sunday

date(JD,2004,2,29,7)

JD=2453065

Get the date and day-of-week # of a Julian

date(2451545,Year,Month,Day,DoW)

Year=2000,Month=1,Day=1,DoW=6

date/6

Ditto date/5 + get/check its week #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW,Week)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Week - Compound term, week(WeekNo,ActualYear), of a day.

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer,?compound) - zero_or_one

Examples:

Get the day-of-week and week number of a date

date(_,2000,1,1,DoW,Week)

DoW=6,Week=week(52,1999)

Get the week number and year of this week

date(_,_,_,_,_,Week)

Week=week(7,2004)

Get the Julian number and the week of a date if it is a Sunday

date(JD,2004,2,29,7,Week)

JD=2453065,Week=week(9,2004)

Get the day-of-week and week of a Julian day number

date(2453066,_,_,_,DoW,Week)

DoW=1,Week=week(10,2004)

Check that given date data matches

date(_,2004,3,1,1,week(10,2004))

yes

What is the date of a day of week (default is 1) in given week # and year?

date(_,Year,Month,Day,DoW,week(26,2004))

Year=2004,Month=6,Day=21,DoW=1

Ditto for Sunday

date(_,Year,Month,Day,7,week(1,2005))

Year=2005,Month=1,Day=9

Ditto for Tuesday in following week

date(_,Year,Month,Day,9,week(1,2005))

Year=2005,Month=1,Day=11

Ditto for Thursday in the prior week

date(_,Year,Month,Day,4,week(0,2005))

Year=2004,Month=12,Day=30

Ditto for Tuesday two weeks prior

date(_,Year,Month,Day,2,week(-1,2005))

Year=2004,Month=12,Day=21

Ditto for Saturday

date(_,Year,Month,Day,6,week(53,2004))

Year=2005,Month=1,Day=1

Ditto for Monday (note automatic compensation of nonexistent week number)

date(_,Year,Month,Day,1,week(60,2004))

Year=2005,Month=2,Day=14

date/7

Ditto date/6 + get/check its day-of-year #.

Compilation flags:

static

Template:

date(JD,Year,Month,Day,DoW,Week,DoY)

JD - Julian day serial number.

Year - 0 or negative if converted BC year, positive otherwise.

Month - Normally an integer between 1 and 12 inclusive.

Day - Normally an integer between 1 and 31 inclusive depending upon month.

DoW - Day of week, where Monday=1, Tuesday=2, …, Sunday=7.

Week - Compound term, week(WeekNo,ActualYear), of a day.

DoY - Day of year (NB! calendar year, not week # year).

Mode and number of proofs:

date(?integer,?integer,?integer,?integer,?integer,?compound,?integer) - zero_or_one

Examples:

Get the date and day-of-year of a Julian number

date(2451649,Year,Month,Day,_,_,DoY)

Year=2000,Month=4,Day=14,DoY=105

Get the Julian number, week number and day-of-year of a date, confirming that it is a Sunday

date(JD,2004,2,29,7,Week,DoY)

JD=2453065,Week=week(9,2004),DoY=60

Confirm that a date is, in fact, a specific day-of-year

date(_,2004,3,1,_,_,61)

yes

Get the Julian number, week day and day-of-year of a date

date(JD,2004,10,18,DoW,_,DoY)

JD=2453297,DoW=1,DoY=292

Get today’s day-of-year

date(_,_,_,_,_,_,DoY)

DoY=54

Get all missing date data (excl. Julian number) for the 60th calendar day of 2004

date(_,2004,Month,Day,DoW,Week,60)

Month=2,Day=29,DoW=7,Week=week(9,2004)

Match given date data and, if true, return the missing data (excl. Julian number)

date(_,2004,3,Day,DoW,Week,61)

Day=1,DoW=1,Week=week(10,2004)

Ditto (the 61st day-of-year cannot be both day 1 and 2 of the month)

date(_,2004,_,2,_,_,61)

no

date_string/3

Conversion between an ISO 8601 compliant date string and its components (truncated and expanded date representations are currently unsupported). Note that date components are not validated; that is the caller’s responsibility!

Compilation flags:

static

Template:

date_string(Format,Components,String)

Format - ISO 8601 format.

Components - When bound and String is free, either a Julian number or a [Year,Month,Day] term; it binds to the system day/date if free When free and String is bound, it binds to an integer list representing the numeric elements of String.

String - ISO 8601 formatted string correspondent to Components.

Mode and number of proofs:

date_string(+atom,+integer,?atom) - zero_or_one

date_string(+atom,?list,?atom) - zero_or_one

Examples:

Date, complete, basic (section 5.2.1.1)

date_string('YYYYMMDD',[2004,2,29],String)

String='20040229'

Date, complete, basic (section 5.2.1.1)

date_string('YYYYMMDD',Components,'20040229')

Components=[2004,2,29]

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',[2003,12,16],String)

String='2003-12-16'

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',Components,'2003-12-16')

Components=[2003,12,16]

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',_,String)

String='2004-02-17'

Date, complete, extended (section 5.2.1.1)

date_string('YYYY-MM-DD',Components,'2004-02-17')

Components=[2004,2,17]

Date, reduced, month (section 5.2.1.2 a)

date_string('YYYY-MM',[2004,9,18],String)

String='2004-09'

Date, reduced, month (section 5.2.1.2 a)

date_string('YYYY-MM',Components,'2004-09')

Components=[2004,9]

Date, reduced, year (section 5.2.1.2 b)

date_string('YYYY',[1900,7,24],String)

String='1900'

Date, reduced, year (section 5.2.1.2 b)

date_string('YYYY',Components,'1900')

Components=[1900]

Date, reduced, century (section 5.2.1.2 c)

date_string('YY',2456557,String)

String='20'

Date, reduced, century (section 5.2.1.2 c)

date_string('YY',Components,'20')

Components=[20]

Date, ordinal, complete (section 5.2.2.1)

date_string('YYYYDDD',[2005,3,25],String)

String='2005084'

Date, ordinal, complete (section 5.2.2.1)

date_string('YYYYDDD',Components,'2005084')

Components=[2005,84]

Date, ordinal, extended (section 5.2.2.1)

date_string('YYYY-DDD',[1854,12,4],String)

String='1854-338'

Date, ordinal, extended (section 5.2.2.1)

date_string('YYYY-DDD',Components,'1854-338')

Components=[1854,338]

Week, complete, basic (section 5.2.3.1)

date_string('YYYYWwwD',[2000,1,2],String)

String='1999W527'

Week, complete, basic (section 5.2.3.1)

date_string('YYYYWwwD',Components,'1999W527')

Components=[1999,52,7]

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',[2003,12,29],String)

String='2004-W01-1'

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',Components,'2004-W01-1')

Components=[2004,1,1]

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',2453167,String)

String='2004-W24-4'

Week, complete, extended (section 5.2.3.1)

date_string('YYYY-Www-D',Components,'2004-W24-4')

Components=[2004,24,4]

Week, reduced, basic (section 5.2.3.2)

date_string('YYYYWww',[2004,2,29],String)

String='2004W09'

Week, reduced, basic (section 5.2.3.2)

date_string('YYYYWww',Components,'2004W09')

Components=[2004,9]

Week, reduced, extended (section 5.2.3.2)

date_string('YYYY-Www',[2004,2,29],String)

String='2004-W09'

Week, reduced, extended (section 5.2.3.2)

date_string('YYYY-Www',Components,'2004-W09')

Components=[2004,9]

valid_date/3

Validate a given date in the Gregorian calendar.

Compilation flags:

static

Template:

valid_date(Year,Month,Day)

Mode and number of proofs:

valid_date(+integer,+integer,+integer) - zero_or_one

Examples:

Yes, the recent millennium was a leap year

valid_date(2000,2,29)

yes

2004 was also a leap year

valid_date(2004,2,29)

yes

Only 30 days in April

valid_date(2004,4,31)

no

1 BC was a leap year

valid_date(-1,2,29)

yes

leap_year/1

Succeed if given year is a leap year in the Gregorian calendar.

Compilation flags:

static

Template:

leap_year(Year)

Year - The Gregorian calendar year to investigate. If free, it binds to the system year.

Mode and number of proofs:

leap_year(?integer) - zero_or_one

Examples:

No, the prior centenary was not a leap year

leap_year(1900)

no

The recent millennium

leap_year(2000)

yes

This year

leap_year(Year)

Year=2004

This year (equivalent to prior query)

leap_year(_)

yes

Next centennial

leap_year(2100)

no

Year 0, equivalent to 1 BC

leap_year(0)

yes

1 BC

leap_year(-1)

yes

4 BC

leap_year(-4)

no

5 BC

leap_year(-5)

yes

calendar_month/3

Compute a calendar month.

Compilation flags:

static

Template:

calendar_month(Year,Month,Calendar)

Year - The calendar year.

Month - The calendar month.

Calendar - A compound term, m/3, composed of three main arguments specifying year, month, and a list of week and week day numbers (calendar body).

Mode and number of proofs:

calendar_month(?integer,?integer,-compound) - zero_or_one

Examples:

Compute the calendar of March, 2005

calendar_month(2005,3,Calendar)

Calendar=m(2005,3,[w(9,[0,1,2,3,4,5,6]),w(10,[7,8,9,10,11,12,13]),w(11,[14,15,16,17,18,19,20]),w(12,[21,22,23,24,25,26,27]),w(13,[28,29,30,31,0,0,0]),w(0,[0,0,0,0,0,0,0])])

easter_day/3

Compute a Gregorian Easter Sunday.

Compilation flags:

static

Template:

easter_day(Year,Month,Day)

Year - Integer specifying the year to be investigated.

Month - Month in which Easter Sunday falls for given year.

Day - Day of month in which Easter Sunday falls for given year.

Mode and number of proofs:

easter_day(?integer,-integer,-integer) - zero_or_one

Examples:

Compute Easter Sunday for a particular year

easter_day(2006,Month,Day)

Month=4,Day=16

Compute Easter Sunday for the current year

easter_day(Year,Month,Day)

Year=2005,Month=3,Day=27

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

issue_creator

Support for automatically creating bug report issues for failed tests in GitHub or GitLab servers.

Availability:

logtalk_load(issue_creator(loader))

Author: Paulo Moura

Version: 0:12:1

Date: 2025-03-03

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

git

os

term_io

user

Remarks:

	Usage: This tool is automatically loaded and used from the logtalk_tester automation script when using its -b option. See the script man page for details.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

java

Abstract interface to JPL API utility predicates.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:8:0

Date: 2023-03-15

Compilation flags:

static, context_switching_calls

Implements:

public java_utils_protocol

Uses:

user

Remarks:

(none)

Inherited public predicates:

 array_list/2 array_to_list/2 array_to_terms/2 array_to_terms/3 decode_exception/2 decode_exception/3 false/1 is_false/1 is_null/1 is_object/1 is_true/1 is_void/1 iterator_element/2 list_to_array/2 map_element/2 null/1 set_element/2 terms_to_array/2 true/1 value_reference/2 void/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java(Reference), java_hook

 object

java(Reference)

	Reference - Either a class name or a Java reference to an object.

Minimal abstraction of the JPL API for calling Java from Logtalk using familiar message-sending syntax and a forward/1 handler to resolve methods.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:0:1

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public java(Reference,_)

Remarks:

	Usage: Send to this object any valid message as listed in the JavaDocs for the given reference.

Inherited public predicates:

 forward/1 get_field/2 invoke/1 invoke/2 new/1 new/2 set_field/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java, java_hook

 object

java(Reference,ReturnValue)

	Reference - Either a class name or a Java reference to an object.

	ReturnValue - Value returned by a method call (possibly the Java value void).

Minimal abstraction of the JPL API for calling Java from Logtalk using familiar message-sending syntax and a forward/1 handler to resolve methods.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:4:0

Date: 2023-03-13

Compilation flags:

static, context_switching_calls

Implements:

public forwarding

public java_access_protocol

Remarks:

	Usage: Send to this object any valid message as listed in the JavaDocs for the given reference.

Inherited public predicates:

 forward/1 get_field/2 invoke/1 invoke/2 new/1 new/2 set_field/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference), java, java_hook

 object

java_hook

Hook object to optimize messages to the java/1-2 objects that otherwise would trigger the forward/1 handler.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Compile source files with messages to the java/1-2 objects using the compiler option hook(java_hook).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

java(Reference,ReturnValue), java(Reference)

 object

json

JSON parser and generator. Uses curly terms for parsed JSON objects, dashes for parsed JSON pairs, and atoms for parsed JSON strings.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 1:1:0

Date: 2022-11-14

Compilation flags:

static, context_switching_calls

Extends:

public json(curly,dash,atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON parser and generator. Uses curly terms for parsed JSON objects and dashes for parsed JSON pairs.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-11-14

Compilation flags:

static, context_switching_calls

Extends:

public json(curly,dash,StringRepresentation)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json(ObjectRepresentation,PairRepresentation,StringRepresentation)

	ObjectRepresentation - Object representation to be used when decoding JSON objects. Possible values are curly (default) and list.

	PairRepresentation - Pair representation to be used when decoding JSON objects. Possible values are dash (default), equal, and colon.

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON parser and generator.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 0:13:0

Date: 2024-07-16

Compilation flags:

static, context_switching_calls

Implements:

public json_protocol

Uses:

reader

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json_lines

JSON Lines parser and generator. Uses curly terms for parsed JSON objects, dashes for parsed JSON pairs, and atoms for parsed JSON strings.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Extends:

public json_lines(curly,dash,atom)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json_lines(StringRepresentation)

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON Lines parser and generator. Uses curly terms for parsed JSON objects and dashes for parsed JSON pairs.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Extends:

public json_lines(curly,dash,StringRepresentation)

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

	ObjectRepresentation - Object representation to be used when decoding JSON objects. Possible values are curly (default) and list.

	PairRepresentation - Pair representation to be used when decoding JSON objects. Possible values are dash (default), equal, and colon.

	StringRepresentation - Text representation to be used when decoding JSON strings. Possible values are atom (default), chars, and codes.

JSON Lines parser and generator.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static, context_switching_calls

Implements:

public json_lines_protocol

Remarks:

(none)

Inherited public predicates:

 generate/2 parse/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

lgtdoc

Documenting tool. Generates XML documenting files for loaded entities and for library, directory, entity, and predicate indexes.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 11:2:1

Date: 2025-10-07

Compilation flags:

static, context_switching_calls

Implements:

public lgtdocp

Imports:

public options

Uses:

date

list

logtalk

os

type

user

varlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 check_option/1 check_options/1 default_option/1 default_options/1 directories/1 directories/2 directory/1 directory/2 file/1 file/2 files/1 files/2 fix_option/2 fix_options/2 libraries/1 libraries/2 library/1 library/2 merge_options/2 option/2 option/3 rdirectories/1 rdirectories/2 rdirectory/1 rdirectory/2 rlibraries/1 rlibraries/2 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	library_entity_/4

	directory_entity_/4

	type_entity_/4

	predicate_entity_/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

library_entity_/4

Table of documented entities per library.

Compilation flags:

dynamic

Template:

library_entity_(Library,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

library_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

directory_entity_/4

Table of documented entities per directory.

Compilation flags:

dynamic

Template:

directory_entity_(Directory,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

directory_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

type_entity_/4

Table of documented entities per type.

Compilation flags:

dynamic

Template:

type_entity_(Type,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

type_entity_(?atom,?nonvar,?nonvar,?atom) - zero_or_more

predicate_entity_/4

Table of public predicates for all documented entities.

Compilation flags:

dynamic

Template:

predicate_entity_(Predicate,PrimarySortKey,SecondarySortKey,Entity)

Mode and number of proofs:

predicate_entity_(?predicate_indicator,?nonvar,?nonvar,?entity_identifier) - zero_or_more

Operators

(none)

 object

lgtunit

A unit test framework supporting predicate clause coverage, determinism testing, input/output testing, property-based testing, and multiple test dialects.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 22:3:0

Date: 2025-10-20

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public lgtunit_messages

Provides:

logtalk::trace_event/2

Uses:

fast_random

list

logtalk

os

type

user

Remarks:

	Usage: Define test objects as extensions of the lgtunit object and compile their source files using the compiler option hook(lgtunit).

	Portability: Deterministic unit tests are currently not available when using Quintus Prolog as the backend compiler.

	Known issues: Parameter variables cannot currently be used in the definition of test options.

Inherited public predicates:

 failed_test_reason//1 goal_expansion/2 term_expansion/2

	Public predicates

	cover/1

	run/0

	run/1

	run/2

	run_test_sets/1

	test/1

	number_of_tests/1

	deterministic/1

	deterministic/2

	assertion/1

	assertion/2

	quick_check/3

	quick_check/2

	quick_check/1

	benchmark/2

	benchmark_reified/3

	benchmark/3

	benchmark/4

	variant/2

	approximately_equal/2

	approximately_equal/3

	essentially_equal/3

	tolerance_equal/4

	=~= / 2

	epsilon/1

	Protected predicates

	run_tests/0

	run_tests/1

	run_test_set/0

	run_quick_check_tests/5

	condition/0

	setup/0

	cleanup/0

	make/1

	note/1

	file_path/2

	suppress_text_output/0

	suppress_binary_output/0

	set_text_input/3

	set_text_input/2

	set_text_input/1

	check_text_input/2

	check_text_input/1

	text_input_assertion/3

	text_input_assertion/2

	clean_text_input/0

	set_binary_input/3

	set_binary_input/2

	set_binary_input/1

	check_binary_input/2

	check_binary_input/1

	binary_input_assertion/3

	binary_input_assertion/2

	clean_binary_input/0

	set_text_output/3

	set_text_output/2

	set_text_output/1

	check_text_output/3

	check_text_output/2

	check_text_output/1

	text_output_assertion/4

	text_output_assertion/3

	text_output_assertion/2

	text_output_contents/3

	text_output_contents/2

	text_output_contents/1

	clean_text_output/0

	set_binary_output/3

	set_binary_output/2

	set_binary_output/1

	check_binary_output/2

	check_binary_output/1

	binary_output_assertion/3

	binary_output_assertion/2

	binary_output_contents/2

	binary_output_contents/1

	clean_binary_output/0

	create_text_file/3

	create_text_file/2

	create_binary_file/2

	check_text_file/3

	check_text_file/2

	text_file_assertion/4

	text_file_assertion/3

	check_binary_file/2

	binary_file_assertion/3

	clean_file/1

	clean_directory/1

	closed_input_stream/2

	closed_output_stream/2

	stream_position/1

	test/2

	Private predicates

	running_test_sets_/0

	test/3

	auxiliary_predicate_counter_/1

	test_/2

	selected_test_/1

	skipped_/1

	passed_/3

	failed_/3

	flaky_/1

	fired_/3

	covered_/4

	Operators

	op(700,xfx,=~=)

Public predicates

cover/1

Declares entities being tested for which code coverage information should be collected.

Compilation flags:

static

Template:

cover(Entity)

Mode and number of proofs:

cover(?entity_identifier) - zero_or_more

run/0

Runs the unit tests, writing the results to the current output stream.

Compilation flags:

static

Mode and number of proofs:

run - one

run/1

Runs a unit test or a list of unit tests, writing the results to the current output stream. Runs the global setup and cleanup steps when defined. Fails when given a partial list of tests or when one of the test identifiers is not valid.

Compilation flags:

static

Template:

run(Tests)

Mode and number of proofs:

run(++callable) - zero_or_one

run(++list(callable)) - zero_or_one

run/2

Runs the unit tests, writing the results to the specified file. Mode can be either write (to create a new file) or append (to add results to an existing file).

Compilation flags:

static

Template:

run(File,Mode)

Mode and number of proofs:

run(+atom,+atom) - one

run_test_sets/1

Runs two or more test sets as a unified set generating a single code coverage report if one is requested. When there is a single test set, it is equivalent to sending the message run/0 to the test set. Trivially succeeds when the argument is an empty list.

Compilation flags:

static

Template:

run_test_sets(TestObjects)

Mode and number of proofs:

run_test_sets(+list(object)) - one

Exceptions:

TestObjects is a partial list or a list with an element which is a variable:

instantiation_error

TestObjects is neither a partial list nor a list:

type_error(list(object),TestObjects)

An element TestObject of the TestObjects list is not an existing object:

existence_error(object,TestObject)

test/1

Enumerates, by backtracking, the identifiers of all defined unit tests.

Compilation flags:

static

Template:

test(Identifier)

Mode and number of proofs:

test(?callable) - zero_or_more

number_of_tests/1

Number of defined unit tests.

Compilation flags:

static

Template:

number_of_tests(NumerOfTests)

Mode and number of proofs:

number_of_tests(?integer) - zero_or_one

deterministic/1

True if the goal succeeds once without leaving choice-points.

Compilation flags:

static

Template:

deterministic(Goal)

Meta-predicate template:

deterministic(0)

Mode and number of proofs:

deterministic(+callable) - zero_or_one

deterministic/2

Reified version of the deterministic/1 predicate. True if the goal succeeds. Returns a boolean value (true or false) indicating if the goal succeeded without leaving choice-points.

Compilation flags:

static

Template:

deterministic(Goal,Deterministic)

Meta-predicate template:

deterministic(0,*)

Mode and number of proofs:

deterministic(+callable,--atom) - zero_or_one

assertion/1

True if the assertion goal succeeds. Throws an error using the assertion goal as argument if the assertion goal throws an error or fails.

Compilation flags:

static

Template:

assertion(Assertion)

Meta-predicate template:

assertion(::)

Mode and number of proofs:

assertion(@callable) - one

Exceptions:

Assertion goal fails:

assertion_failure(Assertion)

Assertion goal throws Error:

assertion_error(Assertion,Error)

assertion/2

True if the assertion goal succeeds. Throws an error using the description as argument if the assertion goal throws an error or fails. The description argument helps to distinguish between different assertions in the same test body.

Compilation flags:

static

Template:

assertion(Description,Assertion)

Meta-predicate template:

assertion(*,0)

Mode and number of proofs:

assertion(+nonvar,@callable) - one

Exceptions:

Assertion goal fails:

assertion_failure(Description)

Assertion goal throws Error:

assertion_error(Description,Error)

quick_check/3

Reified version of the quick_check/2 predicate. Reports passed(SequenceSeed,Discarded,Labels), failed(Goal,SequenceSeed,TestSeed), error(Error,Goal,SequenceSeed,TestSeed), or broken(Why,Culprit). Goal is the failed test.

Compilation flags:

static

Template:

quick_check(Template,Result,Options)

Meta-predicate template:

quick_check(::,*,::)

Mode and number of proofs:

quick_check(@callable,-callable,++list(compound)) - one

Remarks:

	SequenceSeed argument: Can be used to re-run the same exact sequence of pseudo-random tests by using the rs/1 option after changes to the code being tested.

	TestSeed argument: Can be used to re-run the test that failed by using the rs/1 option after changes to the code being tested.

	Discarded argument: Number of generated tests that were discarded for failing to comply a pre-condition specified using the pc/1 option.

	Labels argument: List of pairs Label-N where N is the number of generated tests that are classified as Label by a closure specified using the l/1 option.

	broken(Why,Culprit) result: This result signals a broken setup. For example, an invalid template, a broken pre-condition or label goal, or broken test generation.

quick_check/2

Generates and runs random tests for a predicate given its mode template and a set of options. Fails when a generated test fails printing the test. Also fails on an invalid option, printing the option.

Compilation flags:

static

Template:

quick_check(Template,Options)

Meta-predicate template:

quick_check(::,::)

Mode and number of proofs:

quick_check(@callable,++list(compound)) - zero_or_one

Remarks:

	Number of tests: Use the n(NumberOfTests) option to specify the number of random tests. Default is 100.

	Maximum number of shrink operations: Use the s(MaxShrinks) option to specify the number of shrink operations when a counter example is found. Default is 64.

	Type edge cases: Use the ec(Boolean) option to specify if type edge cases are tested (before generating random tests). Default is true.

	Starting seed: Use the rs(Seed) option to specify the random generator starting seed to be used when generating tests. No default. Seeds should be regarded as opaque terms.

	Test generation filtering: Use the pc/1 option to specify a pre-condition closure for filtering generated tests (extended with the test arguments; no default).

	Generated tests classification: Use the l/1 option to specify a label closure for classifying the generated tests (extended with the test arguments plus the labels argument; no default). The labelling predicate can return a single test label or a list of test labels.

	Verbose test generation: Use the v(Boolean) option to specify verbose reporting of generated random tests. Default is false.

	Progress bar: Use the pb(Boolean,Tick) option to print a progress bar for the executed tests, advancing at every Tick tests. Default is false. Only applies when the verbose option is false.

quick_check/1

Generates and runs random tests using default options for a predicate given its mode template. Fails when a generated test fails printing the test.

Compilation flags:

static

Template:

quick_check(Template)

Mode and number of proofs:

quick_check(@callable) - zero_or_one

benchmark/2

Benchmarks a goal and returns the total execution time in seconds. Uses CPU clock. Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Time)

Meta-predicate template:

benchmark(0,*)

Mode and number of proofs:

benchmark(+callable,-float) - one

benchmark_reified/3

Benchmarks a goal and returns the total execution time in seconds plus its result (success, failure, or error(Error)). Uses CPU clock.

Compilation flags:

static

Template:

benchmark_reified(Goal,Time,Result)

Meta-predicate template:

benchmark_reified(0,*,*)

Mode and number of proofs:

benchmark_reified(+callable,-float,-callable) - one

benchmark/3

Benchmarks a goal by repeating it the specified number of times and returning the total execution time in seconds. Uses CPU clock. Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Repetitions,Time)

Meta-predicate template:

benchmark(0,*,*)

Mode and number of proofs:

benchmark(@callable,+positive_integer,-float) - one

benchmark/4

Benchmarks a goal by repeating it the specified number of times and returning the total execution time in seconds using the given clock (cpu or wall). Goals that may throw an exception should be wrapped by the catch/3 control construct.

Compilation flags:

static

Template:

benchmark(Goal,Repetitions,Clock,Time)

Meta-predicate template:

benchmark(0,*,*,*)

Mode and number of proofs:

benchmark(@callable,+positive_integer,+atom,-float) - one

variant/2

True when the two arguments are a variant of each other. I.e. if is possible to rename the term variables to make them identical. Useful for checking expected test results that contain variables.

Compilation flags:

static

Template:

variant(Term1,Term2)

Mode and number of proofs:

variant(@term,@term) - zero_or_one

approximately_equal/2

Compares two numbers for approximate equality given the epsilon arithmetic constant value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * epsilon. Type-checked.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2)

Mode and number of proofs:

approximately_equal(+number,+number) - zero_or_one

approximately_equal/3

Compares two numbers for approximate equality given a user-defined epsilon value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * Epsilon. Type-checked.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

approximately_equal(+number,+number,+number) - zero_or_one

Remarks:

	Epsilon range: Epsilon should be the epsilon arithmetic constant value or a small multiple of it. Only use a larger value if a greater error is expected.

	Comparison with essential equality: For the same epsilon value, approximate equality is weaker requirement than essential equality.

essentially_equal/3

Compares two numbers for essential equality given an epsilon value using the de facto standard formula abs(Number1 - Number2) =< min(abs(Number1), abs(Number2)) * Epsilon. Type-checked.

Compilation flags:

static

Template:

essentially_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

essentially_equal(+number,+number,+number) - zero_or_one

Remarks:

	Comparison with approximate equality: For the same epsilon value, essential equality is a stronger requirement than approximate equality.

tolerance_equal/4

Compares two numbers for close equality given relative and absolute tolerances using the de facto standard formula abs(Number1 - Number2) =< max(RelativeTolerance * max(abs(Number1), abs(Number2)), AbsoluteTolerance). Type-checked.

Compilation flags:

static

Template:

tolerance_equal(Number1,Number2,RelativeTolerance,AbsoluteTolerance)

Mode and number of proofs:

tolerance_equal(+number,+number,+number,+number) - zero_or_one

=~= / 2

Compares two numbers (or lists of numbers) for approximate equality using 100*epsilon for the absolute error and, if that fails, 99.999% accuracy for the relative error. But these precision values may not be adequate for all cases. Type-checked.

Compilation flags:

static

Template:

=~=(Number1,Number2)

Mode and number of proofs:

=~=(+number,+number) - zero_or_one

=~=(+list(number),+list(number)) - zero_or_one

epsilon/1

Returns the value of epsilon used in the definition of the (=~=)/2 predicate.

Compilation flags:

static

Template:

epsilon(Epsilon)

Mode and number of proofs:

epsilon(-float) - one

Protected predicates

run_tests/0

Runs all defined unit tests.

Compilation flags:

static

Mode and number of proofs:

run_tests - one

run_tests/1

Runs all the tests defined in the given file.

Compilation flags:

static

Template:

run_tests(File)

Mode and number of proofs:

run_tests(+atom) - one

run_test_set/0

Runs a test set as part of running two or more test sets as a unified set.

Compilation flags:

static

Mode and number of proofs:

run_test_set - one

run_quick_check_tests/5

Runs a QuickCheck test using the given options. Returns the starting seed used to generate the random tests, the number of discarded tests, and the test label statistics.

Compilation flags:

static

Template:

run_quick_check_tests(Template,Options,Seed,Discarded,Labels)

Meta-predicate template:

run_quick_check_tests(::,::,*,*,*)

Mode and number of proofs:

run_quick_check_tests(@callable,+list,--nonvar,--number,--list(pair)) - one_or_error

condition/0

Verifies conditions for running the tests. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

condition - zero_or_one

setup/0

Setup environment before running the test set. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

setup - zero_or_one

cleanup/0

Cleanup environment after running the test set. Defaults to the goal true.

Compilation flags:

static

Mode and number of proofs:

cleanup - zero_or_one

make/1

Make target for automatically running the test set when calling the logtalk_make/1 built-in predicate. No default. Possible values are all and check.

Compilation flags:

static

Template:

make(Target)

Mode and number of proofs:

make(?atom) - zero_or_one

note/1

Note to be printed after the test results. Defaults to the empty atom.

Compilation flags:

static

Template:

note(Note)

Mode and number of proofs:

note(?atom) - zero_or_one

file_path/2

Returns the absolute path for a file path that is relative to the tests object path. When the file path is already an absolute path, it is expanded to resolve any remaining relative file path parts.

Compilation flags:

static

Template:

file_path(File,Path)

Mode and number of proofs:

file_path(+atom,-atom) - one

See also:

clean_file/1

clean_directory/1

suppress_text_output/0

Suppresses text output. Useful to avoid irrelevant text output from predicates being tested to clutter the test logs.

Compilation flags:

static

Mode and number of proofs:

suppress_text_output - one

suppress_binary_output/0

Suppresses binary output. Useful to avoid irrelevant binary output from predicates being tested to clutter the test logs.

Compilation flags:

static

Mode and number of proofs:

suppress_binary_output - one

set_text_input/3

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for reading referenced by the given alias and using the additional options. If no eof_action/1 option is specified, its value will be the default used by the backend compiler.

Compilation flags:

static

Template:

set_text_input(Alias,Contents,Options)

Mode and number of proofs:

set_text_input(+atom,+atom,+list(stream_option)) - one

set_text_input(+atom,+list(atom),+list(stream_option)) - one

See also:

text_input_assertion/3

check_text_input/2

clean_text_input/0

set_text_input/2

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for reading referenced by the given alias and using the default end-of-file action for the used backend compiler.

Compilation flags:

static

Template:

set_text_input(Alias,Contents)

Mode and number of proofs:

set_text_input(+atom,+atom) - one

set_text_input(+atom,+list(atom)) - one

See also:

text_input_assertion/3

check_text_input/2

clean_text_input/0

set_text_input/1

Creates a temporary file, in the same directory as the tests object, with the given text contents, opens it for reading using the default end-of-file action for the used backend compiler, and sets the current input stream to the file.

Compilation flags:

static

Template:

set_text_input(Contents)

Mode and number of proofs:

set_text_input(+atom) - one

set_text_input(+list(atom)) - one

See also:

text_input_assertion/2

check_text_input/1

clean_text_input/0

check_text_input/2

Checks that the temporary file (referenced by the given alias) being read have the expected text contents.

Compilation flags:

static

Template:

check_text_input(Alias,Contents)

Mode and number of proofs:

check_text_input(+atom,+atom) - zero_or_one

See also:

set_text_input/2

set_text_input/2

text_input_assertion/3

clean_text_input/0

check_text_input/1

Checks that the temporary file being read have the expected text contents.

Compilation flags:

static

Template:

check_text_input(Contents)

Mode and number of proofs:

check_text_input(+atom) - zero_or_one

See also:

set_text_input/1

text_input_assertion/2

clean_text_input/0

text_input_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) being read have the expected text contents.

Compilation flags:

static

Template:

text_input_assertion(Alias,Contents,Assertion)

Mode and number of proofs:

text_input_assertion(+atom,+atom,--callable) - one

See also:

set_text_input/3

check_text_input/2

clean_text_input/0

text_input_assertion/2

Returns an assertion for checking that the temporary file being read have the expected text contents.

Compilation flags:

static

Template:

text_input_assertion(Contents,Assertion)

Mode and number of proofs:

text_input_assertion(+atom,--callable) - one

See also:

set_text_input/1

check_text_input/1

clean_text_input/0

clean_text_input/0

Cleans the temporary file used when testing text input.

Compilation flags:

static

Mode and number of proofs:

clean_text_input - one

See also:

set_text_input/3

set_text_input/2

set_text_input/1

set_binary_input/3

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading referenced by the given alias and using the additional options. If no eof_action/1 option is specified, its value will be the default used by the backend compiler.

Compilation flags:

static

Template:

set_binary_input(Alias,Bytes,Options)

Mode and number of proofs:

set_binary_input(+atom,+list(byte),+list(stream_option)) - one

See also:

binary_input_assertion/3

check_binary_input/2

clean_binary_input/0

set_binary_input/2

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading referenced by the given alias and using the default end-of-file action for the used backend compiler.

Compilation flags:

static

Template:

set_binary_input(Alias,Bytes)

Mode and number of proofs:

set_binary_input(+atom,+list(byte)) - one

See also:

binary_input_assertion/3

check_binary_input/2

clean_binary_input/0

set_binary_input/1

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for reading using the default end-of-file action for the used backend compiler, and sets the current input stream to the file.

Compilation flags:

static

Template:

set_binary_input(Bytes)

Mode and number of proofs:

set_binary_input(+list(byte)) - one

See also:

binary_input_assertion/2

check_binary_input/1

clean_binary_input/0

check_binary_input/2

Checks that the temporary file (referenced by the given alias) being read have the expected binary contents.

Compilation flags:

static

Template:

check_binary_input(Alias,Bytes)

Mode and number of proofs:

check_binary_input(+atom,+list(byte)) - zero_or_one

See also:

set_binary_input/3

set_binary_input/2

binary_input_assertion/3

clean_binary_input/0

check_binary_input/1

Checks that the temporary file being read have the expected binary contents.

Compilation flags:

static

Template:

check_binary_input(Bytes)

Mode and number of proofs:

check_binary_input(+list(byte)) - zero_or_one

See also:

binary_input_assertion/2

set_binary_input/1

clean_binary_input/0

binary_input_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) being read have the expected binary contents.

Compilation flags:

static

Template:

binary_input_assertion(Alias,Bytes,Assertion)

Mode and number of proofs:

binary_input_assertion(+atom,+list(byte),--callable) - one

See also:

check_binary_input/2

set_binary_input/3

set_binary_input/2

clean_binary_input/0

binary_input_assertion/2

Returns an assertion for checking that the temporary file being read have the expected binary contents.

Compilation flags:

static

Template:

binary_input_assertion(Bytes,Assertion)

Mode and number of proofs:

binary_input_assertion(+list(byte),--callable) - one

See also:

check_binary_input/1

set_binary_input/1

clean_binary_input/0

clean_binary_input/0

Cleans the temporary file used when testing binary input.

Compilation flags:

static

Mode and number of proofs:

clean_binary_input - one

See also:

set_binary_input/3

set_binary_input/2

set_binary_input/1

set_text_output/3

Creates a temporary file, in the same directory as the tests object, with the given text contents, and opens it for writing referenced by the given alias and using the additional options.

Compilation flags:

static

Template:

set_text_output(Alias,Contents,Options)

Mode and number of proofs:

set_text_output(+atom,+atom,+list(stream_option)) - one

set_text_output(+atom,+list(atom),+list(stream_option)) - one

See also:

text_output_assertion/4

check_text_output/3

clean_text_output/0

set_text_output/2

Creates a temporary file, in the same directory as the tests object, with the given text contents, and referenced by the given alias.

Compilation flags:

static

Template:

set_text_output(Alias,Contents)

Mode and number of proofs:

set_text_output(+atom,+atom) - one

set_text_output(+atom,+list(atom)) - one

See also:

text_output_assertion/3

check_text_output/2

clean_text_output/0

set_text_output/1

Creates a temporary file, in the same directory as the tests object, with the given text contents, and sets the current output stream to the file.

Compilation flags:

static

Template:

set_text_output(Contents)

Mode and number of proofs:

set_text_output(+atom) - one

set_text_output(+list(atom)) - one

See also:

text_output_assertion/2

check_text_output/1

clean_text_output/0

check_text_output/3

Checks that the temporary file (open with the given options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Alias,Contents,Options)

Mode and number of proofs:

check_text_output(+atom,+atom,+list(stream_option)) - zero_or_one

See also:

set_text_output/3

text_output_assertion/4

clean_text_output/0

check_text_output/2

Checks that the temporary file (open with default options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Alias,Contents)

Mode and number of proofs:

check_text_output(+atom,+atom) - zero_or_one

See also:

set_text_output/2

text_output_assertion/3

clean_text_output/0

check_text_output/1

Checks that the temporary file being written have the expected text contents.

Compilation flags:

static

Template:

check_text_output(Contents)

Mode and number of proofs:

check_text_output(+atom) - zero_or_one

See also:

set_text_output/1

text_output_assertion/2

clean_text_output/0

text_output_assertion/4

Returns an assertion for checking that the temporary file (open with the given options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Alias,Contents,Options,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,+atom,+list(stream_option),--callable) - one

See also:

set_text_output/3

check_text_output/3

clean_text_output/0

text_output_assertion/3

Returns an assertion for checking that the temporary file (open with default options and alias in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Alias,Contents,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,+atom,--callable) - one

See also:

set_text_output/2

check_text_output/2

clean_text_output/0

text_output_assertion/2

Returns an assertion for checking that the temporary file (open with default options in the same directory as the tests object) being written have the expected text contents.

Compilation flags:

static

Template:

text_output_assertion(Contents,Assertion)

Mode and number of proofs:

text_output_assertion(+atom,--callable) - one

See also:

set_text_output/1

check_text_output/1

clean_text_output/0

text_output_contents/3

Returns the contents of the temporary file (open with the given options and alias in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Alias,Contents,Options)

Mode and number of proofs:

text_output_contents(+atom,-list(character),+list(stream_option)) - one

text_output_contents/2

Returns the contents of the temporary file (open with default options and alias in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Alias,Contents)

Mode and number of proofs:

text_output_contents(+atom,-list(character)) - one

text_output_contents/1

Returns the contents of the temporary file (open with default options in the same directory as the tests object) being written.

Compilation flags:

static

Template:

text_output_contents(Contents)

Mode and number of proofs:

text_output_contents(-list(character)) - one

clean_text_output/0

Cleans the temporary file used when testing text output.

Compilation flags:

static

Mode and number of proofs:

clean_text_output - one

See also:

set_text_output/3

set_text_output/2

set_text_output/1

set_binary_output/3

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for writing referenced by the given alias and using the additional options.

Compilation flags:

static

Template:

set_binary_output(Alias,Contents,Options)

Mode and number of proofs:

set_binary_output(+atom,+list(byte),+list(stream_option)) - one

See also:

binary_output_assertion/3

check_binary_output/2

clean_binary_output/0

set_binary_output/2

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and opens it for writing referenced with the given alias.

Compilation flags:

static

Template:

set_binary_output(Alias,Bytes)

Mode and number of proofs:

set_binary_output(+atom,+list(byte)) - one

See also:

binary_output_assertion/3

check_binary_output/2

clean_binary_output/0

set_binary_output/1

Creates a temporary file, in the same directory as the tests object, with the given binary contents, and sets the current output stream to the file.

Compilation flags:

static

Template:

set_binary_output(Bytes)

Mode and number of proofs:

set_binary_output(+list(byte)) - one

See also:

binary_output_assertion/2

check_binary_output/1

clean_binary_output/0

check_binary_output/2

Checks that the temporary file (referenced by the given alias) have the expected binary contents.

Compilation flags:

static

Template:

check_binary_output(Alias,Bytes)

Mode and number of proofs:

check_binary_output(+atom,+list(byte)) - zero_or_one

See also:

set_binary_output/3

set_binary_output/2

binary_output_assertion/3

clean_binary_output/0

check_binary_output/1

Checks that the temporary file (open in the same directory as the tests object) have the expected binary contents.

Compilation flags:

static

Template:

check_binary_output(Bytes)

Mode and number of proofs:

check_binary_output(+list(byte)) - zero_or_one

See also:

set_binary_output/1

binary_output_assertion/2

clean_binary_output/0

binary_output_assertion/3

Returns an assertion for checking that the temporary file (referenced by the given alias) have the expected binary contents.

Compilation flags:

static

Template:

binary_output_assertion(Alias,Bytes,Assertion)

Mode and number of proofs:

binary_output_assertion(+atom,+list(byte),--callable) - one

See also:

set_binary_output/2

check_binary_output/2

clean_binary_output/0

binary_output_assertion/2

Returns an assertion for checking that the temporary file (open in the same directory as the tests object) have the expected binary contents.

Compilation flags:

static

Template:

binary_output_assertion(Bytes,Assertion)

Mode and number of proofs:

binary_output_assertion(+list(byte),--callable) - one

See also:

set_binary_output/1

check_binary_output/1

clean_binary_output/0

binary_output_contents/2

Returns the binary contents of the temporary file (referenced by the given alias) being written.

Compilation flags:

static

Template:

binary_output_contents(Alias,Bytes)

Mode and number of proofs:

binary_output_contents(+atom,-list(byte)) - one

binary_output_contents/1

Returns the binary contents of the temporary file being written.

Compilation flags:

static

Template:

binary_output_contents(Bytes)

Mode and number of proofs:

binary_output_contents(-list(byte)) - one

clean_binary_output/0

Cleans the temporary file used when testing binary output.

Compilation flags:

static

Mode and number of proofs:

clean_binary_output - one

See also:

set_binary_output/3

set_binary_output/2

set_binary_output/1

create_text_file/3

Creates a text file with the given contents. The file is open for writing using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_text_file(File,Contents,Options)

Mode and number of proofs:

create_text_file(+atom,+atom,+list(stream_option)) - one

create_text_file(+atom,+list(atom),+list(stream_option)) - one

create_text_file/2

Creates a text file with the given contents. The file is open for writing using default options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_text_file(File,Contents)

Mode and number of proofs:

create_text_file(+atom,+atom) - one

create_text_file(+atom,+list(atom)) - one

create_binary_file/2

Creates a binary file with the given contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

create_binary_file(File,Bytes)

Mode and number of proofs:

create_binary_file(+atom,+list(byte)) - one

check_text_file/3

Checks that the contents of a text file match the expected contents. The file is open for reading using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_text_file(File,Contents,Options)

Mode and number of proofs:

check_text_file(+atom,+atom,+list(stream_option)) - zero_or_one

See also:

text_file_assertion/4

check_text_file/2

Checks that the contents of a text file (open for reading using default options) match the expected contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_text_file(File,Contents)

Mode and number of proofs:

check_text_file(+atom,+atom) - zero_or_one

See also:

text_file_assertion/3

text_file_assertion/4

Returns an assertion for checking that the given file have the expected text contents. The file is open for reading using the given options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

text_file_assertion(File,Contents,Options,Assertion)

Mode and number of proofs:

text_file_assertion(+atom,+atom,+list(stream_option),--callable) - one

See also:

check_text_file/3

text_file_assertion/3

Returns an assertion for checking that the given file have the expected text contents. The file is open for reading using default options. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

text_file_assertion(File,Contents,Assertion)

Mode and number of proofs:

text_file_assertion(+atom,+atom,--callable) - one

See also:

check_text_file/2

check_binary_file/2

Checks the contents of a binary file match the expected contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

check_binary_file(File,Bytes)

Mode and number of proofs:

check_binary_file(+atom,+list(byte)) - zero_or_one

See also:

binary_file_assertion/3

binary_file_assertion/3

Returns an assertion for checking that the given file have the expected binary contents. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

binary_file_assertion(File,Bytes,Assertion)

Mode and number of proofs:

binary_file_assertion(+atom,+list(byte),--callable) - one

See also:

check_binary_file/2

clean_file/1

Closes any existing stream associated with the file and deletes the file if it exists. Relative file paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

clean_file(File)

Mode and number of proofs:

clean_file(+atom) - one

See also:

clean_directory/1

file_path/2

clean_directory/1

Deletes an empty directory if it exists. Relative directory paths are interpreted as relative to the tests object path.

Compilation flags:

static

Template:

clean_directory(Directory)

Mode and number of proofs:

clean_directory(+atom) - one

See also:

clean_file/1

file_path/2

closed_input_stream/2

Opens a temporary file in the same directory as the tests object with the given options for reading, closes it, and returns its stream handle.

Compilation flags:

static

Template:

closed_input_stream(Stream,Options)

Mode and number of proofs:

closed_input_stream(-stream,+list(stream_option)) - one

closed_output_stream/2

Opens a temporary file in the same directory as the tests object with the given options for writing, closes it, and returns its stream handle.

Compilation flags:

static

Template:

closed_output_stream(Stream,Options)

Mode and number of proofs:

closed_output_stream(-stream,+list(stream_option)) - zero_or_one

stream_position/1

Returns a syntactically valid stream position by opening a temporary file in the same directory as the tests object.

Compilation flags:

static

Template:

stream_position(Position)

Mode and number of proofs:

stream_position(-stream_position) - one

test/2

Table of defined tests.

Compilation flags:

static

Template:

test(Identifier,Test)

Mode and number of proofs:

test(?callable,?compound) - zero_or_more

Private predicates

running_test_sets_/0

Internal flag used when running two or more test sets as a unified set.

Compilation flags:

dynamic

Mode and number of proofs:

running_test_sets_ - zero_or_one

test/3

Compiled unit tests. The list of variables is used to ensure variable sharing between a test with its test options.

Compilation flags:

static

Template:

test(Identifier,Variables,Outcome)

Mode and number of proofs:

test(?callable,?list(variable),?nonvar) - zero_or_more

auxiliary_predicate_counter_/1

Counter for generating unique auxiliary predicate names.

Compilation flags:

dynamic

Template:

auxiliary_predicate_counter_(Counter)

Mode and number of proofs:

auxiliary_predicate_counter_(?integer) - one_or_more

test_/2

Table of compiled tests.

Compilation flags:

dynamic

Template:

test_(Identifier,Test)

Mode and number of proofs:

test_(?callable,?compound) - zero_or_more

selected_test_/1

Table of selected tests for execution.

Compilation flags:

dynamic

Template:

selected_test_(Identifier)

Mode and number of proofs:

selected_test_(?callable) - zero_or_more

skipped_/1

Counter for skipped tests.

Compilation flags:

dynamic

Template:

skipped_(Counter)

Mode and number of proofs:

skipped_(?integer) - zero_or_one

passed_/3

Counter and total time for passed tests.

Compilation flags:

dynamic

Template:

passed_(Counter,CPUTime,WallTime)

Mode and number of proofs:

passed_(?integer,-float,-float) - zero_or_one

failed_/3

Counter and total time for failed tests.

Compilation flags:

dynamic

Template:

failed_(Counter,CPUTime,WallTime)

Mode and number of proofs:

failed_(?integer,-float,-float) - zero_or_one

flaky_/1

Counter for failed tests that are marked as flaky.

Compilation flags:

dynamic

Template:

flaky_(Counter)

Mode and number of proofs:

flaky_(?integer) - zero_or_one

fired_/3

Fired clauses when running the unit tests.

Compilation flags:

dynamic

Template:

fired_(Entity,Predicate,Clause)

Mode and number of proofs:

fired_(?entity_identifier,?predicate_indicator,?integer) - zero_or_more

covered_/4

Auxiliary predicate for collecting statistics on clause coverage.

Compilation flags:

dynamic

Template:

covered_(Entity,Predicate,Covered,Total)

Mode and number of proofs:

covered_(?entity_identifier,?callable,?integer,?integer) - zero_or_more

Operators

op(700,xfx,=~=)

Scope:

public

 object

library_dependency_diagram

Predicates for generating library dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public library_dependency_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

library_load_diagram, file_load_diagram, entity_diagram

 object

library_dependency_diagram(Format)

	Format - Graph language file format.

Predicates for generating library dependency diagrams. A dependency exists when an entity in one library makes a reference to an entity in another library.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:33:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public library_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of library sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Library)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

library_load_diagram(Format), directory_load_diagram(Format), file_load_diagram(Format), entity_diagram(Format)

 object

library_load_diagram

Predicates for generating library loading dependency diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2019-06-13

Compilation flags:

static, context_switching_calls

Extends:

public library_load_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

library_dependency_diagram, file_dependency_diagram, entity_diagram

 object

library_load_diagram(Format)

	Format - Graph language file format.

Predicates for generating library loading dependency diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:33:1

Date: 2024-04-01

Compilation flags:

static, context_switching_calls

Imports:

public library_diagram(Format)

Uses:

entity_diagram(Format)

list

logtalk

modules_diagram_support

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	sub_diagram_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sub_diagram_/1

Table of library sub-diagrams to support their generation.

Compilation flags:

dynamic

Template:

sub_diagram_(Library)

Mode and number of proofs:

sub_diagram_(?atom) - zero_or_more

Operators

(none)

See also

library_dependency_diagram(Format), directory_dependency_diagram(Format), file_dependency_diagram(Format), entity_diagram(Format)

 object

list

List predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 4:3:0

Date: 2024-05-24

Compilation flags:

static, context_switching_calls

Implements:

public listp

Extends:

public compound

Remarks:

	Portability notes: This object will use the backend Prolog system msort/2 and sort/4 built-in predicates when available.

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	as_difflist/2

	Protected predicates

	Private predicates

	Operators

Public predicates

as_difflist/2

Converts a list to a difference list.

Compilation flags:

static

Template:

as_difflist(List,Diffist)

Mode and number of proofs:

as_difflist(+list,-difference_list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list(Type), numberlist, varlist, difflist

 object

list(Type)

List predicates with elements constrained to a single type.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:22:0

Date: 2018-07-11

Compilation flags:

static, context_switching_calls

Extends:

public list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 as_difflist/2 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 length/2 max/2 member/2 memberchk/2 min/2 msort/2 msort/3 new/1 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 reverse/2 same_length/2 same_length/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, numberlist, varlist, difflist

 object

logger

Global logger object for logging events to files.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static, context_switching_calls

Implements:

public loggingp

Remarks:

(none)

Inherited public predicates:

 define_log_file/2 disable_logging/1 enable_logging/1 init_log_file/2 log_event/2 log_file/2 logging/1

	Public predicates

	Protected predicates

	Private predicates

	log_file_/2

	logging_to_file_/2

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

log_file_/2

Table of log files.

Compilation flags:

dynamic

Template:

log_file_(Alias,File)

Mode and number of proofs:

log_file_(?atom,?nonvar) - zero_or_more

logging_to_file_/2

Table of logging file status for log files.

Compilation flags:

dynamic

Template:

logging_to_file_(Alias,Status)

Mode and number of proofs:

logging_to_file_(?atom,?atom) - zero_or_more

Operators

(none)

 object

logtalk

Built-in object providing message printing, debugging, library, source file, and hacking methods.

Availability:

built_in

Author: Paulo Moura

Version: 3:3:0

Date: 2025-10-06

Compilation flags:

static, built_in, context_switching_calls, threaded

Dependencies:

(none)

Remarks:

	Default message kinds: silent, silent(Key), banner, help, comment, comment(Key), information, information(Key), warning, warning(Key), error, error(Key), debug, debug(Key), question, and question(Key).

	Printing of silent messages: By default, silent messages are not printed. These messages are only useful when intercepted.

	Printing of banner and comment messages: By default, banner and comment messages are only printed when the report flag is turned on.

	Printing of help, information, and question messages: These messages are always printed by default as they provide requested output.

	Printing of warning messages: By default, warning messages are not printed when the report flag is turned off.

	Printing of error messages: These messages are always printed by default.

	Printing of debug messages: By default, debug messages are only printed when the debug flag is turned on. The compiler suppresses debug message printing goals when compiling in optimized mode.

	Meta messages: A meta message is a message that have another message as argument and is typically used for debugging messages. Meta messages avoid the need of defining tokenizer rules for every message but can be intercepted as any other message.

	Meta message @Message: By default, the message is printed as passed to the write/1 predicate followed by a newline.

	Meta message Key-Value: By default, the message is printed as “Key: Value” followed by a newline. The key is printed as passed to the write/1 predicate while the value is printed as passed to the writeq/1 predicate.

	Meta message Format+Arguments: By default, the message is printed as passed to the format/2 predicate.

	Meta message List: By default, the list items are printed indented one per line. The items are preceded by a dash and can be @Message, Key-Value, or Format+Arguments messages. If that is not the case, the item is printed as passed to the writeq/1 predicate.

	Meta message Title::List: By default, the title is printed followed by a newline and the indented list items, one per line. The items are printed as in the List meta message.

	Meta message [Stream,Prefix]>>Goal: By default, call user-defined Goal in the context of user. The use of a lambda expression allows passing the message stream and prefix. Printing the prefix is delegated to the goal.

	Meta message [Stream]>>Goal: By default, call user-defined Goal in the context of user. The use of a lambda expression allows passing the message stream.

	Message tokens: at_same_line, tab(Expression), nl, flush, Format-Arguments, term(Term,Options), ansi(Attributes,Format,Arguments), begin(Kind,Variable), and end(Variable).

	Multi-threading applications: Predicates calling methods such as print_message/3, ask_question/5, or compile_aux_clauses/1 may need to be declared synchronized in order to avoid race conditions.

Inherited public predicates:

(none)

	Public predicates

	print_message/3

	print_message_tokens/3

	print_message_token/4

	message_tokens//2

	message_prefix_stream/4

	message_prefix_file/6

	message_hook/4

	ask_question/5

	question_hook/6

	question_prompt_stream/4

	trace_event/2

	debug_handler/1

	active_debug_handler/1

	activate_debug_handler/1

	deactivate_debug_handler/0

	debug_handler/3

	expand_library_path/2

	loaded_file/1

	loaded_file_property/2

	file_type_extension/2

	compile_aux_clauses/1

	entity_prefix/2

	compile_predicate_heads/4

	compile_predicate_indicators/3

	decompile_predicate_heads/4

	decompile_predicate_indicators/4

	execution_context/7

	Protected predicates

	Private predicates

	active_debug_handler_/1

	Operators

Public predicates

print_message/3

Prints a message of the given kind for the specified component.

Compilation flags:

static

Template:

print_message(Kind,Component,Message)

Mode and number of proofs:

print_message(+nonvar,+nonvar,+nonvar) - one

print_message_tokens/3

Print the messages tokens to the given stream, prefixing each line with the specified atom.

Compilation flags:

static

Template:

print_message_tokens(Stream,Prefix,Tokens)

Mode and number of proofs:

print_message_tokens(@stream_or_alias,+atom,@list(nonvar)) - one

print_message_token/4

User-defined hook predicate for printing a message token (see this object remarks).

Compilation flags:

dynamic, multifile

Template:

print_message_token(Stream,Prefix,Token,Tokens)

Mode and number of proofs:

print_message_token(@stream_or_alias,@atom,@nonvar,@list(nonvar)) - zero_or_one

message_tokens//2

User-defined hook grammar rule for converting a message into a list of tokens (see this object remarks).

Compilation flags:

dynamic, multifile

Template:

message_tokens(Message,Component)

Mode and number of proofs:

message_tokens(+nonvar,+nonvar) - zero_or_one

message_prefix_stream/4

Message line prefix and output stream to be used when printing a message given its kind and component.

Compilation flags:

dynamic, multifile

Template:

message_prefix_stream(Kind,Component,Prefix,Stream)

Mode and number of proofs:

message_prefix_stream(?nonvar,?nonvar,?atom,?stream_or_alias) - zero_or_more

message_prefix_file/6

Message line prefix and output file to be used when printing a message given its kind and component.

Compilation flags:

dynamic, multifile

Template:

message_prefix_file(Kind,Component,Prefix,File,Mode,Options)

Mode and number of proofs:

message_prefix_file(?nonvar,?nonvar,?atom,?atom,?atom,?list(compound)) - zero_or_more

message_hook/4

User-defined hook predicate for intercepting message printing calls.

Compilation flags:

dynamic, multifile

Template:

message_hook(Message,Kind,Component,Tokens)

Mode and number of proofs:

message_hook(+nonvar,+nonvar,+nonvar,+list(nonvar)) - zero_or_one

ask_question/5

Asks a question and reads the answer until the check predicate is true.

Compilation flags:

static

Template:

ask_question(Kind,Component,Question,Check,Answer)

Meta-predicate template:

ask_question(*,*,*,1,*)

Mode and number of proofs:

ask_question(+nonvar,+nonvar,+nonvar,+callable,-term) - one

question_hook/6

User-defined hook predicate for intercepting question asking calls.

Compilation flags:

dynamic, multifile

Template:

question_hook(Question,Kind,Component,Tokens,Check,Answer)

Meta-predicate template:

question_hook(*,*,*,*,1,*)

Mode and number of proofs:

question_hook(+nonvar,+nonvar,+nonvar,+list(nonvar),+callable,-term) - zero_or_one

question_prompt_stream/4

Prompt and input stream to be used when asking a question given its kind and component.

Compilation flags:

dynamic, multifile

Template:

question_prompt_stream(Kind,Component,Prompt,Stream)

Mode and number of proofs:

question_prompt_stream(?nonvar,?nonvar,?atom,?stream_or_alias) - zero_or_more

trace_event/2

Trace event handler. The runtime calls all trace event handlers using a failure-driven loop before calling the debug event handler.

Compilation flags:

dynamic, multifile

Template:

trace_event(Event,ExecutionContext)

Mode and number of proofs:

trace_event(@callable,@execution_context) - zero

Remarks:

	Unification events: Generated after a successful unification with a fact - fact(Entity,Fact,Clause,File,Line) - or a rule head - rule(Entity,Head,Clause,File,Line).

	Goal events: Generated when calling a goal: top_goal(Goal,CompiledGoal) or goal(Goal,CompiledGoal).

debug_handler/1

Enumerates, by backtracking, all declared debug handler providers. Define a clause for this predicate to declare a new debug handler provider.

Compilation flags:

static, multifile

Template:

debug_handler(Provider)

Mode and number of proofs:

debug_handler(?object_identifier) - zero_or_more

debug_handler(?category_identifier) - zero_or_more

active_debug_handler/1

Current active debug handler provider if any. There is at most one active debug handler provider at any given moment.

Compilation flags:

static

Template:

active_debug_handler(Provider)

Mode and number of proofs:

active_debug_handler(?category_identifier) - zero_or_one

active_debug_handler(?category_identifier) - zero_or_one

activate_debug_handler/1

Activates the given debug handler provider. There is at most one active debug handler provider at any given moment. Fails if the object or category is not declared as a debug handler provider.

Compilation flags:

static

Template:

activate_debug_handler(Provider)

Mode and number of proofs:

activate_debug_handler(@object_identifier) - zero_or_one

activate_debug_handler(@category_identifier) - zero_or_one

deactivate_debug_handler/0

Deactivates the current debug handler provider if any.

Compilation flags:

static

Mode and number of proofs:

deactivate_debug_handler - one

debug_handler/3

Debug event handler. Called by the runtime when the given provider is active.

Compilation flags:

static, multifile

Template:

debug_handler(Provider,Event,ExecutionContext)

Mode and number of proofs:

debug_handler(+object_identifier,+callable,+execution_context) - zero_or_more

debug_handler(+category_identifier,+callable,+execution_context) - zero_or_more

Remarks:

	Unification events: Generated after a successful unification with a fact - fact(Entity,Fact,Clause,File,Line) - or a rule head - rule(Entity,Head,Clause,File,Line).

	Goal events: Generated when calling a goal: top_goal(Goal,CompiledGoal) or goal(Goal,CompiledGoal).

expand_library_path/2

Expands a library alias (an atom) or a compound term (using library notation) into its absolute path. Uses a depth bound to prevent loops.

Compilation flags:

static

Template:

expand_library_path(LibraryAlias,AbsolutePath)

Mode and number of proofs:

expand_library_path(+atom,?atom) - zero_or_one

expand_library_path(+callable,?atom) - zero_or_one

loaded_file/1

Enumerates, by backtracking, all loaded files, returning their full paths.

Compilation flags:

static

Template:

loaded_file(Path)

Mode and number of proofs:

loaded_file(?atom) - zero_or_more

loaded_file_property/2

Enumerates, by backtracking, loaded file properties.

Compilation flags:

static

Template:

loaded_file_property(Path,Property)

Mode and number of proofs:

loaded_file_property(?atom,?compound) - zero_or_more

Remarks:

	Property basename/1: Basename of the file (includes the file extension, if any).

	Property directory/1: Directory of the file (ending with a slash).

	Property mode/1: Compilation mode of the file (possible values are optimal, normal, and debug).

	Property flags/1: Explicit flags used for compiling the file.

	Property text_properties/1: List of the file text properties (encoding/1 and bom/1). Empty if no encoding/1 directive is present and the stream used for reading the file does not have a bom/1 (or equivalent) property.

	Property target/1: Full path of the generated intermediate Prolog file.

	Property modified/1: File modification time stamp (should be regarded as an opaque but otherwise comparable term).

	Property parent/1: Full path of the parent file that loaded the file.

	Property includes/2: Full path of a file included by the file and the line of the include/1 directive.

	Property includes/1: Full path of a file included by the file.

	Property library/1: Library alias for the library that includes the file.

	Property object/3: Identifier for an object defined in the file and the start and end lines of its definition.

	Property object/1: Identifier for an object defined in the file.

	Property protocol/3: Identifier for a protocol defined in the file and the start and end lines of its definition.

	Property protocol/1: Identifier for a protocol defined in the file.

	Property category/3: Identifier for a category defined in the file and the start and end lines of its definition.

	Property category/1: Identifier for a category defined in the file.

file_type_extension/2

Enumerates, by backtracking, all defined file type extensions. The defined types are: source, object, logtalk, prolog, and tmp. The source type returns both logtalk and prolog type extensions.

Compilation flags:

static

Template:

file_type_extension(Type,Extension)

Mode and number of proofs:

file_type_extension(?atom,?atom) - zero_or_more

compile_aux_clauses/1

Compiles a list of auxiliary clauses. Can only be called during source file compilation, usually from term_expansion/2 or goal_expansion/2 hook predicate definitions.

Compilation flags:

static

Template:

compile_aux_clauses(Clauses)

Mode and number of proofs:

compile_aux_clauses(@list(clause)) - one

entity_prefix/2

Converts between an entity identifier and the entity prefix that is used for its compiled code. When none of the arguments is instantiated, it returns the identifier and the prefix of the entity under compilation, if any.

Compilation flags:

static

Template:

entity_prefix(Entity,Prefix)

Mode and number of proofs:

entity_prefix(?entity_identifier,?atom) - zero_or_one

compile_predicate_heads/4

Compiles clause heads. The heads are compiled in the context of the entity under compilation when the entity argument is not instantiated.

Compilation flags:

static

Template:

compile_predicate_heads(Heads,Entity,CompiledHeads,ExecutionContext)

Mode and number of proofs:

compile_predicate_heads(@list(callable),?entity_identifier,-list(callable),@execution_context) - zero_or_one

compile_predicate_heads(@conjunction(callable),?entity_identifier,-conjunction(callable),@execution_context) - zero_or_one

compile_predicate_heads(@callable,?entity_identifier,-callable,@execution_context) - zero_or_one

compile_predicate_indicators/3

Compiles predicate indicators. The predicate are compiled in the context of the entity under compilation when the entity argument is not instantiated.

Compilation flags:

static

Template:

compile_predicate_indicators(PredicateIndicators,Entity,CompiledPredicateIndicators)

Mode and number of proofs:

compile_predicate_indicators(@list(predicate_indicator),?entity_identifier,-list(predicate_indicator)) - zero_or_one

compile_predicate_indicators(@conjunction(predicate_indicator),?entity_identifier,-conjunction(predicate_indicator)) - zero_or_one

compile_predicate_indicators(@predicate_indicator,?entity_identifier,-predicate_indicator) - zero_or_one

decompile_predicate_heads/4

Decompiles clause heads. All compiled clause heads must belong to the same entity, which must be loaded.

Compilation flags:

static

Template:

decompile_predicate_heads(CompiledHeads,Entity,Type,Heads)

Mode and number of proofs:

decompile_predicate_heads(@list(callable),-entity_identifier,-atom,-list(callable)) - zero_or_one

decompile_predicate_heads(@conjunction(callable),-entity_identifier,-atom,-conjunction(callable)) - zero_or_one

decompile_predicate_heads(@callable,-entity_identifier,-atom,-callable) - zero_or_one

decompile_predicate_indicators/4

Decompiles predicate indicators. All compiled predicate indicators must belong to the same entity, which must be loaded.

Compilation flags:

static

Template:

decompile_predicate_indicators(CompiledPredicateIndicators,Entity,Type,PredicateIndicators)

Mode and number of proofs:

decompile_predicate_indicators(@list(predicate_indicator),-entity_identifier,-atom,-list(predicate_indicator)) - zero_or_one

decompile_predicate_indicators(@conjunction(predicate_indicator),-entity_identifier,-atom,-conjunction(predicate_indicator)) - zero_or_one

decompile_predicate_indicators(@predicate_indicator,-entity_identifier,-atom,-predicate_indicator) - zero_or_one

execution_context/7

Execution context term data. Execution context terms should be considered opaque terms subject to change without notice.

Compilation flags:

static

Template:

execution_context(ExecutionContext,Entity,Sender,This,Self,MetaCallContext,CoinductionStack)

Mode and number of proofs:

execution_context(?nonvar,?entity_identifier,?object_identifier,?object_identifier,?object_identifier,@list(callable),@list(callable)) - zero_or_one

Protected predicates

(none)

Private predicates

active_debug_handler_/1

Current active debug handler provider. There is at most one active debug handler provider at any given moment.

Compilation flags:

dynamic

Template:

active_debug_handler_(Provider)

Mode and number of proofs:

active_debug_handler_(?entity_identifier) - zero_or_one

Operators

(none)

 object

loop

Loop control structures predicates.

Availability:

logtalk_load(loops(loader))

Author: Paulo Moura

Version: 1:4:1

Date: 2020-12-20

Compilation flags:

static, context_switching_calls

Implements:

public loopp

Remarks:

(none)

Inherited public predicates:

 dowhile/2 fordownto/3 fordownto/4 fordownto/5 foreach/3 foreach/4 forto/3 forto/4 forto/5 whiledo/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

magic

Object encapsulating magic methods.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Ulf Nilsson. Ported to Logtalk and augmented with stratified negation by Victor Lagerkvist.

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	magicise/4

	magic/2

	Protected predicates

	Private predicates

	Operators

Public predicates

magicise/4

Transform (Head :- Body) into a magic clause (NewHead :- NewBody).

Compilation flags:

static

Template:

magicise(Head,Body,NewHead,NewBody)

Mode and number of proofs:

magicise(+term,+list,-term,-list) - zero_or_one

magic/2

Prefix the predicate symbol of Old with magic.

Compilation flags:

static

Template:

magic(Old,New)

Mode and number of proofs:

magic(+callable,-callable) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

magic_expansion(Mode)

Expands rules of the form p if f and g to the more manageable rule(p, [f,g]) and performs magic transformation of clauses.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public flatting

Extends:

public debug_expansion(Mode)

Uses:

list

magic

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

maxheap

Max-heap implementation. Uses standard order to compare keys.

Availability:

logtalk_load(heaps(loader))

Author: Paulo Moura.

Version: 1:0:0

Date: 2010-02-19

Compilation flags:

static, context_switching_calls

Extends:

public heap(>)

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

maybe

Types and predicates for type-checking and handling optional terms. Inspired by Haskell.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 0:7:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

arbitrary::arbitrary/1

arbitrary::arbitrary/2

Uses:

optional

optional(Optional)

random

type

Remarks:

	Type-checking support: Defines type maybe(Type) for checking optional terms where the value hold by the optional term must be of the given type.

	QuickCheck support: Defines clauses for the arbitrary::arbitrary/1-2 predicates to allow generating random values for the maybe(Type) type.

Inherited public predicates:

(none)

	Public predicates

	cat/2

	Protected predicates

	Private predicates

	Operators

Public predicates

cat/2

Returns the values stored in the non-empty optional terms.

Compilation flags:

static

Template:

cat(Optionals,Values)

Mode and number of proofs:

cat(+list(optional),-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

optional, optional(Optional), type, arbitrary

 object

mermaid_graph_language

Predicates for generating graph files using Mermaid.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2025-09-25

Compilation flags:

static, context_switching_calls

Implements:

public graph_language_protocol

Imports:

public options

Provides:

graph_language_registry::language_object/2

Uses:

list

os

term_io

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 edge/6 file_footer/3 file_header/3 graph_footer/5 graph_header/5 node/7 option/2 option/3 output_file_name/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

meta

Some useful meta-predicates.

Availability:

logtalk_load(meta(loader))

Author: Paulo Moura

Version: 5:2:0

Date: 2016-10-06

Compilation flags:

static, context_switching_calls

Implements:

public metap

Aliases:

metap map/2 as succeeds/2

metap map/2 as maplist/2

metap map/3 as maplist/3

metap map/4 as maplist/4

metap map/5 as maplist/5

metap map/6 as maplist/6

metap map/7 as maplist/7

metap map/8 as maplist/8

metap include/3 as filter/3

metap fold_left/4 as foldl/4

metap fold_left_1/3 as foldl1/3

metap fold_right/4 as foldr/4

metap fold_right_1/3 as foldr1/3

metap scan_left/4 as scanl/4

metap scan_left_1/3 as scanl1/3

metap scan_right/4 as scanr/4

metap scan_right_1/3 as scanr1/3

Remarks:

(none)

Inherited public predicates:

 exclude/3 findall_member/4 findall_member/5 fold_left/4 fold_left_1/3 fold_right/4 fold_right_1/3 include/3 map/2 map/3 map/4 map/5 map/6 map/7 map/8 map_reduce/5 partition/4 partition/6 scan_left/4 scan_left_1/3 scan_right/4 scan_right_1/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

meta_compiler

 object

meta_compiler

Compiler for the meta object meta-predicates. Generates auxiliary predicates in order to avoid meta-call overheads.

Availability:

logtalk_load(meta_compiler(loader))

Author: Paulo Moura

Version: 0:16:0

Date: 2024-10-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

gensym

list

logtalk

user

Remarks:

	Usage: Compile source files with calls to the meta object meta-predicates using the compiler option hook(meta_compiler).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	generated_predicate_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

generated_predicate_/1

Table of generated auxiliary predicates.

Compilation flags:

dynamic

Template:

generated_predicate_(Predicate)

Mode and number of proofs:

generated_predicate_(?predicate_indicator) - zero_or_more

Operators

(none)

See also

meta

 object

metagol

Inductive logic programming (ILP) system based on meta-interpretive learning.

Availability:

logtalk_load(metagol(loader))

Author: Metagol authors; adapted to Logtalk by Paulo Moura.

Version: 0:24:4

Date: 2024-03-15

Copyright: Copyright 2016 Metagol authors; Copyright 2018-2024 Paulo Moura

License: BSD-3-Clause

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_tokens//2

logtalk::message_prefix_stream/4

Uses:

coroutining

integer

list

logtalk

meta

timeout

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	learn/3

	learn/2

	learn_seq/2

	learn_with_timeout/4

	program_to_clauses/2

	pprint/1

	metarule/6

	head_pred/1

	body_pred/1

	ibk/3

	func_test/3

	functional/0

	min_clauses/1

	max_clauses/1

	max_inv_preds/1

	metarule_next_id/1

	timeout/1

	Protected predicates

	pprint_clause/1

	pprint_clauses/1

	compiled_pred_call/2

	body_pred_call/2

	type/3

	Private predicates

	Operators

Public predicates

learn/3

Learns from a set of positive examples and a set of negative examples and returns the learned program.

Compilation flags:

static

Template:

learn(PositiveExamples,NegativeExamples,Program)

Mode and number of proofs:

learn(@list(example),@list(example),-list(term)) - zero_or_more

learn/2

Learns from a set of positive examples and a set of negative examples and pretty prints the learned program.

Compilation flags:

static

Template:

learn(PositiveExamples,NegativeExamples)

Mode and number of proofs:

learn(@list(example),@list(example)) - zero_or_more

learn_seq/2

Learns from a sequence of examples represented as a list of PositiveExamples/NegativeExamples elements and returns the learned program.

Compilation flags:

static

Template:

learn_seq(Examples,Program)

Mode and number of proofs:

learn_seq(@list(example),-list(clause)) - zero_or_one

learn_with_timeout/4

Learns from a set of positive examples and a set of negative examples and returns the learned program constrained by the given timeout or its default value.

Compilation flags:

static

Template:

learn_with_timeout(PositiveExamples,NegativeExamples,Program,Timeout)

Mode and number of proofs:

learn_with_timeout(@list(example),@list(example),-list(term),+number) - zero_or_one_or_error

learn_with_timeout(@list(example),@list(example),-list(term),-number) - zero_or_one_or_error

Exceptions:

Learning does not complete in the allowed time:

timeout(learn(PositiveExamples,NegativeExamples,Program))

program_to_clauses/2

Converts a learned program into a list of clauses.

Compilation flags:

static

Template:

program_to_clauses(Program,Clauses)

Mode and number of proofs:

program_to_clauses(@list(term),-list(clause)) - one

pprint/1

Pretty prints a learned program.

Compilation flags:

static

Template:

pprint(Program)

Mode and number of proofs:

pprint(@list(term)) - one

metarule/6

Compilation flags:

static

head_pred/1

Compilation flags:

static

body_pred/1

Compilation flags:

dynamic

ibk/3

Compilation flags:

static

func_test/3

Compilation flags:

static

functional/0

Compilation flags:

dynamic

min_clauses/1

Compilation flags:

dynamic

max_clauses/1

Compilation flags:

dynamic

max_inv_preds/1

Compilation flags:

dynamic

metarule_next_id/1

Compilation flags:

dynamic

timeout/1

Compilation flags:

dynamic

Protected predicates

pprint_clause/1

Compilation flags:

static

pprint_clauses/1

Compilation flags:

static

compiled_pred_call/2

Compilation flags:

dynamic

body_pred_call/2

Compilation flags:

dynamic

type/3

Compilation flags:

dynamic

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

minheap

Min-heap implementation. Uses standard order to compare keys.

Availability:

logtalk_load(heaps(loader))

Author: Paulo Moura.

Version: 1:0:0

Date: 2010-02-19

Compilation flags:

static, context_switching_calls

Extends:

public heap(<)

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_heap/2 as_list/2 check/1 delete/4 depth/2 empty/1 ground/1 insert/4 insert_all/3 merge/3 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 size/2 subsumes/2 subterm/2 top/3 top_next/5 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

minimal_output

Intercepts unit test execution messages and outputs a minimal report.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 3:0:0

Date: 2021-05-27

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(minimal_output)).

	Limitations: Cannot be used when the test objects also intercept lgtunit messages.

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

modules_diagram_support

Utility predicates for supporting Prolog modules in diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 0:19:5

Date: 2022-07-08

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: ECLiPSe, SICStus Prolog, SWI-Prolog, and YAP.

Inherited public predicates:

(none)

	Public predicates

	module_property/2

	loaded_file_property/2

	source_file_extension/1

	Protected predicates

	Private predicates

	Operators

Public predicates

module_property/2

Access to module properties, at least exports/1, file/1, and file/2 but also declares/2, defines/2, calls/2, and provides/3 when possible.

Compilation flags:

static

Template:

module_property(Module,Property)

Mode and number of proofs:

module_property(?atom,?callable) - zero_or_more

loaded_file_property/2

Access to loaded source file properties, at least basename/1, directory/1 but also parent/1 when possible.

Compilation flags:

static

Template:

loaded_file_property(File,Property)

Mode and number of proofs:

loaded_file_property(?atom,?callable) - zero_or_more

source_file_extension/1

Valid source file extension for Prolog source files.

Compilation flags:

static

Template:

source_file_extension(Extension)

Mode and number of proofs:

source_file_extension(?atom) - one_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

mutations_store

Stores mutation definitions for selected types. User extensible by defining objects or categories defining clauses for the mutation/3 predicate and using this object as a hook object for their compilation.

Availability:

logtalk_load(mutations(loader))

Author: Paulo Moura

Version: 0:1:0

Date: 2023-11-23

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

fast_random

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	mutation/3

	counter/2

	Protected predicates

	Private predicates

	mutation/4

	counter_/2

	Operators

Public predicates

mutation/3

Returns a random mutation of a term into another term of the same type. The input Term is assumed to be valid for the given Type.

Compilation flags:

static

Template:

mutation(Type,Term,Mutation)

Mode and number of proofs:

mutation(@callable,@term,-term) - one

counter/2

Table of the number of mutations available per type.

Compilation flags:

static

Template:

counter(Type,N)

Mode and number of proofs:

counter(?callable,?positive_integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

mutation/4

Returns a random mutation of a term into another term of the same type using mutator N. The input Term is assume to be valid for the given Type.

Compilation flags:

static, multifile

Template:

mutation(Type,N,Term,Mutation)

Mode and number of proofs:

mutation(?callable,?positive_integer,@term,-term) - zero_or_more

counter_/2

Internal counter for the number of mutations available for a given type.

Compilation flags:

dynamic

Template:

counter_(Type,N)

Mode and number of proofs:

counter_(?callable,?positive_integer) - zero_or_more

Operators

(none)

See also

type

 object

natural

Natural numbers data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2025-01-16

Compilation flags:

static, context_switching_calls

Extends:

public integer

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 =~= / 2 (>)/2 (>=)/2 approximately_equal/2 approximately_equal/3 between/3 check/1 depth/2 essentially_equal/3 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 plus/3 power_sequence/4 sequence/3 sequence/4 singletons/2 subsumes/2 subterm/2 succ/2 tolerance_equal/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

navltree

Nested dictionary implementation based on the AVL tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private avltree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

nrbtree, nbintree

 object

nbintree

Nested dictionary implementation based on the simple binary tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private bintree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

nrbtree, navltree

 object

noc_metric

Number of entity clauses metric. The score is represented using the compound term number_of_clauses(Total, User).

Availability:

logtalk_load(code_metrics(loader))

Author: Ebrahim Azarisooreh and Paulo Moura

Version: 0:14:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

nor_metric

Number of entity rules metric. The score is represented using the compound term number_of_rules(Total, User).

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:5:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

nrbtree

Nested dictionary implementation based on the red-black tree implementation. Uses standard order to compare keys.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura.

Version: 0:1:0

Date: 2021-04-09

Compilation flags:

static, context_switching_calls

Implements:

public nested_dictionary_protocol

Extends:

private rbtree

Remarks:

(none)

Inherited public predicates:

 as_curly_bracketed/2 as_nested_dictionary/2 delete_in/4 empty/1 insert_in/4 lookup_in/3 new/1 update_in/4 update_in/5

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

navltree, nbintree

 object

number

Number data type predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:14:0

Date: 2023-12-07

Compilation flags:

static, context_switching_calls

Extends:

public atomic

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	approximately_equal/2

	approximately_equal/3

	essentially_equal/3

	tolerance_equal/4

	=~= / 2

	Protected predicates

	Private predicates

	Operators

	op(700,xfx,=~=)

Public predicates

approximately_equal/2

Compares two numbers for approximate equality given the epsilon arithmetic constant value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * epsilon. No type-checking.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2)

Mode and number of proofs:

approximately_equal(+number,+number) - zero_or_one

approximately_equal/3

Compares two numbers for approximate equality given a user-defined epsilon value using the de facto standard formula abs(Number1 - Number2) =< max(abs(Number1), abs(Number2)) * Epsilon. No type-checking.

Compilation flags:

static

Template:

approximately_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

approximately_equal(+number,+number,+number) - zero_or_one

Remarks:

	Epsilon range: Epsilon should be the epsilon arithmetic constant value or a small multiple of it. Only use a larger value if a greater error is expected.

	Comparison with essential equality: For the same epsilon value, approximate equality is weaker requirement than essential equality.

essentially_equal/3

Compares two numbers for essential equality given an epsilon value using the de facto standard formula abs(Number1 - Number2) =< min(abs(Number1), abs(Number2)) * Epsilon. No type-checking.

Compilation flags:

static

Template:

essentially_equal(Number1,Number2,Epsilon)

Mode and number of proofs:

essentially_equal(+number,+number,+number) - zero_or_one

Remarks:

	Comparison with approximate equality: For the same epsilon value, essential equality is a stronger requirement than approximate equality.

tolerance_equal/4

Compares two numbers for close equality given relative and absolute tolerances using the de facto standard formula abs(Number1 - Number2) =< max(RelativeTolerance * max(abs(Number1), abs(Number2)), AbsoluteTolerance). No type-checking.

Compilation flags:

static

Template:

tolerance_equal(Number1,Number2,RelativeTolerance,AbsoluteTolerance)

Mode and number of proofs:

tolerance_equal(+number,+number,+number,+number) - zero_or_one

=~= / 2

Compares two floats (or lists of floats) for approximate equality using 100*epsilon for the absolute error and, if that fails, 99.999% accuracy for the relative error. Note that these precision values may not be adequate for all cases. No type-checking.

Compilation flags:

static

Template:

=~=(Float1,Float2)

Mode and number of proofs:

=~=(+number,+number) - zero_or_one

=~=(+list(number),+list(number)) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

op(700,xfx,=~=)

Scope:

public

 object

number_grammars(Format)

Number grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Uses:

list

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	bit//1

	bits//1

	digit//1

	digits//1

	hex_digit//1

	hex_digits//1

	natural//1

	integer//1

	float//1

	number//1

	sign//1

	dot//1

	Protected predicates

	Private predicates

	Operators

Public predicates

bit//1

Parses a single bit.

Compilation flags:

static

Template:

bit(Bit)

Mode and number of proofs:

bit(?integer) - zero_or_one

bits//1

Parses a sequence of one or more bits.

Compilation flags:

static

Template:

bits(Bits)

Mode and number of proofs:

bits(?list(integer)) - zero_or_one

digit//1

Parses a single decimal digit.

Compilation flags:

static

Template:

digit(Digit)

Mode and number of proofs:

digit(?atomic) - zero_or_one

digits//1

Parses a sequence of zero of more digits.

Compilation flags:

static

Template:

digits(Digits)

Mode and number of proofs:

digits(?list(atomic)) - one

hex_digit//1

Parses a single hexa-decimal digit.

Compilation flags:

static

Template:

hex_digit(HexDigit)

Mode and number of proofs:

hex_digit(?atomic) - zero_or_one

hex_digits//1

Parses a sequence of zero or more hexa-decimal digits.

Compilation flags:

static

Template:

hex_digits(HexDigits)

Mode and number of proofs:

hex_digits(?list(atomic)) - one

natural//1

Parses a natural number (a non signed integer).

Compilation flags:

static

Template:

natural(Natural)

Mode and number of proofs:

natural(?non_negative_integer) - zero_or_one

integer//1

Parses an integer.

Compilation flags:

static

Template:

integer(Integer)

Mode and number of proofs:

integer(?integer) - zero_or_one

float//1

Parses a float.

Compilation flags:

static

Template:

float(Float)

Mode and number of proofs:

float(?float) - zero_or_one

number//1

Parses a number (an integer or a float).

Compilation flags:

static

Template:

number(Number)

Mode and number of proofs:

number(?number) - zero_or_one

sign//1

Parses a number sign (plus or minus).

Compilation flags:

static

Template:

sign(Sign)

Mode and number of proofs:

sign(?atomic) - zero_or_one

dot//1

Parses a decimal dot.

Compilation flags:

static

Template:

dot(Dot)

Mode and number of proofs:

dot(?atomic) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

numberlist

List of numbers predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:16:0

Date: 2025-03-13

Compilation flags:

static, context_switching_calls

Implements:

public numberlistp

Extends:

public list

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/2 append/3 as_difflist/2 average/2 chebyshev_distance/3 chebyshev_norm/2 check/1 delete/3 delete_matches/3 depth/2 drop/3 empty/1 euclidean_distance/3 euclidean_norm/2 flatten/2 ground/1 hamming_distance/3 keysort/2 last/2 least_common_multiple/2 length/2 manhattan_distance/3 manhattan_norm/2 max/2 median/2 member/2 memberchk/2 min/2 min_max/3 modes/2 msort/2 msort/3 new/1 nextto/3 normalize_range/2 normalize_range/4 normalize_scalar/2 normalize_unit/2 nth0/3 nth0/4 nth1/3 nth1/4 numbervars/1 numbervars/3 occurrences/2 occurrences/3 occurs/2 partition/5 permutation/2 prefix/2 prefix/3 product/2 proper_prefix/2 proper_prefix/3 proper_suffix/2 proper_suffix/3 remove_duplicates/2 rescale/3 reverse/2 same_length/2 same_length/3 scalar_product/3 select/3 select/4 selectchk/3 selectchk/4 sequential_occurrences/2 sequential_occurrences/3 singletons/2 softmax/2 softmax/3 sort/2 sort/3 sort/4 split/4 sublist/2 subsequence/3 subsequence/4 substitute/4 subsumes/2 subterm/2 subtract/3 suffix/2 suffix/3 sum/2 take/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), varlist, difflist

 object

object_wrapper_hook

Use this object to wrap the contents of a plain Prolog file in an object named after the file. The wrapper sets the context_switching_calls flag to allow, enabling calling of the wrapped predicates using the <</2 control construct.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2020-10-30

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook(Protocol), object_wrapper_hook(Name,Relations), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook(Protocol)

Use this object to wrap the contents of a plain Prolog file in an object named after the file that implements the given protocol.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-11-24

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

os

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook, object_wrapper_hook(Name,Relations), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

object_wrapper_hook(Name,Relations)

Use this object to wrap the contents of a plain Prolog file in an object with the given name and object entity relations (a list).

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-02-03

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

object_wrapper_hook, object_wrapper_hook(Protocol), backend_adapter_hook, default_workflow_hook, grammar_rules_hook, prolog_module_hook(Module), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

optional

Constructors for optional terms. An optional term is either empty or holds a value. Optional terms should be regarded as opaque terms and always used with the optional/1 object by passing the optional term as a parameter.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 2:1:0

Date: 2021-01-03

Compilation flags:

static, context_switching_calls

Provides:

type::type/1

type::check/2

Remarks:

	Type-checking support: This object also defines a type optional for use with the type library object.

Inherited public predicates:

(none)

	Public predicates

	empty/1

	of/2

	from_goal/3

	from_goal/2

	from_generator/3

	from_generator/2

	Protected predicates

	Private predicates

	Operators

Public predicates

empty/1

Constructs an empty optional term.

Compilation flags:

static

Template:

empty(Optional)

Mode and number of proofs:

empty(--nonvar) - one

of/2

Constructs an optional term holding the given value.

Compilation flags:

static

Template:

of(Value,Optional)

Mode and number of proofs:

of(@term,--nonvar) - one

from_goal/3

Constructs an optional term holding a value bound by calling the given goal. Returns an empty optional term if the goal fails or throws an error.

Compilation flags:

static

Template:

from_goal(Goal,Value,Optional)

Meta-predicate template:

from_goal(0,*,*)

Mode and number of proofs:

from_goal(+callable,--term,--nonvar) - one

from_goal/2

Constructs an optional term holding a value bound by calling the given closure. Returns an empty optional term if the closure fails or throws an error.

Compilation flags:

static

Template:

from_goal(Closure,Optional)

Meta-predicate template:

from_goal(1,*)

Mode and number of proofs:

from_goal(+callable,--nonvar) - one

from_generator/3

Constructs optional terms with the values generated by calling the given goal. On goal error or failure, returns an empty optional.

Compilation flags:

static

Template:

from_generator(Goal,Value,Optional)

Meta-predicate template:

from_generator(0,*,*)

Mode and number of proofs:

from_generator(+callable,--term,--nonvar) - one_or_more

from_generator/2

Constructs optional terms with the values generated by calling the given closure. On closure error or failure, returns an empty optional.

Compilation flags:

static

Template:

from_generator(Closure,Optional)

Meta-predicate template:

from_generator(1,*)

Mode and number of proofs:

from_generator(+from_generator,--nonvar) - one_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

optional(Optional), type

 object

optional(Optional)

Optional term handling predicates. Requires passing an optional term (constructed using the optional object predicates) as a parameter.

Availability:

logtalk_load(optionals(loader))

Author: Paulo Moura

Version: 1:7:0

Date: 2019-11-26

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_empty/0

	is_present/0

	if_empty/1

	if_present/1

	if_present_or_else/2

	filter/2

	map/2

	flat_map/2

	or/2

	get/1

	or_else/2

	or_else_get/2

	or_else_call/2

	or_else_fail/1

	or_else_throw/2

	Protected predicates

	Private predicates

	Operators

Public predicates

is_empty/0

True if the optional term is empty. See also the if_empty/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_empty - zero_or_one

is_present/0

True if the optional term holds a value. See also the if_present/1 predicate.

Compilation flags:

static

Mode and number of proofs:

is_present - zero_or_one

if_empty/1

Calls a goal if the optional term is empty. Succeeds otherwise.

Compilation flags:

static

Template:

if_empty(Goal)

Meta-predicate template:

if_empty(0)

Mode and number of proofs:

if_empty(+callable) - zero_or_more

if_present/1

Applies a closure to the value hold by the optional term if not empty. Succeeds otherwise.

Compilation flags:

static

Template:

if_present(Closure)

Meta-predicate template:

if_present(1)

Mode and number of proofs:

if_present(+callable) - zero_or_more

if_present_or_else/2

Applies a closure to the value hold by the optional term if not empty. Otherwise calls the given goal.

Compilation flags:

static

Template:

if_present_or_else(Closure,Goal)

Meta-predicate template:

if_present_or_else(1,0)

Mode and number of proofs:

if_present_or_else(+callable,+callable) - zero_or_more

filter/2

Returns the optional term when it is not empty and the value it holds satisfies a closure. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

filter(Closure,NewOptional)

Meta-predicate template:

filter(1,*)

Mode and number of proofs:

filter(+callable,--nonvar) - one

map/2

When the optional term is not empty and mapping a closure with the value it holds and the new value as additional arguments is successful, returns an optional term with the new value. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

map(Closure,NewOptional)

Meta-predicate template:

map(2,*)

Mode and number of proofs:

map(+callable,--nonvar) - one

flat_map/2

When the optional term is not empty and mapping a closure with the value it holds and the new optional term as additional arguments is successful, returns the new optional term. Otherwise returns an empty optional term.

Compilation flags:

static

Template:

flat_map(Closure,NewOptional)

Meta-predicate template:

flat_map(2,*)

Mode and number of proofs:

flat_map(+callable,--nonvar) - one

or/2

Returns the same optional term if not empty. Otherwise calls closure to generate a new optional term. Fails if optional term is empty and calling the closure fails or throws an error.

Compilation flags:

static

Template:

or(NewOptional,Closure)

Meta-predicate template:

or(*,1)

Mode and number of proofs:

or(--term,@callable) - zero_or_one

get/1

Returns the value hold by the optional term if not empty. Throws an error otherwise.

Compilation flags:

static

Template:

get(Value)

Mode and number of proofs:

get(--term) - one_or_error

Exceptions:

Optional is empty:

existence_error(optional_term,Optional)

or_else/2

Returns the value hold by the optional term if not empty or the given default value if the optional term is empty.

Compilation flags:

static

Template:

or_else(Value,Default)

Mode and number of proofs:

or_else(--term,@term) - one

or_else_get/2

Returns the value hold by the optional term if not empty. Applies a closure to compute the value otherwise. Throws an error when the optional term is empty and the value cannot be computed.

Compilation flags:

static

Template:

or_else_get(Value,Closure)

Meta-predicate template:

or_else_get(*,1)

Mode and number of proofs:

or_else_get(--term,+callable) - one_or_error

Exceptions:

Optional is empty and the term cannot be computed:

existence_error(optional_term,Optional)

or_else_call/2

Returns the value hold by the optional term if not empty or calls a goal deterministically if the optional term is empty.

Compilation flags:

static

Template:

or_else_call(Value,Goal)

Meta-predicate template:

or_else_call(*,0)

Mode and number of proofs:

or_else_call(--term,+callable) - zero_or_one

or_else_fail/1

Returns the value hold by the optional term if not empty. Fails otherwise. Usually called to skip over empty optional terms.

Compilation flags:

static

Template:

or_else_fail(Value)

Mode and number of proofs:

or_else_fail(--term) - zero_or_one

or_else_throw/2

Returns the value hold by the optional term if not empty. Throws the given error otherwise.

Compilation flags:

static

Template:

or_else_throw(Value,Error)

Mode and number of proofs:

or_else_throw(--term,@nonvar) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

optional

 object

os

Portable operating-system access predicates.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:101:2

Date: 2024-12-01

Compilation flags:

static, context_switching_calls

Implements:

public osp

Uses:

list

Aliases:

osp absolute_file_name/2 as expand_path/2

Remarks:

	File path expansion: To ensure portability, all file paths are expanded before being handed to the backend Prolog system.

	Exception terms: Currently, there is no standardization of the exception terms thrown by the different backend Prolog systems.

	B-Prolog portability: The wall_time/1 predicate is not supported.

	CxProlog portability: The date_time/7 predicate returns zeros for all arguments.

	JIProlog portability: The file_permission/2 and command_line_arguments/1 predicates are not supported.

	Quintus Prolog: The pid/1 and shell/2 predicates are not supported.

	XSB portability: The command_line_arguments/1 predicate is not supported.

Inherited public predicates:

 absolute_file_name/2 change_directory/1 command_line_arguments/1 copy_file/2 cpu_time/1 date_time/7 decompose_file_name/3 decompose_file_name/4 delete_directory/1 delete_directory_and_contents/1 delete_directory_contents/1 delete_file/1 directory_exists/1 directory_files/2 directory_files/3 ensure_directory/1 ensure_file/1 environment_variable/2 file_exists/1 file_modification_time/2 file_permission/2 file_size/2 full_device_path/1 internal_os_path/2 is_absolute_file_name/1 make_directory/1 make_directory_path/1 null_device_path/1 operating_system_machine/1 operating_system_name/1 operating_system_release/1 operating_system_type/1 path_concat/3 pid/1 read_only_device_path/1 rename_file/2 shell/1 shell/2 sleep/1 temporary_directory/1 time_stamp/1 wall_time/1 working_directory/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

os_types

 object

packs

Pack handling predicates.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:87:1

Date: 2025-08-20

Compilation flags:

static, context_switching_calls

Imports:

public packs_common

public options

Uses:

list

logtalk

os

registries

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 help/0 logtalk_packs/0 logtalk_packs/1 option/2 option/3 pin/0 pin/1 pinned/1 prefix/0 prefix/1 readme/1 readme/2 reset/0 setup/0 unpin/0 unpin/1 valid_option/1 valid_options/1 verify_commands_availability/0

	Public predicates

	available/2

	available/1

	available/0

	installed/4

	installed/3

	installed/1

	installed/0

	outdated/5

	outdated/4

	outdated/2

	outdated/1

	outdated/0

	orphaned/2

	orphaned/0

	versions/3

	describe/2

	describe/1

	search/1

	install/4

	install/3

	install/2

	install/1

	update/3

	update/2

	update/1

	update/0

	uninstall/2

	uninstall/1

	uninstall/0

	clean/2

	clean/1

	clean/0

	save/2

	save/1

	restore/2

	restore/1

	dependents/3

	dependents/2

	dependents/1

	lint/2

	lint/1

	lint/0

	Protected predicates

	Private predicates

	Operators

Public predicates

available/2

Enumerates, by backtracking, all available packs.

Compilation flags:

static

Template:

available(Registry,Pack)

Mode and number of proofs:

available(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

available/1

Lists all the packs that are available for installation from the given registry.

Compilation flags:

static

Template:

available(Registry)

Mode and number of proofs:

available(+atom) - one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

available/0

Lists all the packs that are available for installation from all defined registries.

Compilation flags:

static

Mode and number of proofs:

available - one

installed/4

Enumerates by backtracking all installed packs.

Compilation flags:

static

Template:

installed(Registry,Pack,Version,Pinned)

Mode and number of proofs:

installed(?atom,?atom,?compound,?boolean) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

Pinned is neither a variable nor a boolean:

type_error(boolean,Pinned)

installed/3

Enumerates by backtracking all installed packs.

Compilation flags:

static

Template:

installed(Registry,Pack,Version)

Mode and number of proofs:

installed(?atom,?atom,?compound) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

installed/1

Lists all the packs that are installed from the given registry. Fails if the registry is unknown.

Compilation flags:

static

Template:

installed(Registry)

Mode and number of proofs:

installed(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

installed/0

Lists all the packs that are installed.

Compilation flags:

static

Mode and number of proofs:

installed - one

outdated/5

Enumerates by backtracking all installed but outdated packs (together with the current version installed and the latest version available) using the given options.

Compilation flags:

static

Template:

outdated(Registry,Pack,Version,LatestVersion,Options)

Mode and number of proofs:

outdated(?atom,?atom,?compound,?compound,++list(compound)) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

LatestVersion is neither a variable nor a compound term:

type_error(compound,LatestVersion)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	compatible(Boolean) option: Restrict listing to compatible packs. Default is true.

	status(Status) option: Restrict listing to updates with the given status. Default is [stable,rc,beta,alpha]. Set to all to also list experimental and deprecated updates.

outdated/4

Enumerates by backtracking all installed but outdated packs (together with the current version installed and the latest version available) using default options.

Compilation flags:

static

Template:

outdated(Registry,Pack,Version,LatestVersion)

Mode and number of proofs:

outdated(?atom,?atom,?compound,?compound) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is neither a variable nor a compound term:

type_error(compound,Version)

LatestVersion is neither a variable nor a compound term:

type_error(compound,LatestVersion)

See also:

outdated/5

outdated/2

Lists all the packs from the given registry that are installed but outdated using the given options.

Compilation flags:

static

Template:

outdated(Registry,Options)

Mode and number of proofs:

outdated(+atom,++list(compound)) - one

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	status(Status) option: Restrict listing to updates with the given status. Default is [stable,rc,beta,alpha]. Set to all to also list experimental and deprecated updates.

outdated/1

Lists all the packs from the given registry that are installed but outdated using default options.

Compilation flags:

static

Template:

outdated(Registry)

Mode and number of proofs:

outdated(+atom) - one

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

outdated/2

outdated/0

Lists all the packs that are installed but outdated using default options.

Compilation flags:

static

Mode and number of proofs:

outdated - one

See also:

outdated/1

orphaned/2

Lists all the packs that are installed but whose registry is no longer defined.

Compilation flags:

static

Template:

orphaned(Registry,Pack)

Mode and number of proofs:

orphaned(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

orphaned/0

Lists all the packs that are installed but whose registry is no longer defined.

Compilation flags:

static

Mode and number of proofs:

orphaned - one

versions/3

Returns a list of all available pack versions. Fails if the pack is unknown.

Compilation flags:

static

Template:

versions(Registry,Pack,Versions)

Mode and number of proofs:

versions(+atom,+atom,-list) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

describe/2

Describes a registered pack, including installed version if applicable. Fails if the pack is unknown.

Compilation flags:

static

Template:

describe(Registry,Pack)

Mode and number of proofs:

describe(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

describe/1

Describes a registered pack, including installed version if applicable. Fails if the pack is unknown.

Compilation flags:

static

Template:

describe(Pack)

Mode and number of proofs:

describe(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

search/1

Searches packs whose name or description includes the search term (case sensitive).

Compilation flags:

static

Template:

search(Term)

Mode and number of proofs:

search(+atom) - one

Exceptions:

Term is a variable:

instantiation_error

Term is neither a variable nor an atom:

type_error(atom,Term)

install/4

Installs a new pack using the specified options. Fails if the pack is unknown or already installed but not using update(true) or force(true) options. Fails also if the pack version is unknown.

Compilation flags:

static

Template:

install(Registry,Pack,Version,Options)

Mode and number of proofs:

install(+atom,+atom,++compound,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	update(Boolean) option: Update pack if already installed. Default is false. Overrides the force/1 option.

	force(Boolean) option: Force pack re-installation if already installed. Default is false.

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	clean(Boolean) option: Clean pack archive after installation. Default is false.

	verbose(Boolean) option: Verbose installing steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

install/3

Installs the specified version of a pack from the given registry using default options. Fails if the pack is already installed or unknown. Fails also if the pack version is unknown.

Compilation flags:

static

Template:

install(Registry,Pack,Version)

Mode and number of proofs:

install(+atom,+atom,?compound) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

See also:

install/4

install/2

Installs the latest version of a pack from the given registry using default options. Fails if the pack is already installed or unknown.

Compilation flags:

static

Template:

install(Registry,Pack)

Mode and number of proofs:

install(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

install/3

install/1

Installs a pack (if its name is unique among all registries) using default options. Fails if the pack is already installed or unknown. Fails also if the pack is available from multiple registries.

Compilation flags:

static

Template:

install(Pack)

Mode and number of proofs:

install(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is not an atom:

type_error(atom,Pack)

See also:

install/2

update/3

Updates an outdated pack to the specified version using the specified options. Fails if the pack or the pack version is unknown or if the pack is not installed. Fails also if the pack is orphaned or pinned and not using a force(true) option.

Compilation flags:

static

Template:

update(Pack,Version,Options)

Mode and number of proofs:

update(+atom,++callable,++list(callable)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Version is a variable:

instantiation_error

Version is neither a variable nor a valid version:

type_error(pack_version,Version)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	install(Boolean) option: Install pack latest version if not already installed. Default is false.

	force(Boolean) option: Force update if the pack is pinned or breaks installed packs. Default is false.

	compatible(Boolean) option: Restrict updating to compatible packs. Default is true.

	status(Status) option: Specify allowed pack status. Default is [stable,rc,beta,alpha]. Set to all to also allow experimental and deprecated.

	clean(Boolean) option: Clean pack archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/2

Updates an outdated pack to its latest version using the specified options. Fails if the pack is orphaned, unknown, or not installed. Fails also if the pack is pinned and not using a force(true) option.

Compilation flags:

static

Template:

update(Pack,Options)

Mode and number of proofs:

update(+atom,++list(callable)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	install(Boolean) option: Install pack latest version if not already installed. Default is false.

	force(Boolean) option: Force update if the pack is pinned or breaks installed packs. Default is false.

	compatible(Boolean) option: Restrict updating to compatible packs. Default is true.

	status(Status) option: Specify allowed pack update status. Default is [stable,rc,beta,alpha]. Set to all to also allow experimental and deprecated.

	clean(Boolean) option: Clean pack archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksum. Default is true.

	checksig(Boolean) option: Verify pack archive signature. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/1

Updates an outdated pack to its latest version using default options. Fails if the pack is pinned, orphaned, not installed, unknown, or breaks installed packs.

Compilation flags:

static

Template:

update(Pack)

Mode and number of proofs:

update(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

update/2

update/3

update/0

Updates all outdated packs (that are not pinned) using default options.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

uninstall/2

Uninstalls a pack using the specified options. Fails if the pack is unknown or not installed. Fails also if the pack is pinned or have dependents and not using a force(true) option.

Compilation flags:

static

Template:

uninstall(Pack,Options)

Mode and number of proofs:

uninstall(+atom,++list(compound)) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force deletion if the pack is pinned. Default is false.

	clean(Boolean) option: Clean pack archive after deleting. Default is false.

	verbose(Boolean) option: Verbose uninstalling steps. Default is false.

uninstall/1

Uninstalls a pack using default options. Fails if the pack is pinned, have dependents, not installed, or unknown.

Compilation flags:

static

Template:

uninstall(Pack)

Mode and number of proofs:

uninstall(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

uninstall/2

uninstall/0

Uninstalls all packs using the force(true) option.

Compilation flags:

static

Mode and number of proofs:

uninstall - zero_or_one

clean/2

Cleans all pack archives. Fails if the the pack is unknown.

Compilation flags:

static

Template:

clean(Registry,Pack)

Mode and number of proofs:

clean(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

clean/1

Cleans all pack archives. Fails if the pack is unknown.

Compilation flags:

static

Template:

clean(Pack)

Mode and number of proofs:

clean(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

See also:

clean/2

clean/0

Cleans all archives for all packs.

Compilation flags:

static

Mode and number of proofs:

clean - one

save/2

Saves a list of all installed packs and registries plus pinning status to a file using the given options. Registries without installed packs are saved when using the option save(all) and skipped when using the option save(installed) (default).

Compilation flags:

static

Template:

save(File,Options)

Mode and number of proofs:

save(+atom,++list(compound)) - one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an existing file but cannot be written:

permission_error(open,source_sink,File)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

save/1

Saves a list of all installed packs and their registries plus pinning status to a file using default options.

Compilation flags:

static

Template:

save(File)

Mode and number of proofs:

save(+atom) - one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an existing file but cannot be written:

permission_error(open,source_sink,File)

See also:

save/2

restore/2

Restores a list of registries and packs plus their pinning status from a file using the given options. Fails if restoring is not possible.

Compilation flags:

static

Template:

restore(File,Options)

Mode and number of proofs:

restore(+atom,++list(compound)) - zero_or_one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be read:

permission_error(open,source_sink,File)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force restoring if a registry is already defined or a pack is already installed. Default is true.

	compatible(Boolean) option: Restrict installation to compatible packs. Default is true.

	clean(Boolean) option: Clean registry and pack archives after restoring. Default is false.

	verbose(Boolean) option: Verbose restoring steps. Default is false.

	checksum(Boolean) option: Verify pack archive checksums. Default is true.

	checksig(Boolean) option: Verify pack archive signatures. Default is false.

	git(Atom) option: Extra command-line options. Default is ''.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

restore/1

Restores a list of registries and packs plus their pinning status from a file using default options. Fails if restoring is not possible.

Compilation flags:

static

Template:

restore(File)

Mode and number of proofs:

restore(+atom) - zero_or_one_or_error

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be read:

permission_error(open,source_sink,File)

See also:

restore/2

dependents/3

Returns a list of all installed packs that depend on the given pack from the given registry. Fails if the pack is unknown.

Compilation flags:

static

Template:

dependents(Registry,Pack,Dependents)

Mode and number of proofs:

dependents(+atom,+atom,-list(atom)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

dependents/2

Prints a list of all installed packs that depend on the given pack from the given registry. Fails if the pack is unknown.

Compilation flags:

static

Template:

dependents(Registry,Pack)

Mode and number of proofs:

dependents(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

dependents/1

Prints a list of all installed packs that depend on the given pack if unique from all defined registries. Fails if the pack is unknown or available from multiple registries.

Compilation flags:

static

Template:

dependents(Pack)

Mode and number of proofs:

dependents(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/2

Checks the pack specification. Fails if the pack is unknown or if linting detects errors.

Compilation flags:

static

Template:

lint(Registry,Pack)

Mode and number of proofs:

lint(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/1

Checks the pack specification. Fails if the pack is unknown, or available from multiple registries, or if linting detects errors.

Compilation flags:

static

Template:

lint(Pack)

Mode and number of proofs:

lint(+atom) - zero_or_one

Exceptions:

Pack is a variable:

instantiation_error

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/0

Checks all pack specifications.

Compilation flags:

static

Mode and number of proofs:

lint - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

packs_specs_hook

Hook object for filtering registry and pack specification file contents.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-06-28

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

character

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

pairs

Useful predicates over lists of pairs (key-value terms).

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:1:1

Date: 2023-11-21

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Usage: This object can be loaded independently of other entities in the types library by using the goal logtalk_load(types(pairs)).

Inherited public predicates:

(none)

	Public predicates

	keys_values/3

	keys/2

	key/2

	values/2

	value/3

	transpose/2

	group_sorted_by_key/2

	group_consecutive_by_key/2

	group_by_key/2

	map/3

	Protected predicates

	Private predicates

	Operators

Public predicates

keys_values/3

Converts between a list of pairs and lists of keys and values. When converting to pairs, this predicate fails if the list of keys and the list of values have different lengths.

Compilation flags:

static

Template:

keys_values(Pairs,Keys,Values)

Mode and number of proofs:

keys_values(+list(pair),-list,-list) - one

keys_values(-list(pair),+list,+list) - zero_or_one

keys/2

Returns a list of keys from a list of pairs.

Compilation flags:

static

Template:

keys(Pairs,Keys)

Mode and number of proofs:

keys(+list(pair),-list) - one

key/2

Enumerates by backtracking all keys from a list of pairs.

Compilation flags:

static

Template:

key(Pairs,Key)

Mode and number of proofs:

key(+list(pair),-term) - zero_or_more

values/2

Returns a list of values from a list of pairs.

Compilation flags:

static

Template:

values(Pairs,Values)

Mode and number of proofs:

values(+list(pair),-list) - one

value/3

Returns a value addressed by the given path (a key or a list of keys in the case of nested list of pairs). Fails if path does not exist.

Compilation flags:

static

Template:

value(Pairs,Path,Value)

Mode and number of proofs:

value(+list(pair),+term,-term) - zero_or_one

value(+list(pair),+list,-term) - zero_or_one

transpose/2

Transposes a list of pairs by swapping each pair key and value. The relative order of the list elements is kept.

Compilation flags:

static

Template:

transpose(Pairs,TransposedPairs)

Mode and number of proofs:

transpose(+list(pair),-list(pair)) - one

group_sorted_by_key/2

Groups pairs by key by sorting them and then constructing new pairs by grouping all values for a given key in a list. Keys are compared using equality. Relative order of values per key is kept. Resulting list of pairs is sorted by key.

Compilation flags:

static

Template:

group_sorted_by_key(Pairs,Groups)

Mode and number of proofs:

group_sorted_by_key(+list(pair),-list(pair)) - one

group_consecutive_by_key/2

Groups pairs by constructing new pairs by grouping all values for consecutive key in a list. Keys are compared using equality. The relative order of the values for the same key is kept.

Compilation flags:

static

Template:

group_consecutive_by_key(Pairs,Groups)

Mode and number of proofs:

group_consecutive_by_key(+list(pair),-list(pair)) - one

group_by_key/2

Same as the group_sorted_by_key/2 predicate. Deprecated.

Compilation flags:

static

Template:

group_by_key(Pairs,Groups)

Mode and number of proofs:

group_by_key(+list(pair),-list(pair)) - one

map/3

Maps a list into pairs using a closure that applies to each list element to compute its key.

Compilation flags:

static

Template:

map(Closure,List,Pairs)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(@callable,+list,-list(pair)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

pddl

Simple parser of PDDL 3.0 files.

Availability:

logtalk_load(pddl_parser(loader))

Author: Robert Sasak, Charles University in Prague. Adapted to Logtalk by Paulo Moura.

Version: 1:2:2

Date: 2024-03-14

Compilation flags:

static, context_switching_calls

Imports:

public read_file

Uses:

user

Remarks:

(none)

Inherited public predicates:

 read_file/2

	Public predicates

	parse_domain/3

	parse_domain/2

	parse_problem/2

	parse_problem/3

	Protected predicates

	Private predicates

	Operators

Public predicates

parse_domain/3

Parses a PDDL 3.0 domain file, returning a compound term representing its contents and rest of the file. Useful when domain and problem are in one file.

Compilation flags:

static

Template:

parse_domain(File,Output,RestOfFile)

Mode and number of proofs:

parse_domain(+atom,-compound,-list(atom)) - one

parse_domain/2

Parses a PDDL 3.0 domain file, returning a compound term representing its contents.

Compilation flags:

static

Template:

parse_domain(File,Output)

Mode and number of proofs:

parse_domain(+atom,-compound) - one

parse_problem/2

Parses a PDDL 3.0 problem file, returning a compound term representing its contents.

Compilation flags:

static

Template:

parse_problem(File,Output)

Mode and number of proofs:

parse_problem(+atom,-compound) - one

parse_problem/3

Parses a PDDL 3.0 problem file, returning a compound term representing its contents and rest of the file. Useful when domain and problem are in one file.

Compilation flags:

static

Template:

parse_problem(File,Output,RestOfFile)

Mode and number of proofs:

parse_problem(+atom,-compound,-list(atom)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

population

Statistical population represented as a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-02-02

Compilation flags:

static, context_switching_calls

Imports:

public statistics

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

sample

 object

ports_profiler

Predicate execution box model port profiler.

Availability:

logtalk_load(ports_profiler(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2024-05-18

Compilation flags:

static, context_switching_calls

Provides:

logtalk::debug_handler/1

logtalk::debug_handler/3

Uses:

logtalk

user

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	start/0

	stop/0

	data/0

	data/1

	data/2

	reset/0

	reset/1

	port/5

	clause_location/6

	clause/5

	Protected predicates

	Private predicates

	clause_location_/6

	port_/5

	clause_/5

	entity_defines_/2

	Operators

Public predicates

start/0

Activates the ports profiler for followup goals.

Compilation flags:

static

Mode and number of proofs:

start - one

stop/0

Deactivates the ports profiler.

Compilation flags:

static

Mode and number of proofs:

stop - one

data/0

Prints a table with all port profiling data.

Compilation flags:

static

Mode and number of proofs:

data - one

data/1

Prints a table with all port profiling data for the specified entity.

Compilation flags:

static

Template:

data(Entity)

Mode and number of proofs:

data(+entity_identifier) - one

data/2

Prints a table with all port profiling data for the specified entity predicate (or non-terminal).

Compilation flags:

static

Template:

data(Entity,Predicate)

Mode and number of proofs:

data(+entity_identifier,+predicate_indicator) - one

data(+entity_identifier,+non_terminal_indicator) - one

reset/0

Resets all port profiling data.

Compilation flags:

static

Mode and number of proofs:

reset - one

reset/1

Resets all port profiling data for the specified entity.

Compilation flags:

static

Template:

reset(Entity)

Mode and number of proofs:

reset(+entity_identifier) - one

port/5

Enumerates, by backtracking, all collected port profiling data.

Compilation flags:

static

Template:

port(Port,Entity,Functor,Arity,Count)

Mode and number of proofs:

port(?atom,?entity_identifier,?atom,?integer,?integer) - zero_or_more

clause_location/6

Enumerates, by backtracking, all collected profiled clause location data.

Compilation flags:

static

Template:

clause_location(Entity,Functor,Arity,ClauseNumber,File,BeginLine)

Mode and number of proofs:

clause_location(?entity_identifier,?atom,?integer,?integer,?atom,?integer) - zero_or_more

clause/5

Enumerates, by backtracking, all collected clause profiling data.

Compilation flags:

dynamic

Template:

clause(Entity,Functor,Arity,ClauseNumber,Count)

Mode and number of proofs:

clause(?entity_identifier,?atom,?integer,?integer,?integer) - zero_or_more

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

clause_location_/6

Internal table of collected profiled clause location data.

Compilation flags:

dynamic

Template:

clause_location_(Entity,Functor,Arity,ClauseNumber,File,BeginLine)

Mode and number of proofs:

clause_location_(?entity_identifier,?atom,?integer,?integer,?atom,?integer) - zero_or_more

port_/5

Internal table of collected port profiling data.

Compilation flags:

dynamic

Template:

port_(Port,Entity,Functor,Arity,Count)

Mode and number of proofs:

port_(?atom,?entity_identifier,?atom,?integer,?integer) - zero_or_more

clause_/5

Internal table of collected clause profiling data.

Compilation flags:

dynamic

Template:

clause_(Entity,Functor,Arity,ClauseNumber,Count)

Mode and number of proofs:

clause_(?entity_identifier,?atom,?integer,?integer,?integer) - zero_or_more

entity_defines_/2

Internal cache for profiled predicates.

Compilation flags:

dynamic

Template:

entity_defines_(Entity,Predicate)

Mode and number of proofs:

entity_defines_(?entity_identifier,?predicate_indicator) - zero_or_more

Operators

(none)

 object

print_goal_hook

Use this object to easily print entity predicate goals before, after, or before and after calling them.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-03-14

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Mark a goal to be printed by prefixing it with an operator. Printing uses a comment message.

	To print goal before calling it: - Goal.

	To print goal after calling it: + Goal.

	To print goal before and after calling it: * Goal.

	Operators: This hook object uses the standard - and + prefix operators and also defines a global * prefix operator with the same type and priority.

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), suppress_goal_hook

 object

prolog_module_hook(Module)

This hook object applies the expansion rules defined in a Prolog module (e.g., user).

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-17

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

queue

Queue predicates implemented using difference lists.

Availability:

logtalk_load(queues(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-12-09

Compilation flags:

static, context_switching_calls

Implements:

public queuep

Extends:

public compound

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 append/3 as_list/2 check/1 depth/2 empty/1 ground/1 head/2 join/3 join_all/3 jump/3 jump_all/3 jump_all_block/3 length/2 map/2 map/3 new/1 numbervars/1 numbervars/3 occurs/2 serve/3 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

random

Portable random number generator predicates. Core predicates originally written by Richard O’Keefe. Based on algorithm AS 183 from Applied Statistics.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 2:12:1

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Implements:

public pseudo_random_protocol

public sampling_protocol

Uses:

list

Remarks:

	Multiple random number generators: To define multiple random number generators, simply extend this object. The derived objects must send to self the reset_seed/0 message.

	Randomness: Loading this object always initializes the random generator seed to the same value, thus providing a pseudo random number generator. The randomize/1 predicate can be used to initialize the seed with a random value.

Inherited public predicates:

 bernoulli/2 beta/3 between/3 binomial/3 chi_squared/2 circular_uniform_cartesian/3 circular_uniform_polar/3 dirichlet/2 enumerate/2 exponential/2 fisher/3 gamma/3 geometric/2 get_seed/1 gumbel/3 hypergeometric/4 logistic/3 lognormal/3 logseries/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 normal/3 permutation/2 poisson/2 power/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 set_seed/1 standard_cauchy/3 standard_exponential/1 standard_gamma/2 standard_normal/1 standard_t/2 swap/2 swap_consecutive/2 triangular/4 uniform/1 uniform/3 von_mises/3 wald/3 weibull/3

	Public predicates

	reset_seed/0

	randomize/1

	Protected predicates

	Private predicates

	seed_/3

	Operators

Public predicates

reset_seed/0

Resets the random generator seed to its default value. Use get_seed/1 and set_seed/1 instead if you need reproducibility.

Compilation flags:

static, synchronized

Mode and number of proofs:

reset_seed - one

randomize/1

Randomizes the random generator using a positive integer to compute a new seed. Use of a large integer is recommended. In alternative, when using a small integer argument, discard the first dozen random values.

Compilation flags:

static, synchronized

Template:

randomize(Seed)

Mode and number of proofs:

randomize(+positive_integer) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

seed_/3

Stores the current random generator seed values.

Compilation flags:

dynamic

Template:

seed_(S0,S1,S2)

Mode and number of proofs:

seed_(-integer,-integer,-integer) - one

Operators

(none)

See also

fast_random, backend_random

 object

rbtree

Red-Black tree implementation of the dictionary protocol. Uses standard order to compare keys.

Availability:

logtalk_load(dictionaries(loader))

Author: Vitor Santos Costa; Logtalk port and additional predicates by Paulo Moura.

Version: 1:9:0

Date: 2021-04-12

Compilation flags:

static, context_switching_calls

Implements:

public dictionaryp

Extends:

public term

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 apply/4 as_curly_bracketed/2 as_dictionary/2 as_list/2 check/1 clone/3 clone/4 delete/4 delete_max/4 delete_min/4 depth/2 empty/1 ground/1 insert/4 intersection/2 intersection/3 keys/2 lookup/2 lookup/3 map/2 map/3 max/3 min/3 new/1 next/4 numbervars/1 numbervars/3 occurs/2 previous/4 singletons/2 size/2 subsumes/2 subterm/2 update/3 update/4 update/5 valid/1 values/2 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	partial_map/4

	Protected predicates

	Private predicates

	Operators

Public predicates

partial_map/4

Applies a closure to the tree pairs identified by a set of keys.

Compilation flags:

static

Template:

partial_map(Tree,Keys,Closure,NewTree)

Meta-predicate template:

partial_map(*,*,2,*)

Mode and number of proofs:

partial_map(+tree,+list,@closure,-tree) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

avltree, bintree

 object

reader

Predicates for reading text file and text stream contents to lists of terms, characters, or character codes and for reading binary file and binary stream contents to lists of bytes.

Availability:

logtalk_load(reader(loader))

Author: Paulo Moura

Version: 2:2:0

Date: 2023-11-14

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	file_to_codes/2

	file_to_codes/3

	file_to_chars/2

	file_to_chars/3

	file_to_terms/2

	file_to_terms/3

	file_to_bytes/2

	file_to_bytes/3

	stream_to_codes/2

	stream_to_codes/3

	stream_to_chars/2

	stream_to_chars/3

	stream_to_terms/2

	stream_to_terms/3

	stream_to_bytes/2

	stream_to_bytes/3

	line_to_chars/2

	line_to_chars/3

	line_to_codes/2

	line_to_codes/3

	Protected predicates

	Private predicates

	Operators

Public predicates

file_to_codes/2

Reads a text file into a list of character codes.

Compilation flags:

static

Template:

file_to_codes(File,Codes)

Mode and number of proofs:

file_to_codes(+atom,-list(character_code)) - one

file_to_codes/3

Reads a text file into a list of character codes. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_codes(File,Codes,Tail)

Mode and number of proofs:

file_to_codes(+atom,-list(character_code),@term) - one

file_to_chars/2

Reads a text file into a list of characters.

Compilation flags:

static

Template:

file_to_chars(File,Chars)

Mode and number of proofs:

file_to_chars(+atom,-list(character)) - one

file_to_chars/3

Reads a text file into a list of characters. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_chars(File,Chars,Tail)

Mode and number of proofs:

file_to_chars(+atom,-list(character),@term) - one

file_to_terms/2

Reads a text file into a list of terms.

Compilation flags:

static

Template:

file_to_terms(File,Terms)

Mode and number of proofs:

file_to_terms(+atom,-list(term)) - one

file_to_terms/3

Reads a text file into a list of terms. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_terms(File,Terms,Tail)

Mode and number of proofs:

file_to_terms(+atom,-list(term),@term) - one

file_to_bytes/2

Reads a binary file into a list of bytes.

Compilation flags:

static

Template:

file_to_bytes(File,Bytes)

Mode and number of proofs:

file_to_bytes(+atom,-list(byte)) - one

file_to_bytes/3

Reads a binary file into a list of bytes. The list is terminated by the given tail.

Compilation flags:

static

Template:

file_to_bytes(File,Bytes,Tail)

Mode and number of proofs:

file_to_bytes(+atom,-list(byte),@term) - one

stream_to_codes/2

Reads a text stream into a list of character codes. Does not close the stream.

Compilation flags:

static

Template:

stream_to_codes(Stream,Codes)

Mode and number of proofs:

stream_to_codes(+stream_or_alias,-list(character_code)) - one

stream_to_codes/3

Reads a text stream into a list of character codes. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_codes(Stream,Codes,Tail)

Mode and number of proofs:

stream_to_codes(+stream_or_alias,-list(character_code),@term) - one

stream_to_chars/2

Reads a text stream into a list of characters. Does not close the stream.

Compilation flags:

static

Template:

stream_to_chars(Stream,Chars)

Mode and number of proofs:

stream_to_chars(+stream_or_alias,-list(char)) - one

stream_to_chars/3

Reads a text stream into a list of characters. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_chars(Stream,Chars,Tail)

Mode and number of proofs:

stream_to_chars(+stream_or_alias,-list(char),@term) - one

stream_to_terms/2

Reads a text stream into a list of terms. Does not close the stream.

Compilation flags:

static

Template:

stream_to_terms(Stream,Terms)

Mode and number of proofs:

stream_to_terms(+stream_or_alias,-list(term)) - one

stream_to_terms/3

Reads a text stream into a list of terms. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_terms(Stream,Terms,Tail)

Mode and number of proofs:

stream_to_terms(+stream_or_alias,-list(term),@term) - one

stream_to_bytes/2

Reads a binary stream into a list of bytes. Does not close the stream.

Compilation flags:

static

Template:

stream_to_bytes(Stream,Bytes)

Mode and number of proofs:

stream_to_bytes(+stream_or_alias,-list(byte)) - one

stream_to_bytes/3

Reads a binary stream into a list of bytes. Does not close the stream. The list is terminated by the given tail.

Compilation flags:

static

Template:

stream_to_bytes(Stream,Bytes,Tail)

Mode and number of proofs:

stream_to_bytes(+stream_or_alias,-list(byte),@term) - one

line_to_chars/2

Reads a line from a text stream into a list of characters. Discards the end-of-line characters. Unifies Chars with end_of_file at the end of the file.

Compilation flags:

static

Template:

line_to_chars(Stream,Chars)

Mode and number of proofs:

line_to_chars(+stream_or_alias,-types([atom,list(character)])) - one

line_to_chars/3

Reads a line from a text stream into a list of characters. Keeps the end-of-line marker normalized to the line feed control character. The list is terminated by the given tail, which is unified with the empty list at the end of the file.

Compilation flags:

static

Template:

line_to_chars(Stream,Chars,Tail)

Mode and number of proofs:

line_to_chars(+stream_or_alias,-list(character),?term) - one

line_to_codes/2

Reads a line from a text stream into a list of character codes. Discards the end-of-line character codes. Unifies Codes with end_of_file at the end of the file.

Compilation flags:

static

Template:

line_to_codes(Stream,Codes)

Mode and number of proofs:

line_to_codes(+stream_or_alias,-types([atom,list(character_code)])) - one

line_to_codes/3

Reads a line from a text stream into a list of character codes. Keeps the end-of-line marker normalized to the line feed control character code. The list is terminated by the given tail, which is unified with the empty list at the end of the file.

Compilation flags:

static

Template:

line_to_codes(Stream,Codes,Tail)

Mode and number of proofs:

line_to_codes(+stream_or_alias,-list(character_code),?term) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

recorded_database

Legacy recorded database predicates. Provides an application global database.

Availability:

logtalk_load(recorded_database(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-12-17

Compilation flags:

static, context_switching_calls

Imports:

public recorded_database_core

Remarks:

(none)

Inherited public predicates:

 erase/1 instance/2 recorda/2 recorda/3 recorded/2 recorded/3 recordz/2 recordz/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

redis

Redis client. Inspired by Sean Charles GNU Prolog Redis client.

Availability:

logtalk_load(redis(loader))

Author: Paulo Moura

Version: 0:5:1

Date: 2021-12-06

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

Remarks:

	Command representation: Use the Redis command name as the functor of a compound term where the arguments are the command arguments.

	Valid arguments: Atoms, integers, and floats. Always use atoms instead of double-quoted “strings”. This helps portability by not depending on the value of the double_quotes flag.

Inherited public predicates:

(none)

	Public predicates

	connect/1

	connect/3

	disconnect/1

	send/3

	console/1

	Protected predicates

	Private predicates

	Operators

Public predicates

connect/1

Connect to a Redis server running on localhost using the default 6379 port.

Compilation flags:

static

Template:

connect(Connection)

Mode and number of proofs:

connect(--ground) - one

connect/3

Connect to a Redis server running on the given host and port.

Compilation flags:

static

Template:

connect(Host,Port,Connection)

Mode and number of proofs:

connect(+atom,+integer,--ground) - one

disconnect/1

Disconnect from a Redis server.

Compilation flags:

static

Template:

disconnect(Connection)

Mode and number of proofs:

disconnect(++ground) - one

send/3

Sends a request to the a Redis server and returns its reply.

Compilation flags:

static

Template:

send(Connection,Request,Reply)

Mode and number of proofs:

send(++ground,++callable,--callable) - one

console/1

Sends a request to a Redis server running on localhost at the default 6379 port and prints the reply.

Compilation flags:

static

Template:

console(Request)

Mode and number of proofs:

console(++callable) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

registries

Registry handling predicates.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:62:0

Date: 2025-08-20

Compilation flags:

static, context_switching_calls

Imports:

public packs_common

public options

Uses:

list

logtalk

os

type

user

Remarks:

(none)

Inherited public predicates:

 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 help/0 logtalk_packs/0 logtalk_packs/1 option/2 option/3 pin/0 pin/1 pinned/1 prefix/0 prefix/1 readme/1 readme/2 reset/0 setup/0 unpin/0 unpin/1 valid_option/1 valid_options/1 verify_commands_availability/0

	Public predicates

	list/0

	describe/1

	defined/4

	add/3

	add/2

	add/1

	update/2

	update/1

	update/0

	delete/2

	delete/1

	delete/0

	clean/1

	clean/0

	provides/2

	lint/1

	lint/0

	Protected predicates

	Private predicates

	Operators

Public predicates

list/0

Prints a list of all defined registries, including how defined (git, archive, or directory) and if they are pinned.

Compilation flags:

static

Mode and number of proofs:

list - one

describe/1

Prints all registry entries.

Compilation flags:

static

Template:

describe(Registry)

Mode and number of proofs:

describe(+atom) - one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

defined/4

Enumerates by backtracking all defined registries, their definition URL, how they are defined (git, archive, or directory), and if they are pinned.

Compilation flags:

static

Template:

defined(Registry,URL,HowDefined,Pinned)

Mode and number of proofs:

defined(?atom,?atom,?atom,?boolean) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is neither a variable nor an atom:

type_error(atom,URL)

HowDefined is neither a variable nor an atom:

type_error(atom,HowDefined)

Pinned is neither a variable nor a boolean:

type_error(boolean,Pinned)

add/3

Adds a new registry using the given options. Fails if the registry cannot be added or if it is already defined but not using update(true) or force(true) options. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(Registry,URL,Options)

Mode and number of proofs:

add(+atom,+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	Registry name: Must be the URL basename when using a git URL or a local directory URL. Must also be the declared registry name in the registry specification object.

	HTTPS URLs: Must end with either a .git extension or an archive extension.

	update(Boolean) option: Update registry if already defined. Default is false. Overrides the force/1 option.

	force(Boolean) option: Force registry re-installation if already defined by first deleting the previous installation. Default is false.

	clean(Boolean) option: Clean registry archive after updating. Default is false.

	verbose(Boolean) option: Verbose adding steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

add/2

Adds a new registry using default options. Fails if the registry cannot be added or if it is already defined. HTTPS URLs must end with either a .git extension or an archive extension. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(Registry,URL)

Mode and number of proofs:

add(+atom,+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Remarks:

	Registry name: Must be the URL basename when using a git URL or a local directory URL. Must also be the declared registry name in the registry specification object.

See also:

add/3

add/1

Adds a new registry using default options. Fails if the registry cannot be added or if it is already defined. HTTPS URLs must end with a .git extension or an archive extension. A file:// URL can be used for a local directory or archive.

Compilation flags:

static

Template:

add(URL)

Mode and number of proofs:

add(+atom) - zero_or_one

Exceptions:

URL is a variable:

instantiation_error

URL is neither a variable nor an atom:

type_error(atom,URL)

Remarks:

	Registry name: Taken from the URL basename.

See also:

add/2

update/2

Updates a defined registry using the specified options. Fails if the registry is not defined.

Compilation flags:

static

Template:

update(Registry,Options)

Mode and number of proofs:

update(+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force update if the registry is pinned. Default is false.

	clean(Boolean) option: Clean registry archive after updating. Default is false.

	verbose(Boolean) option: Verbose updating steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

update/1

Updates a defined registry using default options. Fails if the registry is not defined.

Compilation flags:

static

Template:

update(Registry)

Mode and number of proofs:

update(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

update/2

update/0

Updates all defined registries using default options.

Compilation flags:

static

Mode and number of proofs:

update - zero_or_one

delete/2

Deletes a registry using the specified options (if not pinned).

Compilation flags:

static

Template:

delete(Registry,Options)

Mode and number of proofs:

delete(+atom,++list(compound)) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

Remarks:

	force(Boolean) option: Force deletion if the registry is pinned or there are installed registry packs. Default is false.

	clean(Boolean) option: Clean registry archive after deleting. Default is false.

	verbose(Boolean) option: Verbose deleting steps. Default is false.

	downloader(Atom) option: Downloader utility. Either curl or wget. Default is curl.

	curl(Atom) option: Extra command-line options. Default is ''.

	wget(Atom) option: Extra command-line options. Default is ''.

	gpg(Atom) option: Extra command-line options. Default is ''.

	tar(Atom) option: Extra command-line options. Default is ''.

delete/1

Deletes a registry using default options.

Compilation flags:

static

Template:

delete(Registry)

Mode and number of proofs:

delete(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

See also:

delete/2

delete/0

Deletes all registries using the force(true) option.

Compilation flags:

static

Mode and number of proofs:

delete - zero_or_one

clean/1

Cleans all registry archives. Fails if the registry is not defined.

Compilation flags:

static

Template:

clean(Registry)

Mode and number of proofs:

clean(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

clean/0

Cleans all archives for all registries.

Compilation flags:

static

Mode and number of proofs:

clean - one

provides/2

Enumerates by backtracking all packs provided by a registry.

Compilation flags:

static

Template:

provides(Registry,Pack)

Mode and number of proofs:

provides(?atom,?atom) - zero_or_more

Exceptions:

Registry is neither a variable nor an atom:

type_error(atom,Registry)

Pack is neither a variable nor an atom:

type_error(atom,Pack)

lint/1

Checks the registry specification. Fails if the registry is not defined or if linting detects errors.

Compilation flags:

static

Template:

lint(Registry)

Mode and number of proofs:

lint(+atom) - zero_or_one

Exceptions:

Registry is a variable:

instantiation_error

Registry is neither a variable nor an atom:

type_error(atom,Registry)

lint/0

Checks all registry specifications.

Compilation flags:

static

Mode and number of proofs:

lint - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

registry_loader_hook

Hook object for filtering registry loader file contents.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:13:0

Date: 2022-11-20

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

character

logtalk

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

rule_expansion(Mode)

Expands rules of the form p if f and g to the more manageable rule(p, [f,g]).

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:2

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Imports:

public flatting

Extends:

public debug_expansion(Mode)

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

sample

Statistical sample represented as a list of numbers.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:4:0

Date: 2020-02-02

Compilation flags:

static, context_switching_calls

Imports:

public statistics

Remarks:

(none)

Inherited public predicates:

 arithmetic_mean/2 average_deviation/3 coefficient_of_variation/2 fractile/3 geometric_mean/2 harmonic_mean/2 kurtosis/2 max/2 mean_deviation/2 median/2 median_deviation/2 min/2 min_max/3 modes/2 product/2 range/2 relative_standard_deviation/2 skewness/2 standard_deviation/2 sum/2 valid/1 variance/2 weighted_mean/3 z_normalization/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

population

 object

sequence_grammars

Sequence grammars.

Availability:

logtalk_load(grammars(loader))

Author: Paulo Moura

Version: 0:4:0

Date: 2025-10-06

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	zero_or_more//2

	one_or_more//2

	zero_or_more//1

	one_or_more//1

	zero_or_more//0

	one_or_more//0

	without//2

	Protected predicates

	Private predicates

	Operators

Public predicates

zero_or_more//2

Eagerly collect zero or more terminals that satisfy the given closure.

Compilation flags:

static

Template:

zero_or_more(Closure,Terminals)

Meta-predicate template:

zero_or_more(1,*)

Mode and number of proofs:

zero_or_more(+callable,-list(atomic)) - one

one_or_more//2

Eagerly collect one or more terminals that satisfy the given closure.

Compilation flags:

static

Template:

one_or_more(Closure,Terminals)

Meta-predicate template:

one_or_more(1,*)

Mode and number of proofs:

one_or_more(+callable,-list(atomic)) - zero_or_one

zero_or_more//1

Eagerly collect zero or more terminals.

Compilation flags:

static

Template:

zero_or_more(Terminals)

Mode and number of proofs:

zero_or_more(-list(atomic)) - one

one_or_more//1

Eagerly collect one or more terminals.

Compilation flags:

static

Template:

one_or_more(Terminals)

Mode and number of proofs:

one_or_more(-list(atomic)) - zero_or_one

zero_or_more//0

Eagerly parse zero or more terminals.

Compilation flags:

static

Mode and number of proofs:

zero_or_more - one

one_or_more//0

Eagerly parse one or more terminals.

Compilation flags:

static

Mode and number of proofs:

one_or_more - zero_or_one

without//2

Collects input terminals until one of the stop terminals is found. The stop terminals are excluded from the collected terminals.

Compilation flags:

static

Template:

without(StopTerminals,Terminals)

Mode and number of proofs:

without(+list(atomic),-list(atomic)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

set

Set predicates implemented using ordered lists. Uses ==/2 for element comparison and standard term ordering.

Availability:

logtalk_load(sets(loader))

Author: Richard O’Keefe (main predicates); adapted to Logtalk by Paulo Moura.

Version: 2:0:0

Date: 2025-07-08

Compilation flags:

static, context_switching_calls

Implements:

public setp

Extends:

public compound

Aliases:

setp size/2 as length/2

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_list/2 as_set/2 check/1 delete/3 depth/2 disjoint/2 empty/1 equal/2 ground/1 insert/3 insert_all/3 intersect/2 intersection/3 intersection/4 member/2 memberchk/2 new/1 numbervars/1 numbervars/3 occurs/2 powerset/2 product/3 select/3 selectchk/3 singletons/2 size/2 subset/2 subsumes/2 subterm/2 subtract/3 symdiff/3 union/3 union/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

set(Type)

 object

set(Type)

Set predicates with elements constrained to a single type and custom comparing rules.

Availability:

logtalk_load(sets(loader))

Author: Paulo Moura and Adrian Arroyo

Version: 1:24:0

Date: 2022-02-03

Compilation flags:

static, context_switching_calls

Extends:

public set

Uses:

list

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 as_list/2 as_set/2 check/1 delete/3 depth/2 disjoint/2 empty/1 equal/2 ground/1 insert/3 insert_all/3 intersect/2 intersection/3 intersection/4 member/2 memberchk/2 new/1 numbervars/1 numbervars/3 occurs/2 powerset/2 product/3 select/3 selectchk/3 singletons/2 size/2 subset/2 subsumes/2 subterm/2 subtract/3 symdiff/3 union/3 union/4 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	sort/2

	partition/4

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

sort/2

Sorts a list in ascending order.

Compilation flags:

static

Template:

sort(List,Sorted)

Mode and number of proofs:

sort(+list,-list) - one

partition/4

List partition in two sub-lists using a pivot.

Compilation flags:

static

Template:

partition(List,Pivot,Lowers,Biggers)

Mode and number of proofs:

partition(+list,+nonvar,-list,-list) - one

Operators

(none)

 object

shell

User frontend to start the application.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-03-20

Compilation flags:

static, context_switching_calls

Uses:

shell(Interpreters)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	welcome/0

	start/0

	Protected predicates

	Private predicates

	Operators

Public predicates

welcome/0

Compilation flags:

static

start/0

Compilation flags:

static

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell(Interpreters)

Prolog shell for the interpreters.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist and Paulo Moura

Version: 1:1:3

Date: 2024-03-15

Compilation flags:

static, context_switching_calls

Uses:

counter

list

meta

pairs

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	init/0

	Protected predicates

	Private predicates

	Operators

Public predicates

init/0

Compilation flags:

static

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

shell_expansion(Mode)

Expansion object for the shell.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:1

Date: 2022-10-08

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Extends:

public rule_expansion(Mode)

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

size_metric

Source code size metric. Returned scores are upper bounds and based solely in source file sizes (expressed in bytes).

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:7:1

Date: 2024-05-08

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

os

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

streamvars

Stream variables (supporting logical, backtracable, adding and retrieving of terms).

Availability:

logtalk_load(library(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:3:0

Date: 2019-06-15

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/1

	new/2

	(<=)/2

	(=>)/2

	Protected predicates

	Private predicates

	Operators

	op(100,xfx,<=)

	op(100,xfx,=>)

Public predicates

new/1

Makes Variable a stream variable. Initial state will be empty.

Compilation flags:

static

Template:

new(Variable)

Mode and number of proofs:

new(--streamvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

new/2

Makes Variable a stream variable and sets its initial state to Value.

Compilation flags:

static

Template:

new(Variable,Value)

Mode and number of proofs:

new(--streamvar,@nonvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

(<=)/2

Sets the state of the stream variable Variable to Value (initializing the variable if needed).

Compilation flags:

static

Template:

Variable<=Value

Mode and number of proofs:

(?streamvar)<=(@nonvar) - one

(=>)/2

Unifies Value with the current state of the stream variable Variable.

Compilation flags:

static

Template:

Variable=>Value

Mode and number of proofs:

+streamvar=> ?nonvar - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

op(100,xfx,<=)

Scope:

public

op(100,xfx,=>)

Scope:

public

 object

suppress_goal_hook

Use this object to easily suppress a goal in a clause body.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-05-04

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

	Usage: Mark a goal to be suppressed by prefixing it with the -- operator.

	Operators: This hook object uses the -- prefix operator declared by Logtalk for use in mode/2 directives.

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, grammar_rules_hook, identity_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook

 object

tap_output

Intercepts unit test execution messages and outputs a report using the TAP format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(tap_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	generating_/0

	partial_/1

	test_count_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

generating_/0

Flag to detect report in progress when processing two or more test sets as a unified set.

Compilation flags:

dynamic

Mode and number of proofs:

generating_ - zero_or_one

partial_/1

Cache of total of tests per test set.

Compilation flags:

dynamic

Template:

partial_(Count)

Mode and number of proofs:

partial_(?integer) - zero_or_more

test_count_/1

Test counter.

Compilation flags:

dynamic

Template:

test_count_(Count)

Mode and number of proofs:

test_count_(?integer) - zero_or_one

Operators

(none)

 object

tap_report

Intercepts unit test execution messages and generates a tap_report.txt file using the TAP output format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(tap_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	partial_/1

	test_count_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

partial_/1

Cache of total of tests per test set.

Compilation flags:

dynamic

Template:

partial_(Count)

Mode and number of proofs:

partial_(?integer) - zero_or_more

test_count_/1

Test counter.

Compilation flags:

dynamic

Template:

test_count_(Count)

Mode and number of proofs:

test_count_(?integer) - zero_or_one

Operators

(none)

 object

term

Term utility predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:11:0

Date: 2022-05-13

Compilation flags:

static, context_switching_calls

Implements:

public termp

Aliases:

termp variables/2 as vars/2

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 ground/1 new/1 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

term_io

Term input/output from/to atom, chars, and codes.

Availability:

logtalk_load(term_io(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2023-11-14

Compilation flags:

static, context_switching_calls

Implements:

public term_io_protocol

Uses:

os

Remarks:

(none)

Inherited public predicates:

 format_to_atom/3 format_to_chars/3 format_to_chars/4 format_to_codes/3 format_to_codes/4 read_from_atom/2 read_from_chars/2 read_from_codes/2 read_term_from_atom/3 read_term_from_chars/3 read_term_from_chars/4 read_term_from_codes/3 read_term_from_codes/4 with_output_to/2 write_term_to_atom/3 write_term_to_chars/3 write_term_to_chars/4 write_term_to_codes/3 write_term_to_codes/4 write_to_atom/2 write_to_chars/2 write_to_codes/2

	Public predicates

	Protected predicates

	Private predicates

	temporary_file_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

temporary_file_/1

Logtalk session and term_io specific temporary file path.

Compilation flags:

dynamic

Template:

temporary_file_(Path)

Mode and number of proofs:

temporary_file_(-atom) - one

Operators

(none)

 object

time

Time predicates.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2014-09-27

Compilation flags:

static, context_switching_calls

Implements:

public timep

Uses:

os

Remarks:

(none)

Inherited public predicates:

 cpu_time/1 now/3 valid/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

datep

 object

timeout

Predicates for calling goal with a time limit.

Availability:

logtalk_load(timeout(loader))

Author: Paulo Moura

Version: 0:10:0

Date: 2022-06-15

Compilation flags:

static, context_switching_calls

Dependencies:

(none)

Remarks:

	Supported backend Prolog systems: B-Prolog, ECLiPSe, XVM, SICStus Prolog, SWI-Prolog, Trealla Prolog, XSB, and YAP.

Inherited public predicates:

(none)

	Public predicates

	call_with_timeout/2

	call_with_timeout/3

	Protected predicates

	Private predicates

	Operators

Public predicates

call_with_timeout/2

Calls a goal deterministically with the given time limit (expressed in seconds). Note that the goal may fail or throw an error before exhausting the time limit.

Compilation flags:

static

Template:

call_with_timeout(Goal,Timeout)

Meta-predicate template:

call_with_timeout(0,*)

Mode and number of proofs:

call_with_timeout(+callable,+positive_number) - zero_or_one

Exceptions:

Goal does not complete in the allowed time:

timeout(Goal)

call_with_timeout/3

Calls a goal deterministically with the given time limit (expressed in seconds) returning a reified result: true, fail, timeout, or error(Error).

Compilation flags:

static

Template:

call_with_timeout(Goal,Timeout,Result)

Meta-predicate template:

call_with_timeout(0,*,*)

Mode and number of proofs:

call_with_timeout(+callable,+positive_number,--atom) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 object

toychrdb

Simple CHR interpreter/debugger based on the refined operational semantics of CHRs.

Availability:

logtalk_load(toychr(loader))

Author: Gregory J. Duck; adapted to Logtalk by Paulo Moura.

Version: 0:7:1

Date: 2024-03-15

Copyright: Copright 2004 Gregory J. Duck; Copyright 2019-2024 Paulo Moura

License: GPL-2.0-or-later

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Uses:

list

user

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	chr_is/2

	chr_trace/0

	chr_notrace/0

	chr_spy/1

	chr_nospy/0

	chr_no_spy/1

	chr_option/2

	Protected predicates

	current_prog/1

	chr_option_print_trace/0

	chr_option_trace_interactive/0

	chr_option_optimization_level/1

	chr_option_show_stack/0

	chr_option_show_store/0

	chr_option_show_history/0

	chr_option_show_id/0

	chr_option_allow_deep_guards/0

	chr_next_state/1

	chr_spy_point/1

	Private predicates

	chr_rule_/1

	Operators

Public predicates

chr_is/2

Compilation flags:

static

chr_trace/0

Compilation flags:

static

chr_notrace/0

Compilation flags:

static

chr_spy/1

Compilation flags:

static

chr_nospy/0

Compilation flags:

static

chr_no_spy/1

Compilation flags:

static

chr_option/2

Compilation flags:

static

Protected predicates

current_prog/1

Compilation flags:

static

chr_option_print_trace/0

Compilation flags:

dynamic

chr_option_trace_interactive/0

Compilation flags:

dynamic

chr_option_optimization_level/1

Compilation flags:

dynamic

chr_option_show_stack/0

Compilation flags:

dynamic

chr_option_show_store/0

Compilation flags:

dynamic

chr_option_show_history/0

Compilation flags:

dynamic

chr_option_show_id/0

Compilation flags:

dynamic

chr_option_allow_deep_guards/0

Compilation flags:

dynamic

chr_next_state/1

Compilation flags:

dynamic

chr_spy_point/1

Compilation flags:

dynamic

Private predicates

chr_rule_/1

Compilation flags:

dynamic

Operators

(none)

 object

tsv

TSV files reading and writing predicates using the option Header-keep.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-11-15

Compilation flags:

static, context_switching_calls

Extends:

public tsv(keep)

Remarks:

(none)

Inherited public predicates:

 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

tsv(Header)

	Header - Header handling option with possible values skip and keep (default).

TSV file and stream reading and writing predicates.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2024-03-11

Compilation flags:

static, context_switching_calls

Implements:

public tsv_protocol

Uses:

list

logtalk

reader

type

Remarks:

(none)

Inherited public predicates:

 read_file/2 read_file/3 read_file_by_line/2 read_file_by_line/3 read_stream/2 read_stream/3 read_stream_by_line/2 read_stream_by_line/3 write_file/3 write_stream/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

tutor

This object adds explanations and suggestions to selected compiler warning and error messages.

Availability:

logtalk_load(tutor(loader))

Author: Paulo Moura

Version: 0:84:0

Date: 2025-10-20

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

list

logtalk

Remarks:

	Usage: Simply load this object at startup using the goal logtalk_load(tutor(loader)).

Inherited public predicates:

(none)

	Public predicates

	explain//1

	Protected predicates

	Private predicates

	Operators

Public predicates

explain//1

Generates an explanation for a message.

Compilation flags:

static

Template:

explain(Message)

Mode and number of proofs:

explain(@callable) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

type

Type checking predicates. User extensible. New types can be defined by adding clauses for the type/1 and check/2 multifile predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:5:1

Date: 2024-09-26

Compilation flags:

static, context_switching_calls, complements(restrict)

Uses:

list

Remarks:

	Logtalk specific types: entity, object, protocol, category, entity_identifier, object_identifier, protocol_identifier, category_identifier, event, predicate.

	Prolog module related types (when the backend compiler supports modules): module, module_identifier, qualified_callable.

	Prolog base types: term, var, nonvar, atomic, atom, number, integer, float, compound, callable, ground.

	Atom derived types: non_quoted_atom, non_empty_atom, boolean, character, in_character, char, operator_specifier, hex_char.

	Atom derived parametric types: atom(CharSet), atom(CharSet,Length), non_empty_atom(CharSet), character(CharSet), in_character(CharSet), char(CharSet).

	Number derived types: positive_number, negative_number, non_positive_number, non_negative_number.

	Float derived types: positive_float, negative_float, non_positive_float, non_negative_float, probability.

	Integer derived types: positive_integer, negative_integer, non_positive_integer, non_negative_integer, byte, in_byte, character_code, in_character_code, code, operator_priority, hex_code.

	Integer derived parametric types: character_code(CharSet), in_character_code(CharSet), code(CharSet).

	List types (compound derived types): list, non_empty_list, partial_list, list_or_partial_list, list(Type), list(Type,Length), list(Type,Min,Max), list(Type,Length,Min,Max), non_empty_list(Type), codes, chars.

	Difference list types (compound derived types): difference_list, difference_list(Type).

	Other compound derived types: compound(Name,Types), predicate_indicator, non_terminal_indicator, predicate_or_non_terminal_indicator, clause, grammar_rule, pair, pair(KeyType,ValueType), cyclic, acyclic.

	Stream types: stream, stream_or_alias, stream(Property), stream_or_alias(Property).

	Other types: Object::Closure, between(Type,Lower,Upper), property(Type,LambdaExpression), one_of(Type,Set), var_or(Type), ground(Type), types(Types), constrain(Type,Closure), type.

	Type predicate notes: This type is used to check for an object public predicate specified as Object::Functor/Arity.

	Type boolean notes: The two value of this type are the atoms true and false.

	Stream types notes: In the case of the stream(Property) and stream_or_alias(Property) types, Property must be a valid stream property.

	Type order notes: The three possible values of this type are the single character atoms <, =, and >.

	Type character_code notes: This type takes into account Unicode support by the backend compiler. When Unicode is supported, it distinguishes between BMP and full support. When Unicode is not supported, it assumes a byte representation for characters.

	Type Object::Closure notes: Allows calling a public object predicate for type-checking. The predicate should provide valid/2 predicate semantics and assume called with a bound argument. The Closure closure is extended with a single argument, the value to be checked.

	Type compound(Name,Types) notes: This type verifies that a compound term have the given Name and its arguments conform to Types.

	Type between(Type, Lower, Upper) notes: The type argument allows distinguishing between numbers and other types. It also allows choosing between mixed integer/float comparisons and strict float or integer comparisons. The term is type-checked before testing for interval membership.

	Type property(Type, Lambda) notes: Verifies that Term satisfies a property described using a lambda expression of the form [Parameter]>>Goal. The lambda expression is applied in the context of user. The term is type-checked before calling the goal.

	Type one_of(Type, Set) notes: For checking if a given term is an element of a set. The set is represented using a list. The term is type-checked before testing for set membership.

	Type var_or(Type) notes: Allows checking if a term is either a variable or a valid value of the given type.

	Type ground(Type) notes: Allows checking if a term is ground and a valid value of the given type.

	Type types(Types) notes: Allows checking if a term is a valid value for one of the types in a list of types.

	Type constrain(Type,Closure) notes: Allows checking if a term is a valid value for the given type and satisfies the given closure.

	Type type notes: Allows checking if a term is a valid type.

	Type qualified_callable notes: Allows checking if a term is a possibly module-qualified callable term. When the term is qualified, it also checks that the qualification modules are type correct. When the term is not qualified, its semantics are the same as the callable type.

	Design choices: The main predicates are valid/2 and check/3. These are defined using the predicate check/2. Defining clauses for check/2 instead of valid/2 gives the user full control of exception terms without requiring an additional predicate.

	Error context: The built-in execution-context method context/1 can be used to provide the calling context for errors when using the predicate check/3.

	Registering new types: New types can be registered by defining clauses for the type/1 and check/2 multifile predicates. Clauses for both predicates must have a bound first argument to avoid introducing spurious choice-points when type-checking terms.

	Meta-types: Meta-types are types that have one or more sub-type arguments. E.g. var_or(Type). The sub-types of a meta-type can be enumerated by defining a clause for the meta_type/3 multifile predicate.

	Character sets: When testing character or character code based terms (e.g., atom), it is possible to choose a character set (ascii_identifier, ascii_printable, ascii_full, byte, unicode_bmp, or unicode_full) using the parameterizable types.

	Caveats: The type argument (and any type parameterization) to the predicates is not type-checked (or checked for consistency) for performance reasons.

	Unicode limitations: Currently, correct character/code type-checking is only ensured for XVM and SWI-Prolog as other backends do not provide support for querying a Unicode code point category.

Inherited public predicates:

 arbitrary/1 arbitrary/2 edge_case/2 get_seed/1 max_size/1 mutation/3 set_seed/1 shrink/3 shrink_sequence/3 shrinker/1

	Public predicates

	type/1

	meta_type/3

	valid/2

	check/3

	check/2

	Protected predicates

	Private predicates

	Operators

Public predicates

type/1

Table of defined types. A new type can be registered by defining a clause for this predicate and adding a clause for the check/2 multifile predicate.

Compilation flags:

static, multifile

Template:

type(Type)

Mode and number of proofs:

type(?callable) - zero_or_more

meta_type/3

Table of defined meta-types. A registered type that is a meta-type can be described by defining a clause for this predicate to enumerate its sub-types and optional values in case of a single sub-type.

Compilation flags:

static, multifile

Template:

meta_type(MetaType,SubTypes,Values)

Mode and number of proofs:

meta_type(?callable,-list,-list) - zero_or_more

valid/2

True if the given term is of the specified type. Fails otherwise.

Compilation flags:

static

Template:

valid(Type,Term)

Mode and number of proofs:

valid(@callable,@term) - zero_or_one

check/3

True if the given term is of the specified type. Throws an error otherwise using the format error(Error, Context). For the possible values of Error see the check/2 predicate.

Compilation flags:

static

Template:

check(Type,Term,Context)

Mode and number of proofs:

check(@callable,@term,@term) - one_or_error

check/2

True if the given term is of the specified type. Throws an error otherwise. A new type can be added by defining a clause for this predicate and registering it by adding a clause for the type/1 multifile predicate.

Compilation flags:

static, multifile

Template:

check(Type,Term)

Meta-predicate template:

check(::,*)

Mode and number of proofs:

check(@callable,@term) - one_or_error

Exceptions:

Term is not bound as required:

instantiation_error

Term is bound but not of the specified type:

type_error(Type,Term)

Term is the of the correct type but not in the specified domain:

domain_error(Domain,Term)

Term is the of the correct type and domain but the resource it represents does not exist:

existence_error(Type,Term)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

arbitrary, os_types, either, maybe

 object

ulid

Universally Unique Lexicographically Sortable Identifier (ULID) generator using an atom representation.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static, context_switching_calls

Extends:

public ulid(atom)

Remarks:

(none)

Inherited public predicates:

 generate/1 generate/2 generate/8 timestamp/2 timestamp/8

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid(Representation), ulid_types, uuid, uuid(Representation), ids, ids(Representation,Bytes)

 object

ulid(Representation)

	Representation - Text representation for the ULID. Possible values are atom, chars, and codes.

Universally Unique Lexicographically Sortable Identifier (ULID) generator.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-19

Compilation flags:

static, context_switching_calls

Implements:

public ulid_protocol

Uses:

fast_random

iso8601

list

os

Remarks:

(none)

Inherited public predicates:

 generate/1 generate/2 generate/8 timestamp/2 timestamp/8

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

ulid, ulid_types, uuid(Representation), uuid, ids, ids(Representation,Bytes)

 object

union_find

Union find data structure implementation.

Availability:

logtalk_load(union_find(loader))

Author: José Antonio Riaza Valverde; adapted to Logtalk by Paulo Moura

Version: 1:0:0

Date: 2022-02-18

Compilation flags:

static, context_switching_calls

Implements:

public union_find_protocol

Extends:

public compound

Uses:

avltree

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2 check/1 depth/2 disjoint_sets/2 find/4 find/5 ground/1 make_set/3 new/1 new/2 numbervars/1 numbervars/3 occurs/2 singletons/2 subsumes/2 subterm/2 union/4 union_all/3 valid/1 variables/2 variant/2 varnumbers/2 varnumbers/3

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

upn_metric

Number of unique predicates nodes metric. The nodes include called and updated predicates independently of where they are defined. The score is represented by a non-negative integer.

Availability:

logtalk_load(code_metrics(loader))

Author: Paulo Moura

Version: 0:6:2

Date: 2024-05-15

Compilation flags:

static, context_switching_calls

Imports:

public code_metrics_utilities

public code_metric

Provides:

logtalk::message_tokens//2

Uses:

list

logtalk

numberlist

Remarks:

(none)

Inherited public predicates:

 all/0 all/1 all_score/1 check_option/1 check_options/1 default_option/1 default_options/1 directory/1 directory/2 directory_score/2 entity/1 entity_score/2 file/1 file/2 file_score/2 format_entity_score//2 library/1 library/2 library_score/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory_score/2 rlibrary/1 rlibrary/2 rlibrary_score/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

user

Pseudo-object representing the plain Prolog database. Can be used as a monitor by defining before/3 and after/3 predicates. Can be used as a hook object by defining term_expansion/2 and goal_expansion/2 multifile and dynamic predicates.

Availability:

built_in

Author: Paulo Moura

Version: 1:6:0

Date: 2024-11-11

Compilation flags:

static, built_in, context_switching_calls, dynamic_declarations, threaded

Implements:

public expanding

public forwarding

public monitoring

Uses:

user

Remarks:

(none)

Inherited public predicates:

 after/3 before/3 forward/1 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

uses_diagram

Predicates for generating entity diagrams in DOT format with only uses/2 and use_module/2 relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:1

Date: 2020-03-27

Compilation flags:

static, context_switching_calls

Extends:

public uses_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, inheritance_diagram, xref_diagram

 object

uses_diagram(Format)

	Format - Graph language file format.

Predicates for generating entity diagrams with only uses/2 and use_module/2 relation edges.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:21:0

Date: 2024-03-20

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

logtalk

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram(Format), inheritance_diagram(Format), xref_diagram(Format)

 object

uuid

Universally unique identifier (UUID) generator using an atom representation.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:2:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Extends:

public uuid(atom)

Remarks:

(none)

Inherited public predicates:

 random_node/1 uuid_null/1 uuid_v1/2 uuid_v4/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

uuid(Representation), ulid, ulid(Representation), ids, ids(Representation,Bytes)

 object

uuid(Representation)

	Representation - Text representation for the UUID. Possible values are atom, chars, and codes.

Universally unique identifier (UUID) generator.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:5:0

Date: 2022-11-23

Compilation flags:

static, context_switching_calls

Implements:

public uuid_protocol

Uses:

fast_random

iso8601

list

os

Remarks:

(none)

Inherited public predicates:

 random_node/1 uuid_null/1 uuid_v1/2 uuid_v4/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

uuid, ulid, ulid(Representation), ids, ids(Representation,Bytes)

 object

varlist

List of variables predicates.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2020-05-11

Compilation flags:

static, context_switching_calls

Implements:

public varlistp

Remarks:

(none)

Inherited public predicates:

 append/3 check/1 delete/3 empty/1 flatten/2 last/2 length/2 memberchk/2 nextto/3 nth0/3 nth0/4 nth1/3 nth1/4 permutation/2 prefix/2 remove_duplicates/2 reverse/2 same_length/2 select/3 sublist/2 subtract/3 suffix/2 valid/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

list, list(Type), numberlist, difflist

 object

wrapper

Adviser tool for porting and wrapping plain Prolog applications.

Availability:

logtalk_load(wrapper(loader))

Author: Paulo Moura

Version: 0:12:3

Date: 2025-10-28

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Provides:

logtalk::message_hook/4

logtalk::message_prefix_stream/4

logtalk::message_tokens//2

Uses:

logtalk

os

Remarks:

	prolog_extensions(Extensions) option: List of file name extensions used to recognize Prolog source files (default is ['.pl','.pro','.prolog']).

	logtalk_extension(Extension) option: Logtalk file name extension to be used for the generated wrapper files (default is '.lgt').

	exclude_files(Files) option: List of Prolog source files names to exclude (default is []).

	exclude_directories(Files) option: List of sub-directory names to exclude (default is []).

	include_wrapped_files(Boolean): Generate include/1 directives for the wrapped Prolog source files (default is true).

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	rdirectory/2

	rdirectory/1

	directory/2

	directory/1

	directories/2

	directories/1

	files/2

	files/1

	file/2

	file/1

	save/1

	save/0

	default_option/1

	default_options/1

	Protected predicates

	Private predicates

	merge_options/2

	predicate_called_but_not_defined_/2

	object_predicate_called_/3

	module_predicate_called_/3

	unknown_predicate_called_/2

	missing_predicate_directive_/3

	non_standard_predicate_call_/2

	dynamic_directive_/3

	multifile_directive_/3

	add_directive_before_entity_/2

	add_directive_/2

	add_directive_/3

	remove_directive_/2

	file_being_advised_/4

	Operators

Public predicates

rdirectory/2

Advises the user on missing directives for converting all plain Prolog files in a directory and its sub-directories to Logtalk objects using the specified options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list(compound)) - one

rdirectory/1

Advises the user on missing directives for converting all plain Prolog files in a directory and its sub-directories to Logtalk objects using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

directory/2

Advises the user on missing directives for converting all plain Prolog files in a directory to Logtalk objects using the specified options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list(compound)) - one

directory/1

Advises the user on missing directives for converting all plain Prolog files in a directory to Logtalk objects using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

directories/2

Advises the user on missing directives for converting all Prolog files in a set of directories to Logtalk objects using the specified options.

Compilation flags:

static

Template:

directories(Directories,Options)

Mode and number of proofs:

directories(+list(atom),+list(compound)) - one

directories/1

Advises the user on missing directives for converting all Prolog files in a set of directories to Logtalk objects using default options.

Compilation flags:

static

Template:

directories(Directories)

Mode and number of proofs:

directories(+list(atom)) - one

files/2

Advises the user on missing directives for converting a list of plain Prolog files to Logtalk objects using the specified options.

Compilation flags:

static

Template:

files(Files,Options)

Mode and number of proofs:

files(+list(atom),+list(compound)) - one

files/1

Advises the user on missing directives for converting a list of plain Prolog files to Logtalk objects using default options.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

file/2

Advises the user on missing directives for converting a plain Prolog file to Logtalk objects using the specified options.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list(compound)) - one

file/1

Advises the user on missing directives for converting a plain Prolog file to Logtalk objects using default options.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

save/1

Saves the generated wrapper objects (plus a loader file per directory) for all advised files using the specified options. The wrapper objects are saved to the same directories that contain the wrapped Prolog files.

Compilation flags:

static

Template:

save(Options)

Mode and number of proofs:

save(+list(compound)) - one

save/0

Saves the generated wrapper objects (plus a loader file per directory) for all advised files using default options. The wrapper objects are saved to the same directories that contain the wrapped Prolog files.

Compilation flags:

static

Mode and number of proofs:

save - one

default_option/1

Enumerates by backtracking the default options used when generating the wrapper objects.

Compilation flags:

static

Template:

default_option(DefaultOption)

Mode and number of proofs:

default_option(?compound) - zero_or_more

default_options/1

Returns a list of the default options used when generating the wrapper objects.

Compilation flags:

static

Template:

default_options(DefaultOptions)

Mode and number of proofs:

default_options(-list(compound)) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

merge_options/2

Merges the user options with the default options, returning the list of options used when generating the wrapper objects.

Compilation flags:

static

Template:

merge_options(UserOptions,Options)

Mode and number of proofs:

merge_options(+list(compound),-list(compound)) - one

predicate_called_but_not_defined_/2

Table of called object predicates that are not locally defined.

Compilation flags:

dynamic

Template:

predicate_called_but_not_defined_(Object,Predicate)

Mode and number of proofs:

predicate_called_but_not_defined_(?atom,?predicate_indicator) - zero_or_more

object_predicate_called_/3

Table of called object predicates.

Compilation flags:

dynamic

Template:

object_predicate_called_(Object,Other,Predicate)

Mode and number of proofs:

object_predicate_called_(?atom,?atom,?predicate_indicator) - zero_or_more

module_predicate_called_/3

Table of called module predicates.

Compilation flags:

dynamic

Template:

module_predicate_called_(Object,Module,Predicate)

Mode and number of proofs:

module_predicate_called_(?atom,?atom,?predicate_indicator) - zero_or_more

unknown_predicate_called_/2

Table of predicates called but not defined.

Compilation flags:

dynamic

Template:

unknown_predicate_called_(Object,Predicate)

Mode and number of proofs:

unknown_predicate_called_(?atom,?predicate_indicator) - zero_or_more

missing_predicate_directive_/3

Table of missing predicate directives.

Compilation flags:

dynamic

Template:

missing_predicate_directive_(Object,Directive,Predicate)

Mode and number of proofs:

missing_predicate_directive_(?atom,?predicate_indicator,?predicate_indicator) - zero_or_more

non_standard_predicate_call_/2

Table of called non-standard predicates.

Compilation flags:

dynamic

Template:

non_standard_predicate_call_(Object,Predicate)

Mode and number of proofs:

non_standard_predicate_call_(?atom,?predicate_indicator) - zero_or_more

dynamic_directive_/3

Table of declared dynamic predicates.

Compilation flags:

dynamic

Template:

dynamic_directive_(Object,Line,Predicate)

Mode and number of proofs:

dynamic_directive_(?atom,?integer,?predicate_indicator) - zero_or_more

multifile_directive_/3

Table of declared multifile predicates.

Compilation flags:

dynamic

Template:

multifile_directive_(Object,Line,Predicate)

Mode and number of proofs:

multifile_directive_(?atom,?integer,?predicate_indicator) - zero_or_more

add_directive_before_entity_/2

Table of directives to be added before the entity opening directive.

Compilation flags:

dynamic

Template:

add_directive_before_entity_(Object,Directive)

Mode and number of proofs:

add_directive_before_entity_(?atom,?predicate_indicator) - zero_or_more

add_directive_/2

Table of directives to be added.

Compilation flags:

dynamic

Template:

add_directive_(Object,Directive)

Mode and number of proofs:

add_directive_(?atom,?predicate_indicator) - zero_or_more

add_directive_/3

Table of directives to be added to complement existing directives.

Compilation flags:

dynamic

Template:

add_directive_(Object,Directive,NewDirective)

Mode and number of proofs:

add_directive_(?atom,?predicate_indicator,?predicate_indicator) - zero_or_more

remove_directive_/2

Table of directives to be removed.

Compilation flags:

dynamic

Template:

remove_directive_(Object,Directive)

Mode and number of proofs:

remove_directive_(?atom,?predicate_indicator) - zero_or_more

file_being_advised_/4

Table of files being advised are respective directories and names (basename without extension).

Compilation flags:

dynamic

Template:

file_being_advised_(File,Path,Directory,Name)

Mode and number of proofs:

file_being_advised_(?atom,?atom,?atom,?atom) - zero_or_more

Operators

(none)

 object

write_to_file_hook(File)

This hook object writes term-expansion results to a file in canonical format. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-06

Compilation flags:

static, context_switching_calls

Extends:

public write_to_file_hook(File,[quoted(true),ignore_ops(true)])

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_file_hook(File,Options), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

write_to_file_hook(File,Options)

This hook object writes term-expansion results to a file using a list of write_term/3 options. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2022-07-06

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_file_hook(File), write_to_stream_hook(Stream,Options), write_to_stream_hook(Stream), print_goal_hook, suppress_goal_hook

 object

write_to_stream_hook(Stream)

This hook object writes term-expansion results to a stream in canonical format. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-16

Compilation flags:

static, context_switching_calls

Extends:

public write_to_stream_hook(Stream,[quoted(true),ignore_ops(true)])

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream,Options), write_to_file_hook(File,Options), write_to_file_hook(File), print_goal_hook, suppress_goal_hook

 object

write_to_stream_hook(Stream,Options)

This hook object writes term-expansion results to a stream using a list of write_term/3 options. The terms are terminated by a period and a new line.

Availability:

logtalk_load(hook_objects(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2020-02-16

Compilation flags:

static, context_switching_calls

Implements:

public expanding

Remarks:

(none)

Inherited public predicates:

 goal_expansion/2 term_expansion/2

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

backend_adapter_hook, default_workflow_hook, identity_hook, grammar_rules_hook, prolog_module_hook(Module), object_wrapper_hook, write_to_stream_hook(Stream), write_to_file_hook(File,Options), write_to_file_hook(File), print_goal_hook, suppress_goal_hook

 object

xhtml11

XHTML content generation using the XHTML 1.1 doctype.

Availability:

logtalk_load(html(loader))

Author: Paul Brown and Paulo Moura

Version: 1:0:0

Date: 2021-03-29

Compilation flags:

static, context_switching_calls

Imports:

public html

Remarks:

(none)

Inherited public predicates:

 generate/2 normal_element/2 void_element/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 object

xml

Bi-directional XML parser.

Availability:

logtalk_load(xml_parser(loader))

Author: John Fletcher; adapted to Logtalk by Paulo Moura.

Version: 3:9:0

Date: 2025-10-06

Copyright: Copyright (C) 2001-2005 Binding Time Limited, Copyright (C) 2005-2013 John Fletcher

License: This program is offered free of charge, as unsupported source code. You may use it, copy it, distribute it, modify it or sell it without restriction, but entirely at your own risk.

Compilation flags:

static, context_switching_calls

Uses:

list

term

Remarks:

	On-line documentation: https://binding-time.co.uk/index.php/Parsing_XML_with_Prolog

	Compliance: This XML parser supports a subset of XML suitable for XML Data and Worldwide Web applications. It is neither as strict nor as comprehensive as the XML 1.0 Specification mandates.

	Compliance-strictness: It is not as strict, because, while the specification must eliminate ambiguities, not all errors need to be regarded as faults, and some reasonable examples of real XML usage would have to be rejected if they were.

	Compliance-comprehensive: It is not as comprehensive, because, where the XML specification makes provision for more or less complete DTDs to be provided as part of a document, xml.pl actions the local definition of ENTITIES only. Other DTD extensions are treated as commentary.

	Bi-directional conversions: Conversions are not fully symmetrical as weaker XML is accepted than can be generated. Notably, in-bound (Codes -> Document) parsing does not require strictly well-formed XML. If Codes does not represent well-formed XML, Document is instantiated to the term malformed(<attributes>,<content>).

Inherited public predicates:

(none)

	Public predicates

	parse/2

	parse/3

	subterm/2

	pp/1

	Protected predicates

	Private predicates

	xml_to_document/3

	empty_map/1

	map_member/3

	map_store/4

	pp_string/1

	fault/5

	exception/4

	document_generation//2

	pcdata_7bit//1

	character_data_format/3

	cdata_generation//1

	Operators

Public predicates

parse/2

Parses a list of character codes to/from a data structure of the form xml(<atts>,<content>).

Compilation flags:

static

Template:

parse(Codes,Document)

Mode and number of proofs:

parse(+list(character_code),?nonvar) - zero_or_one

parse(?list(character_code),+nonvar) - zero_or_one

parse/3

Parses a list of character codes to/from a data structure of the form xml(<atts>,<content>) using the given list of options.

Compilation flags:

static

Template:

parse(Options,Codes,Document)

Mode and number of proofs:

parse(++list(compound),+list(character_code),?nonvar) - zero_or_one

parse(++list(compound),?list(character_code),+nonvar) - zero_or_one

Remarks:

	extended_characters(Boolean) option: Use the extended character entities for XHTML (default true).

	format(Boolean) option: For parsing, strip layouts when no character data appears between elements (default true). For generating, indent the element content (default true).

	remove_attribute_prefixes(Boolean) option: Remove namespace prefixes from attributes when it’s the same as the prefix of the parent element (default false).

	allow_ampersand(Boolean) option: Allow unescaped ampersand characters (&) to occur in PCDATA (default false).

subterm/2

Unifies Subterm with a sub-term of XMLTerm. Note that XMLTerm is a sub-term of itself.

Compilation flags:

static

Template:

subterm(XMLTerm,Subterm)

Mode and number of proofs:

subterm(+nonvar,?nonvar) - zero_or_one

pp/1

Pretty prints a XML document on the current output stream.

Compilation flags:

static

Template:

pp(XMLDocument)

Mode and number of proofs:

pp(+nonvar) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

xml_to_document/3

Translates the list of character codes XML into the Prolog term Document. Options is a list of terms controlling the treatment of layout characters and character entities.

Compilation flags:

static

Template:

xml_to_document(Options,XML,Document)

Mode and number of proofs:

xml_to_document(+nonvar,+nonvar,?nonvar) - zero_or_one

empty_map/1

True if Map is a null map.

Compilation flags:

static

Template:

empty_map(Map)

Mode and number of proofs:

empty_map(?nonvar) - zero_or_one

map_member/3

True if Map is a ordered map structure which records the pair Key-Data. Key must be ground.

Compilation flags:

static

Template:

map_member(Key,Map,Data)

Mode and number of proofs:

map_member(+nonvar,+nonvar,?nonvar) - zero_or_one

map_store/4

True if Map0 is an ordered map structure, Key must be ground, and Map1 is identical to Map0 except that the pair Key-Data is recorded by Map1.

Compilation flags:

static

Template:

map_store(Map0,Key,Data,Map1)

Mode and number of proofs:

map_store(+nonvar,+nonvar,+nonvar,?nonvar) - zero_or_one

pp_string/1

Prints String onto the current output stream. If String contains only 7-bit chars it is printed in shorthand quoted format, otherwise it is written as a list.

Compilation flags:

static

Template:

pp_string(String)

Mode and number of proofs:

pp_string(+nonvar) - zero_or_one

fault/5

Identifies SubTerm as a sub-term of Term which cannot be serialized after Indentation. Message is an atom naming the type of error; Path is a string encoding a list of SubTerm’s ancestor elements in the form <tag>{(id)}* where <tag> is the element tag and <id> is the value of any attribute _named_ id.

Compilation flags:

static

Template:

fault(Term,Indentation,SubTerm,Path,Message)

Mode and number of proofs:

fault(+nonvar,+nonvar,?nonvar,?nonvar,?nonvar) - zero_or_one

exception/4

Hook to raise an exception to be raised in respect of a fault in the XML Term Document.

Compilation flags:

static

Template:

exception(Message,Document,Culprit,Path)

Mode and number of proofs:

exception(+atom,+nonvar,+nonvar,+nonvar) - one

document_generation//2

DCG generating Document as a list of character codes. Format is true|false defining whether layouts, to provide indentation, should be added between the element content of the resultant “string”. Note that formatting is disabled for elements that are interspersed with pcdata/1 terms, such as XHTML’s ‘inline’ elements. Also, Format is over-ridden, for an individual element, by an explicit 'xml:space'="preserve" attribute.

Compilation flags:

static

Template:

document_generation(Format,Document)

Mode and number of proofs:

document_generation(+nonvar,+nonvar) - zero_or_one

pcdata_7bit//1

Represents the ASCII character set in its simplest format, using the character entities &, ", <, and > which are common to both XML and HTML. The numeric entity ' is used in place of ' because browsers don’t recognize it in HTML.

Compilation flags:

static

Template:

pcdata_7bit(Code)

Mode and number of proofs:

pcdata_7bit(?nonvar) - zero_or_one

character_data_format/3

Holds when Format0 and Format1 are the statuses of XML formatting before and after Codes - which may be null.

Compilation flags:

static

Template:

character_data_format(Codes,Format0,Format1)

Mode and number of proofs:

character_data_format(+nonvar,+nonvar,?nonvar) - zero_or_one

cdata_generation//1

Holds when Format0 and Format1 are the statuses of XML formatting before and after Codes - which may be null.

Compilation flags:

static

Template:

cdata_generation(Codes)

Mode and number of proofs:

cdata_generation(+list) - zero_or_one

Operators

(none)

 object

xref_diagram

Predicates for generating predicate call cross-referencing diagrams in DOT format.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-01-01

Compilation flags:

static, context_switching_calls

Extends:

public xref_diagram(dot)

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 entity/1 entity/2 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	Protected predicates

	Private predicates

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

entity_diagram, inheritance_diagram, uses_diagram

 object

xref_diagram(Format)

	Format - Graph language file format.

Predicates for generating predicate call cross-referencing diagrams.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:85:1

Date: 2025-10-27

Compilation flags:

static, context_switching_calls

Extends:

public entity_diagram(Format)

Uses:

atom

list

logtalk

modules_diagram_support

os

user

Remarks:

(none)

Inherited public predicates:

 all_files/0 all_files/1 all_libraries/0 all_libraries/1 check_option/1 check_options/1 default_option/1 default_options/1 diagram_description/1 diagram_name_suffix/1 directories/2 directories/3 directory/1 directory/2 directory/3 file/1 file/2 files/1 files/2 files/3 format_object/1 libraries/1 libraries/2 libraries/3 library/1 library/2 option/2 option/3 rdirectory/1 rdirectory/2 rdirectory/3 rlibrary/1 rlibrary/2 valid_option/1 valid_options/1

	Public predicates

	entity/2

	entity/1

	Protected predicates

	Private predicates

	included_predicate_/1

	referenced_predicate_/1

	external_predicate_/1

	Operators

Public predicates

entity/2

Creates a diagram for a single entity using the specified options.

Compilation flags:

static

Template:

entity(Entity,Options)

Mode and number of proofs:

entity(+entity_identifier,+list(compound)) - one

entity/1

Creates a diagram for a single entity using default options.

Compilation flags:

static

Template:

entity(Entity)

Mode and number of proofs:

entity(+entity_identifier) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

included_predicate_/1

Table of predicates already included in the diagram for the entity under processing.

Compilation flags:

dynamic

Template:

included_predicate_(Predicate)

Mode and number of proofs:

included_predicate_(?predicate_indicator) - zero_or_more

referenced_predicate_/1

Table of referenced predicates for the entity under processing.

Compilation flags:

dynamic

Template:

referenced_predicate_(Predicate)

Mode and number of proofs:

referenced_predicate_(?predicate_indicator) - zero_or_more

external_predicate_/1

Table of external predicate references for all the entities under processing.

Compilation flags:

dynamic

Template:

external_predicate_(Reference)

Mode and number of proofs:

external_predicate_(?compound) - zero_or_more

Operators

(none)

See also

entity_diagram(Format), inheritance_diagram(Format), uses_diagram(Format)

 object

xunit_net_v2_output

Intercepts unit test execution messages and outputs a report using the xUnit.net v2 XML format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_net_v2_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_net_v2_report

Intercepts unit test execution messages and generates a xunit_report.xml file using the xUnit.net v2 XML format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_net_v2_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_output

Intercepts unit test execution messages and outputs a report using the xUnit XML format to the current output stream.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 5:0:1

Date: 2025-04-11

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_output)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

xunit_report

Intercepts unit test execution messages and generates a xunit_report.xml file using the xUnit XML format in the same directory as the tests object file.

Availability:

logtalk_load(lgtunit(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2025-04-07

Compilation flags:

static, context_switching_calls

Provides:

logtalk::message_hook/4

Uses:

logtalk

user

Remarks:

	Usage: Simply load this object before running your tests using the goal logtalk_load(lgtunit(xunit_report)).

Inherited public predicates:

(none)

	Public predicates

	Protected predicates

	Private predicates

	message_cache_/1

	Operators

Public predicates

(no local declarations; see entity ancestors if any)

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

message_cache_/1

Table of messages emitted by the lgtunit tool when running tests.

Compilation flags:

dynamic

Template:

message_cache_(Message)

Mode and number of proofs:

message_cache_(?callable) - zero_or_more

Operators

(none)

 object

zlist

Zipper list predicates. Zippers should be regarded as opaque terms.

Availability:

logtalk_load(zippers(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2019-03-12

Compilation flags:

static, context_switching_calls

Implements:

public zipperp

Remarks:

(none)

Inherited public predicates:

 apply/2 current/2 delete_all_after/2 delete_all_after_and_unzip/2 delete_all_before/2 delete_all_before_and_unzip/2 delete_and_next/2 delete_and_previous/2 delete_and_unzip/2 forward/2 forward/3 insert_after/3 insert_before/3 next/2 next/3 previous/2 previous/3 replace/3 rewind/2 rewind/3 unzip/2 zip/2 zip/3

	Public predicates

	zip_at_index/4

	Protected predicates

	Private predicates

	Operators

Public predicates

zip_at_index/4

Adds a zipper to a list opened at the given index and also returns the element at the index. Fails if the list is empty or the index (starting at 1) does not exist.

Compilation flags:

static

Template:

zip_at_index(Index,List,Zipper,Element)

Mode and number of proofs:

zip_at_index(+natural,+list,--zipper,--term) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

 protocol

assignvarsp

Assignable variables (supporting backtracable assignment of non-variable terms) protocol.

Availability:

logtalk_load(assignvars(loader))

Author: Nobukuni Kino and Paulo Moura

Version: 1:0:1

Date: 2019-06-10

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	assignable/1

	assignable/2

	(<=)/2

	(=>)/2

	Protected predicates

	Private predicates

	Operators

	op(100,xfx,<=)

	op(100,xfx,=>)

Public predicates

assignable/1

Makes Variable an assignable variable. Initial state will be empty.

Compilation flags:

static

Template:

assignable(Variable)

Mode and number of proofs:

assignable(--assignvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

assignable/2

Makes Variable an assignable variable and sets its initial state to Value.

Compilation flags:

static

Template:

assignable(Variable,Value)

Mode and number of proofs:

assignable(--assignvar,@nonvar) - one

Exceptions:

Variable is not a variable:

type_error(variable,Variable)

Value is not instantiated:

instantiation_error

(<=)/2

Sets the state of the assignable variable Variable to Value (initializing the variable if needed).

Compilation flags:

static

Template:

Variable<=Value

Mode and number of proofs:

(?assignvar)<=(@nonvar) - one

Exceptions:

Value is not instantiated:

instantiation_error

(=>)/2

Unifies Value with the current state of the assignable variable Variable.

Compilation flags:

static

Template:

Variable=>Value

Mode and number of proofs:

+assignvar=> ?nonvar - zero_or_one

Exceptions:

Variable is not instantiated:

instantiation_error

Protected predicates

(none)

Private predicates

(none)

Operators

op(100,xfx,<=)

Scope:

public

op(100,xfx,=>)

Scope:

public

See also

assignvars

 protocol

characterp

Character protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2019-06-29

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	is_ascii/1

	is_alphanumeric/1

	is_alpha/1

	is_letter/1

	is_bin_digit/1

	is_octal_digit/1

	is_dec_digit/1

	is_hex_digit/1

	is_lower_case/1

	is_upper_case/1

	is_vowel/1

	is_white_space/1

	is_layout/1

	is_quote/1

	is_punctuation/1

	is_period/1

	is_control/1

	is_newline/1

	is_end_of_line/1

	parenthesis/2

	lower_upper/2

	Protected predicates

	Private predicates

	Operators

Public predicates

is_ascii/1

True if the argument is an ASCII character.

Compilation flags:

static

Template:

is_ascii(Char)

Mode and number of proofs:

is_ascii(+char) - zero_or_one

is_alphanumeric/1

True if the argument is an alphanumeric character.

Compilation flags:

static

Template:

is_alphanumeric(Char)

Mode and number of proofs:

is_alphanumeric(+char) - zero_or_one

is_alpha/1

True if the argument is a letter or an underscore.

Compilation flags:

static

Template:

is_alpha(Char)

Mode and number of proofs:

is_alpha(+char) - zero_or_one

is_letter/1

True if the argument is a letter.

Compilation flags:

static

Template:

is_letter(Char)

Mode and number of proofs:

is_letter(+char) - zero_or_one

is_bin_digit/1

True if the argument is a binary digit.

Compilation flags:

static

Template:

is_bin_digit(Char)

Mode and number of proofs:

is_bin_digit(+char) - zero_or_one

is_octal_digit/1

True if the argument is an octal digit.

Compilation flags:

static

Template:

is_octal_digit(Char)

Mode and number of proofs:

is_octal_digit(+char) - zero_or_one

is_dec_digit/1

True if the argument is a decimal digit.

Compilation flags:

static

Template:

is_dec_digit(Char)

Mode and number of proofs:

is_dec_digit(+char) - zero_or_one

is_hex_digit/1

True if the argument is an hexadecimal digit.

Compilation flags:

static

Template:

is_hex_digit(Char)

Mode and number of proofs:

is_hex_digit(+char) - zero_or_one

is_lower_case/1

True if the argument is a lower case letter.

Compilation flags:

static

Template:

is_lower_case(Char)

Mode and number of proofs:

is_lower_case(+char) - zero_or_one

is_upper_case/1

True if the argument is a upper case letter.

Compilation flags:

static

Template:

is_upper_case(Char)

Mode and number of proofs:

is_upper_case(+char) - zero_or_one

is_vowel/1

True if the argument is a vowel.

Compilation flags:

static

Template:

is_vowel(Char)

Mode and number of proofs:

is_vowel(+char) - zero_or_one

is_white_space/1

True if the argument is a white space character (a space or a tab) inside a line of characters.

Compilation flags:

static

Template:

is_white_space(Char)

Mode and number of proofs:

is_white_space(+char) - zero_or_one

is_layout/1

True if the argument is a layout character.

Compilation flags:

static

Template:

is_layout(Char)

Mode and number of proofs:

is_layout(+char) - zero_or_one

is_quote/1

True if the argument is a quote character.

Compilation flags:

static

Template:

is_quote(Char)

Mode and number of proofs:

is_quote(+char) - zero_or_one

is_punctuation/1

True if the argument is a sentence punctuation character.

Compilation flags:

static

Template:

is_punctuation(Char)

Mode and number of proofs:

is_punctuation(+char) - zero_or_one

is_period/1

True if the argument is a character that ends a sentence.

Compilation flags:

static

Template:

is_period(Char)

Mode and number of proofs:

is_period(+char) - zero_or_one

is_control/1

True if the argument is an ASCII control character.

Compilation flags:

static

Template:

is_control(Char)

Mode and number of proofs:

is_control(+char) - zero_or_one

is_newline/1

True if the argument is the ASCII newline character.

Compilation flags:

static

Template:

is_newline(Char)

Mode and number of proofs:

is_newline(+char) - zero_or_one

is_end_of_line/1

True if the argument is the ASCII end-of-line character (either a carriage return or a line feed).

Compilation flags:

static

Template:

is_end_of_line(Char)

Mode and number of proofs:

is_end_of_line(+char) - zero_or_one

parenthesis/2

Recognizes and converts between open and close parenthesis.

Compilation flags:

static

Template:

parenthesis(Char1,Char2)

Mode and number of proofs:

parenthesis(?char,?char) - zero_or_more

parenthesis(+char,?char) - zero_or_one

parenthesis(?char,+char) - zero_or_one

lower_upper/2

Recognizes and converts between lower and upper case letters.

Compilation flags:

static

Template:

lower_upper(Char1,Char2)

Mode and number of proofs:

lower_upper(?char,?char) - zero_or_more

lower_upper(+char,?char) - zero_or_one

lower_upper(?char,+char) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

character

 protocol

class_hierarchyp

Class hierarchy protocol.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Extends:

public hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 leaf/1 leaves/1

	Public predicates

	class/1

	classes/1

	instance/1

	instances/1

	subclass/1

	subclasses/1

	superclass/1

	superclasses/1

	leaf_instance/1

	leaf_instances/1

	leaf_class/1

	leaf_classes/1

	descendant_instance/1

	descendant_instances/1

	descendant_class/1

	descendant_classes/1

	Protected predicates

	Private predicates

	Operators

Public predicates

class/1

Returns, by backtracking, all object classes.

Compilation flags:

static

Template:

class(Class)

Mode and number of proofs:

class(?object) - zero_or_more

classes/1

List of all object classes.

Compilation flags:

static

Template:

classes(Classes)

Mode and number of proofs:

classes(-list) - one

instance/1

Returns, by backtracking, all class instances.

Compilation flags:

static

Template:

instance(Instance)

Mode and number of proofs:

instance(?object) - zero_or_more

instances/1

List of all class instances.

Compilation flags:

static

Template:

instances(Instances)

Mode and number of proofs:

instances(-list) - one

subclass/1

Returns, by backtracking, all class subclasses.

Compilation flags:

static

Template:

subclass(Subclass)

Mode and number of proofs:

subclass(?object) - zero_or_more

subclasses/1

List of all class subclasses.

Compilation flags:

static

Template:

subclasses(Subclasses)

Mode and number of proofs:

subclasses(-list) - one

superclass/1

Returns, by backtracking, all class superclasses.

Compilation flags:

static

Template:

superclass(Superclass)

Mode and number of proofs:

superclass(?object) - zero_or_more

superclasses/1

List of all class superclasses.

Compilation flags:

static

Template:

superclasses(Superclasses)

Mode and number of proofs:

superclasses(-list) - one

leaf_instance/1

Returns, by backtracking, all class leaf instances.

Compilation flags:

static

Template:

leaf_instance(Leaf)

Mode and number of proofs:

leaf_instance(?object) - zero_or_more

leaf_instances/1

List of all class leaf instances.

Compilation flags:

static

Template:

leaf_instances(Leaves)

Mode and number of proofs:

leaf_instances(-list) - one

leaf_class/1

Returns, by backtracking, all class leaf subclasses.

Compilation flags:

static

Template:

leaf_class(Leaf)

Mode and number of proofs:

leaf_class(?object) - zero_or_more

leaf_classes/1

List of all class leaf leaf subclasses.

Compilation flags:

static

Template:

leaf_classes(Leaves)

Mode and number of proofs:

leaf_classes(-list) - one

descendant_instance/1

Returns, by backtracking, all class descendant instances.

Compilation flags:

static

Template:

descendant_instance(Descendant)

Mode and number of proofs:

descendant_instance(?object) - zero_or_more

descendant_instances/1

List of all class descendant instances.

Compilation flags:

static

Template:

descendant_instances(Descendants)

Mode and number of proofs:

descendant_instances(-list) - one

descendant_class/1

Returns, by backtracking, all class descendant subclasses.

Compilation flags:

static

Template:

descendant_class(Descendant)

Mode and number of proofs:

descendant_class(?object) - zero_or_more

descendant_classes/1

List of all class descendant subclasses.

Compilation flags:

static

Template:

descendant_classes(Descendants)

Mode and number of proofs:

descendant_classes(-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

class_hierarchy

 protocol

cloning

Object cloning protocol.

Availability:

logtalk_load(library(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2010-09-14

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	clone/1

	Protected predicates

	Private predicates

	Operators

Public predicates

clone/1

Clones an object, returning the identifier of the new object if none is given.

Compilation flags:

static

Template:

clone(Clone)

Mode and number of proofs:

clone(?object) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

comparingp

Comparing protocol using overloading of standard operators.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	(<)/2

	(=<)/2

	(>)/2

	(>=)/2

	(=:=)/2

	(=\=)/2

	Protected predicates

	Private predicates

	Operators

Public predicates

(<)/2

True if Term1 is less than Term2.

Compilation flags:

static

Template:

Term1<Term2

Mode and number of proofs:

+term< +term - zero_or_one

(=<)/2

True if Term1 is less or equal than Term2.

Compilation flags:

static

Template:

Term1=<Term2

Mode and number of proofs:

+term=< +term - zero_or_one

(>)/2

True if Term1 is greater than Term2.

Compilation flags:

static

Template:

Term1>Term2

Mode and number of proofs:

+term> +term - zero_or_one

(>=)/2

True if Term1 is equal or grater than Term2.

Compilation flags:

static

Template:

Term1>=Term2

Mode and number of proofs:

+term>= +term - zero_or_one

(=:=)/2

True if Term1 is equal to Term2.

Compilation flags:

static

Template:

Term1=:=Term2

Mode and number of proofs:

+term=:= +term - zero_or_one

(=\=)/2

True if Term1 is not equal to Term2.

Compilation flags:

static

Template:

Term1=\=Term2

Mode and number of proofs:

+term=\= +term - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

csv_protocol

CSV file and stream reading and writing protocol.

Availability:

logtalk_load(csv(loader))

Author: Jacinto Dávila and Paulo Moura

Version: 2:0:1

Date: 2025-05-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Type-checking: Some of the predicate file and stream argument type-checking exceptions depend on the Prolog backend compliance with standards.

Inherited public predicates:

(none)

	Public predicates

	read_file/3

	read_stream/3

	read_file/2

	read_stream/2

	read_file_by_line/3

	read_stream_by_line/3

	read_file_by_line/2

	read_stream_by_line/2

	write_file/3

	write_stream/3

	guess_separator/2

	guess_arity/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/3

Reads a CSV file saving the data as clauses for the specified object predicate. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Object,Predicate)

Mode and number of proofs:

read_file(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream/3

Reads a CSV stream saving the data as clauses for the specified object predicate. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Object,Predicate)

Mode and number of proofs:

read_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file/2

Reads a CSV file returning the data as a list of rows, each row a list of fields. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Rows)

Mode and number of proofs:

read_file(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream/2

Reads a CSV stream returning the data as a list of rows, each row a list of fields. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Rows)

Mode and number of proofs:

read_stream(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

read_file_by_line/3

Reads a CSV file saving the data as clauses for the specified object predicate. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Object,Predicate)

Mode and number of proofs:

read_file_by_line(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream_by_line/3

Reads a CSV stream saving the data as clauses for the specified object predicate. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Object,Predicate)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file_by_line/2

Reads a CSV file returning the data as a list of rows, each row a list of fields. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Rows)

Mode and number of proofs:

read_file_by_line(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream_by_line/2

Reads a CSV stream returning the data as a list of rows, each row a list of fields. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Rows)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

write_file/3

Writes a CSV file with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_file(File,Object,Predicate)

Mode and number of proofs:

write_file(+atom,+object_identifier,+predicate_indicator) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

write_stream/3

Writes a CSV stream with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_stream(Stream,Object,Predicate)

Mode and number of proofs:

write_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an input stream:

permission_error(output,stream,Stream)

Stream is a binary stream:

permission_error(output,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

guess_separator/2

Guesses the separator used in a given file, asking the user to confirm.

Compilation flags:

static

Template:

guess_separator(File,Separator)

Mode and number of proofs:

guess_separator(+atom,-atom) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

guess_arity/2

Guesses the arity of records in a given file, asking the user to confirm.

Compilation flags:

static

Template:

guess_arity(File,Arity)

Mode and number of proofs:

guess_arity(+atom,-number) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

databasep

Database protocol.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	rule/4

	rule/3

	rule/2

	bench_goal/1

	Protected predicates

	Private predicates

	Operators

Public predicates

rule/4

Clauses for this predicate are automatically generated using term-expansion. The third argument contains the length of Body.

Compilation flags:

static

Template:

rule(Head,Body,Length,Tail)

Mode and number of proofs:

rule(?callable,?callable,-,-) - zero_or_more

rule/3

Clauses for this predicate are automatically generated using term-expansion. The third argument denotes the tail of the Body.

Compilation flags:

static

Template:

rule(Head,Body,Tail)

Mode and number of proofs:

rule(?callable,?callable,-) - zero_or_more

rule/2

Clauses for this predicate are automatically generated using term-expansion.

Compilation flags:

static

Template:

rule(Head,Body)

Mode and number of proofs:

rule(?callable,-list(callable)) - zero_or_more

bench_goal/1

Table of benchmark goals. They are used from shell.lgt to make benchmarking easier.

Compilation flags:

static

Template:

bench_goal(Goal)

Mode and number of proofs:

bench_goal(?callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

datep

Date protocol.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2005-03-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	today/3

	leap_year/1

	name_of_day/3

	name_of_month/3

	days_in_month/3

	valid/3

	Protected predicates

	Private predicates

	Operators

Public predicates

today/3

Returns current date.

Compilation flags:

static

Template:

today(Year,Month,Day)

Mode and number of proofs:

today(-integer,-integer,-integer) - one

leap_year/1

True if the argument is a leap year.

Compilation flags:

static

Template:

leap_year(Year)

Mode and number of proofs:

leap_year(+integer) - zero_or_one

name_of_day/3

Name and short name of day.

Compilation flags:

static

Template:

name_of_day(Index,Name,Short)

Mode and number of proofs:

name_of_day(?integer,?atom,?atom) - zero_or_more

name_of_month/3

Name and short name of month.

Compilation flags:

static

Template:

name_of_month(Index,Name,Short)

Mode and number of proofs:

name_of_month(?integer,?atom,?atom) - zero_or_more

days_in_month/3

Number of days in a month.

Compilation flags:

static

Template:

days_in_month(Month,Year,Days)

Mode and number of proofs:

days_in_month(?integer,+integer,?integer) - zero_or_more

valid/3

True if the arguments represent a valid date.

Compilation flags:

static

Template:

valid(Year,Month,Day)

Mode and number of proofs:

valid(@integer,@integer,@integer) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

date, timep

 protocol

debuggerp

Debugger protocol.

Availability:

logtalk_load(debugger(loader))

Author: Paulo Moura

Version: 3:6:0

Date: 2025-09-05

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Debugger help: Type the character h (condensed help) or the character ? (extended help) at a leashed port.

	Predicate breakpoint: Specified as a ground term Functor/Arity.

	Non-terminal breakpoint: Specified as a ground term Functor//Arity.

	Entity predicate breakpoint: Specified as a term Entity::Functor/Arity. Entity must be an object or category and may not be ground if parametric.

	Entity non-terminal breakpoint: Specified as a term Entity::Functor//Arity. Entity must be an object or category and may not be ground if parametric.

	Clause breakpoint: Specified as an Entity-Line term with both Entity and Line bound. Line must be the first source file line of an entity clause.

	Conditional breakpoint: Specified using Entity and Line for the clause head and a condition. Line must be the first source file line of an entity clause.

	Hit count breakpoint: Specified using Entity and Line for the clause head and an unification count expression as a condition. Line must be the first source file line of an entity clause.

	Triggered breakpoint: Specified using Entity and Line for the clause head and another breakpoint as a condition. Line must be the first source file line of an entity clause.

	Context breakpoint: Specified as a (Sender, This, Self, Goal) tuple.

	Log point: Specified using Entity and Line for the clause head and a message.

	Leash port shorthands: none - [], loose - [fact,rule,call], half - [fact,rule,call,redo], tight - [fact,rule,call,redo,fail,exception], and full - [fact,rule,call,exit,redo,fail,exception].

Inherited public predicates:

(none)

	Public predicates

	reset/0

	debug/0

	nodebug/0

	debugging/0

	debugging/1

	trace/0

	notrace/0

	leash/1

	leashing/1

	spy/1

	spying/1

	nospy/1

	spy/3

	spying/3

	nospy/3

	spy/4

	spying/4

	nospy/4

	nospyall/0

	log/3

	logging/3

	nolog/3

	nologall/0

	write_max_depth/1

	set_write_max_depth/1

	Protected predicates

	Private predicates

	Operators

Public predicates

reset/0

Resets all debugging settings (including breakpoints, log points, and leashed ports) and turns off debugging.

Compilation flags:

static

Mode and number of proofs:

reset - one

See also:

nospyall/0

debug/0

Starts debugging for all defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

debug - one

nodebug/0

Stops debugging for all defined breakpoints. Also turns off tracing. Does not remove defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

nodebug - one

See also:

reset/0

debugging/0

Reports current debugging settings, including breakpoints and log points.

Compilation flags:

static

Mode and number of proofs:

debugging - one

debugging/1

Enumerates, by backtracking, all entities compiled in debug mode.

Compilation flags:

static

Template:

debugging(Entity)

Mode and number of proofs:

debugging(?entity_identifier) - zero_or_more

trace/0

Starts tracing all calls compiled in debug mode.

Compilation flags:

static

Mode and number of proofs:

trace - one

notrace/0

Stops tracing of calls compiled in debug mode. Debugger will still stop at defined breakpoints.

Compilation flags:

static

Mode and number of proofs:

notrace - one

leash/1

Sets the debugger leash ports using an abbreviation (none, loose, half, tight, or full) or a list of ports (valid ports are fact, rule, call, exit, redo, fail, and exception).

Compilation flags:

static

Template:

leash(Ports)

Mode and number of proofs:

leash(+atom) - one

leash(+list(atom)) - one

leashing/1

Enumerates, by backtracking, all leashed ports (valid ports are fact, rule, call, exit, redo, fail, and exception).

Compilation flags:

static

Template:

leashing(Port)

Mode and number of proofs:

leashing(?atom) - zero_or_more

spy/1

Sets a predicate or clause breakpoint (removing any existing log point or breakpoint defined for the same location, or a list of breakpoints. Fails if a breakpoint is invalid.

Compilation flags:

static

Template:

spy(Breakpoint)

Mode and number of proofs:

spy(@spy_point) - zero_or_one

spy(@list(spy_point)) - zero_or_one

spying/1

Enumerates, by backtracking, all defined predicate and clause breakpoints.

Compilation flags:

static

Template:

spying(Breakpoint)

Mode and number of proofs:

spying(?spy_point) - zero_or_more

nospy/1

Removes all matching predicate and clause breakpoints.

Compilation flags:

static

Template:

nospy(Breakpoint)

Mode and number of proofs:

nospy(@var) - one

nospy(@spy_point) - one

nospy(@list(spy_point)) - one

spy/3

Sets a conditional or triggered breakpoint (removing any existing log point or breakpoint defined for the same location) at a clause head. The condition can be a unification count expression, a lambda expression, or another breakpoint. Fails if the breakpoint is invalid.

Compilation flags:

static

Template:

spy(Entity,Line,Condition)

Mode and number of proofs:

spy(+atom,+integer,@callable) - zero_or_one

Remarks:

	Unification count expression conditions: >(Count), >=(Count), =:=(Count), =<(Count), <(Count), mod(M), and Count.

	Lambda expression conditions: [Count,N,Goal]>>Condition and [Goal]>>Condition where Count is the unification count, N is the invocation number, and Goal is the goal that unified with the clause head; Condition is called in the context of user.

	Triggered breakpoint conditions: Entity-Line.

spying/3

Enumerates, by backtracking, all conditional and triggered breakpoints.

Compilation flags:

static

Template:

spying(Entity,Line,Condition)

Mode and number of proofs:

spying(?atom,?integer,?callable) - zero_or_more

nospy/3

Removes all matching conditional and triggered breakpoints.

Compilation flags:

static

Template:

nospy(Entity,Line,Condition)

Mode and number of proofs:

nospy(@term,@term,@term) - one

spy/4

Sets a context breakpoint.

Compilation flags:

static

Template:

spy(Sender,This,Self,Goal)

Mode and number of proofs:

spy(@term,@term,@term,@term) - one

spying/4

Enumerates, by backtracking, all defined context breakpoints.

Compilation flags:

static

Template:

spying(Sender,This,Self,Goal)

Mode and number of proofs:

spying(?term,?term,?term,?term) - zero_or_more

nospy/4

Removes all matching context breakpoints.

Compilation flags:

static

Template:

nospy(Sender,This,Self,Goal)

Mode and number of proofs:

nospy(@term,@term,@term,@term) - one

nospyall/0

Removes all breakpoints and log points.

Compilation flags:

static

Mode and number of proofs:

nospyall - one

See also:

reset/0

log/3

Sets a log point (removing any existing breakpoint defined for the same location) at a clause head. Fails if the log point is invalid.

Compilation flags:

static

Template:

log(Entity,Line,Message)

Mode and number of proofs:

log(@object_identifier,+integer,+atom) - zero_or_one

log(@category_identifier,+integer,+atom) - zero_or_one

logging/3

Enumerates, by backtracking, all defined log points.

Compilation flags:

static

Template:

logging(Entity,Line,Message)

Mode and number of proofs:

logging(?object_identifier,?integer,?atom) - zero_or_more

logging(?category_identifier,?integer,?atom) - zero_or_more

nolog/3

Removes all matching log points.

Compilation flags:

static

Template:

nolog(Entity,Line,Message)

Mode and number of proofs:

nolog(@var_or(object_identifier),@var_or(integer),@var_or(atom)) - one

nolog(@var_or(category_identifier),@var_or(integer),@var_or(atom)) - one

nologall/0

Removes all log points.

Compilation flags:

static

Mode and number of proofs:

nologall - one

See also:

reset/0

write_max_depth/1

Current term write maximum depth. When not defined, the backend default is used.

Compilation flags:

static

Template:

write_max_depth(MaxDepth)

Mode and number of proofs:

write_max_depth(?non_negative_integer) - zero_or_one

set_write_max_depth/1

Sets the default term maximum write depth. For most backends, a value of zero means that the whole term is written.

Compilation flags:

static

Template:

set_write_max_depth(MaxDepth)

Mode and number of proofs:

set_write_max_depth(+non_negative_integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

debugger

 protocol

dictionaryp

Dictionary protocol.

Availability:

logtalk_load(dictionaries(loader))

Author: Paulo Moura

Version: 2:4:0

Date: 2024-10-02

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	as_dictionary/2

	as_list/2

	as_curly_bracketed/2

	clone/3

	clone/4

	insert/4

	delete/4

	update/4

	update/5

	update/3

	empty/1

	lookup/3

	lookup/2

	intersection/2

	intersection/3

	previous/4

	next/4

	min/3

	max/3

	delete_min/4

	delete_max/4

	keys/2

	values/2

	map/2

	map/3

	apply/4

	size/2

	Protected predicates

	Private predicates

	Operators

Public predicates

as_dictionary/2

Converts a list of key-value pairs to a dictionary.

Compilation flags:

static

Template:

as_dictionary(Pairs,Dictionary)

Mode and number of proofs:

as_dictionary(@list(pairs),-dictionary) - one

as_list/2

Converts a dictionary to an ordered list (as per standard order) of key-value pairs.

Compilation flags:

static

Template:

as_list(Dictionary,Pairs)

Mode and number of proofs:

as_list(@dictionary,-list(pairs)) - one

as_curly_bracketed/2

Creates a curly-bracketed term representation of a dictionary.

Compilation flags:

static

Template:

as_curly_bracketed(Dictionary,Term)

Mode and number of proofs:

as_curly_bracketed(+dictionary,--term) - one

clone/3

Clones a dictionary using the same keys but with all values unbound and returning a list of all the pairs in the new clone.

Compilation flags:

static

Template:

clone(Dictionary,Clone,ClonePairs)

Mode and number of proofs:

clone(+dictionary,-dictionary,-list(pairs)) - one

clone/4

Clones a dictionary using the same keys but with all values unbound and returning the list of all pairs in the dictionary and in the clone.

Compilation flags:

static

Template:

clone(Dictionary,Pairs,Clone,ClonePairs)

Mode and number of proofs:

clone(+dictionary,-list(pairs),-dictionary,-list(pairs)) - one

insert/4

Inserts a key-value pair into a dictionary, returning the updated dictionary. When the key already exists, the associated value is updated.

Compilation flags:

static

Template:

insert(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

insert(+dictionary,+ground,@term,-dictionary) - one

delete/4

Deletes a matching key-value pair from a dictionary, returning the updated dictionary. Fails if it cannot find the key or if the key exists but the value does not unify.

Compilation flags:

static

Template:

delete(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete(+dictionary,@ground,?term,-dictionary) - zero_or_one

update/4

Updates the value associated with Key in a dictionary, returning the updated dictionary. Fails if it cannot find the key.

Compilation flags:

static

Template:

update(OldDictionary,Key,NewValue,NewDictionary)

Mode and number of proofs:

update(+dictionary,@ground,+term,-dictionary) - zero_or_one

update/5

Updates the value associated with a key in a dictionary, returning the updated dictionary. Fails if it cannot find the key or if the existing value does not unify.

Compilation flags:

static

Template:

update(OldDictionary,Key,OldValue,NewValue,NewDictionary)

Mode and number of proofs:

update(+dictionary,@ground,?term,+term,-dictionary) - zero_or_one

update/3

Updates the key-value pairs in a dictionary, returning the updated dictionary. Fails if it cannot find one of the keys.

Compilation flags:

static

Template:

update(OldDictionary,Pairs,NewDictionary)

Mode and number of proofs:

update(+dictionary,@list(pair),-dictionary) - zero_or_one

empty/1

True iff the dictionary is empty.

Compilation flags:

static

Template:

empty(Dictionary)

Mode and number of proofs:

empty(@dictionary) - zero_or_one

lookup/3

Lookups a matching key-value pair from a dictionary. Fails if no match is found.

Compilation flags:

static

Template:

lookup(Key,Value,Dictionary)

Mode and number of proofs:

lookup(+ground,?term,@dictionary) - zero_or_one

lookup(-ground,?term,@dictionary) - zero_or_more

lookup/2

Lookups all matching key-value pairs from a dictionary. Fails if it cannot find one of the keys or if a value for a key does not unify.

Compilation flags:

static

Template:

lookup(Pairs,Dictionary)

Mode and number of proofs:

lookup(+list(pair),@dictionary) - zero_or_one

intersection/2

True iff the values of the dictionaries common keys unify. Trivially true when there are no common keys.

Compilation flags:

static

Template:

intersection(Dictionary1,Dictionary2)

Mode and number of proofs:

intersection(+dictionary,+dictionary) - zero_or_one

intersection/3

Returns the (possibly empty) intersection between two dictionaries when the values of their common keys unify.

Compilation flags:

static

Template:

intersection(Dictionary1,Dictionary2,Intersection)

Mode and number of proofs:

intersection(+dictionary,+dictionary,-dictionary) - zero_or_one

previous/4

Returns the previous pair in a dictionary given a key. Fails if there is no previous pair.

Compilation flags:

static

Template:

previous(Dictionary,Key,Previous,Value)

Mode and number of proofs:

previous(+dictionary,+key,-key,-value) - zero_or_one

next/4

Returns the next pair in a dictionary given a key. Fails if there is no next pair.

Compilation flags:

static

Template:

next(Dictionary,Key,Next,Value)

Mode and number of proofs:

next(+dictionary,+key,-key,-value) - zero_or_one

min/3

Returns the pair with the minimum key (as per standard order) in a dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

min(Dictionary,Key,Value)

Mode and number of proofs:

min(+dictionary,-key,-value) - zero_or_one

max/3

Returns the pair with the maximum key (as per standard order) in a dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

max(Dictionary,Key,Value)

Mode and number of proofs:

max(+dictionary,-key,-value) - zero_or_one

delete_min/4

Deletes the pair with the minimum key (as per standard order) from a dictionary, returning the deleted pair and the updated dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

delete_min(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete_min(+dictionary,-key,-value,-dictionary) - zero_or_one

delete_max/4

Deletes the pair with the maximum key (as per standard order) from a dictionary, returning the deleted pair and the updated dictionary. Fails if the dictionary is empty.

Compilation flags:

static

Template:

delete_max(OldDictionary,Key,Value,NewDictionary)

Mode and number of proofs:

delete_max(+dictionary,-key,-value,-dictionary) - zero_or_one

keys/2

Returns a list with all the dictionary keys in ascending order (as per standard order).

Compilation flags:

static

Template:

keys(Dictionary,Keys)

Mode and number of proofs:

keys(@dictionary,-list) - one

values/2

Returns a list with all the dictionary values in ascending order of the keys (as per standard order).

Compilation flags:

static

Template:

values(Dictionary,Values)

Mode and number of proofs:

values(@dictionary,-list) - one

map/2

Maps a closure over each dictionary key-value pair. Fails if the mapped closure attempts to modify the keys.

Compilation flags:

static

Template:

map(Closure,Dictionary)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(@callable,+dictionary) - zero_or_more

map/3

Maps a closure over each dictionary key-value pair, returning the new dictionary. Fails if the mapped closure attempts to modify the keys.

Compilation flags:

static

Template:

map(Closure,OldDictionary,NewDictionary)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(@callable,+dictionary,-dictionary) - zero_or_more

apply/4

Applies a closure to a specific key-value pair, returning the new dictionary. Fails if the key cannot be found or if the mapped closure attempts to modify the key.

Compilation flags:

static

Template:

apply(Closure,OldDictionary,Key,NewDictionary)

Meta-predicate template:

apply(2,*,*,*)

Mode and number of proofs:

apply(+callable,+dictionary,+key,-dictionary) - zero_or_one

size/2

Number of dictionary entries.

Compilation flags:

static

Template:

size(Dictionary,Size)

Mode and number of proofs:

size(@dictionary,?integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

avltree, bintree, rbtree

 protocol

event_registryp

Event registry protocol.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2009-10-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	monitors/1

	monitor/1

	monitored/1

	monitor/4

	set_monitor/4

	del_monitors/4

	del_monitors/0

	Protected predicates

	Private predicates

	Operators

Public predicates

monitors/1

Returns a list of all current monitors.

Compilation flags:

static

Template:

monitors(Monitors)

Mode and number of proofs:

monitors(-list(object_identifier)) - one

monitor/1

Monitor is an object playing the role of a monitor.

Compilation flags:

static

Template:

monitor(Monitor)

Mode and number of proofs:

monitor(-object_identifier) - zero_or_more

monitor(+object_identifier) - zero_or_one

monitored/1

Returns a list of all currently monitored objects.

Compilation flags:

static

Template:

monitored(Objects)

Mode and number of proofs:

monitored(-list(object_identifier)) - one

monitor/4

True if the arguments describe a currently defined monitored event.

Compilation flags:

static

Template:

monitor(Object,Message,Sender,Monitor)

Mode and number of proofs:

monitor(?object_identifier,?nonvar,?object_identifier,?object_identifier) - zero_or_more

set_monitor/4

Sets a monitor for the set of matching events.

Compilation flags:

static

Template:

set_monitor(Object,Message,Sender,Monitor)

Mode and number of proofs:

set_monitor(?object_identifier,?nonvar,?object_identifier,+object_identifier) - zero_or_one

del_monitors/4

Deletes all matching monitored events.

Compilation flags:

static

Template:

del_monitors(Object,Message,Sender,Monitor)

Mode and number of proofs:

del_monitors(?object_identifier,?nonvar,?object_identifier,?object_identifier) - one

del_monitors/0

Deletes all monitored events.

Compilation flags:

static

Mode and number of proofs:

del_monitors - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

event_registry, monitorp

 protocol

expanding

Term and goal expansion protocol.

Availability:

built_in

Author: Paulo Moura

Version: 1:1:0

Date: 2016-07-12

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	goal_expansion/2

	term_expansion/2

	Protected predicates

	Private predicates

	Operators

Public predicates

goal_expansion/2

Defines a goal expansion. Called recursively until a fixed point is reached on goals found while compiling a source file (except for goals wrapped using the {}/1 compiler bypass control construct).

Compilation flags:

static

Template:

goal_expansion(Goal,ExpandedGoal)

Mode and number of proofs:

goal_expansion(+callable,-callable) - zero_or_one

term_expansion/2

Defines a term expansion. Called until it succeeds on all terms read while compiling a source file (except for terms skipped by using the conditional compilation directives or wrapped using the {}/1 compiler bypass control construct).

Compilation flags:

static

Template:

term_expansion(Term,ExpandedTerms)

Mode and number of proofs:

term_expansion(+term,-term) - zero_or_one

term_expansion(+term,-list(term)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

flags_validator

Flag validation protocol. Must be implemented by validator objects.

Availability:

logtalk_load(flags(loader))

Author: Theofrastos Mantadelis

Version: 1:0:0

Date: 2010-11-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	print_flags/0

	validate/1

	Protected predicates

	Private predicates

	Operators

Public predicates

print_flags/0

Validates the validator object itself.

Compilation flags:

static

Mode and number of proofs:

print_flags - zero_or_one

validate/1

Validates a flag value.

Compilation flags:

static

Template:

validate(Value)

Mode and number of proofs:

validate(@term) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

forwarding

Message forwarding protocol.

Availability:

built_in

Author: Paulo Moura

Version: 1:0:1

Date: 2025-05-15

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	forward/1

	Protected predicates

	Private predicates

	Operators

Public predicates

forward/1

User-defined message forwarding handler, automatically called (if defined) by the runtime for any message that the receiving object does not understand.

Compilation flags:

static

Template:

forward(Message)

Mode and number of proofs:

forward(+callable) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

git_protocol

Predicates for accessing a git project current branch and latest commit data.

Availability:

logtalk_load(git(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2022-01-21

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	branch/2

	commit_author/2

	commit_date/2

	commit_hash/2

	commit_hash_abbreviated/2

	commit_message/2

	commit_log/3

	Protected predicates

	Private predicates

	Operators

Public predicates

branch/2

Returns the name of the current git branch. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

branch(Directory,Branch)

Mode and number of proofs:

branch(+atom,?atom) - zero_or_one

commit_author/2

Returns the latest commit author. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_author(Directory,Author)

Mode and number of proofs:

commit_author(+atom,-atom) - zero_or_one

commit_date/2

Returns the latest commit date (strict ISO 8601 format). Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_date(Directory,Date)

Mode and number of proofs:

commit_date(+atom,-atom) - zero_or_one

commit_hash/2

Returns the latest commit hash. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_hash(Directory,Hash)

Mode and number of proofs:

commit_hash(+atom,-atom) - zero_or_one

commit_hash_abbreviated/2

Returns the latest commit abbreviated hash. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_hash_abbreviated(Directory,Hash)

Mode and number of proofs:

commit_hash_abbreviated(+atom,-atom) - zero_or_one

commit_message/2

Returns the latest commit message. Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_message(Directory,Message)

Mode and number of proofs:

commit_message(+atom,-atom) - zero_or_one

commit_log/3

Returns the git latest commit log output for the given format (see e.g. https://git-scm.com/docs/pretty-formats). Fails if the directory is not a git repo or a sub-directory of a git repo directory.

Compilation flags:

static

Template:

commit_log(Directory,Format,Output)

Mode and number of proofs:

commit_log(+atom,+atom,-atom) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

graph_language_protocol

Predicates for generating graph files.

Availability:

logtalk_load(diagrams(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2014-12-30

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	output_file_name/2

	file_header/3

	file_footer/3

	graph_header/5

	graph_footer/5

	node/7

	edge/6

	Protected predicates

	Private predicates

	Operators

Public predicates

output_file_name/2

Constructs the diagram file basename by adding a graph language dependent extension to the given name.

Compilation flags:

static

Template:

output_file_name(Name,Basename)

Mode and number of proofs:

output_file_name(+atom,-atom) - one

file_header/3

Writes the output file header using the specified options.

Compilation flags:

static

Template:

file_header(Stream,Identifier,Options)

Mode and number of proofs:

file_header(+stream_or_alias,+atom,+list(compound)) - one

file_footer/3

Writes the output file footer using the specified options.

Compilation flags:

static

Template:

file_footer(Stream,Identifier,Options)

Mode and number of proofs:

file_footer(+stream_or_alias,+atom,+list(compound)) - one

graph_header/5

Writes a graph header using the specified options.

Compilation flags:

static

Template:

graph_header(Stream,Identifier,Label,Kind,Options)

Mode and number of proofs:

graph_header(+stream_or_alias,+atom,+atom,+atom,+list(compound)) - one

graph_footer/5

Writes a graph footer using the specified options.

Compilation flags:

static

Template:

graph_footer(Stream,Identifier,Label,Kind,Options)

Mode and number of proofs:

graph_footer(+stream_or_alias,+atom,+atom,+atom,+list(compound)) - one

node/7

Writes a node using the specified options.

Compilation flags:

static

Template:

node(Stream,Identifier,Label,Caption,Lines,Kind,Options)

Mode and number of proofs:

node(+stream_or_alias,+nonvar,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

edge/6

Writes an edge between two nodes using the specified options.

Compilation flags:

static

Template:

edge(Stream,Start,End,Labels,Kind,Options)

Mode and number of proofs:

edge(+stream_or_alias,+nonvar,+nonvar,+list(nonvar),+atom,+list(compound)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

heapp

Heap protocol. Key-value pairs are represented as Key-Value.

Availability:

logtalk_load(heaps(loader))

Author: Richard O’Keefe; adapted to Logtalk by Paulo Moura and Victor Lagerkvist.

Version: 1:0:1

Date: 2010-11-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	insert/4

	insert_all/3

	delete/4

	merge/3

	empty/1

	size/2

	as_list/2

	as_heap/2

	top/3

	top_next/5

	Protected predicates

	Private predicates

	Operators

Public predicates

insert/4

Inserts the new pair into a heap, returning the updated heap.

Compilation flags:

static

Template:

insert(Key,Value,Heap,NewHeap)

Mode and number of proofs:

insert(+key,+value,+heap,-heap) - one

insert_all/3

Inserts a list of pairs into a heap, returning the updated heap.

Compilation flags:

static

Template:

insert_all(List,Heap,NewHeap)

Mode and number of proofs:

insert_all(@list(pairs),+heap,-heap) - one

delete/4

Deletes and returns the top pair in a heap returning the updated heap.

Compilation flags:

static

Template:

delete(Heap,TopKey,TopValue,NewHeap)

Mode and number of proofs:

delete(+heap,?key,?value,-heap) - zero_or_one

merge/3

Merges two heaps.

Compilation flags:

static

Template:

merge(Heap1,Heap2,NewHeap)

Mode and number of proofs:

merge(+heap,+heap,-heap) - one

empty/1

True if the heap is empty.

Compilation flags:

static

Template:

empty(Heap)

Mode and number of proofs:

empty(@heap) - zero_or_one

size/2

Returns the number of heap elements.

Compilation flags:

static

Template:

size(Heap,Size)

Mode and number of proofs:

size(+heap,?integer) - zero_or_one

as_list/2

Returns the current set of pairs in the heap as a list, sorted into ascending order of the keys.

Compilation flags:

static

Template:

as_list(Heap,List)

Mode and number of proofs:

as_list(+heap,-list) - one

as_heap/2

Constructs a heap from a list of pairs.

Compilation flags:

static

Template:

as_heap(List,Heap)

Mode and number of proofs:

as_heap(+list,-heap) - one

top/3

Returns the top pair in the heap. Fails if the heap is empty.

Compilation flags:

static

Template:

top(Heap,TopKey,TopValue)

Mode and number of proofs:

top(+heap,?key,?value) - zero_or_one

top_next/5

Returns the top pair and the next pair in the heap. Fails if the heap does not have at least two elements.

Compilation flags:

static

Template:

top_next(Heap,TopKey,TopValue,NextKey,NextValue)

Mode and number of proofs:

top_next(+heap,?key,?value,?key,?value) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

heap(Order)

 protocol

hierarchyp

Common hierarchy protocol for prototype and class hierarchies.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	ancestor/1

	ancestors/1

	leaf/1

	leaves/1

	descendant/1

	descendants/1

	Protected predicates

	Private predicates

	Operators

Public predicates

ancestor/1

Returns, by backtracking, all object ancestors.

Compilation flags:

static

Template:

ancestor(Ancestor)

Mode and number of proofs:

ancestor(?object) - zero_or_more

ancestors/1

List of all object ancestors.

Compilation flags:

static

Template:

ancestors(Ancestors)

Mode and number of proofs:

ancestors(-list) - one

leaf/1

Returns, by backtracking, all object leaves.

Compilation flags:

static

Template:

leaf(Leaf)

Mode and number of proofs:

leaf(?object) - zero_or_more

leaves/1

List of all object leaves.

Compilation flags:

static

Template:

leaves(Leaves)

Mode and number of proofs:

leaves(-list) - one

descendant/1

Returns, by backtracking, all object descendants.

Compilation flags:

static

Template:

descendant(Descendant)

Mode and number of proofs:

descendant(?object) - zero_or_more

descendants/1

List of all object descendants.

Compilation flags:

static

Template:

descendants(Descendants)

Mode and number of proofs:

descendants(-list) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

interpreterp

Protocol for an interpreter.

Availability:

logtalk_load(verdi_neruda(loader))

Author: Victor Lagerkvist

Version: 1:0:0

Date: 2010-06-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	prove/2

	prove/3

	Protected predicates

	Private predicates

	Operators

Public predicates

prove/2

True if goal is provable in the specified database.

Compilation flags:

static

Template:

prove(Goal,DB)

Mode and number of proofs:

prove(+goal,+database) - zero_or_more

prove/3

True if goal is provable within the given depth-limit in the specified database.

Compilation flags:

static

Template:

prove(Goal,Limit,DB)

Mode and number of proofs:

prove(+goal,+limit,+database) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

intervalp

Basic temporal interval relations protocol (based on James F. Allen Interval Algebra work).

Availability:

logtalk_load(intervals(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2014-04-26

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/3

	valid/1

	before/2

	after/2

	meets/2

	met_by/2

	overlaps/2

	overlapped_by/2

	starts/2

	started_by/2

	during/2

	contains/2

	finishes/2

	finished_by/2

	equal/2

	Protected predicates

	Private predicates

	Operators

Public predicates

new/3

Constructs a new interval given start and end points. The start point must strictly precede the end point.

Compilation flags:

static

Template:

new(Start,End,Interval)

Mode and number of proofs:

new(@ground,@ground,-interval) - zero_or_one

valid/1

True if Interval is a valid interval.

Compilation flags:

static

Template:

valid(Interval)

Mode and number of proofs:

valid(@interval) - zero_or_one

before/2

True if Interval1 takes place before Interval2.

Compilation flags:

static

Template:

before(Interval1,Interval2)

Mode and number of proofs:

before(@interval,@interval) - zero_or_one

after/2

True if Interval1 takes place after Interval2.

Compilation flags:

static

Template:

after(Interval1,Interval2)

Mode and number of proofs:

after(@interval,@interval) - zero_or_one

meets/2

True if Interval1 meets Interval2.

Compilation flags:

static

Template:

meets(Interval1,Interval2)

Mode and number of proofs:

meets(@interval,@interval) - zero_or_one

met_by/2

True if Interval1 is met by Interval2.

Compilation flags:

static

Template:

met_by(Interval1,Interval2)

Mode and number of proofs:

met_by(@interval,@interval) - zero_or_one

overlaps/2

True if Interval1 overlaps with Interval2.

Compilation flags:

static

Template:

overlaps(Interval1,Interval2)

Mode and number of proofs:

overlaps(@interval,@interval) - zero_or_one

overlapped_by/2

True if Interval1 is overlapped by Interval2.

Compilation flags:

static

Template:

overlapped_by(Interval1,Interval2)

Mode and number of proofs:

overlapped_by(@interval,@interval) - zero_or_one

starts/2

True if Interval1 starts Interval2.

Compilation flags:

static

Template:

starts(Interval1,Interval2)

Mode and number of proofs:

starts(@interval,@interval) - zero_or_one

started_by/2

True if Interval1 is started by Interval2.

Compilation flags:

static

Template:

started_by(Interval1,Interval2)

Mode and number of proofs:

started_by(@interval,@interval) - zero_or_one

during/2

True if Interval1 occurs during Interval2.

Compilation flags:

static

Template:

during(Interval1,Interval2)

Mode and number of proofs:

during(@interval,@interval) - zero_or_one

contains/2

True if Interval1 contains Interval2.

Compilation flags:

static

Template:

contains(Interval1,Interval2)

Mode and number of proofs:

contains(@interval,@interval) - zero_or_one

finishes/2

True if Interval1 finishes Interval2.

Compilation flags:

static

Template:

finishes(Interval1,Interval2)

Mode and number of proofs:

finishes(@interval,@interval) - zero_or_one

finished_by/2

True if Interval1 is finished by Interval2.

Compilation flags:

static

Template:

finished_by(Interval1,Interval2)

Mode and number of proofs:

finished_by(@interval,@interval) - zero_or_one

equal/2

True if Interval1 is equal to Interval2.

Compilation flags:

static

Template:

equal(Interval1,Interval2)

Mode and number of proofs:

equal(@interval,@interval) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

interval

 protocol

java_access_protocol

Protocol for a minimal abstraction for calling Java from Logtalk using familiar message-sending syntax.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura and Sergio Castro

Version: 1:2:1

Date: 2023-03-16

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	get_field/2

	set_field/2

	new/2

	new/1

	invoke/1

	invoke/2

	Protected predicates

	Private predicates

	Operators

Public predicates

get_field/2

Gets the value of a class or object field.

Compilation flags:

static

Template:

get_field(Field,Value)

Mode and number of proofs:

get_field(+atom,?nonvar) - zero_or_one

set_field/2

Sets the value of a class or object field.

Compilation flags:

static

Template:

set_field(Field,Value)

Mode and number of proofs:

set_field(+atom,+nonvar) - one

new/2

Creates a new instance using the specified parameter values.

Compilation flags:

static

Template:

new(Parameters,Instance)

Mode and number of proofs:

new(+list(nonvar),-reference) - one

new/1

Creates a new instance using default parameter values.

Compilation flags:

static

Template:

new(Instance)

Mode and number of proofs:

new(-reference) - one

invoke/1

Invokes a method. This is a more efficient compared with relying on the forward/1 handler to resolve methods.

Compilation flags:

static

Template:

invoke(Method)

Mode and number of proofs:

invoke(@nonvar) - one

invoke/2

Invokes a method. This is a more efficient compared with relying on the forward/1 handler to resolve methods.

Compilation flags:

static

Template:

invoke(Functor,Arguments)

Mode and number of proofs:

invoke(@nonvar,@list) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

java_utils_protocol

Abstract interface to Java utility predicates.

Availability:

logtalk_load(java(loader))

Author: Paulo Moura

Version: 1:6:0

Date: 2023-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	value_reference/2

	true/1

	false/1

	void/1

	null/1

	is_true/1

	is_false/1

	is_void/1

	is_null/1

	is_object/1

	terms_to_array/2

	array_to_terms/3

	array_to_terms/2

	array_to_list/2

	list_to_array/2

	array_list/2

	iterator_element/2

	map_element/2

	set_element/2

	decode_exception/2

	decode_exception/3

	Protected predicates

	Private predicates

	Operators

Public predicates

value_reference/2

Returns an opaque term that represents the Java value with the given name.

Compilation flags:

static

Template:

value_reference(Value,Reference)

Mode and number of proofs:

value_reference(?atom,--ground) - one_or_more

true/1

Returns an opaque term that represents the Java value true.

Compilation flags:

static

Template:

true(Reference)

Mode and number of proofs:

true(--ground) - one

false/1

Returns an opaque term that represents the Java value false.

Compilation flags:

static

Template:

false(Reference)

Mode and number of proofs:

false(--ground) - one

void/1

Returns an opaque term that represents the Java value void.

Compilation flags:

static

Template:

void(Reference)

Mode and number of proofs:

void(--ground) - one

null/1

Returns an opaque term that represents the Java value null.

Compilation flags:

static

Template:

null(Reference)

Mode and number of proofs:

null(--ground) - one

is_true/1

True when the argument is the Java value true. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_true(Reference)

Mode and number of proofs:

is_true(@term) - zero_or_one

is_false/1

True when the argument is the Java value false. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_false(Reference)

Mode and number of proofs:

is_false(@term) - zero_or_one

is_void/1

True when the argument is the Java value void. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_void(Reference)

Mode and number of proofs:

is_void(@term) - zero_or_one

is_null/1

True when the argument is the Java value null. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_null(Reference)

Mode and number of proofs:

is_null(@term) - zero_or_one

is_object/1

True when the argument is a reference to a Java object. Fails if the argument is not instantiated.

Compilation flags:

static

Template:

is_object(Reference)

Mode and number of proofs:

is_object(@term) - zero_or_one

terms_to_array/2

Converts a list of ground Prolog terms to an array (a Java reference).

Compilation flags:

static

Template:

terms_to_array(Terms,Array)

Mode and number of proofs:

terms_to_array(++list(ground),-array) - one

array_to_terms/3

Converts an array (a Java reference) to a list of ground Prolog terms returning also its length. The array elements must be atoms, integers, floats, or compound terms. Fails otherwise.

Compilation flags:

static

Template:

array_to_terms(Array,Terms,Length)

Mode and number of proofs:

array_to_terms(+array,-list(ground),-integer) - one

array_to_terms/2

Converts an array (a Java reference) to a list of ground Prolog terms. The array elements must be atoms, integers, floats, or ground compound terms. Fails otherwise.

Compilation flags:

static

Template:

array_to_terms(Array,Terms)

Mode and number of proofs:

array_to_terms(+array,-list(term)) - one

array_to_list/2

Converts an array (a Java reference) to a list of Java references or their values.

Compilation flags:

static

Template:

array_to_list(Array,List)

Mode and number of proofs:

array_to_list(+array,-list) - one

list_to_array/2

Converts a list of Java references or values to an array (a Java reference).

Compilation flags:

static

Template:

list_to_array(List,Array)

Mode and number of proofs:

list_to_array(+list,-array) - one

array_list/2

Converts between an array (a Java reference) and a list of Java references or their values. Deprecated. Use the array_to_list/2 and list_to_array/2 predicates instead.

Compilation flags:

static

Template:

array_list(Array,List)

Mode and number of proofs:

array_list(+array,-list) - one

array_list(-array,+list) - one

iterator_element/2

Enumerates, by backtracking, all iterator elements.

Compilation flags:

static

Template:

iterator_element(Iterator,Element)

Mode and number of proofs:

iterator_element(+iterator,-element) - zero_or_more

map_element/2

Enumerates, by backtracking, all map elements.

Compilation flags:

static

Template:

map_element(Map,Element)

Mode and number of proofs:

map_element(+iterator,-element) - zero_or_more

set_element/2

Enumerates, by backtracking, all set elements.

Compilation flags:

static

Template:

set_element(Set,Element)

Mode and number of proofs:

set_element(+iterator,-element) - zero_or_more

decode_exception/2

Decodes an exception into its corresponding cause. Fails if the exception is not a Java exception.

Compilation flags:

static

Template:

decode_exception(Exception,Cause)

Mode and number of proofs:

decode_exception(+callable,-atom) - zero_or_one

decode_exception/3

Decodes an exception into its corresponding cause and a stack trace. Fails if the exception is not a Java exception.

Compilation flags:

static

Template:

decode_exception(Exception,Cause,StackTrace)

Mode and number of proofs:

decode_exception(+callable,-atom,-list(atom)) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

json_lines_protocol

JSON Lines parser and generator protocol.

Availability:

logtalk_load(json_lines(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-05-27

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the JSON Lines contents read from the given source (file(Path), stream(Stream), line(Stream), codes(Codes), chars(Chars), or atom(Atom)) into a list of ground terms.

Compilation flags:

static

Template:

parse(Source,Terms)

Mode and number of proofs:

parse(++compound,--list(ground)) - one_or_error

Exceptions:

Source is a variable:

instantiation_error

Source is neither a variable nor a valid source:

domain_error(json_lines_source,Source)

generate/2

Generates the content using the representation specified in the first argument (file(Path), stream(Stream), codes(Codes), chars(Chars), or atom(Atom)) for the list of ground terms in the second argument.

Compilation flags:

static

Template:

generate(Sink,Terms)

Mode and number of proofs:

generate(+compound,++list(ground)) - one_or_error

Exceptions:

Sink is a variable:

instantiation_error

Terms is a variable:

instantiation_error

Terms is neither a variable nor a list:

type_error(list,Terms)

Term is a non-ground element of the list Terms:

instantiation_error

Term is an element of the list Terms but not a valid JSON term:

domain_error(json_term,Term)

Sink cannot be generated:

domain_error(json_lines_sink,Sink)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

json_protocol

JSON parser and generator protocol.

Availability:

logtalk_load(json(loader))

Author: Paulo Moura and Jacinto Dávila

Version: 0:11:0

Date: 2022-11-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	parse/2

	generate/2

	Protected predicates

	Private predicates

	Operators

Public predicates

parse/2

Parses the JSON contents read from the given source (codes(List), stream(Stream), line(Stream), file(Path), chars(List), or atom(Atom)) into a term. Fails if the JSON contents cannot be parsed.

Compilation flags:

static

Template:

parse(Source,Term)

Mode and number of proofs:

parse(++compound,--term) - one_or_error

generate/2

Generates the content using the representation specified in the first argument (codes(List), stream(Stream), file(Path), chars(List), or atom(Atom)) for the term in the second argument. Fails if this term cannot be processed.

Compilation flags:

static

Template:

generate(Sink,Term)

Mode and number of proofs:

generate(+compound,++term) - one_or_error

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

lgtdocp

Documenting tool protocol.

Availability:

logtalk_load(lgtdoc(loader))

Author: Paulo Moura

Version: 6:0:0

Date: 2024-03-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Compiling files for generating XML documentation: All source files must be compiled with the source_data flag turned on.

	xml_spec(Specification) option: XML documenting files specification format. Possible option values are dtd (DTD specification; default) and xsd (XML Schema specification).

	xml_spec_reference(Reference) option: Reference to the XML specification file in XML documenting files. Possible values are local (default; DTD/XSD file in same folder as XML files), web (logtalk.org website DTD/XSD file), and standalone (no reference to specification files).

	entity_xsl_file(File) option: XSLT file to use with generated XML documenting files. Default is logtalk_entity_to_xml.xsl, allowing the XML files to be viewed by opening them with a browser supporting XSLT (after running the lgt2xml.sh script on the output directory).

	index_xsl_file(File) option: XSLT file to use with generated XML documenting files. Default is logtalk_index_to_xml.xsl, allowing the XML files to be viewed by opening them with a browser supporting XSLT (after running the lgt2xml.sh script on the output directory).

	xml_docs_directory(Directory) option: Directory where the XML documenting files will be generated. The default value is ./xml_docs, a sub-directory of the source files directory.

	bom(Boolean) option: Defines if a BOM should be added to the generated XML documenting files.

	encoding(Encoding) option: Encoding to be used for the generated XML documenting files.

	omit_path_prefixes(Prefixes) option: List of path prefixes (atoms) to omit when writing directory paths. The default value is to omit the home directory.

	exclude_files(List) option: List of files to exclude when generating the XML documenting files.

	exclude_paths(List) option: List of relative library paths to exclude when generating the XML documenting files (default is []). All sub-directories of the excluded directories are also excluded.

	exclude_prefixes(List) option: List of path prefixes to exclude when generating the XML documenting files (default is []).

	exclude_entities(List) option: List of entities to exclude when generating the XML documenting files (default is []).

	sort_predicates(Boolean) option: Sort entity predicates (default is false).

	Known issues: Some options may depend on the used XSL processor. Most XSL processors support DTDs but only some of them support XML Schemas. Some processors (e.g., fop2) reject reference to a DTD.

Inherited public predicates:

(none)

	Public predicates

	rlibraries/2

	rlibraries/1

	rlibrary/2

	rlibrary/1

	libraries/2

	libraries/1

	library/2

	library/1

	rdirectories/2

	rdirectories/1

	rdirectory/2

	rdirectory/1

	directories/2

	directories/1

	directory/2

	directory/1

	files/2

	files/1

	file/2

	file/1

	all/1

	all/0

	Protected predicates

	Private predicates

	Operators

Public predicates

rlibraries/2

Creates XML documenting files for all entities in all given libraries and their sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibraries(Libraries,Options)

Mode and number of proofs:

rlibraries(+list(atom),+list) - one

rlibraries/1

Creates XML documenting files for all entities in all given libraries and their sub-libraries using default options.

Compilation flags:

static

Template:

rlibraries(Libraries)

Mode and number of proofs:

rlibraries(+list(atom)) - one

rlibrary/2

Creates XML documenting files for all entities in a library and its sub-libraries using the specified options.

Compilation flags:

static

Template:

rlibrary(Library,Options)

Mode and number of proofs:

rlibrary(+atom,+list) - one

Examples:

Generate XML documenting files for all tool entities for later conversion to Markdown files

rlibrary(tools,[xslfile('lgtmd.xsl')])

yes

rlibrary/1

Creates XML documenting files for all entities in a library and its sub-libraries using default options.

Compilation flags:

static

Template:

rlibrary(Library)

Mode and number of proofs:

rlibrary(+atom) - one

Examples:

Generate XML documenting files for all tool entities for direct viewing in a browser (after indexing using the lgt2xml script)

rlibrary(tools)

yes

libraries/2

Creates XML documenting files for all entities in all given libraries using the specified options.

Compilation flags:

static

Template:

libraries(Libraries,Options)

Mode and number of proofs:

libraries(+list(atom),+list) - one

libraries/1

Creates XML documenting files for all entities in all given libraries using default options.

Compilation flags:

static

Template:

libraries(Libraries)

Mode and number of proofs:

libraries(+list(atom)) - one

library/2

Creates XML documenting files for all entities in a library using the specified options.

Compilation flags:

static

Template:

library(Library,Options)

Mode and number of proofs:

library(+atom,+list) - one

Examples:

Generate XML documenting files for all library entities for later conversion to PDF A4 files

library(library,[xslfile('logtalk_entity_to_pdf_a4.xsl')])

yes

library/1

Creates XML documenting files for all entities in a library using default options.

Compilation flags:

static

Template:

library(Library)

Mode and number of proofs:

library(+atom) - one

rdirectories/2

Creates XML documenting files for all entities in all given directories and their sub-directories using the specified options.

Compilation flags:

static

Template:

rdirectories(Directories,Options)

Mode and number of proofs:

rdirectories(+list(atom),+list) - one

rdirectories/1

Creates XML documenting files for all entities in all given directories and their sub-directories using default options.

Compilation flags:

static

Template:

rdirectories(Directories)

Mode and number of proofs:

rdirectories(+list(atom)) - one

rdirectory/2

Creates XML documenting files for all entities in a directory and its sub-directories using the specified options.

Compilation flags:

static

Template:

rdirectory(Directory,Options)

Mode and number of proofs:

rdirectory(+atom,+list) - one

Examples:

Generate XML documenting files for all entities in the tools directory for later conversion to Markdown files

rdirectory('./tools',[xslfile('lgtmd.xsl')])

yes

rdirectory/1

Creates XML documenting files for all entities in a directory and its sub-directories using default options.

Compilation flags:

static

Template:

rdirectory(Directory)

Mode and number of proofs:

rdirectory(+atom) - one

Examples:

Generate XML documenting files for all entities in the tools directory for direct viewing in a browser (after indexing using the lgt2xml script)

rdirectory('./tools')

yes

directories/2

Creates XML documenting files for all entities in all given directories using the specified options.

Compilation flags:

static

Template:

directories(Directories,Options)

Mode and number of proofs:

directories(+list(atom),+list) - one

directories/1

Creates XML documenting files for all entities in all given directories using default options.

Compilation flags:

static

Template:

directories(Directories)

Mode and number of proofs:

directories(+list(atom)) - one

directory/2

Creates XML documenting files for all entities in a directory using the specified options.

Compilation flags:

static

Template:

directory(Directory,Options)

Mode and number of proofs:

directory(+atom,+list) - one

Examples:

Generate XML documenting files for all the entities in the current directory for later conversion to PDF A4 files

directory('.',[xslfile('logtalk_entity_to_pdf_a4.xsl')])

yes

directory/1

Creates XML documenting files for all entities in a directory using default options.

Compilation flags:

static

Template:

directory(Directory)

Mode and number of proofs:

directory(+atom) - one

files/2

Creates XML documenting files for all entities in loaded source files using the specified options. The files can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

files(Files,Options)

Mode and number of proofs:

files(+list(atom),+list) - one

files/1

Creates XML documenting files for all entities in loaded source files using default options. The files can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

files(Files)

Mode and number of proofs:

files(+list(atom)) - one

file/2

Creates XML documenting files for all entities in a loaded source file using the specified options. The file can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File,Options)

Mode and number of proofs:

file(+atom,+list) - one

file/1

Creates XML documenting files for all entities in a loaded source file using default options. The file can be given by name, basename, full path, or using library notation.

Compilation flags:

static

Template:

file(File)

Mode and number of proofs:

file(+atom) - one

all/1

Creates XML documenting files for all loaded entities using the specified options.

Compilation flags:

static

Template:

all(Options)

Mode and number of proofs:

all(+list) - one

all/0

Creates XML documenting files for all loaded entities using default options.

Compilation flags:

static

Mode and number of proofs:

all - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

lgtdoc

 protocol

listp

List protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:18:0

Date: 2024-05-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	append/2

	append/3

	delete/3

	delete_matches/3

	empty/1

	flatten/2

	hamming_distance/3

	keysort/2

	last/2

	length/2

	max/2

	member/2

	memberchk/2

	min/2

	msort/2

	msort/3

	nextto/3

	nth0/3

	nth0/4

	nth1/3

	nth1/4

	sequential_occurrences/2

	sequential_occurrences/3

	occurrences/2

	occurrences/3

	partition/5

	permutation/2

	prefix/2

	prefix/3

	proper_prefix/2

	proper_prefix/3

	remove_duplicates/2

	reverse/2

	same_length/2

	same_length/3

	select/3

	selectchk/3

	select/4

	selectchk/4

	sort/2

	sort/3

	sort/4

	split/4

	sublist/2

	subsequence/3

	subsequence/4

	substitute/4

	subtract/3

	suffix/2

	suffix/3

	proper_suffix/2

	proper_suffix/3

	take/3

	drop/3

	Protected predicates

	Private predicates

	Operators

Public predicates

append/2

Appends all lists in a list of lists.

Compilation flags:

static

Template:

append(Lists,Concatenation)

Mode and number of proofs:

append(+list(list),?list) - zero_or_one

append/3

Appends two lists.

Compilation flags:

static

Template:

append(List1,List2,List)

Mode and number of proofs:

append(?list,?list,?list) - zero_or_more

delete/3

Deletes from a list all occurrences of an element returning the list of remaining elements. Uses ==/2 for element comparison.

Compilation flags:

static

Template:

delete(List,Element,Remaining)

Mode and number of proofs:

delete(@list,@term,?list) - one

delete_matches/3

Deletes all matching elements from a list, returning the list of remaining elements. Uses =/2 for element comparison.

Compilation flags:

static

Template:

delete_matches(List,Element,Remaining)

Mode and number of proofs:

delete_matches(@list,@term,?list) - one

empty/1

True if the argument is an empty list.

Compilation flags:

static

Template:

empty(List)

Mode and number of proofs:

empty(@list) - zero_or_one

flatten/2

Flattens a list of lists into a list.

Compilation flags:

static

Template:

flatten(List,Flatted)

Mode and number of proofs:

flatten(+list,-list) - one

hamming_distance/3

Calculates the Hamming distance between two lists (using equality to compare list elements). Fails if the two lists are not of the same length.

Compilation flags:

static

Template:

hamming_distance(List1,List2,Distance)

Mode and number of proofs:

hamming_distance(+list,+list,-integer) - zero_or_one

keysort/2

Sorts a list of key-value pairs in ascending order.

Compilation flags:

static

Template:

keysort(List,Sorted)

Mode and number of proofs:

keysort(+list(pair),-list(pair)) - one

last/2

List last element (if it exists).

Compilation flags:

static

Template:

last(List,Last)

Mode and number of proofs:

last(?list,?term) - zero_or_more

length/2

List length.

Compilation flags:

static

Template:

length(List,Length)

Mode and number of proofs:

length(?list,?integer) - zero_or_more

max/2

Determines the list maximum value using standard order. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list,-term) - zero_or_one

member/2

Element is a list member.

Compilation flags:

static

Template:

member(Element,List)

Mode and number of proofs:

member(?term,?list) - zero_or_more

memberchk/2

Checks if a term is a member of a list.

Compilation flags:

static

Template:

memberchk(Element,List)

Mode and number of proofs:

memberchk(?term,?list) - zero_or_one

min/2

Determines the minimum value in a list using standard order. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list,-term) - zero_or_one

msort/2

Sorts a list in ascending order (duplicated elements are not removed).

Compilation flags:

static

Template:

msort(List,Sorted)

Mode and number of proofs:

msort(+list,-list) - one

msort/3

Sorts a list using a user-specified comparison predicate modeled on the standard compare/3 predicate (duplicated elements are not removed).

Compilation flags:

static

Template:

msort(Closure,List,Sorted)

Meta-predicate template:

msort(3,*,*)

Mode and number of proofs:

msort(+callable,+list,-list) - one

nextto/3

X and Y are consecutive elements in List.

Compilation flags:

static

Template:

nextto(X,Y,List)

Mode and number of proofs:

nextto(?term,?term,?list) - zero_or_more

nth0/3

Nth element of a list (counting from zero).

Compilation flags:

static

Template:

nth0(Nth,List,Element)

Mode and number of proofs:

nth0(?integer,?list,?term) - zero_or_more

nth0/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth0(Nth,List,Element,Rest)

Mode and number of proofs:

nth0(?integer,?list,?term,?list) - zero_or_more

nth1/3

Nth element of a list (counting from one).

Compilation flags:

static

Template:

nth1(Nth,List,Element)

Mode and number of proofs:

nth1(?integer,?list,?term) - zero_or_more

nth1/4

Nth element of a list (counting from one). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth1(Nth,List,Element,Rest)

Mode and number of proofs:

nth1(?integer,?list,?term,?list) - zero_or_more

sequential_occurrences/2

Counts the number of sequential occurrences of each List element, unifying Occurrences with a list of Element-Count pairs. Uses term equality for element comparison.

Compilation flags:

static

Template:

sequential_occurrences(List,Occurrences)

Mode and number of proofs:

sequential_occurrences(@list,-list(pair(term,positive_integer))) - one

sequential_occurrences/3

Counts the number of sequential occurrences of each List element, unifying Occurrences with a list of Element-Count pairs. Uses Closure for element comparison.

Compilation flags:

static

Template:

sequential_occurrences(List,Closure,Occurrences)

Mode and number of proofs:

sequential_occurrences(@list,@callable,-list(pair(term,positive_integer))) - one

occurrences/2

Counts the number of occurrences of each List element, unifying Occurrences with a sorted list of Element-Count pairs. Uses term equality for element comparison.

Compilation flags:

static

Template:

occurrences(List,Occurrences)

Mode and number of proofs:

occurrences(@list,-list(pair(term,positive_integer))) - one

occurrences/3

Counts the number of occurrences of each List element, unifying Occurrences with a sorted list of Element-Count pairs. Uses Closure for element comparison.

Compilation flags:

static

Template:

occurrences(List,Closure,Occurrences)

Meta-predicate template:

occurrences(*,2,*)

Mode and number of proofs:

occurrences(@list,@callable,-list(pair(term,positive_integer))) - one

partition/5

Partitions a list in lists with values less, equal, and greater than a given value (using standard order).

Compilation flags:

static

Template:

partition(List,Value,Less,Equal,Greater)

Mode and number of proofs:

partition(+list,+number,-list,-list,-list) - one

permutation/2

The two lists are a permutation of the same list.

Compilation flags:

static

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(?list,?list) - zero_or_more

prefix/2

Prefix is a prefix of List.

Compilation flags:

static

Template:

prefix(Prefix,List)

Mode and number of proofs:

prefix(?list,+list) - zero_or_more

prefix/3

Prefix is a prefix of length Length of List.

Compilation flags:

static

Template:

prefix(Prefix,Length,List)

Mode and number of proofs:

prefix(?list,+integer,+list) - zero_or_one

prefix(?list,-integer,+list) - zero_or_more

proper_prefix/2

Prefix is a proper prefix of List.

Compilation flags:

static

Template:

proper_prefix(Prefix,List)

Mode and number of proofs:

proper_prefix(?list,+list) - zero_or_more

proper_prefix/3

Prefix is a proper prefix of length Length of List.

Compilation flags:

static

Template:

proper_prefix(Prefix,Length,List)

Mode and number of proofs:

proper_prefix(?list,+integer,+list) - zero_or_one

proper_prefix(?list,-integer,+list) - zero_or_more

remove_duplicates/2

Removes duplicated list elements using equality (==/2) for comparison and keeping the left-most element when repeated.

Compilation flags:

static

Template:

remove_duplicates(List,Set)

Mode and number of proofs:

remove_duplicates(+list,-list) - one

reverse/2

Reverses a list.

Compilation flags:

static

Template:

reverse(List,Reversed)

Mode and number of proofs:

reverse(+list,?list) - zero_or_one

reverse(?list,+list) - zero_or_one

reverse(-list,-list) - one_or_more

same_length/2

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2)

Mode and number of proofs:

same_length(+list,?list) - zero_or_one

same_length(?list,+list) - zero_or_one

same_length(-list,-list) - one_or_more

same_length/3

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2,Length)

Mode and number of proofs:

same_length(+list,?list,?integer) - zero_or_one

same_length(?list,+list,?integer) - zero_or_one

same_length(-list,-list,-integer) - one_or_more

select/3

Selects an element from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

select(Element,List,Remaining)

Mode and number of proofs:

select(?term,?list,?list) - zero_or_more

selectchk/3

Checks that an element can be selected from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

selectchk(Element,List,Remaining)

Mode and number of proofs:

selectchk(?term,?list,?list) - zero_or_one

select/4

Selects an element from a list, replacing it by a new element and returning the resulting list.

Compilation flags:

static

Template:

select(Old,OldList,New,NewList)

Mode and number of proofs:

select(?term,?list,?term,?list) - zero_or_more

selectchk/4

Checks that an element from a list can be replaced by a new element, returning the resulting list.

Compilation flags:

static

Template:

selectchk(Old,OldList,New,NewList)

Mode and number of proofs:

selectchk(?term,?list,?term,?list) - zero_or_one

sort/2

Sorts a list in ascending order (duplicated elements are removed).

Compilation flags:

static

Template:

sort(List,Sorted)

Mode and number of proofs:

sort(+list,-list) - one

sort/3

Sorts a list using a user-specified comparison predicate modeled on the standard compare/3 predicate (duplicated elements are removed).

Compilation flags:

static

Template:

sort(Closure,List,Sorted)

Meta-predicate template:

sort(3,*,*)

Mode and number of proofs:

sort(+callable,+list,-list) - one

sort/4

Sorts a list using the given key and order. Uses the standard term comparison operators for the order. The key selects the argument in each element in the list to use for comparisons. A key value of zero uses the whole element for comparisons.

Compilation flags:

static

Template:

sort(Key,Order,List,Sorted)

Mode and number of proofs:

sort(+non_negative_integer,+atom,+list,-list) - one

Remarks:

	Removing duplicates: Use one of the @< or @> orders.

	Keeping duplicates: Use one of the @=< or @>= orders.

	Sorting in ascending order: Use one of the @< or @=< orders.

	Sorting in descending order: Use one of the @> or @>= orders.

split/4

Splits a list into sublists of a given length. Also returns a list with the remaining elements. Fails if the length is zero or negative.

Compilation flags:

static

Template:

split(List,Length,Sublists,Remaining)

Mode and number of proofs:

split(+list,+integer,-list(list),-list) - zero_or_one

sublist/2

The first list is a sublist of the second.

Compilation flags:

static

Template:

sublist(Sublist,List)

Mode and number of proofs:

sublist(?list,+list) - zero_or_more

subsequence/3

List is an interleaving of Subsequence and Remaining. Element order is preserved.

Compilation flags:

static

Template:

subsequence(List,Subsequence,Remaining)

Mode and number of proofs:

subsequence(?list,?list,?list) - zero_or_more

subsequence/4

Generates subsequences of a given length from a list. Also returns the remaining elements. Element order is preserved.

Compilation flags:

static

Template:

subsequence(List,Length,Subsequence,Remaining)

Mode and number of proofs:

subsequence(+list,+integer,?list,?list) - zero_or_more

substitute/4

Substitutes all occurrences of Old in List by New, returning NewList. Uses term equality for element comparison.

Compilation flags:

static

Template:

substitute(Old,List,New,NewList)

Mode and number of proofs:

substitute(@term,@list,@term,-list) - one

subtract/3

Removes all elements in the second list from the first list, returning the list of remaining elements.

Compilation flags:

static

Template:

subtract(List,Elements,Remaining)

Mode and number of proofs:

subtract(+list,+list,-list) - one

suffix/2

Suffix is a suffix of List.

Compilation flags:

static

Template:

suffix(Suffix,List)

Mode and number of proofs:

suffix(?list,+list) - zero_or_more

suffix/3

Suffix is a suffix of length Length of List.

Compilation flags:

static

Template:

suffix(Suffix,Length,List)

Mode and number of proofs:

suffix(?list,+integer,+list) - zero_or_one

suffix(?list,-integer,+list) - zero_or_more

proper_suffix/2

Suffix is a proper suffix of List.

Compilation flags:

static

Template:

proper_suffix(Suffix,List)

Mode and number of proofs:

proper_suffix(?list,+list) - zero_or_more

proper_suffix/3

Suffix is a proper suffix of length Length of List.

Compilation flags:

static

Template:

proper_suffix(Suffix,Length,List)

Mode and number of proofs:

proper_suffix(?list,+integer,+list) - zero_or_one

proper_suffix(?list,-integer,+list) - zero_or_more

take/3

Takes the first N elements of a list. Fails if the list have fewer than N elements.

Compilation flags:

static

Template:

take(N,List,Elements)

Mode and number of proofs:

take(+integer,+list,-list) - zero_or_one

drop/3

Drops the first N elements of a list. Fails if the list have fewer than N elements.

Compilation flags:

static

Template:

drop(N,List,Remaining)

Mode and number of proofs:

drop(+integer,+list,-list) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

list, list(Type), numberlistp, varlistp

 protocol

loggingp

Logging events to files protocol.

Availability:

logtalk_load(logging(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2011-01-06

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	log_file/2

	define_log_file/2

	init_log_file/2

	log_event/2

	logging/1

	enable_logging/1

	disable_logging/1

	Protected predicates

	Private predicates

	Operators

Public predicates

log_file/2

Access to the table of log files.

Compilation flags:

static

Template:

log_file(Alias,File)

Mode and number of proofs:

log_file(?atom,?atom) - zero_or_more

define_log_file/2

Defines a log file with alias Alias and file name File. If the log file already exists, its contents are kept. Logging is enabled by default.

Compilation flags:

static

Template:

define_log_file(Alias,File)

Mode and number of proofs:

define_log_file(+atom,+atom) - one

init_log_file/2

Initializes a new log file with alias Alias and file name File. If the log file already exists, its contents are erased. Logging is enabled by default.

Compilation flags:

static

Template:

init_log_file(Alias,File)

Mode and number of proofs:

init_log_file(+atom,+atom) - one

log_event/2

Logs an event Event to a log file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

log_event(Alias,Event)

Mode and number of proofs:

log_event(+atom,+nonvar) - zero_or_one

logging/1

True if logging to file with alias Alias is enabled.

Compilation flags:

static

Template:

logging(Alias)

Mode and number of proofs:

logging(+atom) - zero_or_one

enable_logging/1

Enables logging to file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

enable_logging(Alias)

Mode and number of proofs:

enable_logging(+atom) - zero_or_one

disable_logging/1

Disables logging to file with alias Alias. Fails if a log file with alias Alias is not defined.

Compilation flags:

static

Template:

disable_logging(Alias)

Mode and number of proofs:

disable_logging(+atom) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

logging

 protocol

loopp

Loop control constructs protocol.

Availability:

logtalk_load(loops(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2017-03-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	whiledo/2

	dowhile/2

	foreach/3

	foreach/4

	forto/3

	forto/4

	forto/5

	fordownto/3

	fordownto/4

	fordownto/5

	Protected predicates

	Private predicates

	Operators

Public predicates

whiledo/2

While Condition is true do Action.

Compilation flags:

static

Template:

whiledo(Condition,Action)

Meta-predicate template:

whiledo(0,0)

Mode and number of proofs:

whiledo(+callable,@callable) - zero_or_one

dowhile/2

Do Action while Condition is true.

Compilation flags:

static

Template:

dowhile(Action,Condition)

Meta-predicate template:

dowhile(0,0)

Mode and number of proofs:

dowhile(@callable,+callable) - zero_or_one

foreach/3

For each Element in List call Goal.

Compilation flags:

static

Template:

foreach(Element,List,Goal)

Meta-predicate template:

foreach(*,*,0)

Mode and number of proofs:

foreach(@var,+list(term),@callable) - zero_or_one

foreach/4

For each Element in List at position Index call Goal. Index starts at 1.

Compilation flags:

static

Template:

foreach(Element,Index,List,Goal)

Meta-predicate template:

foreach(*,*,*,0)

Mode and number of proofs:

foreach(@var,@var,+list(term),@callable) - zero_or_one

forto/3

Calls Goal counting up from First to Last. Increment is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

forto(First,Last,Goal)

Meta-predicate template:

forto(*,*,0)

Mode and number of proofs:

forto(+number,+number,@callable) - zero_or_one

forto/4

Calls Goal counting up from First to Last and binding Count to each successive value. Increment is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

forto(Count,First,Last,Goal)

Meta-predicate template:

forto(*,*,*,0)

Mode and number of proofs:

forto(@var,+number,+number,@callable) - zero_or_one

forto/5

Calls Goal counting up from First to Last and binding Count to each successive value. For convenience, First, Last, and Increment can be arithmetic expressions (uses Increment absolute value). Fails iff Goal fails.

Compilation flags:

static

Template:

forto(Count,First,Last,Increment,Goal)

Meta-predicate template:

forto(*,*,*,*,0)

Mode and number of proofs:

forto(@var,+number,+number,+number,@callable) - zero_or_one

fordownto/3

Calls Goal counting down from First to Last. Decrement is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(First,Last,Goal)

Meta-predicate template:

fordownto(*,*,0)

Mode and number of proofs:

fordownto(+number,+number,@callable) - zero_or_one

fordownto/4

Calls Goal counting down from First to Last and binding Count to each successive value. Decrement is 1. For convenience, First and Last can be arithmetic expressions. Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(Count,First,Last,Goal)

Meta-predicate template:

fordownto(*,*,*,0)

Mode and number of proofs:

fordownto(@var,+number,+number,@callable) - zero_or_one

fordownto/5

Calls Goal counting down from First to Last and binding Count to each successive value. For convenience, First, Last, and Decrement can be arithmetic expressions (uses Decrement absolute value). Fails iff Goal fails.

Compilation flags:

static

Template:

fordownto(Count,First,Last,Decrement,Goal)

Meta-predicate template:

fordownto(*,*,*,*,0)

Mode and number of proofs:

fordownto(@var,+number,+number,+number,@callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

loop

 protocol

metagol_example_protocol

Convenient learning predicates for use in examples and unit tests.

Availability:

logtalk_load(metagol(loader))

Author: Paulo Moura.

Version: 0:1:1

Date: 2024-03-15

License: BSD-3-Clause

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	learn/1

	learn/0

	Protected predicates

	Private predicates

	Operators

Public predicates

learn/1

Learns and returns set of clauses.

Compilation flags:

static

Template:

learn(Clauses)

Mode and number of proofs:

learn(-list(clause)) - zero_or_more

learn/0

Learns and prints a set of clauses.

Compilation flags:

static

Mode and number of proofs:

learn - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

metap

Useful meta-predicates protocol.

Availability:

logtalk_load(meta(loader))

Author: Paulo Moura

Version: 6:1:0

Date: 2015-12-23

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	include/3

	exclude/3

	findall_member/4

	findall_member/5

	partition/4

	partition/6

	fold_left/4

	fold_left_1/3

	scan_left/4

	scan_left_1/3

	fold_right/4

	fold_right_1/3

	scan_right/4

	scan_right_1/3

	map/2

	map/3

	map/4

	map/5

	map/6

	map/7

	map/8

	map_reduce/5

	Protected predicates

	Private predicates

	Operators

Public predicates

include/3

Returns a list of all list elements that satisfy a predicate.

Compilation flags:

static

Template:

include(Closure,List,Included)

Meta-predicate template:

include(1,*,*)

Mode and number of proofs:

include(+callable,+list,-list) - one

exclude/3

Returns a list of all list elements that fail to satisfy a predicate.

Compilation flags:

static

Template:

exclude(Closure,List,Excluded)

Meta-predicate template:

exclude(1,*,*)

Mode and number of proofs:

exclude(+callable,+list,-list) - one

findall_member/4

Finds all members of a list that satisfy a given test.

Compilation flags:

static

Template:

findall_member(Member,List,Test,Result)

Meta-predicate template:

findall_member(*,*,0,*)

Mode and number of proofs:

findall_member(@term,+list,@callable,-list) - one

findall_member/5

Finds all members of a list that satisfy a given test appending the given tail to the result.

Compilation flags:

static

Template:

findall_member(Member,List,Test,Result,Tail)

Meta-predicate template:

findall_member(*,*,0,*,*)

Mode and number of proofs:

findall_member(@term,+list,@callable,-list,+list) - one

partition/4

Partition a list of elements in two lists using a predicate.

Compilation flags:

static

Template:

partition(Closure,List,Included,Excluded)

Meta-predicate template:

partition(1,*,*,*)

Mode and number of proofs:

partition(+callable,+list,-list,-list) - one

partition/6

Partitions a list in lists with values less, equal, and greater than a given value using a comparison predicate with the same argument order as compare/3.

Compilation flags:

static

Template:

partition(Closure,List,Value,Less,Equal,Greater)

Meta-predicate template:

partition(3,*,*,*,*,*)

Mode and number of proofs:

partition(+callable,+list,@term,-list,-list,-list) - one

fold_left/4

List folding (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator.

Compilation flags:

static

Template:

fold_left(Closure,Accumulator,List,Result)

Meta-predicate template:

fold_left(3,*,*,*)

Mode and number of proofs:

fold_left(+callable,?term,+list,?term) - zero_or_more

fold_left_1/3

List folding (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator. The initial value of the accumulator is the list first element. Fails for empty lists.

Compilation flags:

static

Template:

fold_left_1(Closure,List,Result)

Meta-predicate template:

fold_left_1(3,*,*)

Mode and number of proofs:

fold_left_1(+callable,+list,?term) - zero_or_more

scan_left/4

List scanning (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator.

Compilation flags:

static

Template:

scan_left(Closure,Accumulator,List,Results)

Meta-predicate template:

scan_left(3,*,*,*)

Mode and number of proofs:

scan_left(+callable,?term,+list,?list) - zero_or_more

scan_left_1/3

List scanning (left associative). Closure is extended with three arguments: accumulator, list element, and updated accumulator. The accumulator is initialized with the list first element. Fails for empty lists.

Compilation flags:

static

Template:

scan_left_1(Closure,List,Results)

Meta-predicate template:

scan_left_1(3,*,*)

Mode and number of proofs:

scan_left_1(+callable,+list,?list) - zero_or_more

fold_right/4

List folding (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator.

Compilation flags:

static

Template:

fold_right(Closure,Accumulator,List,Result)

Meta-predicate template:

fold_right(3,*,*,*)

Mode and number of proofs:

fold_right(+callable,?term,+list,?term) - zero_or_more

fold_right_1/3

List folding (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator. The initial value of the accumulator is the list first element. Fails for empty lists.

Compilation flags:

static

Template:

fold_right_1(Closure,List,Result)

Meta-predicate template:

fold_right_1(3,*,*)

Mode and number of proofs:

fold_right_1(+callable,+list,?term) - zero_or_more

scan_right/4

List scanning (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator.

Compilation flags:

static

Template:

scan_right(Closure,Accumulator,List,Results)

Meta-predicate template:

scan_right(3,*,*,*)

Mode and number of proofs:

scan_right(+callable,?term,+list,?list) - zero_or_more

scan_right_1/3

List scanning (right associative). Closure is extended with three arguments: list element, accumulator, and updated accumulator. The accumulator is initialized with the list first element. Fails for empty lists.

Compilation flags:

static

Template:

scan_right_1(Closure,List,Results)

Meta-predicate template:

scan_right_1(3,*,*)

Mode and number of proofs:

scan_right_1(+callable,+list,?list) - zero_or_more

map/2

True if the predicate succeeds for each list element.

Compilation flags:

static

Template:

map(Closure,List)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(+callable,?list) - zero_or_more

map/3

List mapping predicate taken arguments from two lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(+callable,?list,?list) - zero_or_more

map/4

List mapping predicate taken arguments from three lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3)

Meta-predicate template:

map(3,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list) - zero_or_more

map/5

List mapping predicate taken arguments from four lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4)

Meta-predicate template:

map(4,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list) - zero_or_more

map/6

List mapping predicate taken arguments from five lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5)

Meta-predicate template:

map(5,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list) - zero_or_more

map/7

List mapping predicate taken arguments from six lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5,List6)

Meta-predicate template:

map(6,*,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list,?list) - zero_or_more

map/8

List mapping predicate taken arguments from seven lists of elements.

Compilation flags:

static

Template:

map(Closure,List1,List2,List3,List4,List5,List6,List7)

Meta-predicate template:

map(7,*,*,*,*,*,*,*)

Mode and number of proofs:

map(+callable,?list,?list,?list,?list,?list,?list,?list) - zero_or_more

map_reduce/5

Map a list and apply a fold left (reduce) to the resulting list.

Compilation flags:

static

Template:

map_reduce(Map,Reduce,Accumulator,List,Result)

Meta-predicate template:

map_reduce(2,3,*,*,*)

Mode and number of proofs:

map_reduce(+callable,+callable,+term,?list,?term) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

meta

 protocol

monitoring

Event handlers protocol. The handlers are automatically called by the runtime for messages sent using the ::/2 control construct from objects or categories compiled with the events flag set to allow.

Availability:

built_in

Author: Paulo Moura

Version: 1:2:0

Date: 2018-11-29

Compilation flags:

static, built_in

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	before/3

	after/3

	Protected predicates

	Private predicates

	Operators

Public predicates

before/3

Event handler for before events. A before event handler may prevent a method from being looked up or called by failing.

Compilation flags:

static

Template:

before(Object,Message,Sender)

Mode and number of proofs:

before(?term,?term,?term) - zero_or_more

after/3

Event handler for after events. An after event handler may prevent a method from succeeding by failing.

Compilation flags:

static

Template:

after(Object,Message,Sender)

Mode and number of proofs:

after(?term,?term,?term) - zero_or_more

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

monitorp

Monitor protocol.

Availability:

logtalk_load(events(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	monitor_activated/0

	activate_monitor/0

	suspend_monitor/0

	reset_monitor/0

	spy_point/4

	set_spy_point/4

	del_spy_points/4

	Protected predicates

	Private predicates

	Operators

Public predicates

monitor_activated/0

True if monitor is currently active.

Compilation flags:

static

Mode and number of proofs:

monitor_activated - zero_or_one

activate_monitor/0

Activates all spy points and start monitoring.

Compilation flags:

static

Mode and number of proofs:

activate_monitor - one

suspend_monitor/0

Suspends monitoring, deactivating all spy points.

Compilation flags:

static

Mode and number of proofs:

suspend_monitor - one

reset_monitor/0

Resets monitor, deactivating and deleting all spy points.

Compilation flags:

static

Mode and number of proofs:

reset_monitor - one

spy_point/4

Current spy point.

Compilation flags:

static

Template:

spy_point(Event,Object,Message,Sender)

Mode and number of proofs:

spy_point(?event,?object,?callable,?object) - zero_or_more

set_spy_point/4

Sets a spy point.

Compilation flags:

static

Template:

set_spy_point(Event,Object,Message,Sender)

Mode and number of proofs:

set_spy_point(?event,?object,?callable,?object) - one

del_spy_points/4

Deletes all matching spy points.

Compilation flags:

static

Template:

del_spy_points(Event,Object,Message,Sender)

Mode and number of proofs:

del_spy_points(@event,@object,@callable,@object) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

monitor, event_registryp

 protocol

nested_dictionary_protocol

Nested dictionary protocol.

Availability:

logtalk_load(nested_dictionaries(loader))

Author: Paul Brown and Paulo Moura

Version: 0:1:0

Date: 2021-04-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/1

	empty/1

	as_nested_dictionary/2

	as_curly_bracketed/2

	lookup_in/3

	update_in/4

	update_in/5

	insert_in/4

	delete_in/4

	Protected predicates

	Private predicates

	Operators

Public predicates

new/1

Create an empty (nested) dictionary.

Compilation flags:

static

Template:

new(Dictionary)

Mode and number of proofs:

new(--dictionary) - one

empty/1

True iff the dictionary is empty.

Compilation flags:

static

Template:

empty(Dictionary)

Mode and number of proofs:

empty(@dictionary) - zero_or_one

as_nested_dictionary/2

Creates a (nested) dictionary term from a curly-brackted term representation.

Compilation flags:

static

Template:

as_nested_dictionary(Term,Dictionary)

Mode and number of proofs:

as_nested_dictionary(++term,--dictionary) - one_or_error

as_curly_bracketed/2

Creates a a curly-brackted term representation from a (nested) dictionary.

Compilation flags:

static

Template:

as_curly_bracketed(Dictionary,Term)

Mode and number of proofs:

as_curly_bracketed(+dictionary,--term) - one_or_error

lookup_in/3

Lookup a chain of keys in a nested dictionary. Unifies Value with Dictionary when Keys is the empty list.

Compilation flags:

static

Template:

lookup_in(Keys,Value,Dictionary)

Mode and number of proofs:

lookup_in(++list(ground),?term,+dictionary) - zero_or_more

update_in/4

Updates the value found by traversing through the nested keys.

Compilation flags:

static

Template:

update_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

update_in(+dictionary,++list(ground),++term,--dictionary) - zero_or_one

update_in/5

Updates the value found by traversing through the nested keys, only succeeding if the value found after traversal matches the old value.

Compilation flags:

static

Template:

update_in(OldDictionary,Keys,OldValue,NewValue,NewDictionary)

Mode and number of proofs:

update_in(+dictionary,++list(ground),?term,++term,--dictionary) - zero_or_one

insert_in/4

Inserts a key-value pair into a dictionary by traversing through the nested keys. When the key already exists, the associated value is updated.

Compilation flags:

static

Template:

insert_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

insert_in(+dictionary,++list(ground),++term,--dictionary) - zero_or_one

delete_in/4

Deletes a matching key-value pair from a dictionary by traversing through the nested keys, returning the updated dictionary.

Compilation flags:

static

Template:

delete_in(OldDictionary,Keys,Value,NewDictionary)

Mode and number of proofs:

delete_in(+dictionary,++list(ground),?term,--dictionary) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

navltree, nbintree, nrbtree

 protocol

numberlistp

List of numbers protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:10:0

Date: 2025-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	min/2

	max/2

	min_max/3

	product/2

	sum/2

	average/2

	median/2

	modes/2

	euclidean_norm/2

	chebyshev_norm/2

	manhattan_norm/2

	euclidean_distance/3

	chebyshev_distance/3

	manhattan_distance/3

	scalar_product/3

	normalize_range/2

	normalize_range/4

	normalize_unit/2

	normalize_scalar/2

	rescale/3

	least_common_multiple/2

	softmax/2

	softmax/3

	Protected predicates

	Private predicates

	Operators

Public predicates

min/2

Determines the minimum value in a list using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list(number),-number) - zero_or_one

max/2

Determines the list maximum value using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list(number),-number) - zero_or_one

min_max/3

Determines the minimum and maximum values in a list using arithmetic order. Fails if the list is empty.

Compilation flags:

static

Template:

min_max(List,Minimum,Maximum)

Mode and number of proofs:

min_max(+list(number),-number,-number) - zero_or_one

product/2

Calculates the product of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

product(List,Product)

Mode and number of proofs:

product(+list(number),-number) - zero_or_one

sum/2

Calculates the sum of all list numbers. Returns the integer zero if the list is empty.

Compilation flags:

static

Template:

sum(List,Sum)

Mode and number of proofs:

sum(+list(number),-number) - one

average/2

Calculates the average (i.e., arithmetic mean) of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

average(List,Average)

Mode and number of proofs:

average(+list(number),-float) - zero_or_one

median/2

Calculates the median of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median(List,Median)

Mode and number of proofs:

median(+list(number),-float) - zero_or_one

modes/2

Returns the list of modes of a list of numbers in ascending order. Fails if the list is empty.

Compilation flags:

static

Template:

modes(List,Modes)

Mode and number of proofs:

modes(+list(number),-list(number)) - zero_or_one

euclidean_norm/2

Calculates the Euclidean norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

euclidean_norm(List,Norm)

Mode and number of proofs:

euclidean_norm(+list(number),-float) - zero_or_one

chebyshev_norm/2

Calculates the Chebyshev norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

chebyshev_norm(List,Norm)

Mode and number of proofs:

chebyshev_norm(+list(integer),-integer) - zero_or_one

chebyshev_norm(+list(float),-float) - zero_or_one

manhattan_norm/2

Calculates the Manhattan norm of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

manhattan_norm(List,Norm)

Mode and number of proofs:

manhattan_norm(+list(integer),-integer) - zero_or_one

manhattan_norm(+list(float),-float) - zero_or_one

euclidean_distance/3

Calculates the Euclidean distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

euclidean_distance(List1,List2,Distance)

Mode and number of proofs:

euclidean_distance(+list(number),+list(number),-float) - zero_or_one

chebyshev_distance/3

Calculates the Chebyshev distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

chebyshev_distance(List1,List2,Distance)

Mode and number of proofs:

chebyshev_distance(+list(integer),+list(integer),-integer) - zero_or_one

chebyshev_distance(+list(float),+list(float),-float) - zero_or_one

manhattan_distance/3

Calculates the Manhattan distance between two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

manhattan_distance(List1,List2,Distance)

Mode and number of proofs:

manhattan_distance(+list(integer),+list(integer),-integer) - zero_or_one

manhattan_distance(+list(float),+list(float),-float) - zero_or_one

scalar_product/3

Calculates the scalar product of two lists of numbers. Fails if the two lists are empty or not of the same length.

Compilation flags:

static

Template:

scalar_product(List1,List2,Product)

Mode and number of proofs:

scalar_product(+list(integer),+list(integer),-integer) - zero_or_one

scalar_product(+list(float),+list(float),-float) - zero_or_one

normalize_range/2

Normalizes a list of numbers into the [0.0,1.0] range. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_range(List,NormalizedList)

Mode and number of proofs:

normalize_range(+list(number),-list(float)) - one

normalize_range/4

Normalizes a list of numbers into the given range. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_range(List,Minimum,Maximum,NormalizedList)

Mode and number of proofs:

normalize_range(+list(number),+number,+number,-list(float)) - one

normalize_unit/2

Normalizes a list of numbers returning its unit vector (i.e., a list with Euclidean norm equal to one). Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_unit(List,NormalizedList)

Mode and number of proofs:

normalize_unit(+list(number),-list(float)) - one

normalize_scalar/2

Normalizes a list of numbers such that the sum of all numbers is equal to one. Caller must handle arithmetic exceptions if the input list if not normalizable.

Compilation flags:

static

Template:

normalize_scalar(List,NormalizedList)

Mode and number of proofs:

normalize_scalar(+list(number),-list(float)) - one

rescale/3

Rescales all numbers in a list by the given factor.

Compilation flags:

static

Template:

rescale(List,Factor,RescaledList)

Mode and number of proofs:

rescale(+list(integer),+integer,-list(integer)) - one

rescale(+list(number),+float,-list(float)) - one

least_common_multiple/2

Computes the least common multiple of a list of two or more positive integers. Fails if the list is empty or contains a single element. Fails also if any of the elements is zero. May require backend support for unbound integer arithmetic.

Compilation flags:

static

Template:

least_common_multiple(Integers,LeastCommonMultiple)

Mode and number of proofs:

least_common_multiple(+list(positive_integer),-positive_integer) - zero_or_one

softmax/2

Computes the softmax of a list of floats, returning a probability distribution.

Compilation flags:

static

Template:

softmax(Floats,Softmax)

Mode and number of proofs:

softmax(+list(float),-list(float)) - one

softmax/3

Computes the softmax of a list of floats with the given temperature, returning a probability distribution.

Compilation flags:

static

Template:

softmax(Floats,Temperature,Softmax)

Mode and number of proofs:

softmax(+list(float),+positive_float,-list(float)) - one

Remarks:

	Temperature > 1.0: Makes the distribution more uniform.

	Temperature < 1.0: Makes the distribution more concentrated on the largest values.

	Temperature = 1.0: Standard softmax behavior.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

numberlist, listp, varlistp

 protocol

options_protocol

Options protocol.

Availability:

logtalk_load(options(loader))

Author: Paulo Moura

Version: 1:2:0

Date: 2022-01-03

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	check_option/1

	check_options/1

	valid_option/1

	valid_options/1

	default_option/1

	default_options/1

	option/2

	option/3

	Protected predicates

	merge_options/2

	fix_options/2

	fix_option/2

	Private predicates

	Operators

Public predicates

check_option/1

Succeeds if the option is valid. Throws an error otherwise.

Compilation flags:

static

Template:

check_option(Option)

Mode and number of proofs:

check_option(@term) - one_or_error

Exceptions:

Option is a variable:

instantiation_error

Option is neither a variable nor a compound term:

type_error(compound,Option)

Option is a compound term but not a valid option:

domain_error(option,Option)

check_options/1

Succeeds if all the options in a list are valid. Throws an error otherwise.

Compilation flags:

static

Template:

check_options(Options)

Mode and number of proofs:

check_options(@term) - one_or_error

Exceptions:

Options is a variable:

instantiation_error

Options is neither a variable nor a list:

type_error(list,Options)

An element Option of the list Options is a variable:

instantiation_error

An element Option of the list Options is neither a variable nor a compound term:

type_error(compound,Option)

An element Option of the list Options is a compound term but not a valid option:

domain_error(option,Option)

valid_option/1

Succeeds if the option is valid.

Compilation flags:

static

Template:

valid_option(Option)

Mode and number of proofs:

valid_option(@term) - zero_or_one

valid_options/1

Succeeds if all the options in a list are valid.

Compilation flags:

static

Template:

valid_options(Options)

Mode and number of proofs:

valid_options(@term) - one

default_option/1

Enumerates, by backtracking, the default options.

Compilation flags:

static

Template:

default_option(Option)

Mode and number of proofs:

default_option(?compound) - zero_or_more

default_options/1

Returns a list of the default options.

Compilation flags:

static

Template:

default_options(Options)

Mode and number of proofs:

default_options(-list(compound)) - one

option/2

True iff Option unifies with the first occurrence of the same option in the Options list.

Compilation flags:

static

Template:

option(Option,Options)

Mode and number of proofs:

option(+compound,+list(compound)) - zero_or_one

option/3

True iff Option unifies with the first occurrence of the same option in the Options list or, when that is not the case, if Option unifies with Default.

Compilation flags:

static

Template:

option(Option,Options,Default)

Mode and number of proofs:

option(+compound,+list(compound),+compound) - zero_or_one

Protected predicates

merge_options/2

Merges the user options with the default options, returning the final list of options. Calls the fix_options/2 predicate to preprocess the options after merging. Callers must ensure, if required, that the user options are valid.

Compilation flags:

static

Template:

merge_options(UserOptions,Options)

Mode and number of proofs:

merge_options(+list(compound),-list(compound)) - one

fix_options/2

Fixes a list of options, returning the list of options.

Compilation flags:

static

Template:

fix_options(Options,FixedOptions)

Mode and number of proofs:

fix_options(+list(compound),-list(compound)) - one

fix_option/2

Fixes an option.

Compilation flags:

static

Template:

fix_option(Option,FixedOption)

Mode and number of proofs:

fix_option(+compound,-compound) - zero_or_one

Private predicates

(none)

Operators

(none)

See also

options

 protocol

osp

Portable operating-system access protocol.

Availability:

logtalk_load(os(loader))

Author: Paulo Moura

Version: 1:41:0

Date: 2025-05-19

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Error handling: Predicates that require a file or directory to exist throw an error when that is not the case. But the exact exception term is currently backend Prolog compiler dependent.

	CPU and wall time accuracy: Depends on the backend and can be different between CPU and wall time (e.g. CPU time can have nanosecond accuracy with wall time only having millisecond accuracy).

Inherited public predicates:

(none)

	Public predicates

	pid/1

	shell/2

	shell/1

	is_absolute_file_name/1

	absolute_file_name/2

	decompose_file_name/3

	decompose_file_name/4

	path_concat/3

	internal_os_path/2

	make_directory/1

	make_directory_path/1

	delete_directory/1

	delete_directory_contents/1

	delete_directory_and_contents/1

	change_directory/1

	working_directory/1

	temporary_directory/1

	null_device_path/1

	full_device_path/1

	read_only_device_path/1

	directory_files/2

	directory_files/3

	directory_exists/1

	ensure_directory/1

	file_exists/1

	file_modification_time/2

	file_size/2

	file_permission/2

	copy_file/2

	rename_file/2

	delete_file/1

	ensure_file/1

	environment_variable/2

	time_stamp/1

	date_time/7

	cpu_time/1

	wall_time/1

	operating_system_type/1

	operating_system_name/1

	operating_system_machine/1

	operating_system_release/1

	command_line_arguments/1

	sleep/1

	Protected predicates

	Private predicates

	Operators

Public predicates

pid/1

Returns the process identifier of the running process.

Compilation flags:

static

Template:

pid(PID)

Mode and number of proofs:

pid(-integer) - one

shell/2

Runs an operating-system shell command and returns its exit status.

Compilation flags:

static

Template:

shell(Command,Status)

Mode and number of proofs:

shell(+atom,-integer) - one

shell/1

Runs an operating-system shell command.

Compilation flags:

static

Template:

shell(Command)

Mode and number of proofs:

shell(+atom) - zero_or_one

is_absolute_file_name/1

True iff the argument is an absolute file path. On POSIX systems, this predicate is true if File starts with a /. On Windows systems, this predicate is true if File starts with a drive letter. No attempt is made to expand File as a path.

Compilation flags:

static

Template:

is_absolute_file_name(File)

Mode and number of proofs:

is_absolute_file_name(+atom) - zero_or_one

absolute_file_name/2

Expands a file name to an absolute file path. An environment variable at the beginning of the file name is also expanded.

Compilation flags:

static

Template:

absolute_file_name(File,Path)

Mode and number of proofs:

absolute_file_name(+atom,-atom) - one

decompose_file_name/3

Decomposes a file name into its directory (which always ends with a slash; ./ is returned if absent) and its basename (which can be the empty atom).

Compilation flags:

static

Template:

decompose_file_name(File,Directory,Basename)

Mode and number of proofs:

decompose_file_name(+atom,?atom,?atom) - one

decompose_file_name/4

Decomposes a file name into its directory (which always ends with a slash; ./ is returned if absent), name (that can be the empty atom), and extension (which starts with a . when defined; the empty atom otherwise).

Compilation flags:

static

Template:

decompose_file_name(File,Directory,Name,Extension)

Mode and number of proofs:

decompose_file_name(+atom,?atom,?atom,?atom) - one

path_concat/3

Concatenates a path prefix and a path suffix, adding a / separator if required. Returns Suffix when it is an absolute path. Returns Prefix with a trailing / appended if missing when Suffix is the empty atom.

Compilation flags:

static

Template:

path_concat(Prefix,Suffix,Path)

Mode and number of proofs:

path_concat(+atom,+atom,--atom) - one

internal_os_path/2

Converts between the internal path representation (which is backend dependent) and the operating-system native path representation.

Compilation flags:

static

Template:

internal_os_path(InternalPath,OSPath)

Mode and number of proofs:

internal_os_path(+atom,-atom) - one

internal_os_path(-atom,+atom) - one

make_directory/1

Makes a new directory. Succeeds if the directory already exists.

Compilation flags:

static

Template:

make_directory(Directory)

Mode and number of proofs:

make_directory(+atom) - one

make_directory_path/1

Makes a new directory creating all the intermediate directories if necessary. Succeeds if the directory already exists.

Compilation flags:

static

Template:

make_directory_path(Directory)

Mode and number of proofs:

make_directory_path(+atom) - one

delete_directory/1

Deletes an empty directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory(Directory)

Mode and number of proofs:

delete_directory(+atom) - one_or_error

delete_directory_contents/1

Deletes directory contents. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory_contents(Directory)

Mode and number of proofs:

delete_directory_contents(+atom) - one_or_error

delete_directory_and_contents/1

Deletes directory and its contents. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

delete_directory_and_contents(Directory)

Mode and number of proofs:

delete_directory_and_contents(+atom) - one_or_error

change_directory/1

Changes current working directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

change_directory(Directory)

Mode and number of proofs:

change_directory(+atom) - one_or_error

working_directory/1

Current working directory.

Compilation flags:

static

Template:

working_directory(Directory)

Mode and number of proofs:

working_directory(?atom) - zero_or_one

temporary_directory/1

Temporary directory. Tries first environment variables: TEMP and TMP on Windows systems; TMPDIR, TMP, TEMP, and TEMPDIR on POSIX systems. When not defined, tries default locations. Returns the working directory as last resort.

Compilation flags:

static

Template:

temporary_directory(Directory)

Mode and number of proofs:

temporary_directory(?atom) - one

null_device_path/1

Null device path: nul on Windows systems and /dev/null on POSIX systems.

Compilation flags:

static

Template:

null_device_path(Path)

Mode and number of proofs:

null_device_path(?atom) - one

full_device_path/1

Full device path: /dev/full on Linux and BSD systems. Fails on other systems. Experimental.

Compilation flags:

static

Template:

full_device_path(Path)

Mode and number of proofs:

full_device_path(?atom) - zero_or_one

read_only_device_path/1

Read-only device path: /dev/urandom on macOS. Fails on other systems. Experimental.

Compilation flags:

static

Template:

read_only_device_path(Path)

Mode and number of proofs:

read_only_device_path(?atom) - zero_or_one

directory_files/2

Returns a list of all files (including directories, regular files, and hidden directories and files) in a directory. File paths are relative to the directory. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

directory_files(Directory,Files)

Mode and number of proofs:

directory_files(+atom,-list(atom)) - one_or_error

directory_files/3

Returns a list of files filtered using the given list of options. Invalid options are ignored. Default option values are equivalent to directory_files/2. Throws an error if the directory does not exist.

Compilation flags:

static

Template:

directory_files(Directory,Files,Options)

Mode and number of proofs:

directory_files(+atom,-list(atom),+list(compound)) - one_or_error

Remarks:

	Option paths/1: Possible values are relative and absolute. Default is relative.

	Option type/1: Possible values are all, regular, directory. Default is all.

	Option extensions/1: Argument is a list of required extensions (using the format '.ext'). Default is the empty list.

	Option prefixes/1: Argument is a list of required file prefixes (atoms). Default is the empty list.

	Option suffixes/1: Argument is a list of required file suffixes (atoms). Default is the empty list.

	Option dot_files/1: Possible values are true and false. Default is true.

directory_exists/1

True if the specified directory exists (irrespective of directory permissions).

Compilation flags:

static

Template:

directory_exists(Directory)

Mode and number of proofs:

directory_exists(+atom) - zero_or_one

ensure_directory/1

Ensures that a directory exists, creating it if necessary.

Compilation flags:

static

Template:

ensure_directory(Directory)

Mode and number of proofs:

ensure_directory(+atom) - one

file_exists/1

True if the specified file exists and is a regular file (irrespective of file permissions).

Compilation flags:

static

Template:

file_exists(File)

Mode and number of proofs:

file_exists(+atom) - zero_or_one

file_modification_time/2

File modification time (which can be used for comparison). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_modification_time(File,Time)

Mode and number of proofs:

file_modification_time(+atom,-integer) - one_or_error

file_size/2

File size (in bytes). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_size(File,Size)

Mode and number of proofs:

file_size(+atom,-integer) - one_or_error

file_permission/2

True iff the specified file has the specified permission (read, write, or execute). Throws an error if the file does not exist.

Compilation flags:

static

Template:

file_permission(File,Permission)

Mode and number of proofs:

file_permission(+atom,+atom) - zero_or_one_or_error

copy_file/2

Copies a file. Throws an error if the original file does not exist or if the copy cannot be created.

Compilation flags:

static

Template:

copy_file(File,Copy)

Mode and number of proofs:

copy_file(+atom,+atom) - one_or_error

rename_file/2

Renames a file or a directory. Throws an error if the file or directory does not exist.

Compilation flags:

static

Template:

rename_file(Old,New)

Mode and number of proofs:

rename_file(+atom,+atom) - one_or_error

delete_file/1

Deletes a file. Throws an error if the file does not exist.

Compilation flags:

static

Template:

delete_file(File)

Mode and number of proofs:

delete_file(+atom) - one_or_error

ensure_file/1

Ensures that a file exists, creating it if necessary.

Compilation flags:

static

Template:

ensure_file(File)

Mode and number of proofs:

ensure_file(+atom) - one

environment_variable/2

Returns an environment variable value. Fails if the variable does not exists.

Compilation flags:

static

Template:

environment_variable(Variable,Value)

Mode and number of proofs:

environment_variable(+atom,?atom) - zero_or_one

time_stamp/1

Returns a system-dependent time stamp, which can be used for sorting, but should be regarded otherwise as an opaque term.

Compilation flags:

static

Template:

time_stamp(Time)

Mode and number of proofs:

time_stamp(-ground) - one

date_time/7

Returns the current date and time. Note that most backends do not provide sub-second accuracy and in those cases the value of the Milliseconds argument is always zero.

Compilation flags:

static

Template:

date_time(Year,Month,Day,Hours,Minutes,Seconds,Milliseconds)

Mode and number of proofs:

date_time(-integer,-integer,-integer,-integer,-integer,-integer,-integer) - one

cpu_time/1

System cpu time in seconds. Accuracy depends on the backend.

Compilation flags:

static

Template:

cpu_time(Seconds)

Mode and number of proofs:

cpu_time(-number) - one

wall_time/1

Wall time in seconds. Accuracy depends on the backend.

Compilation flags:

static

Template:

wall_time(Seconds)

Mode and number of proofs:

wall_time(-number) - one

operating_system_type/1

Operating system type. Possible values are unix, windows, and unknown.

Compilation flags:

static

Template:

operating_system_type(Type)

Mode and number of proofs:

operating_system_type(?atom) - zero_or_one

operating_system_name/1

Operating system name. On POSIX systems, it returns the value of uname -s. On macOS systems, it returns 'Darwin'. On Windows systems, it returns 'Windows'.

Compilation flags:

static

Template:

operating_system_name(Name)

Mode and number of proofs:

operating_system_name(?atom) - zero_or_one

operating_system_machine/1

Operating system hardware platform. On POSIX systems, it returns the value of uname -m. On Windows systems, it returns the value of the PROCESSOR_ARCHITECTURE environment variable.

Compilation flags:

static

Template:

operating_system_machine(Machine)

Mode and number of proofs:

operating_system_machine(?atom) - zero_or_one

operating_system_release/1

Operating system release. On POSIX systems, it returns the value of uname -r. On Windows systems, it uses WMI code.

Compilation flags:

static

Template:

operating_system_release(Release)

Mode and number of proofs:

operating_system_release(?atom) - zero_or_one

command_line_arguments/1

Returns a list with the command line arguments that occur after --.

Compilation flags:

static

Template:

command_line_arguments(Arguments)

Mode and number of proofs:

command_line_arguments(-list(atom)) - one

sleep/1

Suspends execution the given number of seconds.

Compilation flags:

static

Template:

sleep(Seconds)

Mode and number of proofs:

sleep(+number) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

os, os_types

 protocol

pack_protocol

Pack specification protocol. Objects implementing this protocol should be named after the pack with a _pack suffix and saved in a file with the same name as the object.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:18:0

Date: 2025-05-21

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	name/1

	description/1

	license/1

	home/1

	version/6

	note/3

	Protected predicates

	Private predicates

	Operators

Public predicates

name/1

Pack name.

Compilation flags:

static

Template:

name(Name)

Mode and number of proofs:

name(?atom) - zero_or_one

description/1

Pack one line description.

Compilation flags:

static

Template:

description(Description)

Mode and number of proofs:

description(?atom) - zero_or_one

license/1

Pack license. Specified using the identifier from the SPDX License List (https://spdx.org/licenses/) when possible.

Compilation flags:

static

Template:

license(License)

Mode and number of proofs:

license(?atom) - zero_or_one

home/1

Pack home HTTPS or file URL.

Compilation flags:

static

Template:

home(Home)

Mode and number of proofs:

home(?atom) - zero_or_one

version/6

Table of available versions.

Compilation flags:

static

Template:

version(Version,Status,URL,Checksum,Dependencies,Portability)

Mode and number of proofs:

version(?compound,?atom,-atom,-pair(atom,atom),-list(pair(atom,callable)),?atom) - zero_or_more

version(?compound,?atom,-atom,-pair(atom,atom),-list(pair(atom,callable)),-list(atom)) - zero_or_more

Remarks:

	Version: This argument uses the same format as entity versions: Major:Minor:Patch. Semantic versioning should be used.

	Status: Version development status: stable, rc, beta, alpha, experimental, or deprecated.

	URL: File URL for a local directory, file URL for a local archive, download HTTPS URL for the pack archive, or download git archive URL for the pack archive.

	Checksum: A pair where the key is the hash algorithm and the value is the checksum. Currently, the hash algorithm must be sha256. For file:// URLs of local directories, use none instead of a pair.

	Dependencies: Pack dependencies list. Each dependency is a Dependency Operator Version term. Operator is a term comparison operator. Valid Dependency values are Registry::Pack, os(Name,Machine), logtalk, and a backend identifier atom.

	Portability: Either the atom all or a list of the supported backend Prolog compilers (using the identifier atoms used by the prolog_dialect flag).

	Clause order: Versions must be listed ordered from newest to oldest.

note/3

Table of notes per action and version.

Compilation flags:

static

Template:

note(Action,Version,Note)

Mode and number of proofs:

note(?atom,?term,-atom) - zero_or_more

Remarks:

	Action: Possible values are install, update, and uninstall. When unbound, the note apply to all actions.

	Version: Version being installed, updated, or uninstalled. When unbound, the note apply to all versions.

	Note: Note to print when performing an action on a pack version.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

proto_hierarchyp

Prototype hierarchy protocol.

Availability:

logtalk_load(hierarchies(loader))

Author: Paulo Moura

Version: 1:1:0

Date: 2006-02-20

Compilation flags:

static

Extends:

public hierarchyp

Remarks:

(none)

Inherited public predicates:

 ancestor/1 ancestors/1 descendant/1 descendants/1 leaf/1 leaves/1

	Public predicates

	parent/1

	parents/1

	extension/1

	extensions/1

	Protected predicates

	Private predicates

	Operators

Public predicates

parent/1

Returns, by backtracking, all object parents.

Compilation flags:

static

Template:

parent(Parent)

Mode and number of proofs:

parent(?object) - zero_or_more

parents/1

List of all object parents.

Compilation flags:

static

Template:

parents(Parents)

Mode and number of proofs:

parents(-list) - one

extension/1

Returns, by backtracking, all object direct descendants.

Compilation flags:

static

Template:

extension(Extension)

Mode and number of proofs:

extension(?object) - zero_or_more

extensions/1

List of all object direct descendants.

Compilation flags:

static

Template:

extensions(Extensions)

Mode and number of proofs:

extensions(-list) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

proto_hierarchy

 protocol

pseudo_random_protocol

Pseudo-random number generator protocol for seed handling predicates. These predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2021-02-21

Compilation flags:

static

Extends:

public random_protocol

Remarks:

(none)

Inherited public predicates:

 between/3 enumerate/2 maybe/0 maybe/1 maybe/2 maybe_call/1 maybe_call/2 member/2 permutation/2 random/1 random/3 randseq/4 randset/4 select/3 select/4 sequence/4 set/4 swap/2 swap_consecutive/2

	Public predicates

	get_seed/1

	set_seed/1

	Protected predicates

	Private predicates

	Operators

Public predicates

get_seed/1

Gets the current random generator seed. Seed should be regarded as an opaque ground term.

Compilation flags:

static, synchronized

Template:

get_seed(Seed)

Mode and number of proofs:

get_seed(-ground) - one

set_seed/1

Sets the random generator seed to a given value returned by calling the get_seed/1 predicate.

Compilation flags:

static, synchronized

Template:

set_seed(Seed)

Mode and number of proofs:

set_seed(+ground) - one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

random, backend_random, fast_random

 protocol

queuep

Queue protocol.

Availability:

logtalk_load(queues(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2020-12-09

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	empty/1

	head/2

	join/3

	join_all/3

	jump/3

	jump_all/3

	jump_all_block/3

	append/3

	length/2

	serve/3

	as_list/2

	map/2

	map/3

	Protected predicates

	Private predicates

	Operators

Public predicates

empty/1

True if the queue is empty.

Compilation flags:

static

Template:

empty(Queue)

Mode and number of proofs:

empty(@queue) - zero_or_one

head/2

Unifies Head with the first element of the queue.

Compilation flags:

static

Template:

head(Queue,Head)

Mode and number of proofs:

head(+queue,?term) - zero_or_one

join/3

Adds the new element at the end of the queue.

Compilation flags:

static

Template:

join(Element,Queue,NewQueue)

Mode and number of proofs:

join(@term,+queue,-queue) - zero_or_one

join_all/3

Adds the new elements at the end of the queue. The elements are added in the same order that they appear in the list.

Compilation flags:

static

Template:

join_all(List,Queue,NewQueue)

Mode and number of proofs:

join_all(+list,+queue,-queue) - zero_or_one

jump/3

Adds the new element at the front of the queue.

Compilation flags:

static

Template:

jump(Element,Queue,NewQueue)

Mode and number of proofs:

jump(@term,+queue,-queue) - zero_or_one

jump_all/3

Adds the new elements at the front of the queue. The last element in the list will be at the front of the queue.

Compilation flags:

static

Template:

jump_all(Elements,Queue,NewQueue)

Mode and number of proofs:

jump_all(+list,+queue,-queue) - zero_or_one

jump_all_block/3

Adds the new elements as a block at the front of the queue. The first element in the list will be at the front of the queue.

Compilation flags:

static

Template:

jump_all_block(Elements,Queue,NewQueue)

Mode and number of proofs:

jump_all_block(+list,+queue,-queue) - zero_or_one

append/3

Appends two queues. The new queue will have the elements of the first queue followed by the elements of the second queue.

Compilation flags:

static

Template:

append(Queue1,Queue2,NewQueue)

Mode and number of proofs:

append(+queue,+queue,-queue) - one

length/2

Queue length.

Compilation flags:

static

Template:

length(Queue,Length)

Mode and number of proofs:

length(+heap,?integer) - zero_or_one

serve/3

Removes the first element of the queue for service.

Compilation flags:

static

Template:

serve(Queue,Head,NewQueue)

Mode and number of proofs:

serve(+queue,?term,-queue) - zero_or_one

as_list/2

Converts a queue to a list.

Compilation flags:

static

Template:

as_list(Queue,List)

Mode and number of proofs:

as_list(+queue,-list) - one

map/2

Applies a closure to all elements of a queue.

Compilation flags:

static

Template:

map(Closure,Queue)

Meta-predicate template:

map(1,*)

Mode and number of proofs:

map(+callable,+queue) - zero_or_one

map/3

Applies a closure to all elements of a queue constructing a new queue.

Compilation flags:

static

Template:

map(Closure,Queue,NewQueue)

Meta-predicate template:

map(2,*,*)

Mode and number of proofs:

map(+callable,+queue,?queue) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

queue

 protocol

random_protocol

Random number generator protocol. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 3:3:0

Date: 2023-11-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	random/1

	between/3

	member/2

	select/3

	select/4

	swap/2

	swap_consecutive/2

	enumerate/2

	permutation/2

	sequence/4

	set/4

	random/3

	randseq/4

	randset/4

	maybe/0

	maybe/1

	maybe/2

	maybe_call/1

	maybe_call/2

	Protected predicates

	Private predicates

	Operators

Public predicates

random/1

Returns a new random float value in the interval [0.0, 1.0[.

Compilation flags:

static, synchronized

Template:

random(Random)

Mode and number of proofs:

random(-float) - one

between/3

Returns a new random integer in the interval [Lower, Upper]. Fails if Lower or Upper are not integers or if Lower > Upper.

Compilation flags:

static

Template:

between(Lower,Upper,Random)

Mode and number of proofs:

between(+integer,+integer,-integer) - zero_or_one

member/2

Returns a random member of a list. Fails if the list is empty.

Compilation flags:

static

Template:

member(Random,List)

Mode and number of proofs:

member(-term,+list(term)) - zero_or_one

select/3

Returns a random member of a list and the rest of the list. Fails if the list is empty.

Compilation flags:

static

Template:

select(Random,List,Rest)

Mode and number of proofs:

select(-term,+list(term),-list(term)) - zero_or_one

select/4

Returns a random member of a list, replacing it with a new element and returning the resulting list.

Compilation flags:

static

Template:

select(Random,OldList,New,NewList)

Mode and number of proofs:

select(-term,+list(term),@term,-list(term)) - zero_or_one

swap/2

Swaps two randomly selected elements of a list. Fails if the list is empty or contains a single element.

Compilation flags:

static

Template:

swap(OldList,NewList)

Mode and number of proofs:

swap(-term,+list(term)) - zero_or_one

swap_consecutive/2

Swaps two randomly selected consecutive elements of a list. Fails if the list is empty or contains a single element.

Compilation flags:

static

Template:

swap_consecutive(OldList,NewList)

Mode and number of proofs:

swap_consecutive(-term,+list(term)) - zero_or_one

enumerate/2

Enumerates the elements of a list in random order. Fails if the list is empty.

Compilation flags:

static

Template:

enumerate(List,Random)

Mode and number of proofs:

enumerate(+list(term),--term) - zero_or_more

permutation/2

Returns a random permutation of a list.

Compilation flags:

static, synchronized

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(+list,-list) - one

sequence/4

Returns list of random integers of given length in random order in interval [Lower, Upper]. Fails if Length, Lower, or Upper are not integers or if Lower > Upper.

Compilation flags:

static, synchronized

Template:

sequence(Length,Lower,Upper,List)

Mode and number of proofs:

sequence(+integer,+integer,+integer,-list(integer)) - zero_or_one

set/4

Returns ordered set of random integers of given size in interval [Lower, Upper]. Fails if Length, Lower, or Upper are not integers, if Lower > Upper, or if Length > Upper - Lower + 1.

Compilation flags:

static, synchronized

Template:

set(Length,Lower,Upper,Set)

Mode and number of proofs:

set(+integer,+integer,+integer,-list(integer)) - zero_or_one

random/3

Returns a new random value in the interval [Lower, Upper[. Fails if Lower > Upper. Deprecated. Use between/3 for integers.

Compilation flags:

static, synchronized

Template:

random(Lower,Upper,Random)

Mode and number of proofs:

random(+integer,+integer,-integer) - zero_or_one

random(+float,+float,-float) - zero_or_one

randseq/4

Returns list of random values of given length in random order in interval [Lower, Upper[. Fails if Lower > Upper or if the arguments are neither integers or floats. Deprecated. Use sequence/4 for integers.

Compilation flags:

static, synchronized

Template:

randseq(Length,Lower,Upper,List)

Mode and number of proofs:

randseq(+integer,+integer,+integer,-list(integer)) - zero_or_one

randseq(+integer,+float,+float,-list(float)) - zero_or_one

randset/4

Returns ordered set of random values of given size in interval [Lower, Upper[. Fails if the arguments are neither integers or floats, Lower > Upper, or Length > Upper - Lower when arguments are integers. Deprecated. Use set/4 for integers.

Compilation flags:

static, synchronized

Template:

randset(Length,Lower,Upper,Set)

Mode and number of proofs:

randset(+integer,+integer,+integer,-list(integer)) - zero_or_one

randset(+integer,+float,+float,-list(float)) - zero_or_one

maybe/0

Succeeds or fails with equal probability.

Compilation flags:

static

Mode and number of proofs:

maybe - zero_or_one

maybe/1

Succeeds with probability Probability or fails with probability 1 - Probability. Fails if Probability is not a float or is outside the interval [0.0, 1.0].

Compilation flags:

static

Template:

maybe(Probability)

Mode and number of proofs:

maybe(+probability) - zero_or_one

maybe/2

Succeeds with probability K/N where K and N are integers satisfying the equation 0 =< K =< N. Fails otherwise.

Compilation flags:

static

Template:

maybe(K,N)

Mode and number of proofs:

maybe(+non_negative_integer,+non_negative_integer) - zero_or_one

maybe_call/1

Calls a goal or fails without calling it with equal probability. When the goal is called, it determines if this predicate succeeds once or fails.

Compilation flags:

static

Template:

maybe_call(Goal)

Meta-predicate template:

maybe_call(0)

Mode and number of proofs:

maybe_call(+callable) - zero_or_one

maybe_call/2

Calls a goal or fails without calling it with probability Probability. When the goal is called, it determines if this predicate succeeds once or fails.

Compilation flags:

static

Template:

maybe_call(Probability,Goal)

Meta-predicate template:

maybe_call(*,0)

Mode and number of proofs:

maybe_call(+probability,+callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

random, backend_random, fast_random

 protocol

registry_protocol

Registry specification protocol. Objects implementing this protocol should be named after the pack with a _registry suffix and saved in a file with the same name as the object.

Availability:

logtalk_load(packs(loader))

Author: Paulo Moura

Version: 0:12:0

Date: 2022-06-28

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	name/1

	description/1

	home/1

	clone/1

	archive/1

	note/2

	Protected predicates

	Private predicates

	Operators

Public predicates

name/1

Registry name. Preferably a valid unquoted atom.

Compilation flags:

static

Template:

name(Name)

Mode and number of proofs:

name(?atom) - zero_or_one

description/1

Registry one line description.

Compilation flags:

static

Template:

description(Description)

Mode and number of proofs:

description(?atom) - zero_or_one

home/1

Registry home HTTPS or file URL.

Compilation flags:

static

Template:

home(Home)

Mode and number of proofs:

home(?atom) - zero_or_one

clone/1

Registry git clone HTTPS URL (must end with the .git extension). Git repos should have the same name as the registry.

Compilation flags:

static

Template:

clone(URL)

Mode and number of proofs:

clone(?atom) - zero_or_one

archive/1

Registry archive download HTTPS URL.

Compilation flags:

static

Template:

archive(URL)

Mode and number of proofs:

archive(?atom) - zero_or_one

note/2

Table of notes per action.

Compilation flags:

static

Template:

note(Action,Note)

Mode and number of proofs:

note(?atom,-atom) - zero_or_more

Remarks:

	Action: Possible values are add, update, and delete. When unbound, the note apply to all actions.

	Note: Note to print when performing an action on a registry.

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

sampling_protocol

Predicates for sampling probability distributions.

Availability:

logtalk_load(random(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2025-02-25

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	normal/3

	lognormal/3

	wald/3

	chi_squared/2

	fisher/3

	logseries/2

	geometric/2

	hypergeometric/4

	exponential/2

	binomial/3

	bernoulli/2

	beta/3

	gamma/3

	logistic/3

	poisson/2

	power/2

	weibull/3

	uniform/3

	uniform/1

	triangular/4

	von_mises/3

	gumbel/3

	dirichlet/2

	circular_uniform_polar/3

	circular_uniform_cartesian/3

	standard_t/2

	standard_cauchy/3

	standard_exponential/1

	standard_gamma/2

	standard_normal/1

	Protected predicates

	Private predicates

	Operators

Public predicates

normal/3

Returns a scaled normally (Gaussian) distributed random value with the given mean and standard deviation.

Compilation flags:

static

Template:

normal(Mean,Deviation,Value)

Mode and number of proofs:

normal(+float,+non_negative_float,-float) - one

lognormal/3

Returns a scaled log normally distributed random value with the given mean and standard deviation for the normal distribution.

Compilation flags:

static

Template:

lognormal(Mean,Deviation,Value)

Mode and number of proofs:

lognormal(+float,+non_negative_float,-float) - one

wald/3

Returns a scaled Wald (inverse Gaussian) distributed random value with the given mean.

Compilation flags:

static

Template:

wald(Mean,Scale,Value)

Mode and number of proofs:

wald(+positive_float,+positive_float,-float) - one

chi_squared/2

Returns a chi-squared distributed random value given the degrees of freedom.

Compilation flags:

static

Template:

chi_squared(DegreesOfFreedom,Value)

Mode and number of proofs:

chi_squared(+positive_integer,-float) - one

fisher/3

Returns a Fisher distributed random value given the degrees of freedom in the numerator and in the denominator.

Compilation flags:

static

Template:

fisher(DegreesOfFreedomNumerator,DegreesOfFreedomDenominator,Value)

Mode and number of proofs:

fisher(+positive_integer,+positive_integer,-float) - one

logseries/2

Returns a logseries distributed random value. Requires 0.0 < Shape < 1 and fails otherwise.

Compilation flags:

static

Template:

logseries(Shape,Value)

Mode and number of proofs:

logseries(+non_negative_integer,-positive_integer) - zero_or_one

geometric/2

Returns a geometric distributed random value (trials until the first success).

Compilation flags:

static

Template:

geometric(Probability,Value)

Mode and number of proofs:

geometric(+probability,-positive_integer) - one

hypergeometric/4

Returns a hypergeometric distributed random value.

Compilation flags:

static

Template:

hypergeometric(Population,Successes,Draws,Value)

Mode and number of proofs:

hypergeometric(+non_negative_integer,+non_negative_integer,+non_negative_integer,-non_negative_integer) - one

exponential/2

Returns a scaled exponentially distributed random value.

Compilation flags:

static

Template:

exponential(Scale,Value)

Mode and number of proofs:

exponential(+positive_float,-float) - one

binomial/3

Returns a binomial distributed random value.

Compilation flags:

static

Template:

binomial(Trials,Probability,Value)

Mode and number of proofs:

binomial(+positive_integer,+positive_float,-float) - one

bernoulli/2

Returns a Bernoulli distributed random value.

Compilation flags:

static

Template:

bernoulli(Probability,Value)

Mode and number of proofs:

bernoulli(+positive_integer,-float) - one

beta/3

Returns a beta distributed random value.

Compilation flags:

static

Template:

beta(Alpha,Beta,Value)

Mode and number of proofs:

beta(+positive_float,+positive_float,-float) - one

gamma/3

Returns a scaled gamma distributed random value.

Compilation flags:

static

Template:

gamma(Shape,Scale,Value)

Mode and number of proofs:

gamma(+positive_float,+positive_float,-float) - one

logistic/3

Returns a scaled logistic distributed random value.

Compilation flags:

static

Template:

logistic(Location,Scale,Value)

Mode and number of proofs:

logistic(+float,+positive_float,-float) - one

poisson/2

Returns a Poisson distributed random value given the expected number of events.

Compilation flags:

static

Template:

poisson(Mean,Value)

Mode and number of proofs:

poisson(+non_negative_float,-non_negative_integer) - one

power/2

Returns a power distributed random value.

Compilation flags:

static

Template:

power(Exponent,Value)

Mode and number of proofs:

power(+positive_float,-float) - one

weibull/3

Returns a scaled Weibull distributed random value.

Compilation flags:

static

Template:

weibull(Shape,Scale,Value)

Mode and number of proofs:

weibull(+float,+positive_float,-float) - one

uniform/3

Returns a uniform distributed random value in the interval``[Lower, Upper[. Fails if ``Lower or Upper are not integers or if Lower > Upper. Same as random/3.

Compilation flags:

static

Template:

uniform(Lower,Upper,Value)

Mode and number of proofs:

uniform(+float,+float,-float) - zero_or_one

uniform/1

Returns a uniform distributed random value in the interval``[0.0, 1.0[. Same as ``random/1.

Compilation flags:

static

Template:

uniform(Value)

Mode and number of proofs:

uniform(-float) - one

triangular/4

Returns a triangular distributed random value. Fails if the Left =< Mode =< Right condition does not hold.

Compilation flags:

static

Template:

triangular(Left,Mode,Right,Value)

Mode and number of proofs:

triangular(+float,+float,+float,-float) - zero_or_one

von_mises/3

Returns a von Mises distributed random value.

Compilation flags:

static

Template:

von_mises(Mode,Concentration,Value)

Mode and number of proofs:

von_mises(+float,+non_negative_float,-float) - zero_or_one

gumbel/3

Returns a Gumbel distributed random value.

Compilation flags:

static

Template:

gumbel(Location,Scale,Value)

Mode and number of proofs:

gumbel(+float,+non_negative_float,-float) - zero_or_one

dirichlet/2

Returns a Dirichlet distributed list of random values.

Compilation flags:

static

Template:

dirichlet(Alphas,Thetas)

Mode and number of proofs:

dirichlet(+list(positive_float),-list(positive_float)) - one

circular_uniform_polar/3

Returns a circular uniform distributed random point in polar coordinates given the circle radius.

Compilation flags:

static

Template:

circular_uniform_polar(Radius,Rho,Theta)

Mode and number of proofs:

circular_uniform_polar(+float,+float,-float) - one

circular_uniform_cartesian/3

Returns a circular uniform distributed random point in cartesian coordinates given the circle radius.

Compilation flags:

static

Template:

circular_uniform_cartesian(Radius,X,Y)

Mode and number of proofs:

circular_uniform_cartesian(+float,+float,-float) - one

standard_t/2

Returns a standard Student’s t distributed random value given the degrees of freedom.

Compilation flags:

static

Template:

standard_t(DegreesOfFreedom,Value)

Mode and number of proofs:

standard_t(+positive_integer,-float) - one

standard_cauchy/3

Returns a standard Cauchy distributed random value.

Compilation flags:

static

Template:

standard_cauchy(Location,Scale,Value)

Mode and number of proofs:

standard_cauchy(+float,+float,-float) - one

standard_exponential/1

Returns a standard exponential distributed random value.

Compilation flags:

static

Template:

standard_exponential(Value)

Mode and number of proofs:

standard_exponential(-float) - one

standard_gamma/2

Returns a standard gamma distributed random value.

Compilation flags:

static

Template:

standard_gamma(Shape,Value)

Mode and number of proofs:

standard_gamma(+positive_float,-float) - one

standard_normal/1

Returns a standard normally (Gaussian) distributed random value (using a default mean of 0.0 and a default deviation of 1.0).

Compilation flags:

static

Template:

standard_normal(Value)

Mode and number of proofs:

standard_normal(-float) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

random_protocol, pseudo_random_protocol

 protocol

setp

Set protocol.

Availability:

logtalk_load(sets(loader))

Author: Paulo Moura

Version: 2:0:0

Date: 2025-07-08

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	as_set/2

	as_list/2

	delete/3

	disjoint/2

	equal/2

	empty/1

	insert/3

	insert_all/3

	intersect/2

	intersection/3

	intersection/4

	size/2

	member/2

	memberchk/2

	powerset/2

	product/3

	select/3

	selectchk/3

	subset/2

	subtract/3

	symdiff/3

	union/3

	union/4

	Protected predicates

	Private predicates

	Operators

Public predicates

as_set/2

Returns a set with all unique elements from the given list.

Compilation flags:

static

Template:

as_set(List,Set)

Mode and number of proofs:

as_set(@list,-set) - one

as_list/2

Returns a list with all elements of the given set.

Compilation flags:

static

Template:

as_list(Set,List)

Mode and number of proofs:

as_list(@set,-list) - one

delete/3

Deletes an element from a set returning the set of the remaining elements.

Compilation flags:

static

Template:

delete(Set,Element,Remaining)

Mode and number of proofs:

delete(@set,@term,-set) - one

disjoint/2

True when the two sets have no element in common.

Compilation flags:

static

Template:

disjoint(Set1,Set2)

Mode and number of proofs:

disjoint(@set,@set) - zero_or_one

equal/2

True when the two sets are equal.

Compilation flags:

static

Template:

equal(Set1,Set2)

Mode and number of proofs:

equal(@set,@set) - zero_or_one

empty/1

True when the set is empty.

Compilation flags:

static

Template:

empty(Set)

Mode and number of proofs:

empty(@set) - zero_or_one

insert/3

Inserts an element in a set, returning the resulting set.

Compilation flags:

static

Template:

insert(In,Element,Out)

Mode and number of proofs:

insert(@set,@term,-set) - one

insert_all/3

Inserts all the elements of the list into a set, returning the resulting set.

Compilation flags:

static

Template:

insert_all(List,In,Out)

Mode and number of proofs:

insert_all(@list,@set,-set) - one

intersect/2

True if the two sets have at least one element in common.

Compilation flags:

static

Template:

intersect(Set1,Set2)

Mode and number of proofs:

intersect(@set,@set) - zero_or_one

intersection/3

Computes the intersection of Set1 and Set2.

Compilation flags:

static

Template:

intersection(Set1,Set2,Intersection)

Mode and number of proofs:

intersection(@set,@set,-set) - one

intersection/4

Computes the intersection and the difference between Set2 and Set1.

Compilation flags:

static

Template:

intersection(Set1,Set2,Intersection,Difference)

Mode and number of proofs:

intersection(@set,@set,-set,-set) - one

size/2

Number of set elements.

Compilation flags:

static

Template:

size(Set,Size)

Mode and number of proofs:

size(@set,?integer) - zero_or_one

member/2

Element is a member of set Set.

Compilation flags:

static

Template:

member(Element,Set)

Mode and number of proofs:

member(?term,+set) - zero_or_more

memberchk/2

True when a term is a member of a set.

Compilation flags:

static

Template:

memberchk(Element,Set)

Mode and number of proofs:

memberchk(@term,@set) - zero_or_one

powerset/2

Returns the power set of a set, represented as a list of sets.

Compilation flags:

static

Template:

powerset(Set,Powerset)

Mode and number of proofs:

powerset(@set,-list(set)) - one

product/3

Returns the cartesian product of two sets.

Compilation flags:

static

Template:

product(Set1,Set2,Product)

Mode and number of proofs:

product(@set,@set,-set) - one

select/3

Selects an element from a set, returning the set of remaining elements.

Compilation flags:

static

Template:

select(Element,Set,Remaining)

Mode and number of proofs:

select(?term,?set,?set) - zero_or_more

selectchk/3

True if an element can be selected from a set, returning the set of remaining elements.

Compilation flags:

static

Template:

selectchk(Element,Set,Remaining)

Mode and number of proofs:

selectchk(@term,@set,-set) - zero_or_one

subset/2

True if Subset is a subset of Set.

Compilation flags:

static

Template:

subset(Subset,Set)

Mode and number of proofs:

subset(@set,@set) - zero_or_one

subtract/3

Computes the set of all the elements of Set1 which are not also in Set2.

Compilation flags:

static

Template:

subtract(Set1,Set2,Difference)

Mode and number of proofs:

subtract(@set,@set,-set) - one

symdiff/3

Computes the symmetric difference of Set1 and Set2, containing all elements that are not in the sets intersection.

Compilation flags:

static

Template:

symdiff(Set1,Set2,Difference)

Mode and number of proofs:

symdiff(@set,@set,-set) - one

union/3

Computes the union of Set1 and Set2.

Compilation flags:

static

Template:

union(Set1,Set2,Union)

Mode and number of proofs:

union(@set,@set,-set) - one

union/4

Computes the union of Set1 and Set2 and the difference between Set2 and Set1.

Compilation flags:

static

Template:

union(Set1,Set2,Union,Difference)

Mode and number of proofs:

union(@set,@set,-set,-set) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

set, set(Type)

 protocol

statisticsp

Statistical calculations over a list of numbers protocol.

Availability:

logtalk_load(statistics(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2022-06-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	product/2

	sum/2

	min/2

	max/2

	min_max/3

	range/2

	arithmetic_mean/2

	geometric_mean/2

	harmonic_mean/2

	weighted_mean/3

	median/2

	modes/2

	average_deviation/3

	mean_deviation/2

	median_deviation/2

	standard_deviation/2

	coefficient_of_variation/2

	relative_standard_deviation/2

	skewness/2

	kurtosis/2

	variance/2

	z_normalization/2

	fractile/3

	valid/1

	Protected predicates

	Private predicates

	Operators

Public predicates

product/2

Calculates the product of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

product(List,Product)

Mode and number of proofs:

product(+list(number),-number) - zero_or_one

sum/2

Calculates the sum of all list numbers. Fails if the list is empty.

Compilation flags:

static

Template:

sum(List,Sum)

Mode and number of proofs:

sum(+list(number),-number) - zero_or_one

min/2

Determines the minimum value in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

min(List,Minimum)

Mode and number of proofs:

min(+list,-number) - zero_or_one

max/2

Determines the list maximum value in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

max(List,Maximum)

Mode and number of proofs:

max(+list,-number) - zero_or_one

min_max/3

Determines the minimum and maximum values in a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

min_max(List,Minimum,Maximum)

Mode and number of proofs:

min_max(+list(number),-number,-number) - zero_or_one

range/2

Range is the length of the smallest interval which contains all the numbers in List. Fails if the list is empty.

Compilation flags:

static

Template:

range(List,Range)

Mode and number of proofs:

range(+list,-number) - zero_or_one

arithmetic_mean/2

Calculates the arithmetic mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

arithmetic_mean(List,Mean)

Mode and number of proofs:

arithmetic_mean(+list(number),-float) - zero_or_one

geometric_mean/2

Calculates the geometric mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

geometric_mean(List,Mean)

Mode and number of proofs:

geometric_mean(+list(number),-float) - zero_or_one

harmonic_mean/2

Calculates the harmonic mean of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

harmonic_mean(List,Mean)

Mode and number of proofs:

harmonic_mean(+list(number),-float) - zero_or_one

weighted_mean/3

Calculates the weighted mean of a list of numbers. Fails if the list is empty or if the two lists have different lengths. Wights are assume to be non-negative.

Compilation flags:

static

Template:

weighted_mean(Weights,List,Mean)

Mode and number of proofs:

weighted_mean(+list(number),+list(number),-float) - zero_or_one

median/2

Calculates the median of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median(List,Median)

Mode and number of proofs:

median(+list(number),-float) - zero_or_one

modes/2

Returns the list of modes of a list of numbers in ascending order. Fails if the list is empty.

Compilation flags:

static

Template:

modes(List,Modes)

Mode and number of proofs:

modes(+list(number),-list(number)) - zero_or_one

average_deviation/3

Calculates the average absolute deviation of a list of numbers given a central tendency (e.g., mean, median, or mode). Fails if the list is empty.

Compilation flags:

static

Template:

average_deviation(List,CentralTendency,Deviation)

Mode and number of proofs:

average_deviation(+list(number),+float,-float) - zero_or_one

mean_deviation/2

Calculates the mean absolute deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

mean_deviation(List,Deviation)

Mode and number of proofs:

mean_deviation(+list(number),-float) - zero_or_one

median_deviation/2

Calculates the median absolute deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

median_deviation(List,Deviation)

Mode and number of proofs:

median_deviation(+list(number),-float) - zero_or_one

standard_deviation/2

Calculates the standard deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

standard_deviation(List,Deviation)

Mode and number of proofs:

standard_deviation(+list(number),-float) - zero_or_one

coefficient_of_variation/2

Calculates the coefficient of variation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

coefficient_of_variation(List,Coefficient)

Mode and number of proofs:

coefficient_of_variation(+list(number),-float) - zero_or_one

relative_standard_deviation/2

Calculates the relative standard deviation of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

relative_standard_deviation(List,Percentage)

Mode and number of proofs:

relative_standard_deviation(+list(number),-float) - zero_or_one

skewness/2

Calculates the (moment) skewness of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

skewness(List,Skewness)

Mode and number of proofs:

skewness(+list(number),-float) - zero_or_one

kurtosis/2

Calculates the (excess) kurtosis of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

kurtosis(List,Kurtosis)

Mode and number of proofs:

kurtosis(+list(number),-float) - zero_or_one

variance/2

Calculates the unbiased variance of a list of numbers. Fails if the list is empty.

Compilation flags:

static

Template:

variance(List,Variance)

Mode and number of proofs:

variance(+list(number),-float) - zero_or_one

z_normalization/2

Normalizes a list of number such that for the resulting list the mean of is close to zero and the standard deviation is close to 1. Fails if the list is empty.

Compilation flags:

static

Template:

z_normalization(List,NormalizedList)

Mode and number of proofs:

z_normalization(+list(number),-list(float)) - zero_or_one

fractile/3

Calculates the smallest value in a list of numbers such that the list elements in its fraction P are less or equal to that value (with P in the open interval (0.0, 1.0)). Fails if the list is empty.

Compilation flags:

static

Template:

fractile(P,List,Fractile)

Mode and number of proofs:

fractile(+float,+list(integer),-integer) - zero_or_one

fractile(+float,+list(float),-float) - zero_or_one

valid/1

Term is a closed list of numbers.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

statistics, sample, population

 protocol

term_io_protocol

Predicates for term input/output from/to atom, chars, and codes. The predicates are declared as synchronized when the library is compiled using a backend supporting threads.

Availability:

logtalk_load(term_io(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2021-10-04

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Portability notes: To keep calls to these library predicates portable, use only standard read/write options and specify output formats using atoms.

Inherited public predicates:

(none)

	Public predicates

	read_term_from_atom/3

	read_from_atom/2

	read_term_from_chars/3

	read_term_from_chars/4

	read_from_chars/2

	read_term_from_codes/3

	read_term_from_codes/4

	read_from_codes/2

	write_term_to_atom/3

	write_to_atom/2

	write_term_to_chars/3

	write_term_to_chars/4

	write_to_chars/2

	write_term_to_codes/3

	write_term_to_codes/4

	write_to_codes/2

	format_to_atom/3

	format_to_chars/3

	format_to_chars/4

	format_to_codes/3

	format_to_codes/4

	with_output_to/2

	Protected predicates

	Private predicates

	Operators

Public predicates

read_term_from_atom/3

Reads a term from an atom using the given read options. A period at the end of the atom is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_atom(Atom,Term,Options)

Mode and number of proofs:

read_term_from_atom(+atom,-term,+list(read_option)) - one_or_error

read_from_atom/2

Reads a term from an atom using default read options. Shorthand for read_term_from_atom(Atom,Term,[]). A period at the end of the atom is optional.

Compilation flags:

static

Template:

read_from_atom(Atom,Term)

Mode and number of proofs:

read_from_atom(+atom,-term) - one_or_error

read_term_from_chars/3

Reads a term from a list of characters using the given read options. A period at the end of the list is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_chars(Chars,Term,Options)

Mode and number of proofs:

read_term_from_chars(+list(character),-term,+list(read_option)) - one_or_error

read_term_from_chars/4

Reads a term from a list of characters using the given read options, also returning the remaining characters. A period at the end of the term is required. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static

Template:

read_term_from_chars(Chars,Term,Tail,Options)

Mode and number of proofs:

read_term_from_chars(+list(character),-term,-list(character),+list(read_option)) - one_or_error

read_from_chars/2

Reads a term from a list of characters using default read options. Shorthand for read_term_from_chars(Chars,Term,[]). A period at the end of the list is optional.

Compilation flags:

static

Template:

read_from_chars(Chars,Term)

Mode and number of proofs:

read_from_chars(+list(character),-term) - one_or_error

read_term_from_codes/3

Reads a term from a list of character codes using the given read options. A period at the end of the list is optional. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static, synchronized

Template:

read_term_from_codes(Codes,Term,Options)

Mode and number of proofs:

read_term_from_codes(+list(character_code),-term,+list(read_option)) - one_or_error

read_term_from_codes/4

Reads a term from a list of character codes using the given read options, also returning the remaining character codes. A period at the end of the term is required. Valid options are those supported by the standard read_term/3 predicate.

Compilation flags:

static

Template:

read_term_from_codes(Codes,Term,Tail,Options)

Mode and number of proofs:

read_term_from_codes(+list(character_code),-term,-list(character_code),+list(read_option)) - one_or_error

read_from_codes/2

Reads a term from a list of character codes using default read options. Shorthand for read_term_from_codes(Codes,Term,[]). A period at the end of the list is optional.

Compilation flags:

static

Template:

read_from_codes(Codes,Term)

Mode and number of proofs:

read_from_codes(+list(character_code),-term) - one_or_error

write_term_to_atom/3

Writes a term to an atom using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_atom(Term,Atom,Options)

Mode and number of proofs:

write_term_to_atom(@term,-atom,+list(write_option)) - one

write_to_atom/2

Writes a term to an atom using default write options. Shorthand for write_term_to_atom(Term,Atom,[]).

Compilation flags:

static

Template:

write_to_atom(Term,Atom)

Mode and number of proofs:

write_to_atom(@term,-atom) - one

write_term_to_chars/3

Writes a term to a list of characters using the given write options. Shorthand for write_term_to_chars(Term,Chars,[],Options). Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static

Template:

write_term_to_chars(Term,Chars,Options)

Mode and number of proofs:

write_term_to_chars(@term,-list(character),+list(write_option)) - one

write_term_to_chars/4

Writes a term to a list of characters with the given tail using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_chars(Term,Chars,Tail,Options)

Mode and number of proofs:

write_term_to_chars(@term,-list(character),@term,+list(write_option)) - one

write_to_chars/2

Writes a term to a list of characters using default write options. Shorthand for write_term_to_chars(Term,Chars,[],[]).

Compilation flags:

static

Template:

write_to_chars(Term,Chars)

Mode and number of proofs:

write_to_chars(@term,-list(character)) - one

write_term_to_codes/3

Writes a term to a list of character codes using the given write options. Shorthand for write_term_to_codes(Term,Codes,[],Options). Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static

Template:

write_term_to_codes(Term,Codes,Options)

Mode and number of proofs:

write_term_to_codes(@term,-list(character_code),+list(write_option)) - one

write_term_to_codes/4

Writes a term to a list of character codes with the given tail using the given write options. Valid options are those supported by the standard write_term/3 predicate.

Compilation flags:

static, synchronized

Template:

write_term_to_codes(Term,Codes,Tail,Options)

Mode and number of proofs:

write_term_to_codes(@term,-list(character_code),@term,+list(write_option)) - one

write_to_codes/2

Writes a term to a list of character codes using default write options. Shorthand for write_term_to_chars(Term,Codes,[],[]).

Compilation flags:

static

Template:

write_to_codes(Term,Codes)

Mode and number of proofs:

write_to_codes(@term,-list(character_code)) - one

format_to_atom/3

Writes a list of arguments to an atom using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_atom(Format,Arguments,Atom)

Mode and number of proofs:

format_to_atom(@atom,+list(term),-atom) - one

format_to_chars/3

Writes a list of arguments to a list of characters using the given format (specified as in the de facto standard format/2 predicate). Shorthand for format_to_chars(Format,Arguments,Chars,[]).

Compilation flags:

static

Template:

format_to_chars(Format,Arguments,Chars)

Mode and number of proofs:

format_to_chars(@term,+list(term),-list(character)) - one

format_to_chars/4

Writes a term to a list of characters with the given tail using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_chars(Format,Arguments,Chars,Tail)

Mode and number of proofs:

format_to_chars(@term,+list(term),-list(character),@term) - one

format_to_codes/3

Writes a list of arguments to a list of character codes using the given format (specified as in the de facto standard format/2 predicate). Shorthand for format_to_codes(Format,Arguments,Codes,[]).

Compilation flags:

static

Template:

format_to_codes(Format,Arguments,Codes)

Mode and number of proofs:

format_to_codes(@term,+list(term),-list(character_code)) - one

format_to_codes/4

Writes a list of arguments to a list of character codes with the given tail using the given format (specified as in the de facto standard format/2 predicate).

Compilation flags:

static, synchronized

Template:

format_to_codes(Format,Arguments,Codes,Tail)

Mode and number of proofs:

format_to_codes(@term,+list(term),-list(character_code),@term) - one

with_output_to/2

Calls a goal deterministically with output to the given format: atom(Atom), chars(Chars), chars(Chars,Tail), codes(Codes), or codes(Codes,Tail).

Compilation flags:

static, synchronized

Template:

with_output_to(Output,Goal)

Meta-predicate template:

with_output_to(*,0)

Mode and number of proofs:

with_output_to(+compound,+callable) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

termp

Term utility predicates protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:35:0

Date: 2022-05-13

Compilation flags:

static

Extends:

public comparingp

Remarks:

(none)

Inherited public predicates:

 (<)/2 (=:=)/2 (=<)/2 (=\=)/2 (>)/2 (>=)/2

	Public predicates

	depth/2

	ground/1

	new/1

	occurs/2

	subsumes/2

	subterm/2

	valid/1

	check/1

	variant/2

	variables/2

	singletons/2

	numbervars/3

	numbervars/1

	varnumbers/3

	varnumbers/2

	Protected predicates

	Private predicates

	Operators

Public predicates

depth/2

True if the depth of Term is Depth. The depth of atomic terms is zero; the depth of a compound term is one plus the maximum depth of its sub-terms.

Compilation flags:

static

Template:

depth(Term,Depth)

Mode and number of proofs:

depth(@term,?integer) - zero_or_one

ground/1

True if the argument is ground. Deprecated. Use the ground/1 standard predicate instead.

Compilation flags:

static

Template:

ground(Term)

Mode and number of proofs:

ground(@term) - zero_or_one

new/1

Creates a new term instance (if meaningful).

Compilation flags:

static

Template:

new(Term)

Mode and number of proofs:

new(-nonvar) - zero_or_one

occurs/2

True if the variable occurs in the term.

Compilation flags:

static

Template:

occurs(Variable,Term)

Mode and number of proofs:

occurs(@var,@term) - zero_or_one

subsumes/2

The first term subsumes the second term. Deprecated. Use the subsumes_term/2 standard predicate instead.

Compilation flags:

static

Template:

subsumes(General,Specific)

Mode and number of proofs:

subsumes(@term,@term) - zero_or_one

subterm/2

The first term is a subterm of the second term.

Compilation flags:

static

Template:

subterm(Subterm,Term)

Mode and number of proofs:

subterm(?term,+term) - zero_or_more

valid/1

Term is valid.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

check/1

Checks if a term is valid. Throws an exception if the term is not valid.

Compilation flags:

static

Template:

check(Term)

Mode and number of proofs:

check(@nonvar) - one

variant/2

Each term is a variant of the other (i.e., they are structurally equivalent).

Compilation flags:

static

Template:

variant(Term1,Term2)

Mode and number of proofs:

variant(@term,@term) - zero_or_one

variables/2

Returns a list of all term variables (ordered as found when doing a depth-first, left-to-right traversal of Term). Deprecated. Use the standard term_variables/2 predicate instead.

Compilation flags:

static

Template:

variables(Term,List)

Mode and number of proofs:

variables(@term,-list) - one

singletons/2

Returns a list of all term singleton variables (ordered as found when doing a depth-first, left-to-right traversal of Term).

Compilation flags:

static

Template:

singletons(Term,Singletons)

Mode and number of proofs:

singletons(@term,-list) - one

numbervars/3

Grounds a term by replacing all variables with '$VAR'(N) terms with N starting at From. The Next argument is unified with the next value for N after binding all variables.

Compilation flags:

static

Template:

numbervars(Term,From,Next)

Mode and number of proofs:

numbervars(?term,+integer,?integer) - zero_or_one

numbervars/1

Grounds a term by replacing all variables with '$VAR'(N) terms with N starting at 0.

Compilation flags:

static

Template:

numbervars(Term)

Mode and number of proofs:

numbervars(?term) - zero_or_one

varnumbers/3

Replaces all '$VAR'(N) sub-terms in a term with fresh variables for all values of N grater or equal to From. Variables in Term are shared with Copy.

Compilation flags:

static

Template:

varnumbers(Term,From,Copy)

Mode and number of proofs:

varnumbers(@term,+integer,?term) - zero_or_one

varnumbers/2

Replaces all '$VAR'(N) sub-terms in a term with fresh variables for all values of N grater or equal to 0. Variables in Term are shared with Copy.

Compilation flags:

static

Template:

varnumbers(Term,Copy)

Mode and number of proofs:

varnumbers(@term,?term) - zero_or_one

Protected predicates

(no local declarations; see entity ancestors if any)

Private predicates

(no local declarations; see entity ancestors if any)

Operators

(none)

See also

term

 protocol

timep

Time protocol.

Availability:

logtalk_load(dates(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2000-07-24

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	now/3

	cpu_time/1

	valid/3

	Protected predicates

	Private predicates

	Operators

Public predicates

now/3

Returns current time.

Compilation flags:

static

Template:

now(Hours,Mins,Secs)

Mode and number of proofs:

now(-integer,-integer,-integer) - one

cpu_time/1

Returns the current cpu time.

Compilation flags:

static

Template:

cpu_time(Time)

Mode and number of proofs:

cpu_time(-number) - one

valid/3

True if the arguments represent a valid time value.

Compilation flags:

static

Template:

valid(Hours,Mins,Secs)

Mode and number of proofs:

valid(+integer,+integer,+integer) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

time, datep

 protocol

tsv_protocol

TSV file and stream reading and writing protocol.

Availability:

logtalk_load(tsv(loader))

Author: Paulo Moura

Version: 1:0:1

Date: 2025-05-07

Compilation flags:

static

Dependencies:

(none)

Remarks:

	Type-checking: Some of the predicate file and stream argument type-checking exceptions depend on the Prolog backend compliance with standards.

Inherited public predicates:

(none)

	Public predicates

	read_file/3

	read_stream/3

	read_file/2

	read_stream/2

	read_file_by_line/3

	read_stream_by_line/3

	read_file_by_line/2

	read_stream_by_line/2

	write_file/3

	write_stream/3

	Protected predicates

	Private predicates

	Operators

Public predicates

read_file/3

Reads a TSV file saving the data as clauses for the specified object predicate. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Object,Predicate)

Mode and number of proofs:

read_file(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream/3

Reads a TSV stream saving the data as clauses for the specified object predicate. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Object,Predicate)

Mode and number of proofs:

read_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file/2

Reads a TSV file returning the data as a list of rows, each row a list of fields. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file(File,Rows)

Mode and number of proofs:

read_file(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream/2

Reads a TSV stream returning the data as a list of rows, each row a list of fields. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream(Stream,Rows)

Mode and number of proofs:

read_stream(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

read_file_by_line/3

Reads a TSV file saving the data as clauses for the specified object predicate. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Object,Predicate)

Mode and number of proofs:

read_file_by_line(+atom,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_stream_by_line/3

Reads a TSV stream saving the data as clauses for the specified object predicate. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Object,Predicate)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,+object_identifier,+predicate_indicator) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

read_file_by_line/2

Reads a TSV file returning the data as a list of rows, each row a list of fields. The file is read line by line. Fails if the file cannot be parsed.

Compilation flags:

static

Template:

read_file_by_line(File,Rows)

Mode and number of proofs:

read_file_by_line(+atom,-list(list)) - zero_or_one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but not an existing file:

existence_error(file,File)

File is an existing file but cannot be opened for reading:

permission_error(open,source_sink,File)

read_stream_by_line/2

Reads a TSV stream returning the data as a list of rows, each row a list of fields. The stream is read line by line. Fails if the stream cannot be parsed.

Compilation flags:

static

Template:

read_stream_by_line(Stream,Rows)

Mode and number of proofs:

read_stream_by_line(+stream_or_alias,-list(list)) - zero_or_one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an output stream:

permission_error(input,stream,Stream)

Stream is a binary stream:

permission_error(input,binary_stream,Stream)

write_file/3

Writes a TSV file with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_file(File,Object,Predicate)

Mode and number of proofs:

write_file(+atom,+object_identifier,+predicate_indicator) - one

Exceptions:

File is a variable:

instantiation_error

File is neither a variable nor an atom:

type_error(atom,File)

File is an atom but cannot be opened for writing:

permission_error(open,source_sink,File)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

write_stream/3

Writes a TSV stream with the data represented by the solutions to the specified object predicate.

Compilation flags:

static

Template:

write_stream(Stream,Object,Predicate)

Mode and number of proofs:

write_stream(+stream_or_alias,+object_identifier,+predicate_indicator) - one

Exceptions:

Stream is a variable:

instantiation_error

Stream is neither a variable nor a stream-term or alias:

domain_error(stream_or_alias,Stream)

Stream is not an open stream:

existence_error(stream,Stream)

Stream is an input stream:

permission_error(output,stream,Stream)

Stream is a binary stream:

permission_error(output,binary_stream,Stream)

Object is a variable:

instantiation_error

Object is neither a variable nor an object identifier:

type_error(object_identifier,Object)

Object is a valid object identifier but not an existing object:

existence_error(object,Object)

Predicate is a variable:

instantiation_error

Predicate is neither a variable nor a predicate indicator:

type_error(predicate_indicator,Predicate)

Predicate is a valid predicate indicator but not an existing public predicate:

existence_error(predicate,Predicate)

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

ulid_protocol

Universally Unique Lexicographically Sortable Identifier (ULID) generator protocol.

Availability:

logtalk_load(ulid(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2023-05-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	generate/1

	generate/2

	generate/8

	timestamp/2

	timestamp/8

	Protected predicates

	Private predicates

	Operators

Public predicates

generate/1

Generates a new ULID.

Compilation flags:

static

Template:

generate(ULID)

Mode and number of proofs:

generate(--ulid) - one

generate/2

Generates a new ULID from a timestamp (number of milliseconds since the Unix epoch: 00:00:00 UTC on January 1, 1970).

Compilation flags:

static

Template:

generate(Milliseconds,ULID)

Mode and number of proofs:

generate(+integer,--ulid) - one

generate/8

Generates a new ULID from a timestamp discrete components.

Compilation flags:

static

Template:

generate(Year,Month,Day,Hours,Minutes,Seconds,Milliseconds,ULID)

Mode and number of proofs:

generate(+integer,+integer,+integer,+integer,+integer,+integer,+integer,--ulid) - one

timestamp/2

Returns the given ULID timestamp (number of milliseconds since the Unix epoch: 00:00:00 UTC on January 1, 1970).

Compilation flags:

static

Template:

timestamp(ULID,Milliseconds)

Mode and number of proofs:

timestamp(++ulid,-integer) - one

timestamp/8

Decodes a ULID into its timestamp discrete components.

Compilation flags:

static

Template:

timestamp(ULID,Year,Month,Day,Hours,Minutes,Seconds,Milliseconds)

Mode and number of proofs:

timestamp(++ulid,-integer,-integer,-integer,-integer,-integer,-integer,-integer) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

union_find_protocol

Union-find data structure protocol.

Availability:

logtalk_load(union_find(loader))

Author: José Antonio Riaza Valverde; adapted to Logtalk by Paulo Moura

Version: 1:0:0

Date: 2022-02-17

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	new/2

	make_set/3

	union/4

	union_all/3

	find/4

	find/5

	disjoint_sets/2

	Protected predicates

	Private predicates

	Operators

Public predicates

new/2

Creates a new union-find data structure with a list of elements as keys.

Compilation flags:

static

Template:

new(Elements,UnionFind)

Mode and number of proofs:

new(+list(element),?union_find) - zero_or_one

make_set/3

Makes a new set by creating a new element with a unique key Element, a rank of 0, and a parent pointer to itself. The parent pointer to itself indicates that the element is the representative member of its own set.

Compilation flags:

static

Template:

make_set(UnionFind,Element,NewUnionFind)

Mode and number of proofs:

make_set(+union_find,+element,?union_find) - zero_or_one

union/4

Merges the two trees, if distinct, that contain the given elements. The trees are joined by attaching the shorter tree (by rank) to the root of the taller tree. Fails if any of the elements is not found.

Compilation flags:

static

Template:

union(UnionFind,Element1,Element2,NewUnionFind)

Mode and number of proofs:

union(+union_find,+element,+element,?union_find) - zero_or_one

union_all/3

Merges the distinct trees for all the given elements returning the resulting union-find data structure. Fails if any of the elements is not found.

Compilation flags:

static

Template:

union_all(UnionFind,Elements,NewUnionFind)

Mode and number of proofs:

union_all(+union_find,+list(element),?union_find) - zero_or_one

find/4

Finds the root element of a set by following the chain of parent pointers from the given element. Root is the representative member of the set to which the element belongs, and may be element itself. Fails if the element is not found.

Compilation flags:

static

Template:

find(UnionFind,Element,Root,NewUnionFind)

Mode and number of proofs:

find(+union_find,+element,?element,?union_find) - zero_or_one

Remarks:

	Path compression: The structure of the tree containing the element is flattened by making every node point to the root whenever this predicate is used on it.

find/5

Same as the find/4 predicate, but returning also the rank of the root. Fails if the element is not found.

Compilation flags:

static

Template:

find(UnionFind,Element,Root,Rank,UnionFindOut)

Mode and number of proofs:

find(+union_find,+element,?element,?rank,?union_find) - zero_or_one

Remarks:

	Path compression: The structure of the tree containing the element is flattened by making every node point to the root whenever this predicate is used on it.

disjoint_sets/2

Returns the list of disjoint sets in the given union-find data structure.

Compilation flags:

static

Template:

disjoint_sets(UnionFind,Sets)

Mode and number of proofs:

disjoint_sets(+union_find,?sets) - zero_or_one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

union_find

 protocol

uuid_protocol

Universally unique identifier (UUID) generator protocol.

Availability:

logtalk_load(uuid(loader))

Author: Paulo Moura

Version: 0:3:0

Date: 2021-03-13

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	uuid_v1/2

	uuid_v4/1

	uuid_null/1

	random_node/1

	Protected predicates

	Private predicates

	Operators

Public predicates

uuid_v1/2

Returns a version 1 UUID for the given MAC address (a list of six bytes). The MAC address can be replaced by a random 6 bytes node identifier as per RFC 4122 when the MAC address is not available or should not be disclosed.

Compilation flags:

static

Template:

uuid_v1(MAC,UUID)

Mode and number of proofs:

uuid_v1(+list(byte),--ground) - one

uuid_v4/1

Returns a version 4 UUID.

Compilation flags:

static

Template:

uuid_v4(UUID)

Mode and number of proofs:

uuid_v4(--ground) - one

uuid_null/1

Returns the null UUID.

Compilation flags:

static

Template:

uuid_null(UUID)

Mode and number of proofs:

uuid_null(--ground) - one

random_node/1

Generates a list with six random bytes that can be used in alternative to a MAC address when generating version 1 UUIDs.

Compilation flags:

static

Template:

random_node(Node)

Mode and number of proofs:

random_node(--list(byte)) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

 protocol

varlistp

List of variables protocol.

Availability:

logtalk_load(types(loader))

Author: Paulo Moura

Version: 1:3:0

Date: 2022-09-19

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	append/3

	delete/3

	empty/1

	flatten/2

	last/2

	length/2

	memberchk/2

	nextto/3

	nth0/3

	nth0/4

	nth1/3

	nth1/4

	permutation/2

	prefix/2

	remove_duplicates/2

	reverse/2

	same_length/2

	select/3

	sublist/2

	subtract/3

	suffix/2

	valid/1

	check/1

	Protected predicates

	Private predicates

	Operators

Public predicates

append/3

Appends two lists.

Compilation flags:

static

Template:

append(List1,List2,List)

Mode and number of proofs:

append(?list,?list,?list) - zero_or_more

delete/3

Deletes from a list all occurrences of an element returning the list of remaining elements.

Compilation flags:

static

Template:

delete(List,Element,Remaining)

Mode and number of proofs:

delete(@list,@term,?list) - one

empty/1

True if the argument is an empty list.

Compilation flags:

static

Template:

empty(List)

Mode and number of proofs:

empty(@list) - zero_or_one

flatten/2

Flattens a list of lists into a list.

Compilation flags:

static

Template:

flatten(List,Flatted)

Mode and number of proofs:

flatten(@list,-list) - one

last/2

List last element (if it exists).

Compilation flags:

static

Template:

last(List,Last)

Mode and number of proofs:

last(@list,@var) - zero_or_one

length/2

List length.

Compilation flags:

static

Template:

length(List,Length)

Mode and number of proofs:

length(@list,?integer) - zero_or_one

memberchk/2

Checks if a variable is a member of a list.

Compilation flags:

static

Template:

memberchk(Element,List)

Mode and number of proofs:

memberchk(@var,@list) - zero_or_one

nextto/3

X and Y are consecutive elements in List.

Compilation flags:

static

Template:

nextto(X,Y,List)

Mode and number of proofs:

nextto(@var,@var,?list) - zero_or_more

nth0/3

Nth element of a list (counting from zero).

Compilation flags:

static

Template:

nth0(Nth,List,Element)

Mode and number of proofs:

nth0(?integer,+list,@var) - zero_or_more

nth0/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth0(Nth,List,Element,Rest)

Mode and number of proofs:

nth0(?integer,+list,@var,?list) - zero_or_more

nth1/3

Nth element of a list (counting from one).

Compilation flags:

static

Template:

nth1(Nth,List,Element)

Mode and number of proofs:

nth1(?integer,+list,@var) - zero_or_more

nth1/4

Nth element of a list (counting from zero). Rest is a list of all the other elements. Can be used to either select the nth element of List or to insert an element before the nth element in Rest.

Compilation flags:

static

Template:

nth1(Nth,List,Element,Rest)

Mode and number of proofs:

nth1(?integer,+list,@var,?list) - zero_or_more

permutation/2

The two lists are a permutation of the same list.

Compilation flags:

static

Template:

permutation(List,Permutation)

Mode and number of proofs:

permutation(@list,@list) - zero_or_one

prefix/2

Prefix is a prefix of List.

Compilation flags:

static

Template:

prefix(Prefix,List)

Mode and number of proofs:

prefix(?list,@list) - zero_or_more

remove_duplicates/2

Removes duplicated variables and keeping the left-most variable when repeated.

Compilation flags:

static

Template:

remove_duplicates(List,Set)

Mode and number of proofs:

remove_duplicates(+list,-list) - one

reverse/2

Reverses a list.

Compilation flags:

static

Template:

reverse(List,Reversed)

Mode and number of proofs:

reverse(@list,?list) - zero_or_one

reverse(?list,@list) - zero_or_one

reverse(-list,-list) - one_or_more

same_length/2

The two lists have the same length.

Compilation flags:

static

Template:

same_length(List1,List2)

Mode and number of proofs:

same_length(@list,?list) - zero_or_one

same_length(?list,@list) - zero_or_one

same_length(-list,-list) - one_or_more

select/3

Selects an element from a list, returning the list of remaining elements.

Compilation flags:

static

Template:

select(Element,List,Remaining)

Mode and number of proofs:

select(@var,?list,?list) - zero_or_more

sublist/2

The first list is a sublist of the second.

Compilation flags:

static

Template:

sublist(Sublist,List)

Mode and number of proofs:

sublist(?list,@list) - zero_or_more

subtract/3

Removes all elements in the second list from the first list, returning the list of remaining elements.

Compilation flags:

static

Template:

subtract(List,Elements,Remaining)

Mode and number of proofs:

subtract(@list,@list,-list) - one

suffix/2

Suffix is a suffix of List.

Compilation flags:

static

Template:

suffix(Suffix,List)

Mode and number of proofs:

suffix(?list,@list) - zero_or_more

valid/1

Term is a valid list of variables.

Compilation flags:

static

Template:

valid(Term)

Mode and number of proofs:

valid(@nonvar) - zero_or_one

check/1

Checks if a term is a valid list of variables. Throws an exception if the term is not valid.

Compilation flags:

static

Template:

check(Term)

Mode and number of proofs:

check(@nonvar) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

varlist, listp, numberlistp

 protocol

zipperp

Zipper protocol.

Availability:

logtalk_load(zippers(loader))

Author: Paulo Moura

Version: 1:0:0

Date: 2019-01-20

Compilation flags:

static

Dependencies:

(none)

Remarks:

(none)

Inherited public predicates:

(none)

	Public predicates

	zip/2

	zip/3

	unzip/2

	current/2

	next/2

	next/3

	previous/2

	previous/3

	rewind/2

	rewind/3

	forward/2

	forward/3

	apply/2

	insert_before/3

	insert_after/3

	replace/3

	delete_and_previous/2

	delete_and_next/2

	delete_and_unzip/2

	delete_all_before/2

	delete_all_before_and_unzip/2

	delete_all_after/2

	delete_all_after_and_unzip/2

	Protected predicates

	Private predicates

	Operators

Public predicates

zip/2

Adds a zipper to a compound term holding a sequence of elements. Fails if the sequence is empty.

Compilation flags:

static

Template:

zip(Sequence,Zipper)

Mode and number of proofs:

zip(+sequence,--zipper) - zero_or_one

zip/3

Adds a zipper to a compound term holding a sequence of elements. Also returns the first element. Fails if the sequence is empty.

Compilation flags:

static

Template:

zip(Sequence,Zipper,First)

Mode and number of proofs:

zip(+sequence,--zipper,--term) - zero_or_one

unzip/2

Removes a zipper from a sequence.

Compilation flags:

static

Template:

unzip(Zipper,Sequence)

Mode and number of proofs:

unzip(@zipper,--sequence) - one

current/2

Current element.

Compilation flags:

static

Template:

current(Zipper,Current)

Mode and number of proofs:

current(+zipper,?term) - zero_or_one

next/2

Moves to the next element. Fails if already at the last elements.

Compilation flags:

static

Template:

next(Zipper,NewZipper)

Mode and number of proofs:

next(+zipper,--zipper) - zero_or_one

next/3

Moves to and returns the next element. Fails if already at the last elements.

Compilation flags:

static

Template:

next(Zipper,NewZipper,Next)

Mode and number of proofs:

next(+zipper,--zipper,-term) - zero_or_one

previous/2

Moves to the previous element. Fails if already at the first elements.

Compilation flags:

static

Template:

previous(Zipper,NewZipper)

Mode and number of proofs:

previous(+zipper,--zipper) - zero_or_one

previous/3

Moves to and returns the previous element. Fails if already at the first element.

Compilation flags:

static

Template:

previous(Zipper,NewZipper,Previous)

Mode and number of proofs:

previous(+zipper,--zipper,-term) - zero_or_one

rewind/2

Rewinds the zipper so that the first element becomes the current element.

Compilation flags:

static

Template:

rewind(Zipper,NewZipper)

Mode and number of proofs:

rewind(+zipper,--zipper) - one

rewind/3

Rewinds the zipper so that the first element becomes the current element. Also returns the first element.

Compilation flags:

static

Template:

rewind(Zipper,NewZipper,First)

Mode and number of proofs:

rewind(+zipper,--zipper,?term) - zero_or_one

forward/2

Forward the zipper so that the last element becomes the current element.

Compilation flags:

static

Template:

forward(Zipper,NewZipper)

Mode and number of proofs:

forward(+zipper,--zipper) - one

forward/3

Forward the zipper so that the last element becomes the current element. Also returns the last element.

Compilation flags:

static

Template:

forward(Zipper,NewZipper,Last)

Mode and number of proofs:

forward(+zipper,--zipper,?term) - zero_or_one

apply/2

Applies a closure to the current element.

Compilation flags:

static

Template:

apply(Closure,Zipper)

Meta-predicate template:

apply(1,*)

Mode and number of proofs:

apply(+callable,+zipper) - zero_or_more

insert_before/3

Inserts an element before the current one.

Compilation flags:

static

Template:

insert_before(Zipper,Element,NewZipper)

Mode and number of proofs:

insert_before(+zipper,?term,--zipper) - zero_or_one

insert_after/3

Inserts an element after the current one.

Compilation flags:

static

Template:

insert_after(Zipper,Element,NewZipper)

Mode and number of proofs:

insert_after(+zipper,?term,--zipper) - zero_or_one

replace/3

Replaces the current element with a new element.

Compilation flags:

static

Template:

replace(Zipper,NewCurrent,NewZipper)

Mode and number of proofs:

replace(+zipper,?term,--zipper) - one

delete_and_previous/2

Deletes the current element and moves to the previous element. Fails if no previous element exists.

Compilation flags:

static

Template:

delete_and_previous(Zipper,NewZipper)

Mode and number of proofs:

delete_and_previous(+zipper,--zipper) - zero_or_one

delete_and_next/2

Deletes the current element and moves to the next element. Fails if no next element exists.

Compilation flags:

static

Template:

delete_and_next(Zipper,NewZipper)

Mode and number of proofs:

delete_and_next(+zipper,--zipper) - zero_or_one

delete_and_unzip/2

Deletes the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_and_unzip(Zipper,Sequence)

Mode and number of proofs:

delete_and_unzip(+zipper,--sequence) - one

delete_all_before/2

Deletes all elements before the current element.

Compilation flags:

static

Template:

delete_all_before(Zipper,NewZipper)

Mode and number of proofs:

delete_all_before(+zipper,--zipper) - one

delete_all_before_and_unzip/2

Deletes all elements before the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_all_before_and_unzip(Zipper,NewZipper)

Mode and number of proofs:

delete_all_before_and_unzip(+zipper,--sequence) - one

delete_all_after/2

Deletes all elements after the current element.

Compilation flags:

static

Template:

delete_all_after(Zipper,NewZipper)

Mode and number of proofs:

delete_all_after(+zipper,--zipper) - one

delete_all_after_and_unzip/2

Deletes all elements after the current element and removes the zipper returning the resulting sequence.

Compilation flags:

static

Template:

delete_all_after_and_unzip(Zipper,NewZipper)

Mode and number of proofs:

delete_all_after_and_unzip(+zipper,--sequence) - one

Protected predicates

(none)

Private predicates

(none)

Operators

(none)

See also

zlist

Predicates

This index lists all entities declaring a given predicate. To load an entity providing the predicate that you want to call, always load the library that includes it using the goal logtalk_load(library_name(loader)) instead of loading just the entity. The library loader file ensures that all the required dependencies are also loaded and that any required flags are used. The loading goal can be found in the entity documentation.

(/)/2

	help

(//)/2

	help

(<)/2

	comparingp

(<=)/2

	assignvarsp

	streamvars

(=:=)/2

	comparingp

(=<)/2

	comparingp

(=>)/2

	assignvarsp

	streamvars

(=\=)/2

	comparingp

=~= / 2

	lgtunit

	number

(>)/2

	comparingp

(>=)/2

	comparingp

absolute_file_name/2

	osp

activate_debug_handler/1

	logtalk

activate_monitor/0

	monitorp

active_debug_handler/1

	logtalk

add/1

	registries

add/2

	registries

add/3

	difflist

	registries

addDependent/1

	subject

after/2

	intervalp

after/3

	monitoring

all/0

	code_metric

	dead_code_scanner

	lgtdocp

all/1

	code_metric

	dead_code_scanner

	lgtdocp

all_files/0

	diagram(Format)

	diagrams(Format)

all_files/1

	diagram(Format)

	diagrams(Format)

all_libraries/0

	diagram(Format)

	diagrams(Format)

all_libraries/1

	diagram(Format)

	diagrams(Format)

all_score/1

	code_metric

ancestor/1

	hierarchyp

ancestors/1

	hierarchyp

apis/0

	help_info_support

apis/1

	help_info_support

append/2

	listp

append/3

	listp

	queuep

	varlistp

apply/2

	zipperp

apply/4

	dictionaryp

approximately_equal/2

	lgtunit

	number

approximately_equal/3

	lgtunit

	number

arbitrary/1

	arbitrary

arbitrary/2

	arbitrary

archive/1

	registry_protocol

arithmetic_mean/2

	statisticsp

array_list/2

	java_utils_protocol

array_to_list/2

	java_utils_protocol

array_to_terms/2

	java_utils_protocol

array_to_terms/3

	java_utils_protocol

as_curly_bracketed/2

	dictionaryp

	nested_dictionary_protocol

as_dictionary/2

	dictionaryp

as_difflist/2

	list

as_heap/2

	heapp

as_list/2

	dictionaryp

	difflist

	heapp

	queuep

	setp

as_nested_dictionary/2

	nested_dictionary_protocol

as_set/2

	setp

ask_question/5

	logtalk

assertion/1

	assertions(Mode)

	lgtunit

assertion/2

	assertions(Mode)

	lgtunit

assignable/1

	assignvarsp

assignable/2

	assignvarsp

available/0

	packs

available/1

	packs

available/2

	packs

average/2

	numberlistp

average_deviation/3

	statisticsp

before/2

	intervalp

before/3

	monitoring

bench_goal/1

	databasep

benchmark/2

	lgtunit

benchmark/3

	lgtunit

benchmark/4

	lgtunit

benchmark_reified/3

	lgtunit

bernoulli/2

	sampling_protocol

beta/3

	sampling_protocol

between/3

	integer

	random_protocol

between/4

	float

binomial/3

	sampling_protocol

bit//1

	number_grammars(Format)

bits//1

	number_grammars(Format)

blank//0

	blank_grammars(Format)

blanks//0

	blank_grammars(Format)

body_pred/1

	metagol

branch/2

	git_protocol

built_in_directive/4

	help

built_in_flag/2

	flags

built_in_method/4

	help

built_in_non_terminal/4

	help

built_in_predicate/4

	help

calendar_month/3

	iso8601

call_with_timeout/2

	timeout

call_with_timeout/3

	timeout

cat/2

	maybe

change_directory/1

	osp

changed/0

	subject

changed/1

	subject

chebyshev_distance/3

	numberlistp

chebyshev_norm/2

	numberlistp

check/1

	termp

	varlistp

check/2

	type

check/3

	type

check_option/1

	options_protocol

check_options/1

	options_protocol

chi_squared/2

	sampling_protocol

chr_is/2

	toychrdb

chr_no_spy/1

	toychrdb

chr_nospy/0

	toychrdb

chr_notrace/0

	toychrdb

chr_option/2

	toychrdb

chr_spy/1

	toychrdb

chr_trace/0

	toychrdb

circular_uniform_cartesian/3

	sampling_protocol

circular_uniform_polar/3

	sampling_protocol

class/1

	class_hierarchyp

classes/1

	class_hierarchyp

clause/5

	ports_profiler

clause_location/6

	ports_profiler

clean/0

	packs

	registries

clean/1

	packs

	registries

clean/2

	packs

clone/1

	cloning

	registry_protocol

clone/3

	dictionaryp

clone/4

	dictionaryp

coefficient_of_variation/2

	statisticsp

command_line_arguments/1

	osp

commit_author/2

	git_protocol

commit_date/2

	git_protocol

commit_hash/2

	git_protocol

commit_hash_abbreviated/2

	git_protocol

commit_log/3

	git_protocol

commit_message/2

	git_protocol

compile_aux_clauses/1

	logtalk

compile_predicate_heads/4

	logtalk

compile_predicate_indicators/3

	logtalk

completion/2

	help

completions/2

	help

connect/1

	redis

connect/3

	redis

console/1

	redis

contains/2

	intervalp

control//0

	blank_grammars(Format)

control_construct/4

	help

controls//0

	blank_grammars(Format)

copy_file/2

	osp

counter/2

	counters

	mutations_store

cover/1

	lgtunit

cpu_time/1

	osp

	timep

current/2

	zipperp

data/0

	ports_profiler

data/1

	ports_profiler

data/2

	ports_profiler

date/4

	iso8601

date/5

	iso8601

date/6

	iso8601

date/7

	iso8601

date_string/3

	iso8601

date_time/7

	osp

days_in_month/3

	datep

deactivate_debug_handler/0

	logtalk

debug/0

	debuggerp

debug_handler/1

	logtalk

debug_handler/3

	logtalk

debugging/0

	debuggerp

debugging/1

	debuggerp

decide/1

	fcube

decide/2

	fcube

decode_exception/2

	java_utils_protocol

decode_exception/3

	java_utils_protocol

decompile_predicate_heads/4

	logtalk

decompile_predicate_indicators/4

	logtalk

decompose_file_name/3

	osp

decompose_file_name/4

	osp

decrement_counter/1

	counters

default_option/1

	options_protocol

	wrapper

default_options/1

	options_protocol

	wrapper

define_log_file/2

	loggingp

defined/4

	registries

defined_flag/6

	flags

del_monitors/0

	event_registryp

del_monitors/4

	event_registryp

del_spy_points/4

	monitorp

delete/0

	registries

delete/1

	registries

delete/2

	registries

delete/3

	listp

	setp

	varlistp

delete/4

	dictionaryp

	heapp

delete_all_after/2

	zipperp

delete_all_after_and_unzip/2

	zipperp

delete_all_before/2

	zipperp

delete_all_before_and_unzip/2

	zipperp

delete_and_next/2

	zipperp

delete_and_previous/2

	zipperp

delete_and_unzip/2

	zipperp

delete_directory/1

	osp

delete_directory_and_contents/1

	osp

delete_directory_contents/1

	osp

delete_file/1

	osp

delete_in/4

	nested_dictionary_protocol

delete_matches/3

	listp

delete_max/4

	dictionaryp

delete_min/4

	dictionaryp

dependents/1

	packs

	subject

dependents/2

	packs

dependents/3

	packs

depth/2

	termp

descendant/1

	hierarchyp

descendant_class/1

	class_hierarchyp

descendant_classes/1

	class_hierarchyp

descendant_instance/1

	class_hierarchyp

descendant_instances/1

	class_hierarchyp

descendants/1

	hierarchyp

describe/1

	packs

	registries

describe/2

	packs

description/1

	pack_protocol

	registry_protocol

deterministic/1

	lgtunit

deterministic/2

	lgtunit

diagram_description/1

	diagram(Format)

diagram_name_suffix/1

	diagram(Format)

dif/1

	coroutining

	dif

dif/2

	coroutining

	dif

digit//1

	number_grammars(Format)

digits//1

	number_grammars(Format)

directories/1

	lgtdocp

	wrapper

directories/2

	diagram(Format)

	diagrams(Format)

	lgtdocp

	wrapper

directories/3

	diagram(Format)

	diagrams(Format)

directory/1

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	lgtdocp

	packs_common

	wrapper

directory/2

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	lgtdocp

	packs_common

	wrapper

directory/3

	diagram(Format)

	diagrams(Format)

directory_exists/1

	osp

directory_files/2

	osp

directory_files/3

	osp

directory_score/2

	code_metric

dirichlet/2

	sampling_protocol

disable/1

	debug_messages

disable/2

	debug_messages

disable_logging/1

	loggingp

disconnect/1

	redis

disjoint/2

	setp

disjoint_sets/2

	union_find_protocol

doc_goal/1

	doclet

dot//1

	number_grammars(Format)

dowhile/2

	loopp

drop/3

	listp

during/2

	intervalp

easter_day/3

	iso8601

edge/6

	graph_language_protocol

edge_case/2

	arbitrary

either/3

	expected(Expected)

empty/1

	dictionaryp

	heapp

	listp

	nested_dictionary_protocol

	optional

	queuep

	setp

	varlistp

enable/1

	debug_messages

enable/2

	debug_messages

enable_logging/1

	loggingp

enabled/1

	debug_messages

enabled/2

	debug_messages

ensure_directory/1

	osp

ensure_file/1

	osp

entity/1

	code_metric

	dead_code_scanner

	help

	xref_diagram(Format)

entity/2

	xref_diagram(Format)

entity_info_pair_score_hook/3

	doc_metric

entity_info_score_hook/2

	doc_metric

entity_predicates_weights_hook/2

	doc_metric

entity_prefix/2

	logtalk

entity_score/2

	code_metric

enumerate/2

	random_protocol

environment_variable/2

	osp

epsilon/1

	lgtunit

equal/2

	intervalp

	setp

erase/1

	recorded_database_core

essentially_equal/3

	lgtunit

	number

euclidean_distance/3

	numberlistp

euclidean_norm/2

	numberlistp

exclude/3

	metap

execution_context/7

	logtalk

expand_library_path/2

	logtalk

expected/1

	expected(Expected)

expecteds/2

	either

explain//1

	tutor

exponential/2

	sampling_protocol

extension/1

	proto_hierarchyp

extensions/1

	proto_hierarchyp

failed_test_reason//1

	lgtunit_messages

false/1

	java_utils_protocol

fcube/0

	fcube

file/1

	code_metric

	dead_code_scanner

	entity_diagram(Format)

	lgtdocp

	wrapper

file/2

	code_metric

	dead_code_scanner

	entity_diagram(Format)

	lgtdocp

	wrapper

file_exists/1

	osp

file_footer/3

	graph_language_protocol

file_header/3

	graph_language_protocol

file_modification_time/2

	osp

file_permission/2

	osp

file_score/2

	code_metric

file_size/2

	osp

file_to_bytes/2

	reader

file_to_bytes/3

	reader

file_to_chars/2

	reader

file_to_chars/3

	reader

file_to_codes/2

	reader

file_to_codes/3

	reader

file_to_terms/2

	reader

file_to_terms/3

	reader

file_type_extension/2

	logtalk

files/1

	diagram(Format)

	diagrams(Format)

	lgtdocp

	wrapper

files/2

	diagram(Format)

	diagrams(Format)

	lgtdocp

	wrapper

files/3

	diagram(Format)

	diagrams(Format)

filter/2

	optional(Optional)

find/4

	union_find_protocol

find/5

	union_find_protocol

findall_member/4

	metap

findall_member/5

	metap

finished_by/2

	intervalp

finishes/2

	intervalp

fisher/3

	sampling_protocol

flag_group_chk/1

	flags

flag_groups/1

	flags

flat_map/2

	expected(Expected)

	optional(Optional)

flatten/2

	listp

	varlistp

float//1

	number_grammars(Format)

fold_left/4

	metap

fold_left_1/3

	metap

fold_right/4

	metap

fold_right_1/3

	metap

fordownto/3

	loopp

fordownto/4

	loopp

fordownto/5

	loopp

foreach/3

	loopp

foreach/4

	loopp

format/2

	format

format/3

	format

format_entity_score//2

	code_metric

format_object/1

	diagram(Format)

format_to_atom/3

	term_io_protocol

format_to_chars/3

	term_io_protocol

format_to_chars/4

	term_io_protocol

format_to_codes/3

	term_io_protocol

format_to_codes/4

	term_io_protocol

forto/3

	loopp

forto/4

	loopp

forto/5

	loopp

forward/1

	forwarding

forward/2

	zipperp

forward/3

	zipperp

fractile/3

	statisticsp

freeze/2

	coroutining

from_generator/2

	expected

	optional

from_generator/3

	expected

	optional

from_generator/4

	expected

from_goal/2

	expected

	optional

from_goal/3

	expected

	optional

from_goal/4

	expected

frozen/2

	coroutining

full_device_path/1

	osp

func_test/3

	metagol

functional/0

	metagol

gamma/3

	sampling_protocol

generate/1

	ids(Representation,Bytes)

	ulid_protocol

generate/2

	base64

	base64url

	cbor(StringRepresentation)

	html

	json_lines_protocol

	json_protocol

	ulid_protocol

generate/8

	ulid_protocol

genint/2

	genint_core

gensym/2

	gensym_core

geometric/2

	sampling_protocol

geometric_mean/2

	statisticsp

get/1

	optional(Optional)

get_field/2

	java_access_protocol

get_flag_value/2

	flags

get_seed/1

	arbitrary

	pseudo_random_protocol

gnu/0

	fcube

goal_expansion/2

	expanding

graph_footer/5

	graph_language_protocol

graph_header/5

	graph_language_protocol

ground/1

	termp

group_by_key/2

	pairs

group_consecutive_by_key/2

	pairs

group_sorted_by_key/2

	pairs

guess_arity/2

	csv_protocol

guess_separator/2

	csv_protocol

gumbel/3

	sampling_protocol

hamming_distance/3

	listp

handbook/0

	help_info_support

handbook/1

	help_info_support

harmonic_mean/2

	statisticsp

head/2

	queuep

head_pred/1

	metagol

help/0

	help

	packs_common

hex_digit//1

	number_grammars(Format)

hex_digits//1

	number_grammars(Format)

home/1

	pack_protocol

	registry_protocol

hypergeometric/4

	sampling_protocol

ibk/3

	metagol

if_empty/1

	optional(Optional)

if_expected/1

	expected(Expected)

if_expected_or_else/2

	expected(Expected)

if_present/1

	optional(Optional)

if_present_or_else/2

	optional(Optional)

if_unexpected/1

	expected(Expected)

include/3

	metap

increase/1

	counter

increment/0

	counter

increment_counter/1

	counters

init/0

	shell(Interpreters)

init_log_file/2

	loggingp

inorder/2

	bintree

insert/3

	setp

insert/4

	dictionaryp

	heapp

insert_after/3

	zipperp

insert_all/3

	heapp

	setp

insert_before/3

	zipperp

insert_in/4

	nested_dictionary_protocol

install/1

	packs

install/2

	packs

install/3

	packs

install/4

	packs

installed/0

	packs

installed/1

	packs

installed/3

	packs

installed/4

	packs

instance/1

	class_hierarchyp

instance/2

	recorded_database_core

instances/1

	class_hierarchyp

integer//1

	number_grammars(Format)

internal_os_path/2

	osp

intersect/2

	setp

intersection/2

	dictionaryp

intersection/3

	dictionaryp

	setp

intersection/4

	setp

invoke/1

	java_access_protocol

invoke/2

	java_access_protocol

ipv4//1

	ip_grammars(Format)

ipv6//1

	ip_grammars(Format)

is_absolute_file_name/1

	osp

is_alpha/1

	characterp

is_alphanumeric/1

	characterp

is_ascii/1

	characterp

is_bin_digit/1

	characterp

is_control/1

	characterp

is_dec_digit/1

	characterp

is_empty/0

	optional(Optional)

is_end_of_line/1

	characterp

is_expected/0

	expected(Expected)

is_false/1

	java_utils_protocol

is_hex_digit/1

	characterp

is_layout/1

	characterp

is_letter/1

	characterp

is_lower_case/1

	characterp

is_newline/1

	characterp

is_null/1

	java_utils_protocol

is_object/1

	java_utils_protocol

is_octal_digit/1

	characterp

is_period/1

	characterp

is_present/0

	optional(Optional)

is_punctuation/1

	characterp

is_quote/1

	characterp

is_true/1

	java_utils_protocol

is_unexpected/0

	expected(Expected)

is_upper_case/1

	characterp

is_void/1

	java_utils_protocol

is_vowel/1

	characterp

is_white_space/1

	characterp

iterator_element/2

	java_utils_protocol

join/3

	queuep

join_all/3

	queuep

jump/3

	queuep

jump_all/3

	queuep

jump_all_block/3

	queuep

key/2

	pairs

keys/2

	dictionaryp

	pairs

keys_values/3

	pairs

keysort/2

	listp

kurtosis/2

	statisticsp

language_object/2

	graph_language_registry

last/2

	listp

	varlistp

leaf/1

	hierarchyp

leaf_class/1

	class_hierarchyp

leaf_classes/1

	class_hierarchyp

leaf_instance/1

	class_hierarchyp

leaf_instances/1

	class_hierarchyp

leap_year/1

	datep

	iso8601

learn/0

	metagol_example_protocol

learn/1

	metagol_example_protocol

learn/2

	metagol

learn/3

	metagol

learn_seq/2

	metagol

learn_with_timeout/4

	metagol

leash/1

	debuggerp

leashing/1

	debuggerp

least_common_multiple/2

	numberlistp

leaves/1

	hierarchyp

length/2

	listp

	queuep

	varlistp

libraries/1

	diagram(Format)

	diagrams(Format)

	lgtdocp

libraries/2

	diagram(Format)

	diagrams(Format)

	lgtdocp

libraries/3

	diagram(Format)

	diagrams(Format)

library/0

	help

library/1

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	help

	lgtdocp

library/2

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	lgtdocp

library_score/2

	code_metric

license/1

	pack_protocol

line_to_chars/2

	reader

line_to_chars/3

	reader

line_to_codes/2

	reader

line_to_codes/3

	reader

lint/0

	packs

	registries

lint/1

	packs

	registries

lint/2

	packs

list/0

	registries

list_to_array/2

	java_utils_protocol

listing/0

	listing

listing/1

	listing

loaded_file/1

	logtalk

loaded_file_property/2

	logtalk

	modules_diagram_support

log/3

	debuggerp

log_event/2

	loggingp

log_file/2

	loggingp

logging/1

	loggingp

logging/3

	debuggerp

logistic/3

	sampling_protocol

lognormal/3

	sampling_protocol

logseries/2

	sampling_protocol

logtalk_packs/0

	packs_common

logtalk_packs/1

	packs_common

lookup/2

	dictionaryp

lookup/3

	dictionaryp

lookup_in/3

	nested_dictionary_protocol

lower_upper/2

	characterp

magic/2

	magic

magicise/4

	magic

make_directory/1

	osp

make_directory_path/1

	osp

make_set/3

	union_find_protocol

man/1

	help_info_support

manhattan_distance/3

	numberlistp

manhattan_norm/2

	numberlistp

manuals/0

	help

map/2

	dictionaryp

	expected(Expected)

	metap

	optional(Optional)

	queuep

map/3

	dictionaryp

	metap

	pairs

	queuep

map/4

	metap

map/5

	metap

map/6

	metap

map/7

	metap

map/8

	metap

map_element/2

	java_utils_protocol

map_reduce/5

	metap

max/2

	listp

	numberlistp

	statisticsp

max/3

	dictionaryp

max_clauses/1

	metagol

max_inv_preds/1

	metagol

max_size/1

	arbitrary

maybe/0

	random_protocol

maybe/1

	random_protocol

maybe/2

	random_protocol

maybe_call/1

	random_protocol

maybe_call/2

	random_protocol

mean_deviation/2

	statisticsp

median/2

	numberlistp

	statisticsp

median_deviation/2

	statisticsp

meets/2

	intervalp

member/2

	listp

	random_protocol

	setp

memberchk/2

	listp

	setp

	varlistp

merge/3

	heapp

message_hook/4

	logtalk

message_prefix_file/6

	logtalk

message_prefix_stream/4

	logtalk

message_tokens//2

	logtalk

met_by/2

	intervalp

meta_type/3

	type

metarule/6

	metagol

metarule_next_id/1

	metagol

min/2

	listp

	numberlistp

	statisticsp

min/3

	dictionaryp

min_clauses/1

	metagol

min_max/3

	numberlistp

	statisticsp

modes/2

	numberlistp

	statisticsp

module_property/2

	modules_diagram_support

monitor/1

	event_registryp

monitor/4

	event_registryp

monitor_activated/0

	monitorp

monitored/1

	event_registryp

monitors/1

	event_registryp

msort/2

	listp

msort/3

	listp

mutation/3

	mutations

	mutations_store

name/1

	pack_protocol

	registry_protocol

name_of_day/3

	datep

name_of_month/3

	datep

natural//1

	number_grammars(Format)

new/1

	java_access_protocol

	nested_dictionary_protocol

	streamvars

	termp

new/2

	java_access_protocol

	streamvars

	union_find_protocol

new/3

	intervalp

new_line//0

	blank_grammars(Format)

new_lines//0

	blank_grammars(Format)

next/2

	zipperp

next/3

	zipperp

next/4

	dictionaryp

nextto/3

	listp

	varlistp

node/7

	graph_language_protocol

nodebug/0

	debuggerp

nolog/3

	debuggerp

nologall/0

	debuggerp

non_blank//1

	blank_grammars(Format)

non_blanks//1

	blank_grammars(Format)

normal/3

	sampling_protocol

normal_element/2

	html

normalize_range/2

	numberlistp

normalize_range/4

	numberlistp

normalize_scalar/2

	numberlistp

normalize_unit/2

	numberlistp

nospy/1

	debuggerp

nospy/3

	debuggerp

nospy/4

	debuggerp

nospyall/0

	debuggerp

note/2

	registry_protocol

note/3

	pack_protocol

notrace/0

	debuggerp

now/3

	timep

nth0/3

	listp

	varlistp

nth0/4

	listp

	varlistp

nth1/3

	listp

	varlistp

nth1/4

	listp

	varlistp

null/1

	java_utils_protocol

null_device_path/1

	osp

number//1

	number_grammars(Format)

number_of_tests/1

	lgtunit

numbervars/1

	termp

numbervars/3

	termp

occurrences/2

	listp

occurrences/3

	listp

occurs/2

	termp

of/2

	optional

of_expected/2

	expected

of_unexpected/2

	expected

one_or_more//0

	sequence_grammars

one_or_more//1

	sequence_grammars

one_or_more//2

	sequence_grammars

operating_system_machine/1

	osp

operating_system_name/1

	osp

operating_system_release/1

	osp

operating_system_type/1

	osp

option/2

	options_protocol

option/3

	options_protocol

or/2

	optional(Optional)

or_else/2

	expected(Expected)

	optional(Optional)

or_else_call/2

	expected(Expected)

	optional(Optional)

or_else_fail/1

	expected(Expected)

	optional(Optional)

or_else_get/2

	expected(Expected)

	optional(Optional)

or_else_throw/1

	expected(Expected)

or_else_throw/2

	optional(Optional)

orphaned/0

	packs

orphaned/2

	packs

outdated/0

	packs

outdated/1

	packs

outdated/2

	packs

outdated/4

	packs

outdated/5

	packs

output_file_name/2

	graph_language_protocol

overlapped_by/2

	intervalp

overlaps/2

	intervalp

parent/1

	proto_hierarchyp

parenthesis/2

	characterp

parents/1

	proto_hierarchyp

parse/2

	base64

	base64url

	cbor(StringRepresentation)

	json_lines_protocol

	json_protocol

	xml

parse/3

	xml

parse_domain/2

	pddl

parse_domain/3

	pddl

parse_problem/2

	pddl

parse_problem/3

	pddl

partial_map/4

	rbtree

partition/3

	either

partition/4

	metap

partition/5

	listp

partition/6

	metap

path_concat/3

	osp

permutation/2

	listp

	random_protocol

	varlistp

pid/1

	osp

pin/0

	packs_common

pin/1

	packs_common

pinned/1

	packs_common

plus/3

	integer

poisson/2

	sampling_protocol

port/5

	ports_profiler

portray_clause/1

	listing

postorder/2

	bintree

power/2

	sampling_protocol

power_sequence/4

	integer

powerset/2

	setp

pp/1

	xml

pprint/1

	metagol

predicate/2

	dead_code_scanner

predicate_info_pair_score_hook/4

	doc_metric

predicate_info_score_hook/3

	doc_metric

predicate_mode_score_hook/3

	doc_metric

predicate_mode_score_hook/5

	doc_metric

predicates/2

	dead_code_scanner

prefix/0

	packs_common

prefix/1

	packs_common

prefix/2

	listp

	varlistp

prefix/3

	listp

preorder/2

	bintree

previous/2

	zipperp

previous/3

	zipperp

previous/4

	dictionaryp

print_flags/0

	flags

	flags_validator

print_flags/1

	flags

print_message/3

	logtalk

print_message_token/4

	logtalk

print_message_tokens/3

	logtalk

product/2

	numberlistp

	statisticsp

product/3

	setp

program_to_clauses/2

	metagol

proper_prefix/2

	listp

proper_prefix/3

	listp

proper_suffix/2

	listp

proper_suffix/3

	listp

prove/2

	interpreterp

prove/3

	interpreterp

provides/2

	registries

question_hook/6

	logtalk

question_prompt_stream/4

	logtalk

quick_check/1

	lgtunit

quick_check/2

	lgtunit

quick_check/3

	lgtunit

random/1

	random_protocol

random/3

	random_protocol

random_node/1

	uuid_protocol

random_tree/1

	benchmark_generators

randomize/1

	fast_random

	random

randseq/4

	random_protocol

randset/4

	random_protocol

range/2

	statisticsp

rdirectories/1

	lgtdocp

rdirectories/2

	lgtdocp

rdirectory/1

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	lgtdocp

	wrapper

rdirectory/2

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	lgtdocp

	wrapper

rdirectory/3

	diagram(Format)

	diagrams(Format)

rdirectory_score/2

	code_metric

read_file/2

	csv_protocol

	read_file

	tsv_protocol

read_file/3

	csv_protocol

	tsv_protocol

read_file_by_line/2

	csv_protocol

	tsv_protocol

read_file_by_line/3

	csv_protocol

	tsv_protocol

read_from_atom/2

	term_io_protocol

read_from_chars/2

	term_io_protocol

read_from_codes/2

	term_io_protocol

read_only_device_path/1

	osp

read_stream/2

	csv_protocol

	tsv_protocol

read_stream/3

	csv_protocol

	tsv_protocol

read_stream_by_line/2

	csv_protocol

	tsv_protocol

read_stream_by_line/3

	csv_protocol

	tsv_protocol

read_term_from_atom/3

	term_io_protocol

read_term_from_chars/3

	term_io_protocol

read_term_from_chars/4

	term_io_protocol

read_term_from_codes/3

	term_io_protocol

read_term_from_codes/4

	term_io_protocol

readme/1

	packs_common

readme/2

	packs_common

recorda/2

	recorded_database_core

recorda/3

	recorded_database_core

recorded/2

	recorded_database_core

recorded/3

	recorded_database_core

recordz/2

	recorded_database_core

recordz/3

	recorded_database_core

relative_standard_deviation/2

	statisticsp

removeDependent/1

	subject

remove_duplicates/2

	listp

	varlistp

rename_file/2

	osp

replace/3

	zipperp

replace_sub_atom/4

	atom

rescale/3

	numberlistp

reset/0

	counter

	debuggerp

	packs_common

	ports_profiler

reset/1

	ports_profiler

reset_counter/1

	counters

reset_counters/0

	counters

reset_flags/0

	flags

reset_flags/1

	flags

reset_genint/0

	genint_core

reset_genint/1

	genint_core

reset_gensym/0

	gensym_core

reset_gensym/1

	gensym_core

reset_monitor/0

	monitorp

reset_seed/0

	fast_random

	random

restore/1

	packs

restore/2

	packs

reverse/2

	listp

	varlistp

rewind/2

	zipperp

rewind/3

	zipperp

rlibraries/1

	lgtdocp

rlibraries/2

	lgtdocp

rlibrary/1

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	lgtdocp

rlibrary/2

	code_metric

	dead_code_scanner

	diagram(Format)

	diagrams(Format)

	lgtdocp

rlibrary_score/2

	code_metric

rule/2

	databasep

rule/3

	databasep

rule/4

	databasep

run/0

	lgtunit

run/1

	lgtunit

run/2

	lgtunit

run_test_sets/1

	lgtunit

same_length/2

	listp

	varlistp

same_length/3

	listp

save/0

	wrapper

save/1

	packs

	wrapper

save/2

	packs

scalar_product/3

	numberlistp

scan_left/4

	metap

scan_left_1/3

	metap

scan_right/4

	metap

scan_right_1/3

	metap

search/1

	packs

select/3

	listp

	random_protocol

	setp

	varlistp

select/4

	listp

	random_protocol

selectchk/3

	listp

	setp

selectchk/4

	listp

send/3

	redis

sequence/3

	integer

sequence/4

	float

	integer

	random_protocol

sequence/5

	float

sequential_occurrences/2

	listp

sequential_occurrences/3

	listp

serve/3

	queuep

set/1

	counter

set/4

	random_protocol

set_element/2

	java_utils_protocol

set_field/2

	java_access_protocol

set_flag_value/2

	flags

set_flag_value/3

	flags

set_monitor/4

	event_registryp

set_seed/1

	arbitrary

	pseudo_random_protocol

set_spy_point/4

	monitorp

set_write_max_depth/1

	debuggerp

setup/0

	packs_common

shell/1

	osp

shell/2

	osp

shell_command/1

	doclet

shrink/3

	arbitrary

shrink_sequence/3

	arbitrary

shrinker/1

	arbitrary

sign//1

	number_grammars(Format)

singletons/2

	termp

size/2

	dictionaryp

	heapp

	setp

skewness/2

	statisticsp

sleep/1

	osp

softmax/2

	numberlistp

softmax/3

	numberlistp

sort/2

	listp

sort/3

	listp

sort/4

	listp

source_file_extension/1

	modules_diagram_support

space//0

	blank_grammars(Format)

spaces//0

	blank_grammars(Format)

split/3

	atom

split/4

	listp

spy/1

	debuggerp

spy/3

	debuggerp

spy/4

	debuggerp

spy_point/4

	monitorp

spying/1

	debuggerp

spying/3

	debuggerp

spying/4

	debuggerp

standard_cauchy/3

	sampling_protocol

standard_deviation/2

	statisticsp

standard_exponential/1

	sampling_protocol

standard_gamma/2

	sampling_protocol

standard_normal/1

	sampling_protocol

standard_t/2

	sampling_protocol

start/0

	ports_profiler

	shell

start_redirect_to_file/2

	dump_trace

started_by/2

	intervalp

starts/2

	intervalp

stop/0

	ports_profiler

stop_redirect_to_file/0

	dump_trace

stream_to_bytes/2

	reader

stream_to_bytes/3

	reader

stream_to_chars/2

	reader

stream_to_chars/3

	reader

stream_to_codes/2

	reader

stream_to_codes/3

	reader

stream_to_terms/2

	reader

stream_to_terms/3

	reader

subclass/1

	class_hierarchyp

subclasses/1

	class_hierarchyp

sublist/2

	listp

	varlistp

subsequence/3

	listp

subsequence/4

	listp

subset/2

	setp

substitute/4

	listp

subsumes/2

	termp

subterm/2

	termp

	xml

subtract/3

	listp

	setp

	varlistp

succ/2

	integer

suffix/2

	listp

	varlistp

suffix/3

	listp

sum/2

	numberlistp

	statisticsp

superclass/1

	class_hierarchyp

superclasses/1

	class_hierarchyp

suspend_monitor/0

	monitorp

swap/2

	random_protocol

swap_consecutive/2

	random_protocol

symdiff/3

	setp

tab//0

	blank_grammars(Format)

tabs//0

	blank_grammars(Format)

take/3

	listp

temporary_directory/1

	osp

term_expansion/2

	expanding

terms_to_array/2

	java_utils_protocol

test/1

	lgtunit

time_stamp/1

	osp

timeout/1

	metagol

timestamp/2

	ulid_protocol

timestamp/8

	ulid_protocol

today/3

	datep

tolerance_equal/4

	lgtunit

	number

top/3

	heapp

top_next/5

	heapp

trace/0

	debuggerp

trace_event/2

	logtalk

transpose/2

	pairs

triangular/4

	sampling_protocol

true/1

	java_utils_protocol

type/1

	type

unexpected/1

	expected(Expected)

unexpecteds/2

	either

uniform/1

	sampling_protocol

uniform/3

	sampling_protocol

uninstall/0

	packs

uninstall/1

	packs

uninstall/2

	packs

union/3

	setp

union/4

	setp

	union_find_protocol

union_all/3

	union_find_protocol

unpin/0

	packs_common

unpin/1

	packs_common

unzip/2

	zipperp

update/0

	doclet

	packs

	registries

update/1

	observer

	packs

	registries

update/2

	packs

	registries

update/3

	dictionaryp

	packs

update/4

	dictionaryp

update/5

	dictionaryp

update_in/4

	nested_dictionary_protocol

update_in/5

	nested_dictionary_protocol

uuid_null/1

	uuid_protocol

uuid_v1/2

	uuid_protocol

uuid_v4/1

	uuid_protocol

valid/1

	intervalp

	statisticsp

	termp

	varlistp

valid/2

	type

valid/3

	datep

	timep

valid_date/3

	iso8601

valid_option/1

	options_protocol

valid_options/1

	options_protocol

validate/1

	flags_validator

value/1

	counter

value/3

	pairs

value_reference/2

	java_utils_protocol

values/2

	dictionaryp

	pairs

variables/2

	termp

variance/2

	statisticsp

variant/2

	lgtunit

	termp

varnumbers/2

	termp

varnumbers/3

	termp

verify_commands_availability/0

	packs_common

version/6

	pack_protocol

versions/3

	packs

void/1

	java_utils_protocol

void_element/1

	html

von_mises/3

	sampling_protocol

wald/3

	sampling_protocol

wall_time/1

	osp

weibull/3

	sampling_protocol

weighted_mean/3

	statisticsp

welcome/0

	shell

when/2

	coroutining

whiledo/2

	loopp

white_space//0

	blank_grammars(Format)

white_spaces//0

	blank_grammars(Format)

with_output_to/2

	term_io_protocol

without//2

	sequence_grammars

working_directory/1

	osp

write_file/3

	csv_protocol

	tsv_protocol

write_max_depth/1

	debuggerp

write_stream/3

	csv_protocol

	tsv_protocol

write_term_to_atom/3

	term_io_protocol

write_term_to_chars/3

	term_io_protocol

write_term_to_chars/4

	term_io_protocol

write_term_to_codes/3

	term_io_protocol

write_term_to_codes/4

	term_io_protocol

write_to_atom/2

	term_io_protocol

write_to_chars/2

	term_io_protocol

write_to_codes/2

	term_io_protocol

z_normalization/2

	statisticsp

zero_or_more//0

	sequence_grammars

zero_or_more//1

	sequence_grammars

zero_or_more//2

	sequence_grammars

zip/2

	zipperp

zip/3

	zipperp

zip_at_index/4

	zlist

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

Symbols

 	
 	(/)/2

 	(//)/2

 	(<)/2

 	(<=)/2, [1]

 	(=:=)/2

 	
 	(=<)/2

 	(=>)/2, [1]

 	(=\=)/2

 	(>)/2

 	(>=)/2

 	=~= / 2, [1]

A

 	
 	a_star_interpreter(W)

 	absolute_file_name/2

 	acc_info/5

 	acc_info/7

 	activate_debug_handler/1

 	activate_monitor/0

 	active_debug_handler/1

 	active_debug_handler_/1

 	add/1

 	add/2

 	add/3, [1]

 	add_directive_/2

 	add_directive_/3

 	add_directive_before_entity_/2

 	add_library_documentation_url/4

 	add_link_options/3

 	add_node_zoom_option/4

 	addDependent/1

 	after/2

 	after/3

 	after_event_registry

 	all/0, [1], [2]

 	all/1, [1], [2]

 	all_files/0, [1]

 	all_files/1, [1]

 	all_libraries/0, [1]

 	all_libraries/1, [1]

 	all_score/1

 	ancestor/1

 	ancestor/4

 	ancestors/1

 	apis/0

 	apis/1

 	append/2

 	append/3, [1], [2]

 	apply/2

 	apply/4

 	approximately_equal/2, [1]

 	
 	approximately_equal/3, [1]

 	arbitrary

 	arbitrary/1

 	arbitrary/2

 	archive/1

 	arithmetic_mean/2

 	arithmetic_mean/5

 	array_list/2

 	array_to_list/2

 	array_to_terms/2

 	array_to_terms/3

 	as_curly_bracketed/2, [1]

 	as_dictionary/2

 	as_difflist/2

 	as_heap/2

 	as_list/2, [1], [2], [3], [4]

 	as_nested_dictionary/2

 	as_set/2

 	ask_question/5

 	assertion/1, [1]

 	assertion/2, [1]

 	assertions

 	assertions(Mode)

 	assertions_messages

 	assignable/1

 	assignable/2

 	assignvars

 	assignvarsp

 	atom

 	atomic

 	automation_report

 	auxiliary_predicate_counter_/1

 	available/0

 	available/1

 	available/2

 	average/2

 	average_deviation/3

 	avltree

B

 	
 	backend_adapter_hook

 	backend_random

 	base64

 	base64url

 	base_/2

 	before/2

 	before/3

 	before_event_registry

 	bench_goal/1

 	benchmark/2

 	benchmark/3

 	benchmark/4

 	benchmark_generators

 	benchmark_reified/3

 	bernoulli/2

 	best_first

 	beta/3

 	between/3, [1]

 	between/4

 	bfs_interpreter

 	binary_file_assertion/3

 	
 	binary_input_assertion/2

 	binary_input_assertion/3

 	binary_output_assertion/2

 	binary_output_assertion/3

 	binary_output_contents/1

 	binary_output_contents/2

 	binomial/3

 	bintree

 	bit//1

 	bits//1

 	blank//0

 	blank_grammars(Format)

 	blanks//0

 	body_pred/1

 	body_pred_call/2

 	branch/2

 	built_in_directive/4

 	built_in_flag/2

 	built_in_method/4

 	built_in_non_terminal/4

 	built_in_predicate/4

 	bup_interpreter

C

 	
 	c/1

 	calendar_month/3

 	call_with_timeout/2

 	call_with_timeout/3

 	callable

 	cat/2

 	cbor

 	cbor(StringRepresentation)

 	cc_metric

 	cdata_generation//1

 	change_directory/1

 	changed/0

 	changed/1

 	character

 	character_data_format/3

 	characterp

 	chebyshev_distance/3

 	chebyshev_norm/2

 	check/1, [1]

 	check/2

 	check/3

 	check_binary_file/2

 	check_binary_input/1

 	check_binary_input/2

 	check_binary_output/1

 	check_binary_output/2

 	check_option/1

 	check_options/1

 	check_text_file/2

 	check_text_file/3

 	check_text_input/1

 	check_text_input/2

 	check_text_output/1

 	check_text_output/2

 	check_text_output/3

 	chi_squared/2

 	chr_is/2

 	chr_next_state/1

 	chr_no_spy/1

 	chr_nospy/0

 	chr_notrace/0

 	chr_option/2

 	chr_option_allow_deep_guards/0

 	chr_option_optimization_level/1

 	chr_option_print_trace/0

 	chr_option_show_history/0

 	chr_option_show_id/0

 	chr_option_show_stack/0

 	chr_option_show_store/0

 	chr_option_trace_interactive/0

 	chr_rule_/1

 	chr_spy/1

 	chr_spy_point/1

 	chr_trace/0

 	circular_uniform_cartesian/3

 	circular_uniform_polar/3

 	class/1

 	class_hierarchy

 	class_hierarchyp

 	classes/1

 	clause/5

 	clause_/5

 	clause_breakpoint_/2

 	clause_location/6

 	clause_location_/6

 	clean/0, [1]

 	clean/1, [1]

 	
 	clean/2

 	clean_binary_input/0

 	clean_binary_output/0

 	clean_directory/1

 	clean_file/1

 	clean_text_input/0

 	clean_text_output/0

 	cleanup/0

 	clone/1, [1]

 	clone/3

 	clone/4

 	cloning

 	closed_input_stream/2

 	closed_output_stream/2

 	code_metric

 	code_metrics

 	code_metrics_messages

 	code_metrics_utilities

 	coefficient_of_variation/2

 	command/2

 	command_line_arguments/1

 	commit_author/2

 	commit_date/2

 	commit_hash/2

 	commit_hash_abbreviated/2

 	commit_log/3

 	commit_message/2

 	comparingp

 	compile_aux_clauses/1

 	compile_predicate_heads/4

 	compile_predicate_indicators/3

 	compiled_pred_call/2

 	completion/2

 	completions/2

 	compound

 	condition/0

 	conditional_breakpoint_/3

 	connect/1

 	connect/3

 	console/1

 	contains/2

 	context_breakpoint_/4

 	control//0

 	control_construct/4

 	controls//0

 	copy_file/2

 	core_messages

 	coroutining

 	counter

 	counter/2, [1]

 	counter_/2, [1], [2]

 	counters

 	coupling_metric

 	cover/1

 	coverage_report

 	covered_/4

 	cpu_time/1, [1]

 	create_binary_file/2

 	create_text_file/2

 	create_text_file/3

 	csv

 	csv(Header,Separator,IgnoreQuotes)

 	csv_guess_questions

 	csv_protocol

 	current/2

 	current_entity/1

 	current_prog/1

D

 	
 	d2_graph_language

 	data/0

 	data/1

 	data/2

 	databasep

 	date

 	date/4

 	date/5

 	date/6

 	date/7

 	date_string/3

 	date_time/7

 	datep

 	days_in_month/3

 	deactivate_debug_handler/0

 	dead_code_scanner

 	dead_code_scanner_messages

 	debug/0

 	debug_expansion(Mode)

 	debug_handler/1

 	debug_handler/3

 	debug_messages

 	debugger

 	debugger_messages

 	debuggerp

 	debugging/0

 	debugging/1

 	debugging_/0

 	decide/1

 	decide/2

 	declares_predicate/2

 	decode_exception/2

 	decode_exception/3

 	decode_url_spaces/2

 	decompile_predicate_heads/4

 	decompile_predicate_indicators/4

 	decompose_file_name/3

 	decompose_file_name/4

 	decrement_counter/1

 	default_atom_mutations

 	default_compound_mutations

 	default_float_mutations

 	default_integer_mutations

 	default_list_mutations

 	default_option/1, [1]

 	default_options/1, [1]

 	default_workflow_hook

 	define_flag/1

 	define_flag/2

 	define_log_file/2

 	defined/4

 	defined_flag/6

 	defined_flag_/6

 	defines_predicate/2

 	defines_predicate/3

 	del_monitors/0

 	del_monitors/4

 	del_spy_points/4

 	delete/0

 	delete/1

 	delete/2

 	delete/3, [1], [2]

 	delete/4, [1]

 	delete_all_after/2

 	delete_all_after_and_unzip/2

 	delete_all_before/2

 	delete_all_before_and_unzip/2

 	delete_and_next/2

 	delete_and_previous/2

 	delete_and_unzip/2

 	delete_directory/1

 	delete_directory_and_contents/1

 	
 	delete_directory_contents/1

 	delete_file/1

 	delete_in/4

 	delete_matches/3

 	delete_max/4

 	delete_min/4

 	demodb

 	dependent_/1

 	dependents/1, [1]

 	dependents/2

 	dependents/3

 	depth/2

 	descendant/1

 	descendant_class/1

 	descendant_classes/1

 	descendant_instance/1

 	descendant_instances/1

 	descendants/1

 	describe/1, [1]

 	describe/2

 	description/1, [1]

 	deterministic/1

 	deterministic/2

 	dfs_interpreter

 	diagram(Format)

 	diagram_caption/3

 	diagram_description/1

 	diagram_name_suffix/1

 	diagrams

 	diagrams(Format)

 	dictionaryp

 	dif

 	dif/1, [1]

 	dif/2, [1]

 	difflist

 	digit//1

 	digits//1

 	directories/1, [1]

 	directories/2, [1], [2], [3]

 	directories/3, [1]

 	directory/1, [1], [2], [3], [4], [5], [6]

 	directory/2, [1], [2], [3], [4], [5], [6]

 	directory/3, [1]

 	directory_dependency_diagram

 	directory_dependency_diagram(Format)

 	directory_diagram(Format)

 	directory_entity_/4

 	directory_exists/1

 	directory_files/2

 	directory_files/3

 	directory_load_diagram

 	directory_load_diagram(Format)

 	directory_score/2

 	dirichlet/2

 	disable/1

 	disable/2

 	disable_logging/1

 	disconnect/1

 	disjoint/2

 	disjoint_sets/2

 	dit_metric

 	doc_goal/1

 	doc_metric

 	doclet

 	doctype/1

 	document_generation//2

 	dot//1

 	dot_graph_language

 	dowhile/2

 	drop/3

 	dump_trace

 	during/2

 	dynamic_directive_/3

E

 	
 	easter_day/3

 	edcg

 	edge/5

 	edge/6

 	edge_/5

 	edge_case/2

 	either

 	either/3

 	empty/1, [1], [2], [3], [4], [5], [6], [7]

 	empty_map/1

 	enable/1

 	enable/2

 	enable_logging/1

 	enabled/1

 	enabled/2

 	enabled_/1

 	enabled_/2

 	ensure_directory/1

 	ensure_file/1

 	entity/1, [1], [2], [3]

 	entity/2

 	entity_calls/3

 	entity_defines_/2

 	entity_diagram

 	entity_diagram(Format)

 	entity_info_pair_score_hook/3

 	entity_info_score_hook/2

 	entity_kind/2

 	entity_predicate_breakpoint_/4

 	entity_predicates_weights_hook/2

 	
 	entity_prefix/2

 	entity_property/2

 	entity_score/2

 	entity_updates/3

 	enumerate/2

 	environment_variable/2

 	epsilon/1

 	equal/2, [1]

 	erase/1

 	essentially_equal/3, [1]

 	euclidean_distance/3

 	euclidean_norm/2

 	event_registry

 	event_registryp

 	exception/4

 	exclude/3

 	execution_context/7

 	expand_library_alias_paths

 	expand_library_path/2

 	expanding

 	expected

 	expected(Expected)

 	expected/1

 	expecteds/2

 	explain//1

 	explicit_tracing_/0

 	exponential/2

 	extension/1

 	extensions/1

 	external_predicate_/1

F

 	
 	f/4

 	failed_/3

 	failed_test_reason//1

 	false/1

 	fast_random

 	fault/5

 	fcube

 	fcube/0

 	file/1, [1], [2], [3], [4]

 	file/2, [1], [2], [3], [4]

 	file_being_advised_/4

 	file_dependency_diagram

 	file_dependency_diagram(Format)

 	file_diagram(Format)

 	file_exists/1

 	file_footer/3

 	file_header/3

 	file_line_hit_count_/3

 	file_load_diagram

 	file_load_diagram(Format)

 	file_modification_time/2

 	file_path/2

 	file_permission/2

 	file_score/2

 	file_size/2

 	file_to_bytes/2

 	file_to_bytes/3

 	file_to_chars/2

 	file_to_chars/3

 	file_to_codes/2

 	file_to_codes/3

 	file_to_terms/2

 	file_to_terms/3

 	file_type_extension/2

 	files/1, [1], [2], [3]

 	files/2, [1], [2], [3]

 	files/3, [1]

 	filter/2

 	filter_external_file_extension/3

 	filter_file_extension/3

 	find/4

 	find/5

 	findall_member/4

 	findall_member/5

 	finished_by/2

 	finishes/2

 	fired_/3

 	fisher/3

 	fix_option/2

 	fix_options/2

 	
 	flag_group_chk/1

 	flag_groups/1

 	flag_value_/2

 	flags

 	flags_validator

 	flaky_/1

 	flat_map/2, [1]

 	flatten/2, [1]

 	flatten_goals//1

 	flatting

 	float

 	float//1

 	fold_left/4

 	fold_left_1/3

 	fold_right/4

 	fold_right_1/3

 	fordownto/3

 	fordownto/4

 	fordownto/5

 	foreach/3

 	foreach/4

 	format

 	format/2

 	format/3

 	format_entity_score//2

 	format_object/1

 	format_to_atom/3

 	format_to_chars/3

 	format_to_chars/4

 	format_to_codes/3

 	format_to_codes/4

 	forto/3

 	forto/4

 	forto/5

 	forward/1

 	forward/2

 	forward/3

 	forwarding

 	fractile/3

 	freeze/2

 	from_generator/2, [1]

 	from_generator/3, [1]

 	from_generator/4

 	from_goal/2, [1]

 	from_goal/3, [1]

 	from_goal/4

 	frozen/2

 	full_device_path/1

 	func_test/3

 	functional/0

G

 	
 	gamma/3

 	generate/1, [1]

 	generate/2, [1], [2], [3], [4], [5], [6]

 	generate/8

 	generated_predicate_/1

 	generating_/0

 	genint

 	genint/2

 	genint_core

 	gensym

 	gensym/2

 	gensym_core

 	geometric/2

 	geometric_mean/2

 	get/1

 	get_field/2

 	get_flag_value/2

 	
 	get_seed/1, [1]

 	git

 	git_protocol

 	gnu/0

 	goal_expansion/2

 	grammar_rules_hook

 	graph_footer/5

 	graph_header/5

 	graph_language_protocol

 	graph_language_registry

 	ground/1

 	ground_entity_identifier/3

 	group_by_key/2

 	group_consecutive_by_key/2

 	group_sorted_by_key/2

 	guess_arity/2

 	guess_separator/2

 	gumbel/3

H

 	
 	halstead_metric

 	halstead_metric(Stroud)

 	hamming_distance/3

 	handbook/0

 	handbook/1

 	harmonic_mean/2

 	head/2

 	head_pred/1

 	heap(Order)

 	heapp

 	help

 	
 	help/0, [1]

 	help_info_support

 	heuristic_expansion(Mode)

 	hex_digit//1

 	hex_digits//1

 	hierarchyp

 	home/1, [1]

 	hook_pipeline(Pipeline)

 	hook_set(Set)

 	html

 	html5

 	hypergeometric/4

I

 	
 	ibk/3

 	iddfs_interpreter(Increment)

 	identity_hook

 	ids

 	ids(Representation,Bytes)

 	if_empty/1

 	if_expected/1

 	if_expected_or_else/2

 	if_present/1

 	if_present_or_else/2

 	if_unexpected/1

 	include/3

 	included_directory_/1

 	included_entity_/1

 	included_file_/1

 	included_library_/2

 	included_module_/1

 	included_predicate_/1

 	increase/1

 	increment/0

 	increment_counter/1

 	inheritance_diagram

 	inheritance_diagram(Format)

 	init/0

 	init_log_file/2

 	inorder/2

 	insert/3

 	insert/4, [1]

 	insert_after/3

 	insert_all/3, [1]

 	insert_before/3

 	insert_in/4

 	install/1

 	install/2

 	install/3

 	install/4

 	installed/0

 	installed/1

 	installed/3

 	installed/4

 	instance/1

 	instance/2

 	instances/1

 	integer

 	integer//1

 	internal_os_path/2

 	
 	interpreterp

 	intersect/2

 	intersection/2

 	intersection/3, [1]

 	intersection/4

 	interval

 	intervalp

 	invocation_number_/1

 	invoke/1

 	invoke/2

 	ip_grammars(Format)

 	ipv4//1

 	ipv6//1

 	is_absolute_file_name/1

 	is_alpha/1

 	is_alphanumeric/1

 	is_ascii/1

 	is_bin_digit/1

 	is_control/1

 	is_dec_digit/1

 	is_empty/0

 	is_end_of_line/1

 	is_expected/0

 	is_false/1

 	is_hex_digit/1

 	is_layout/1

 	is_letter/1

 	is_lower_case/1

 	is_newline/1

 	is_null/1

 	is_object/1

 	is_octal_digit/1

 	is_period/1

 	is_present/0

 	is_punctuation/1

 	is_quote/1

 	is_true/1

 	is_unexpected/0

 	is_upper_case/1

 	is_validator/1

 	is_void/1

 	is_vowel/1

 	is_white_space/1

 	iso8601

 	issue_creator

 	iterator_element/2

J

 	
 	java

 	java(Reference)

 	java(Reference,ReturnValue)

 	java_access_protocol

 	java_hook

 	java_utils_protocol

 	join/3

 	join_all/3

 	json

 	json(ObjectRepresentation,PairRepresentation,StringRepresentation)

 	
 	json(StringRepresentation)

 	json_lines

 	json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

 	json_lines(StringRepresentation)

 	json_lines_protocol

 	json_protocol

 	jump/3

 	jump_all/3

 	jump_all_block/3

 	jump_to_invocation_number_/1

K

 	
 	key/2

 	keys/2, [1]

 	
 	keys_values/3

 	keysort/2

 	kurtosis/2

L

 	
 	language_object/2

 	last/2, [1]

 	leaf/1

 	leaf_class/1

 	leaf_classes/1

 	leaf_instance/1

 	leaf_instances/1

 	leap_year/1, [1]

 	leaping_/1

 	learn/0

 	learn/1

 	learn/2

 	learn/3

 	learn_seq/2

 	learn_with_timeout/4

 	leash/1

 	leashing/1

 	leashing_/1

 	least_common_multiple/2

 	leaves/1

 	length/2, [1], [2]

 	lgtdoc

 	lgtdoc_messages

 	lgtdocp

 	lgtunit

 	lgtunit_messages

 	libraries/1, [1], [2]

 	libraries/2, [1], [2]

 	libraries/3, [1]

 	library/0

 	library/1, [1], [2], [3], [4], [5]

 	library/2, [1], [2], [3], [4]

 	library_dependency_diagram

 	library_dependency_diagram(Format)

 	library_diagram(Format)

 	library_entity_/4

 	library_load_diagram

 	library_load_diagram(Format)

 	library_score/2

 	license/1

 	line_to_chars/2

 	line_to_chars/3

 	
 	line_to_codes/2

 	line_to_codes/3

 	lint/0, [1]

 	lint/1, [1]

 	lint/2

 	list

 	list(Type)

 	list/0

 	list_to_array/2

 	listing

 	listing/0

 	listing/1

 	listp

 	load_registry/1

 	loaded_file/1

 	loaded_file_property/2, [1]

 	locate_directory/2

 	locate_file/5

 	locate_library/2

 	log/3

 	log_event/2

 	log_file/2

 	log_file_/2, [1]

 	log_point_/3

 	logger

 	logging

 	logging/1

 	logging/3

 	logging_to_file_/2, [1]

 	loggingp

 	logistic/3

 	lognormal/3

 	logseries/2

 	logtalk

 	logtalk_packs/0

 	logtalk_packs/1

 	lookup/2

 	lookup/3

 	lookup_in/3

 	loop

 	loopp

 	lower_upper/2

M

 	
 	magic

 	magic/2

 	magic_expansion(Mode)

 	magicise/4

 	make/1

 	make_directory/1

 	make_directory_path/1

 	make_set/3

 	man/1

 	manhattan_distance/3

 	manhattan_norm/2

 	manuals/0

 	map/2, [1], [2], [3], [4]

 	map/3, [1], [2], [3]

 	map/4

 	map/5

 	map/6

 	map/7

 	map/8

 	map_element/2

 	map_member/3

 	map_reduce/5

 	map_store/4

 	max/2, [1], [2]

 	max/3

 	max_clauses/1

 	max_inv_preds/1

 	max_size/1

 	maxheap

 	maybe

 	maybe/0

 	maybe/1

 	maybe/2

 	maybe_call/1

 	maybe_call/2

 	mean_deviation/2

 	median/2, [1]

 	median_deviation/2

 	meets/2

 	member/2, [1], [2]

 	memberchk/2, [1], [2]

 	merge/3

 	
 	merge_options/2, [1]

 	mermaid_graph_language

 	message_cache_/1, [1], [2], [3]

 	message_diagram_description/1

 	message_hook/4

 	message_prefix_file/6

 	message_prefix_stream/4

 	message_tokens//2

 	met_by/2

 	meta

 	meta_compiler

 	meta_type/3

 	metagol

 	metagol_example_protocol

 	metap

 	metarule/6

 	metarule_next_id/1

 	min/2, [1], [2]

 	min/3

 	min_clauses/1

 	min_max/3, [1]

 	minheap

 	minimal_output

 	missing_predicate_directive_/3

 	modes/2, [1]

 	module_predicate_called_/3

 	module_property/2

 	modules_diagram_support

 	monitor

 	monitor/1

 	monitor/4

 	monitor_activated/0

 	monitored/1

 	monitoring

 	monitorp

 	monitors/1

 	msort/2

 	msort/3

 	multifile_directive_/3

 	mutation/3, [1]

 	mutation/4

 	mutations

 	mutations_store

N

 	
 	name/1, [1]

 	name_of_day/3

 	name_of_month/3

 	natural

 	natural//1

 	navltree

 	nbintree

 	nested_dictionary_protocol

 	new/1, [1], [2], [3]

 	new/2, [1], [2]

 	new/3

 	new_line//0

 	new_lines//0

 	next/2

 	next/3

 	next/4

 	nextto/3, [1]

 	noc_metric

 	node/6

 	node/7

 	node_/6

 	node_path_/2

 	nodebug/0

 	nolog/3

 	nologall/0

 	non_blank//1

 	non_blanks//1

 	non_standard_predicate_call_/2

 	nor_metric

 	normal/3

 	
 	normal_element/2

 	normalize_range/2

 	normalize_range/4

 	normalize_scalar/2

 	normalize_unit/2

 	nospy/1

 	nospy/3

 	nospy/4

 	nospyall/0

 	not_excluded_file/3

 	not_excluded_file/4

 	note/1

 	note/2

 	note/3

 	notrace/0

 	now/3

 	nrbtree

 	nth0/3, [1]

 	nth0/4, [1]

 	nth1/3, [1]

 	nth1/4, [1]

 	null/1

 	null_device_path/1

 	number

 	number//1

 	number_grammars(Format)

 	number_of_tests/1

 	numberlist

 	numberlistp

 	numbervars/1

 	numbervars/3

O

 	
 	object_file_/2

 	object_predicate_called_/3

 	object_wrapper_hook

 	object_wrapper_hook(Name,Relations)

 	object_wrapper_hook(Protocol)

 	observer

 	occurrences/2

 	occurrences/3

 	occurs/2

 	of/2

 	of_expected/2

 	of_unexpected/2

 	omit_path_prefix/3

 	one_or_more//0

 	one_or_more//1

 	one_or_more//2

 	operating_system_machine/1

 	operating_system_name/1

 	operating_system_release/1

 	operating_system_type/1

 	option/2

 	option/3

 	optional

 	optional(Optional)

 	options

 	options_protocol

 	or/2

 	or_else/2, [1]

 	
 	or_else_call/2, [1]

 	or_else_fail/1, [1]

 	or_else_get/2, [1]

 	or_else_throw/1

 	or_else_throw/2

 	orphaned/0

 	orphaned/2

 	os

 	os_types

 	osp

 	outdated/0

 	outdated/1

 	outdated/2

 	outdated/4

 	outdated/5

 	output_edges/1

 	output_externals/1

 	output_file/4

 	output_file_name/2

 	output_file_path/4

 	output_files/2

 	output_library/3

 	output_missing_externals/1

 	output_node/6

 	output_rdirectory/3

 	output_rlibrary/3

 	output_sub_diagrams/1

 	overlapped_by/2

 	overlaps/2

P

 	
 	pack_protocol

 	packs

 	packs_common

 	packs_messages

 	packs_specs_hook

 	pairs

 	parent/1

 	parenthesis/2

 	parents/1

 	parse/2, [1], [2], [3], [4], [5]

 	parse/3

 	parse_domain/2

 	parse_domain/3

 	parse_problem/2

 	parse_problem/3

 	partial_/1, [1]

 	partial_map/4

 	partition/3

 	partition/4, [1]

 	partition/5

 	partition/6

 	pass_info/1

 	pass_info/2

 	passed_/3

 	path_concat/3

 	pcdata_7bit//1

 	pddl

 	permutation/2, [1], [2]

 	pid/1

 	pin/0

 	pin/1

 	pinned/1

 	plus/3

 	poisson/2

 	population

 	port/5

 	port_/5

 	portray_clause/1

 	ports_profiler

 	postorder/2

 	power/2

 	power_sequence/4

 	powerset/2

 	pp/1

 	pp_string/1

 	pprint/1

 	pprint_clause/1

 	
 	pprint_clauses/1

 	pred_info/3

 	predicate/2

 	predicate_breakpoint_/3

 	predicate_called_but_not_defined_/2

 	predicate_entity_/4

 	predicate_info_pair_score_hook/4

 	predicate_info_score_hook/3

 	predicate_mode_score_hook/3

 	predicate_mode_score_hook/5

 	predicates/2

 	prefix/0

 	prefix/1

 	prefix/2, [1]

 	prefix/3

 	preorder/2

 	previous/2

 	previous/3

 	previous/4

 	print_flags/0, [1]

 	print_flags/1

 	print_goal_hook

 	print_message/3

 	print_message_token/4

 	print_message_tokens/3

 	print_readme_file_path/1

 	process_all/1

 	process_directory/2

 	process_entity/2

 	process_file/2

 	process_library/2

 	process_rdirectory/2

 	process_rlibrary/2

 	product/2, [1]

 	product/3

 	program_to_clauses/2

 	prolog_module_hook(Module)

 	proper_prefix/2

 	proper_prefix/3

 	proper_suffix/2

 	proper_suffix/3

 	proto_hierarchy

 	proto_hierarchyp

 	prove/2

 	prove/3

 	provides/2

 	pseudo_random_protocol

Q

 	
 	quasi_skipping_/0

 	question_hook/6

 	question_prompt_stream/4

 	queue

 	
 	queuep

 	quick_check/1

 	quick_check/2

 	quick_check/3

R

 	
 	random

 	random/1

 	random/3

 	random_node/1

 	random_protocol

 	random_tree/1

 	randomize/1, [1]

 	randseq/4

 	randset/4

 	range/2

 	rbtree

 	rdirectories/1

 	rdirectories/2

 	rdirectory/1, [1], [2], [3], [4], [5]

 	rdirectory/2, [1], [2], [3], [4], [5]

 	rdirectory/3, [1]

 	rdirectory_score/2

 	read_file

 	read_file/2, [1], [2]

 	read_file/3, [1]

 	read_file_by_line/2, [1]

 	read_file_by_line/3, [1]

 	read_from_atom/2

 	read_from_chars/2

 	read_from_codes/2

 	read_only_device_path/1

 	read_stream/2, [1]

 	read_stream/3, [1]

 	read_stream_by_line/2, [1]

 	read_stream_by_line/3, [1]

 	read_term_from_atom/3

 	read_term_from_chars/3

 	read_term_from_chars/4

 	read_term_from_codes/3

 	read_term_from_codes/4

 	reader

 	readme/1

 	readme/2

 	readme_file_path/2

 	record_/3

 	recorda/2

 	recorda/3

 	recorded/2

 	recorded/3

 	recorded_database

 	recorded_database_core

 	recordz/2

 	recordz/3

 	redis

 	reference_/1

 	referenced_entity_/2

 	referenced_logtalk_directory_/1

 	referenced_logtalk_file_/1

 	referenced_logtalk_library_/2

 	referenced_module_/2

 	referenced_predicate_/1

 	referenced_prolog_directory_/1

 	
 	referenced_prolog_file_/1

 	referenced_prolog_library_/2

 	registries

 	registry_loader_hook

 	registry_protocol

 	relative_standard_deviation/2

 	remember_included_directory/1

 	remember_included_file/1

 	remember_included_library/2

 	remember_referenced_logtalk_directory/1

 	remember_referenced_logtalk_file/1

 	remember_referenced_logtalk_library/2

 	remember_referenced_prolog_directory/1

 	remember_referenced_prolog_file/1

 	remember_referenced_prolog_library/2

 	remove_directive_/2

 	remove_duplicates/2, [1]

 	removeDependent/1

 	rename_file/2

 	replace/3

 	replace_sub_atom/4

 	rescale/3

 	reset/0, [1], [2], [3], [4]

 	reset/1

 	reset_counter/1

 	reset_counters/0

 	reset_flags/0

 	reset_flags/1

 	reset_genint/0

 	reset_genint/1

 	reset_gensym/0

 	reset_gensym/1

 	reset_monitor/0

 	reset_seed/0, [1]

 	restore/1

 	restore/2

 	reverse/2, [1]

 	rewind/2

 	rewind/3

 	rlibraries/1

 	rlibraries/2

 	rlibrary/1, [1], [2], [3], [4]

 	rlibrary/2, [1], [2], [3], [4]

 	rlibrary_score/2

 	rule/2

 	rule/3

 	rule/4

 	rule_expansion(Mode)

 	run/0

 	run/1

 	run/2

 	run_quick_check_tests/5

 	run_test_set/0

 	run_test_sets/1

 	run_tests/0

 	run_tests/1

 	running_test_sets_/0

S

 	
 	same_length/2, [1]

 	same_length/3

 	sample

 	sampling_protocol

 	save/0

 	save/1, [1]

 	save/2

 	save_edge/5

 	scalar_product/3

 	scan_left/4

 	scan_left_1/3

 	scan_right/4

 	scan_right_1/3

 	search/1

 	seed_/3, [1]

 	select/3, [1], [2], [3]

 	select/4, [1]

 	selectchk/3, [1]

 	selectchk/4

 	selected_test_/1

 	send/3

 	sequence/3

 	sequence/4, [1], [2]

 	sequence/5

 	sequence_grammars

 	sequential_occurrences/2

 	sequential_occurrences/3

 	serve/3

 	set

 	set(Type)

 	set/1

 	set/4

 	set_binary_input/1

 	set_binary_input/2

 	set_binary_input/3

 	set_binary_output/1

 	set_binary_output/2

 	set_binary_output/3

 	set_element/2

 	set_field/2

 	set_flag_value/2

 	set_flag_value/3

 	set_monitor/4

 	set_seed/1, [1]

 	set_spy_point/4

 	set_text_input/1

 	set_text_input/2

 	set_text_input/3

 	set_text_output/1

 	set_text_output/2

 	set_text_output/3

 	set_write_max_depth/1

 	setp

 	setup/0, [1]

 	sha256sum_command/1

 	shell

 	shell(Interpreters)

 	shell/1

 	shell/2

 	shell_command/1

 	shell_expansion(Mode)

 	shrink/3

 	shrink_sequence/3

 	shrinker/1

 	sign//1

 	singletons/2

 	size/2, [1], [2]

 	size_metric

 	skewness/2

 	skipped_/1

 	skipping_/0

 	skipping_unleashed_/1

 	sleep/1

 	softmax/2

 	
 	softmax/3

 	sort/2, [1]

 	sort/3

 	sort/4

 	source_file_extension/1

 	space//0

 	spaces//0

 	split/3

 	split/4

 	spy/1

 	spy/3

 	spy/4

 	spy_point/4

 	spy_point_/4

 	spying/1

 	spying/3

 	spying/4

 	squares_and_cubes/6

 	squares_and_hypers/6

 	standard_cauchy/3

 	standard_deviation/2

 	standard_exponential/1

 	standard_gamma/2

 	standard_normal/1

 	standard_t/2

 	start/0, [1]

 	start_redirect_to_file/2

 	started_by/2

 	starts/2

 	statistics

 	statisticsp

 	stop/0

 	stop_redirect_to_file/0

 	stream_position/1

 	stream_to_bytes/2

 	stream_to_bytes/3

 	stream_to_chars/2

 	stream_to_chars/3

 	stream_to_codes/2

 	stream_to_codes/3

 	stream_to_terms/2

 	stream_to_terms/3

 	streamvars

 	sub_diagram_/1, [1], [2], [3]

 	sub_diagram_/2, [1]

 	sub_directory/2

 	sub_library/2

 	subclass/1

 	subclasses/1

 	subject

 	sublist/2, [1]

 	subsequence/3

 	subsequence/4

 	subset/2

 	substitute/4

 	subsumes/2

 	subterm/2, [1]

 	subtract/3, [1], [2]

 	succ/2

 	suffix/2, [1]

 	suffix/3

 	sum/2, [1]

 	superclass/1

 	superclasses/1

 	supported_archive/1

 	supported_editor_url_scheme_prefix/1

 	supported_url_archive/1

 	suppress_binary_output/0

 	suppress_goal_hook

 	suppress_text_output/0

 	suspend_monitor/0

 	swap/2

 	swap_consecutive/2

 	symdiff/3

T

 	
 	tab//0

 	tabs//0

 	take/3

 	tap_output

 	tap_report

 	tar_command/1

 	temporary_directory/1

 	temporary_file_/1

 	term

 	term_expansion/2

 	term_io

 	term_io_protocol

 	termp

 	terms_to_array/2

 	test/1

 	test/2

 	test/3

 	test_/2

 	test_count_/1, [1]

 	text_file_assertion/3

 	text_file_assertion/4

 	text_input_assertion/2

 	text_input_assertion/3

 	text_output_assertion/2

 	text_output_assertion/3

 	text_output_assertion/4

 	text_output_contents/1

 	text_output_contents/2

 	text_output_contents/3

 	
 	time

 	time_stamp/1

 	timeout

 	timeout/1

 	timep

 	timestamp/2

 	timestamp/8

 	timestamp_/6

 	today/3

 	tolerance_equal/4, [1]

 	top/3

 	top_next/5

 	toychrdb

 	trace/0

 	trace_event/2

 	tracing_/0

 	transpose/2

 	triangular/4

 	triggered_breakpoint_/4

 	triggered_breakpoint_enabled_/2

 	true/1

 	tsv

 	tsv(Header)

 	tsv_protocol

 	tutor

 	type

 	type/1

 	type/3

 	type_entity_/4

U

 	
 	ulid

 	ulid(Representation)

 	ulid_protocol

 	ulid_types

 	unexpected/1

 	unexpecteds/2

 	uniform/1

 	uniform/3

 	uninstall/0

 	uninstall/1

 	uninstall/2

 	union/3

 	union/4, [1]

 	union_all/3

 	union_find

 	union_find_protocol

 	unknown_predicate_called_/2

 	unpin/0

 	unpin/1

 	
 	unsafe_set_flag_value/2

 	unzip/2

 	update/0, [1], [2]

 	update/1, [1], [2]

 	update/2, [1]

 	update/3, [1]

 	update/4

 	update/5

 	update_in/4

 	update_in/5

 	upn_metric

 	user

 	uses_diagram

 	uses_diagram(Format)

 	uuid

 	uuid(Representation)

 	uuid_null/1

 	uuid_protocol

 	uuid_v1/2

 	uuid_v4/1

V

 	
 	valid/1, [1], [2], [3]

 	valid/2

 	valid/3, [1]

 	valid_date/3

 	valid_option/1

 	valid_options/1

 	validate/1

 	validate/3

 	validate_type/1

 	value/1

 	value/3

 	value_reference/2

 	values/2, [1]

 	
 	variables/2

 	variance/2

 	variance/6

 	variant/2, [1]

 	varlist

 	varlistp

 	varnumbers/2

 	varnumbers/3

 	verify_commands_availability/0

 	version/6

 	versions/3

 	void/1

 	void_element/1

 	von_mises/3

W

 	
 	wald/3

 	wall_time/1

 	weibull/3

 	weighted_mean/3

 	welcome/0

 	when/2

 	whiledo/2

 	white_space//0

 	white_spaces//0

 	with_output_to/2

 	without//2

 	working_directory/1

 	wrapper

 	write_file/3, [1]

 	
 	write_max_depth/1

 	write_max_depth_/1

 	write_stream/3, [1]

 	write_term_to_atom/3

 	write_term_to_chars/3

 	write_term_to_chars/4

 	write_term_to_codes/3

 	write_term_to_codes/4

 	write_to_atom/2

 	write_to_chars/2

 	write_to_codes/2

 	write_to_file_hook(File)

 	write_to_file_hook(File,Options)

 	write_to_stream_hook(Stream)

 	write_to_stream_hook(Stream,Options)

X

 	
 	xhtml11

 	xml

 	xml_to_document/3

 	xref_diagram

 	
 	xref_diagram(Format)

 	xunit_net_v2_output

 	xunit_net_v2_report

 	xunit_output

 	xunit_report

Z

 	
 	z_normalization/2

 	zap_to_port_/1

 	zero_or_more//0

 	zero_or_more//1

 	zero_or_more//2

 	
 	zip/2

 	zip/3

 	zip_at_index/4

 	zipperp

 	zlist

 favicon-16x16.png

android-chrome-512x512.png
=]

apple-touch-icon.png
[=]

android-chrome-192x192.png
[=]

favicon-32x32.png
[=]

nav.xhtml

 Table of Contents

 		
 Logtalk APIs

 		
 Libraries

 		
 arbitrary

 		
 arbitrary

 		
 assertions

 		
 assertions

 		
 assertions(Mode)

 		
 assertions_messages

 		
 assignvars

 		
 assignvars

 		
 assignvarsp

 		
 base64

 		
 base64

 		
 base64url

 		
 cbor

 		
 cbor

 		
 cbor(StringRepresentation)

 		
 code_metrics

 		
 cc_metric

 		
 code_metric

 		
 code_metrics

 		
 code_metrics_messages

 		
 code_metrics_utilities

 		
 coupling_metric

 		
 dit_metric

 		
 doc_metric

 		
 halstead_metric

 		
 halstead_metric(Stroud)

 		
 noc_metric

 		
 nor_metric

 		
 size_metric

 		
 upn_metric

 		
 core

 		
 core_messages

 		
 expanding

 		
 forwarding

 		
 logtalk

 		
 monitoring

 		
 user

 		
 coroutining

 		
 coroutining

 		
 csv

 		
 csv

 		
 csv(Header,Separator,IgnoreQuotes)

 		
 csv_guess_questions

 		
 csv_protocol

 		
 dates

 		
 date

 		
 datep

 		
 time

 		
 timep

 		
 dead_code_scanner

 		
 dead_code_scanner

 		
 dead_code_scanner_messages

 		
 debug_messages

 		
 debug_messages

 		
 debugger

 		
 debugger

 		
 debugger_messages

 		
 debuggerp

 		
 dump_trace

 		
 dependents

 		
 observer

 		
 subject

 		
 diagrams

 		
 d2_graph_language

 		
 diagram(Format)

 		
 diagrams

 		
 diagrams(Format)

 		
 directory_dependency_diagram

 		
 directory_dependency_diagram(Format)

 		
 directory_diagram(Format)

 		
 directory_load_diagram

 		
 directory_load_diagram(Format)

 		
 dot_graph_language

 		
 entity_diagram

 		
 entity_diagram(Format)

 		
 file_dependency_diagram

 		
 file_dependency_diagram(Format)

 		
 file_diagram(Format)

 		
 file_load_diagram

 		
 file_load_diagram(Format)

 		
 graph_language_protocol

 		
 graph_language_registry

 		
 inheritance_diagram

 		
 inheritance_diagram(Format)

 		
 library_dependency_diagram

 		
 library_dependency_diagram(Format)

 		
 library_diagram(Format)

 		
 library_load_diagram

 		
 library_load_diagram(Format)

 		
 mermaid_graph_language

 		
 modules_diagram_support

 		
 uses_diagram

 		
 uses_diagram(Format)

 		
 xref_diagram

 		
 xref_diagram(Format)

 		
 dictionaries

 		
 avltree

 		
 bintree

 		
 dictionaryp

 		
 rbtree

 		
 dif

 		
 dif

 		
 doclet

 		
 doclet

 		
 edcg

 		
 edcg

 		
 events

 		
 after_event_registry

 		
 before_event_registry

 		
 event_registry

 		
 event_registryp

 		
 monitor

 		
 monitorp

 		
 expand_library_alias_paths

 		
 expand_library_alias_paths

 		
 expecteds

 		
 either

 		
 expected

 		
 expected(Expected)

 		
 fcube

 		
 fcube

 		
 flags

 		
 flags

 		
 flags_validator

 		
 format

 		
 format

 		
 genint

 		
 genint

 		
 genint_core

 		
 gensym

 		
 gensym

 		
 gensym_core

 		
 git

 		
 git

 		
 git_protocol

 		
 grammars

 		
 blank_grammars(Format)

 		
 ip_grammars(Format)

 		
 number_grammars(Format)

 		
 sequence_grammars

 		
 heaps

 		
 heap(Order)

 		
 heapp

 		
 maxheap

 		
 minheap

 		
 help

 		
 help

 		
 help_info_support

 		
 hierarchies

 		
 class_hierarchy

 		
 class_hierarchyp

 		
 hierarchyp

 		
 proto_hierarchy

 		
 proto_hierarchyp

 		
 hook_flows

 		
 hook_pipeline(Pipeline)

 		
 hook_set(Set)

 		
 hook_objects

 		
 backend_adapter_hook

 		
 default_workflow_hook

 		
 grammar_rules_hook

 		
 identity_hook

 		
 object_wrapper_hook

 		
 object_wrapper_hook(Protocol)

 		
 object_wrapper_hook(Name,Relations)

 		
 print_goal_hook

 		
 prolog_module_hook(Module)

 		
 suppress_goal_hook

 		
 write_to_file_hook(File)

 		
 write_to_file_hook(File,Options)

 		
 write_to_stream_hook(Stream)

 		
 write_to_stream_hook(Stream,Options)

 		
 html

 		
 html

 		
 html5

 		
 xhtml11

 		
 ids

 		
 ids

 		
 ids(Representation,Bytes)

 		
 intervals

 		
 interval

 		
 intervalp

 		
 iso8601

 		
 iso8601

 		
 issue_creator

 		
 issue_creator

 		
 java

 		
 java

 		
 java(Reference)

 		
 java(Reference,ReturnValue)

 		
 java_access_protocol

 		
 java_hook

 		
 java_utils_protocol

 		
 json

 		
 json

 		
 json(StringRepresentation)

 		
 json(ObjectRepresentation,PairRepresentation,StringRepresentation)

 		
 json_protocol

 		
 json_lines

 		
 json_lines

 		
 json_lines(StringRepresentation)

 		
 json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

 		
 json_lines_protocol

 		
 lgtdoc

 		
 lgtdoc

 		
 lgtdoc_messages

 		
 lgtdocp

 		
 lgtunit

 		
 automation_report

 		
 coverage_report

 		
 lgtunit

 		
 lgtunit_messages

 		
 minimal_output

 		
 tap_output

 		
 tap_report

 		
 xunit_net_v2_output

 		
 xunit_net_v2_report

 		
 xunit_output

 		
 xunit_report

 		
 library

 		
 cloning

 		
 counters

 		
 streamvars

 		
 listing

 		
 listing

 		
 logging

 		
 logger

 		
 logging

 		
 loggingp

 		
 loops

 		
 loop

 		
 loopp

 		
 meta

 		
 meta

 		
 metap

 		
 meta_compiler

 		
 meta_compiler

 		
 metagol

 		
 metagol

 		
 metagol_example_protocol

 		
 mutations

 		
 default_atom_mutations

 		
 default_compound_mutations

 		
 default_float_mutations

 		
 default_integer_mutations

 		
 default_list_mutations

 		
 mutations

 		
 mutations_store

 		
 nested_dictionaries

 		
 navltree

 		
 nbintree

 		
 nested_dictionary_protocol

 		
 nrbtree

 		
 optionals

 		
 maybe

 		
 optional

 		
 optional(Optional)

 		
 options

 		
 options

 		
 options_protocol

 		
 os

 		
 os

 		
 os_types

 		
 osp

 		
 packs

 		
 pack_protocol

 		
 packs

 		
 packs_common

 		
 packs_messages

 		
 packs_specs_hook

 		
 registries

 		
 registry_loader_hook

 		
 registry_protocol

 		
 pddl_parser

 		
 pddl

 		
 read_file

 		
 ports_profiler

 		
 ports_profiler

 		
 queues

 		
 queue

 		
 queuep

 		
 random

 		
 backend_random

 		
 fast_random

 		
 pseudo_random_protocol

 		
 random

 		
 random_protocol

 		
 sampling_protocol

 		
 reader

 		
 reader

 		
 recorded_database

 		
 recorded_database

 		
 recorded_database_core

 		
 redis

 		
 redis

 		
 sets

 		
 set

 		
 set(Type)

 		
 setp

 		
 statistics

 		
 population

 		
 sample

 		
 statistics

 		
 statisticsp

 		
 term_io

 		
 term_io

 		
 term_io_protocol

 		
 timeout

 		
 timeout

 		
 toychr

 		
 toychrdb

 		
 tsv

 		
 tsv

 		
 tsv(Header)

 		
 tsv_protocol

 		
 tutor

 		
 tutor

 		
 types

 		
 atom

 		
 atomic

 		
 callable

 		
 character

 		
 characterp

 		
 comparingp

 		
 compound

 		
 difflist

 		
 float

 		
 integer

 		
 list

 		
 list(Type)

 		
 listp

 		
 natural

 		
 number

 		
 numberlist

 		
 numberlistp

 		
 pairs

 		
 term

 		
 termp

 		
 type

 		
 varlist

 		
 varlistp

 		
 ulid

 		
 ulid

 		
 ulid(Representation)

 		
 ulid_protocol

 		
 ulid_types

 		
 union_find

 		
 union_find

 		
 union_find_protocol

 		
 uuid

 		
 uuid

 		
 uuid(Representation)

 		
 uuid_protocol

 		
 verdi_neruda

 		
 a_star_interpreter(W)

 		
 benchmark_generators

 		
 best_first

 		
 bfs_interpreter

 		
 bup_interpreter

 		
 counter

 		
 databasep

 		
 debug_expansion(Mode)

 		
 demodb

 		
 dfs_interpreter

 		
 flatting

 		
 heuristic_expansion(Mode)

 		
 iddfs_interpreter(Increment)

 		
 interpreterp

 		
 magic

 		
 magic_expansion(Mode)

 		
 rule_expansion(Mode)

 		
 shell

 		
 shell(Interpreters)

 		
 shell_expansion(Mode)

 		
 wrapper

 		
 wrapper

 		
 xml_parser

 		
 xml

 		
 zippers

 		
 zipperp

 		
 zlist

 		
 Directories

 		
 contributions/flags/

 		
 flags

 		
 flags_validator

 		
 contributions/iso8601/

 		
 iso8601

 		
 contributions/pddl_parser/

 		
 pddl

 		
 read_file

 		
 contributions/verdi_neruda/

 		
 a_star_interpreter(W)

 		
 benchmark_generators

 		
 best_first

 		
 bfs_interpreter

 		
 bup_interpreter

 		
 counter

 		
 databasep

 		
 debug_expansion(Mode)

 		
 demodb

 		
 dfs_interpreter

 		
 flatting

 		
 heuristic_expansion(Mode)

 		
 iddfs_interpreter(Increment)

 		
 interpreterp

 		
 magic

 		
 magic_expansion(Mode)

 		
 rule_expansion(Mode)

 		
 shell

 		
 shell(Interpreters)

 		
 shell_expansion(Mode)

 		
 contributions/xml_parser/

 		
 xml

 		
 core/

 		
 core_messages

 		
 expanding

 		
 forwarding

 		
 logtalk

 		
 monitoring

 		
 user

 		
 library/

 		
 cloning

 		
 counters

 		
 streamvars

 		
 library/arbitrary/

 		
 arbitrary

 		
 library/assignvars/

 		
 assignvars

 		
 assignvarsp

 		
 library/base64/

 		
 base64

 		
 base64url

 		
 library/cbor/

 		
 cbor

 		
 cbor(StringRepresentation)

 		
 library/coroutining/

 		
 coroutining

 		
 library/csv/

 		
 csv

 		
 csv(Header,Separator,IgnoreQuotes)

 		
 csv_guess_questions

 		
 csv_protocol

 		
 library/dates/

 		
 date

 		
 datep

 		
 time

 		
 timep

 		
 library/dependents/

 		
 observer

 		
 subject

 		
 library/dictionaries/

 		
 avltree

 		
 bintree

 		
 dictionaryp

 		
 rbtree

 		
 library/dif/

 		
 dif

 		
 library/edcg/

 		
 edcg

 		
 library/events/

 		
 after_event_registry

 		
 before_event_registry

 		
 event_registry

 		
 event_registryp

 		
 monitor

 		
 monitorp

 		
 library/expand_library_alias_paths/

 		
 expand_library_alias_paths

 		
 library/expecteds/

 		
 either

 		
 expected

 		
 expected(Expected)

 		
 library/format/

 		
 format

 		
 library/genint/

 		
 genint

 		
 genint_core

 		
 library/gensym/

 		
 gensym

 		
 gensym_core

 		
 library/git/

 		
 git

 		
 git_protocol

 		
 library/grammars/

 		
 blank_grammars(Format)

 		
 ip_grammars(Format)

 		
 number_grammars(Format)

 		
 sequence_grammars

 		
 library/heaps/

 		
 heap(Order)

 		
 heapp

 		
 maxheap

 		
 minheap

 		
 library/hierarchies/

 		
 class_hierarchy

 		
 class_hierarchyp

 		
 hierarchyp

 		
 proto_hierarchy

 		
 proto_hierarchyp

 		
 library/hook_flows/

 		
 hook_pipeline(Pipeline)

 		
 hook_set(Set)

 		
 library/hook_objects/

 		
 backend_adapter_hook

 		
 default_workflow_hook

 		
 grammar_rules_hook

 		
 identity_hook

 		
 object_wrapper_hook

 		
 object_wrapper_hook(Protocol)

 		
 object_wrapper_hook(Name,Relations)

 		
 print_goal_hook

 		
 prolog_module_hook(Module)

 		
 suppress_goal_hook

 		
 write_to_file_hook(File)

 		
 write_to_file_hook(File,Options)

 		
 write_to_stream_hook(Stream)

 		
 write_to_stream_hook(Stream,Options)

 		
 library/html/

 		
 html

 		
 html5

 		
 xhtml11

 		
 library/ids/

 		
 ids

 		
 ids(Representation,Bytes)

 		
 library/intervals/

 		
 interval

 		
 intervalp

 		
 library/java/

 		
 java

 		
 java(Reference)

 		
 java(Reference,ReturnValue)

 		
 java_access_protocol

 		
 java_hook

 		
 java_utils_protocol

 		
 library/json/

 		
 json

 		
 json(StringRepresentation)

 		
 json(ObjectRepresentation,PairRepresentation,StringRepresentation)

 		
 json_protocol

 		
 library/json_lines/

 		
 json_lines

 		
 json_lines(StringRepresentation)

 		
 json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

 		
 json_lines_protocol

 		
 library/listing/

 		
 listing

 		
 library/logging/

 		
 logger

 		
 logging

 		
 loggingp

 		
 library/loops/

 		
 loop

 		
 loopp

 		
 library/meta/

 		
 meta

 		
 metap

 		
 library/meta_compiler/

 		
 meta_compiler

 		
 library/mutations/

 		
 default_atom_mutations

 		
 default_compound_mutations

 		
 default_float_mutations

 		
 default_integer_mutations

 		
 default_list_mutations

 		
 mutations

 		
 mutations_store

 		
 library/nested_dictionaries/

 		
 navltree

 		
 nbintree

 		
 nested_dictionary_protocol

 		
 nrbtree

 		
 library/optionals/

 		
 maybe

 		
 optional

 		
 optional(Optional)

 		
 library/options/

 		
 options

 		
 options_protocol

 		
 library/os/

 		
 os

 		
 os_types

 		
 osp

 		
 library/queues/

 		
 queue

 		
 queuep

 		
 library/random/

 		
 backend_random

 		
 fast_random

 		
 pseudo_random_protocol

 		
 random

 		
 random_protocol

 		
 sampling_protocol

 		
 library/reader/

 		
 reader

 		
 library/recorded_database/

 		
 recorded_database

 		
 recorded_database_core

 		
 library/redis/

 		
 redis

 		
 library/sets/

 		
 set

 		
 set(Type)

 		
 setp

 		
 library/statistics/

 		
 population

 		
 sample

 		
 statistics

 		
 statisticsp

 		
 library/term_io/

 		
 term_io

 		
 term_io_protocol

 		
 library/timeout/

 		
 timeout

 		
 library/tsv/

 		
 tsv

 		
 tsv(Header)

 		
 tsv_protocol

 		
 library/types/

 		
 atom

 		
 atomic

 		
 callable

 		
 character

 		
 characterp

 		
 comparingp

 		
 compound

 		
 difflist

 		
 float

 		
 integer

 		
 list

 		
 list(Type)

 		
 listp

 		
 natural

 		
 number

 		
 numberlist

 		
 numberlistp

 		
 pairs

 		
 term

 		
 termp

 		
 type

 		
 varlist

 		
 varlistp

 		
 library/ulid/

 		
 ulid

 		
 ulid(Representation)

 		
 ulid_protocol

 		
 ulid_types

 		
 library/union_find/

 		
 union_find

 		
 union_find_protocol

 		
 library/uuid/

 		
 uuid

 		
 uuid(Representation)

 		
 uuid_protocol

 		
 library/zippers/

 		
 zipperp

 		
 zlist

 		
 ports/fcube/

 		
 fcube

 		
 ports/metagol/

 		
 metagol

 		
 metagol_example_protocol

 		
 ports/toychr/

 		
 toychrdb

 		
 tools/assertions/

 		
 assertions

 		
 assertions(Mode)

 		
 assertions_messages

 		
 tools/code_metrics/

 		
 cc_metric

 		
 code_metric

 		
 code_metrics

 		
 code_metrics_messages

 		
 code_metrics_utilities

 		
 coupling_metric

 		
 dit_metric

 		
 doc_metric

 		
 halstead_metric

 		
 halstead_metric(Stroud)

 		
 noc_metric

 		
 nor_metric

 		
 size_metric

 		
 upn_metric

 		
 tools/dead_code_scanner/

 		
 dead_code_scanner

 		
 dead_code_scanner_messages

 		
 tools/debug_messages/

 		
 debug_messages

 		
 tools/debugger/

 		
 debugger

 		
 debugger_messages

 		
 debuggerp

 		
 dump_trace

 		
 tools/diagrams/

 		
 d2_graph_language

 		
 diagram(Format)

 		
 diagrams

 		
 diagrams(Format)

 		
 directory_dependency_diagram

 		
 directory_dependency_diagram(Format)

 		
 directory_diagram(Format)

 		
 directory_load_diagram

 		
 directory_load_diagram(Format)

 		
 dot_graph_language

 		
 entity_diagram

 		
 entity_diagram(Format)

 		
 file_dependency_diagram

 		
 file_dependency_diagram(Format)

 		
 file_diagram(Format)

 		
 file_load_diagram

 		
 file_load_diagram(Format)

 		
 graph_language_protocol

 		
 graph_language_registry

 		
 inheritance_diagram

 		
 inheritance_diagram(Format)

 		
 library_dependency_diagram

 		
 library_dependency_diagram(Format)

 		
 library_diagram(Format)

 		
 library_load_diagram

 		
 library_load_diagram(Format)

 		
 mermaid_graph_language

 		
 modules_diagram_support

 		
 uses_diagram

 		
 uses_diagram(Format)

 		
 xref_diagram

 		
 xref_diagram(Format)

 		
 tools/doclet/

 		
 doclet

 		
 tools/help/

 		
 help

 		
 help_info_support

 		
 tools/issue_creator/

 		
 issue_creator

 		
 tools/lgtdoc/

 		
 lgtdoc

 		
 lgtdoc_messages

 		
 lgtdocp

 		
 tools/lgtunit/

 		
 automation_report

 		
 coverage_report

 		
 lgtunit

 		
 lgtunit_messages

 		
 minimal_output

 		
 tap_output

 		
 tap_report

 		
 xunit_net_v2_output

 		
 xunit_net_v2_report

 		
 xunit_output

 		
 xunit_report

 		
 tools/packs/

 		
 pack_protocol

 		
 packs

 		
 packs_common

 		
 packs_messages

 		
 packs_specs_hook

 		
 registries

 		
 registry_loader_hook

 		
 registry_protocol

 		
 tools/ports_profiler/

 		
 ports_profiler

 		
 tools/tutor/

 		
 tutor

 		
 tools/wrapper/

 		
 wrapper

 		
 Entities

 		
 Categories

 		
 arbitrary

 		
 assertions_messages

 		
 best_first

 		
 class_hierarchy

 		
 code_metric

 		
 code_metrics_messages

 		
 code_metrics_utilities

 		
 core_messages

 		
 counters

 		
 csv_guess_questions

 		
 dead_code_scanner_messages

 		
 debugger_messages

 		
 diagram(Format)

 		
 directory_diagram(Format)

 		
 file_diagram(Format)

 		
 flags

 		
 flatting

 		
 genint_core

 		
 gensym_core

 		
 help_info_support

 		
 html

 		
 lgtdoc_messages

 		
 lgtunit_messages

 		
 library_diagram(Format)

 		
 listing

 		
 logging

 		
 monitor

 		
 mutations

 		
 observer

 		
 options

 		
 os_types

 		
 packs_common

 		
 packs_messages

 		
 proto_hierarchy

 		
 read_file

 		
 recorded_database_core

 		
 statistics

 		
 subject

 		
 ulid_types

 		
 Objects

 		
 a_star_interpreter(W)

 		
 after_event_registry

 		
 assertions

 		
 assertions(Mode)

 		
 assignvars

 		
 atom

 		
 atomic

 		
 automation_report

 		
 avltree

 		
 backend_adapter_hook

 		
 backend_random

 		
 base64

 		
 base64url

 		
 before_event_registry

 		
 benchmark_generators

 		
 bfs_interpreter

 		
 bintree

 		
 blank_grammars(Format)

 		
 bup_interpreter

 		
 callable

 		
 cbor

 		
 cbor(StringRepresentation)

 		
 cc_metric

 		
 character

 		
 code_metrics

 		
 compound

 		
 coroutining

 		
 counter

 		
 coupling_metric

 		
 coverage_report

 		
 csv

 		
 csv(Header,Separator,IgnoreQuotes)

 		
 d2_graph_language

 		
 date

 		
 dead_code_scanner

 		
 debug_expansion(Mode)

 		
 debug_messages

 		
 debugger

 		
 default_atom_mutations

 		
 default_compound_mutations

 		
 default_float_mutations

 		
 default_integer_mutations

 		
 default_list_mutations

 		
 default_workflow_hook

 		
 demodb

 		
 dfs_interpreter

 		
 diagrams

 		
 diagrams(Format)

 		
 dif

 		
 difflist

 		
 directory_dependency_diagram

 		
 directory_dependency_diagram(Format)

 		
 directory_load_diagram

 		
 directory_load_diagram(Format)

 		
 dit_metric

 		
 doc_metric

 		
 doclet

 		
 dot_graph_language

 		
 dump_trace

 		
 edcg

 		
 either

 		
 entity_diagram

 		
 entity_diagram(Format)

 		
 event_registry

 		
 expand_library_alias_paths

 		
 expected

 		
 expected(Expected)

 		
 fast_random

 		
 fcube

 		
 file_dependency_diagram

 		
 file_dependency_diagram(Format)

 		
 file_load_diagram

 		
 file_load_diagram(Format)

 		
 float

 		
 format

 		
 genint

 		
 gensym

 		
 git

 		
 grammar_rules_hook

 		
 graph_language_registry

 		
 halstead_metric

 		
 halstead_metric(Stroud)

 		
 heap(Order)

 		
 help

 		
 heuristic_expansion(Mode)

 		
 hook_pipeline(Pipeline)

 		
 hook_set(Set)

 		
 html5

 		
 iddfs_interpreter(Increment)

 		
 identity_hook

 		
 ids

 		
 ids(Representation,Bytes)

 		
 inheritance_diagram

 		
 inheritance_diagram(Format)

 		
 integer

 		
 interval

 		
 ip_grammars(Format)

 		
 iso8601

 		
 issue_creator

 		
 java

 		
 java(Reference)

 		
 java(Reference,ReturnValue)

 		
 java_hook

 		
 json

 		
 json(StringRepresentation)

 		
 json(ObjectRepresentation,PairRepresentation,StringRepresentation)

 		
 json_lines

 		
 json_lines(StringRepresentation)

 		
 json_lines(ObjectRepresentation,PairRepresentation,StringRepresentation)

 		
 lgtdoc

 		
 lgtunit

 		
 library_dependency_diagram

 		
 library_dependency_diagram(Format)

 		
 library_load_diagram

 		
 library_load_diagram(Format)

 		
 list

 		
 list(Type)

 		
 logger

 		
 logtalk

 		
 loop

 		
 magic

 		
 magic_expansion(Mode)

 		
 maxheap

 		
 maybe

 		
 mermaid_graph_language

 		
 meta

 		
 meta_compiler

 		
 metagol

 		
 minheap

 		
 minimal_output

 		
 modules_diagram_support

 		
 mutations_store

 		
 natural

 		
 navltree

 		
 nbintree

 		
 noc_metric

 		
 nor_metric

 		
 nrbtree

 		
 number

 		
 number_grammars(Format)

 		
 numberlist

 		
 object_wrapper_hook

 		
 object_wrapper_hook(Protocol)

 		
 object_wrapper_hook(Name,Relations)

 		
 optional

 		
 optional(Optional)

 		
 os

 		
 packs

 		
 packs_specs_hook

 		
 pairs

 		
 pddl

 		
 population

 		
 ports_profiler

 		
 print_goal_hook

 		
 prolog_module_hook(Module)

 		
 queue

 		
 random

 		
 rbtree

 		
 reader

 		
 recorded_database

 		
 redis

 		
 registries

 		
 registry_loader_hook

 		
 rule_expansion(Mode)

 		
 sample

 		
 sequence_grammars

 		
 set

 		
 set(Type)

 		
 shell

 		
 shell(Interpreters)

 		
 shell_expansion(Mode)

 		
 size_metric

 		
 streamvars

 		
 suppress_goal_hook

 		
 tap_output

 		
 tap_report

 		
 term

 		
 term_io

 		
 time

 		
 timeout

 		
 toychrdb

 		
 tsv

 		
 tsv(Header)

 		
 tutor

 		
 type

 		
 ulid

 		
 ulid(Representation)

 		
 union_find

 		
 upn_metric

 		
 user

 		
 uses_diagram

 		
 uses_diagram(Format)

 		
 uuid

 		
 uuid(Representation)

 		
 varlist

 		
 wrapper

 		
 write_to_file_hook(File)

 		
 write_to_file_hook(File,Options)

 		
 write_to_stream_hook(Stream)

 		
 write_to_stream_hook(Stream,Options)

 		
 xhtml11

 		
 xml

 		
 xref_diagram

 		
 xref_diagram(Format)

 		
 xunit_net_v2_output

 		
 xunit_net_v2_report

 		
 xunit_output

 		
 xunit_report

 		
 zlist

 		
 Protocols

 		
 assignvarsp

 		
 characterp

 		
 class_hierarchyp

 		
 cloning

 		
 comparingp

 		
 csv_protocol

 		
 databasep

 		
 datep

 		
 debuggerp

 		
 dictionaryp

 		
 event_registryp

 		
 expanding

 		
 flags_validator

 		
 forwarding

 		
 git_protocol

 		
 graph_language_protocol

 		
 heapp

 		
 hierarchyp

 		
 interpreterp

 		
 intervalp

 		
 java_access_protocol

 		
 java_utils_protocol

 		
 json_lines_protocol

 		
 json_protocol

 		
 lgtdocp

 		
 listp

 		
 loggingp

 		
 loopp

 		
 metagol_example_protocol

 		
 metap

 		
 monitoring

 		
 monitorp

 		
 nested_dictionary_protocol

 		
 numberlistp

 		
 options_protocol

 		
 osp

 		
 pack_protocol

 		
 proto_hierarchyp

 		
 pseudo_random_protocol

 		
 queuep

 		
 random_protocol

 		
 registry_protocol

 		
 sampling_protocol

 		
 setp

 		
 statisticsp

 		
 term_io_protocol

 		
 termp

 		
 timep

 		
 tsv_protocol

 		
 ulid_protocol

 		
 union_find_protocol

 		
 uuid_protocol

 		
 varlistp

 		
 zipperp

 		
 Predicates

 		
 (/)/2

 		
 (//)/2

 		
 (<)/2

 		
 (<=)/2

 		
 (=:=)/2

 		
 (=<)/2

 		
 (=>)/2

 		
 (=\=)/2

 		
 =~= / 2

 		
 (>)/2

 		
 (>=)/2

 		
 absolute_file_name/2

 		
 activate_debug_handler/1

 		
 activate_monitor/0

 		
 active_debug_handler/1

 		
 add/1

 		
 add/2

 		
 add/3

 		
 addDependent/1

 		
 after/2

 		
 after/3

 		
 all/0

 		
 all/1

 		
 all_files/0

 		
 all_files/1

 		
 all_libraries/0

 		
 all_libraries/1

 		
 all_score/1

 		
 ancestor/1

 		
 ancestors/1

 		
 apis/0

 		
 apis/1

 		
 append/2

 		
 append/3

 		
 apply/2

 		
 apply/4

 		
 approximately_equal/2

 		
 approximately_equal/3

 		
 arbitrary/1

 		
 arbitrary/2

 		
 archive/1

 		
 arithmetic_mean/2

 		
 array_list/2

 		
 array_to_list/2

 		
 array_to_terms/2

 		
 array_to_terms/3

 		
 as_curly_bracketed/2

 		
 as_dictionary/2

 		
 as_difflist/2

 		
 as_heap/2

 		
 as_list/2

 		
 as_nested_dictionary/2

 		
 as_set/2

 		
 ask_question/5

 		
 assertion/1

 		
 assertion/2

 		
 assignable/1

 		
 assignable/2

 		
 available/0

 		
 available/1

 		
 available/2

 		
 average/2

 		
 average_deviation/3

 		
 before/2

 		
 before/3

 		
 bench_goal/1

 		
 benchmark/2

 		
 benchmark/3

 		
 benchmark/4

 		
 benchmark_reified/3

 		
 bernoulli/2

 		
 beta/3

 		
 between/3

 		
 between/4

 		
 binomial/3

 		
 bit//1

 		
 bits//1

 		
 blank//0

 		
 blanks//0

 		
 body_pred/1

 		
 branch/2

 		
 built_in_directive/4

 		
 built_in_flag/2

 		
 built_in_method/4

 		
 built_in_non_terminal/4

 		
 built_in_predicate/4

 		
 calendar_month/3

 		
 call_with_timeout/2

 		
 call_with_timeout/3

 		
 cat/2

 		
 change_directory/1

 		
 changed/0

 		
 changed/1

 		
 chebyshev_distance/3

 		
 chebyshev_norm/2

 		
 check/1

 		
 check/2

 		
 check/3

 		
 check_option/1

 		
 check_options/1

 		
 chi_squared/2

 		
 chr_is/2

 		
 chr_no_spy/1

 		
 chr_nospy/0

 		
 chr_notrace/0

 		
 chr_option/2

 		
 chr_spy/1

 		
 chr_trace/0

 		
 circular_uniform_cartesian/3

 		
 circular_uniform_polar/3

 		
 class/1

 		
 classes/1

 		
 clause/5

 		
 clause_location/6

 		
 clean/0

 		
 clean/1

 		
 clean/2

 		
 clone/1

 		
 clone/3

 		
 clone/4

 		
 coefficient_of_variation/2

 		
 command_line_arguments/1

 		
 commit_author/2

 		
 commit_date/2

 		
 commit_hash/2

 		
 commit_hash_abbreviated/2

 		
 commit_log/3

 		
 commit_message/2

 		
 compile_aux_clauses/1

 		
 compile_predicate_heads/4

 		
 compile_predicate_indicators/3

 		
 completion/2

 		
 completions/2

 		
 connect/1

 		
 connect/3

 		
 console/1

 		
 contains/2

 		
 control//0

 		
 control_construct/4

 		
 controls//0

 		
 copy_file/2

 		
 counter/2

 		
 cover/1

 		
 cpu_time/1

 		
 current/2

 		
 data/0

 		
 data/1

 		
 data/2

 		
 date/4

 		
 date/5

 		
 date/6

 		
 date/7

 		
 date_string/3

 		
 date_time/7

 		
 days_in_month/3

 		
 deactivate_debug_handler/0

 		
 debug/0

 		
 debug_handler/1

 		
 debug_handler/3

 		
 debugging/0

 		
 debugging/1

 		
 decide/1

 		
 decide/2

 		
 decode_exception/2

 		
 decode_exception/3

 		
 decompile_predicate_heads/4

 		
 decompile_predicate_indicators/4

 		
 decompose_file_name/3

 		
 decompose_file_name/4

 		
 decrement_counter/1

 		
 default_option/1

 		
 default_options/1

 		
 define_log_file/2

 		
 defined/4

 		
 defined_flag/6

 		
 del_monitors/0

 		
 del_monitors/4

 		
 del_spy_points/4

 		
 delete/0

 		
 delete/1

 		
 delete/2

 		
 delete/3

 		
 delete/4

 		
 delete_all_after/2

 		
 delete_all_after_and_unzip/2

 		
 delete_all_before/2

 		
 delete_all_before_and_unzip/2

 		
 delete_and_next/2

 		
 delete_and_previous/2

 		
 delete_and_unzip/2

 		
 delete_directory/1

 		
 delete_directory_and_contents/1

 		
 delete_directory_contents/1

 		
 delete_file/1

 		
 delete_in/4

 		
 delete_matches/3

 		
 delete_max/4

 		
 delete_min/4

 		
 dependents/1

 		
 dependents/2

 		
 dependents/3

 		
 depth/2

 		
 descendant/1

 		
 descendant_class/1

 		
 descendant_classes/1

 		
 descendant_instance/1

 		
 descendant_instances/1

 		
 descendants/1

 		
 describe/1

 		
 describe/2

 		
 description/1

 		
 deterministic/1

 		
 deterministic/2

 		
 diagram_description/1

 		
 diagram_name_suffix/1

 		
 dif/1

 		
 dif/2

 		
 digit//1

 		
 digits//1

 		
 directories/1

 		
 directories/2

 		
 directories/3

 		
 directory/1

 		
 directory/2

 		
 directory/3

 		
 directory_exists/1

 		
 directory_files/2

 		
 directory_files/3

 		
 directory_score/2

 		
 dirichlet/2

 		
 disable/1

 		
 disable/2

 		
 disable_logging/1

 		
 disconnect/1

 		
 disjoint/2

 		
 disjoint_sets/2

 		
 doc_goal/1

 		
 dot//1

 		
 dowhile/2

 		
 drop/3

 		
 during/2

 		
 easter_day/3

 		
 edge/6

 		
 edge_case/2

 		
 either/3

 		
 empty/1

 		
 enable/1

 		
 enable/2

 		
 enable_logging/1

 		
 enabled/1

 		
 enabled/2

 		
 ensure_directory/1

 		
 ensure_file/1

 		
 entity/1

 		
 entity/2

 		
 entity_info_pair_score_hook/3

 		
 entity_info_score_hook/2

 		
 entity_predicates_weights_hook/2

 		
 entity_prefix/2

 		
 entity_score/2

 		
 enumerate/2

 		
 environment_variable/2

 		
 epsilon/1

 		
 equal/2

 		
 erase/1

 		
 essentially_equal/3

 		
 euclidean_distance/3

 		
 euclidean_norm/2

 		
 exclude/3

 		
 execution_context/7

 		
 expand_library_path/2

 		
 expected/1

 		
 expecteds/2

 		
 explain//1

 		
 exponential/2

 		
 extension/1

 		
 extensions/1

 		
 failed_test_reason//1

 		
 false/1

 		
 fcube/0

 		
 file/1

 		
 file/2

 		
 file_exists/1

 		
 file_footer/3

 		
 file_header/3

 		
 file_modification_time/2

 		
 file_permission/2

 		
 file_score/2

 		
 file_size/2

 		
 file_to_bytes/2

 		
 file_to_bytes/3

 		
 file_to_chars/2

 		
 file_to_chars/3

 		
 file_to_codes/2

 		
 file_to_codes/3

 		
 file_to_terms/2

 		
 file_to_terms/3

 		
 file_type_extension/2

 		
 files/1

 		
 files/2

 		
 files/3

 		
 filter/2

 		
 find/4

 		
 find/5

 		
 findall_member/4

 		
 findall_member/5

 		
 finished_by/2

 		
 finishes/2

 		
 fisher/3

 		
 flag_group_chk/1

 		
 flag_groups/1

 		
 flat_map/2

 		
 flatten/2

 		
 float//1

 		
 fold_left/4

 		
 fold_left_1/3

 		
 fold_right/4

 		
 fold_right_1/3

 		
 fordownto/3

 		
 fordownto/4

 		
 fordownto/5

 		
 foreach/3

 		
 foreach/4

 		
 format/2

 		
 format/3

 		
 format_entity_score//2

 		
 format_object/1

 		
 format_to_atom/3

 		
 format_to_chars/3

 		
 format_to_chars/4

 		
 format_to_codes/3

 		
 format_to_codes/4

 		
 forto/3

 		
 forto/4

 		
 forto/5

 		
 forward/1

 		
 forward/2

 		
 forward/3

 		
 fractile/3

 		
 freeze/2

 		
 from_generator/2

 		
 from_generator/3

 		
 from_generator/4

 		
 from_goal/2

 		
 from_goal/3

 		
 from_goal/4

 		
 frozen/2

 		
 full_device_path/1

 		
 func_test/3

 		
 functional/0

 		
 gamma/3

 		
 generate/1

 		
 generate/2

 		
 generate/8

 		
 genint/2

 		
 gensym/2

 		
 geometric/2

 		
 geometric_mean/2

 		
 get/1

 		
 get_field/2

 		
 get_flag_value/2

 		
 get_seed/1

 		
 gnu/0

 		
 goal_expansion/2

 		
 graph_footer/5

 		
 graph_header/5

 		
 ground/1

 		
 group_by_key/2

 		
 group_consecutive_by_key/2

 		
 group_sorted_by_key/2

 		
 guess_arity/2

 		
 guess_separator/2

 		
 gumbel/3

 		
 hamming_distance/3

 		
 handbook/0

 		
 handbook/1

 		
 harmonic_mean/2

 		
 head/2

 		
 head_pred/1

 		
 help/0

 		
 hex_digit//1

 		
 hex_digits//1

 		
 home/1

 		
 hypergeometric/4

 		
 ibk/3

 		
 if_empty/1

 		
 if_expected/1

 		
 if_expected_or_else/2

 		
 if_present/1

 		
 if_present_or_else/2

 		
 if_unexpected/1

 		
 include/3

 		
 increase/1

 		
 increment/0

 		
 increment_counter/1

 		
 init/0

 		
 init_log_file/2

 		
 inorder/2

 		
 insert/3

 		
 insert/4

 		
 insert_after/3

 		
 insert_all/3

 		
 insert_before/3

 		
 insert_in/4

 		
 install/1

 		
 install/2

 		
 install/3

 		
 install/4

 		
 installed/0

 		
 installed/1

 		
 installed/3

 		
 installed/4

 		
 instance/1

 		
 instance/2

 		
 instances/1

 		
 integer//1

 		
 internal_os_path/2

 		
 intersect/2

 		
 intersection/2

 		
 intersection/3

 		
 intersection/4

 		
 invoke/1

 		
 invoke/2

 		
 ipv4//1

 		
 ipv6//1

 		
 is_absolute_file_name/1

 		
 is_alpha/1

 		
 is_alphanumeric/1

 		
 is_ascii/1

 		
 is_bin_digit/1

 		
 is_control/1

 		
 is_dec_digit/1

 		
 is_empty/0

 		
 is_end_of_line/1

 		
 is_expected/0

 		
 is_false/1

 		
 is_hex_digit/1

 		
 is_layout/1

 		
 is_letter/1

 		
 is_lower_case/1

 		
 is_newline/1

 		
 is_null/1

 		
 is_object/1

 		
 is_octal_digit/1

 		
 is_period/1

 		
 is_present/0

 		
 is_punctuation/1

 		
 is_quote/1

 		
 is_true/1

 		
 is_unexpected/0

 		
 is_upper_case/1

 		
 is_void/1

 		
 is_vowel/1

 		
 is_white_space/1

 		
 iterator_element/2

 		
 join/3

 		
 join_all/3

 		
 jump/3

 		
 jump_all/3

 		
 jump_all_block/3

 		
 key/2

 		
 keys/2

 		
 keys_values/3

 		
 keysort/2

 		
 kurtosis/2

 		
 language_object/2

 		
 last/2

 		
 leaf/1

 		
 leaf_class/1

 		
 leaf_classes/1

 		
 leaf_instance/1

 		
 leaf_instances/1

 		
 leap_year/1

 		
 learn/0

 		
 learn/1

 		
 learn/2

 		
 learn/3

 		
 learn_seq/2

 		
 learn_with_timeout/4

 		
 leash/1

 		
 leashing/1

 		
 least_common_multiple/2

 		
 leaves/1

 		
 length/2

 		
 libraries/1

 		
 libraries/2

 		
 libraries/3

 		
 library/0

 		
 library/1

 		
 library/2

 		
 library_score/2

 		
 license/1

 		
 line_to_chars/2

 		
 line_to_chars/3

 		
 line_to_codes/2

 		
 line_to_codes/3

 		
 lint/0

 		
 lint/1

 		
 lint/2

 		
 list/0

 		
 list_to_array/2

 		
 listing/0

 		
 listing/1

 		
 loaded_file/1

 		
 loaded_file_property/2

 		
 log/3

 		
 log_event/2

 		
 log_file/2

 		
 logging/1

 		
 logging/3

 		
 logistic/3

 		
 lognormal/3

 		
 logseries/2

 		
 logtalk_packs/0

 		
 logtalk_packs/1

 		
 lookup/2

 		
 lookup/3

 		
 lookup_in/3

 		
 lower_upper/2

 		
 magic/2

 		
 magicise/4

 		
 make_directory/1

 		
 make_directory_path/1

 		
 make_set/3

 		
 man/1

 		
 manhattan_distance/3

 		
 manhattan_norm/2

 		
 manuals/0

 		
 map/2

 		
 map/3

 		
 map/4

 		
 map/5

 		
 map/6

 		
 map/7

 		
 map/8

 		
 map_element/2

 		
 map_reduce/5

 		
 max/2

 		
 max/3

 		
 max_clauses/1

 		
 max_inv_preds/1

 		
 max_size/1

 		
 maybe/0

 		
 maybe/1

 		
 maybe/2

 		
 maybe_call/1

 		
 maybe_call/2

 		
 mean_deviation/2

 		
 median/2

 		
 median_deviation/2

 		
 meets/2

 		
 member/2

 		
 memberchk/2

 		
 merge/3

 		
 message_hook/4

 		
 message_prefix_file/6

 		
 message_prefix_stream/4

 		
 message_tokens//2

 		
 met_by/2

 		
 meta_type/3

 		
 metarule/6

 		
 metarule_next_id/1

 		
 min/2

 		
 min/3

 		
 min_clauses/1

 		
 min_max/3

 		
 modes/2

 		
 module_property/2

 		
 monitor/1

 		
 monitor/4

 		
 monitor_activated/0

 		
 monitored/1

 		
 monitors/1

 		
 msort/2

 		
 msort/3

 		
 mutation/3

 		
 name/1

 		
 name_of_day/3

 		
 name_of_month/3

 		
 natural//1

 		
 new/1

 		
 new/2

 		
 new/3

 		
 new_line//0

 		
 new_lines//0

 		
 next/2

 		
 next/3

 		
 next/4

 		
 nextto/3

 		
 node/7

 		
 nodebug/0

 		
 nolog/3

 		
 nologall/0

 		
 non_blank//1

 		
 non_blanks//1

 		
 normal/3

 		
 normal_element/2

 		
 normalize_range/2

 		
 normalize_range/4

 		
 normalize_scalar/2

 		
 normalize_unit/2

 		
 nospy/1

 		
 nospy/3

 		
 nospy/4

 		
 nospyall/0

 		
 note/2

 		
 note/3

 		
 notrace/0

 		
 now/3

 		
 nth0/3

 		
 nth0/4

 		
 nth1/3

 		
 nth1/4

 		
 null/1

 		
 null_device_path/1

 		
 number//1

 		
 number_of_tests/1

 		
 numbervars/1

 		
 numbervars/3

 		
 occurrences/2

 		
 occurrences/3

 		
 occurs/2

 		
 of/2

 		
 of_expected/2

 		
 of_unexpected/2

 		
 one_or_more//0

 		
 one_or_more//1

 		
 one_or_more//2

 		
 operating_system_machine/1

 		
 operating_system_name/1

 		
 operating_system_release/1

 		
 operating_system_type/1

 		
 option/2

 		
 option/3

 		
 or/2

 		
 or_else/2

 		
 or_else_call/2

 		
 or_else_fail/1

 		
 or_else_get/2

 		
 or_else_throw/1

 		
 or_else_throw/2

 		
 orphaned/0

 		
 orphaned/2

 		
 outdated/0

 		
 outdated/1

 		
 outdated/2

 		
 outdated/4

 		
 outdated/5

 		
 output_file_name/2

 		
 overlapped_by/2

 		
 overlaps/2

 		
 parent/1

 		
 parenthesis/2

 		
 parents/1

 		
 parse/2

 		
 parse/3

 		
 parse_domain/2

 		
 parse_domain/3

 		
 parse_problem/2

 		
 parse_problem/3

 		
 partial_map/4

 		
 partition/3

 		
 partition/4

 		
 partition/5

 		
 partition/6

 		
 path_concat/3

 		
 permutation/2

 		
 pid/1

 		
 pin/0

 		
 pin/1

 		
 pinned/1

 		
 plus/3

 		
 poisson/2

 		
 port/5

 		
 portray_clause/1

 		
 postorder/2

 		
 power/2

 		
 power_sequence/4

 		
 powerset/2

 		
 pp/1

 		
 pprint/1

 		
 predicate/2

 		
 predicate_info_pair_score_hook/4

 		
 predicate_info_score_hook/3

 		
 predicate_mode_score_hook/3

 		
 predicate_mode_score_hook/5

 		
 predicates/2

 		
 prefix/0

 		
 prefix/1

 		
 prefix/2

 		
 prefix/3

 		
 preorder/2

 		
 previous/2

 		
 previous/3

 		
 previous/4

 		
 print_flags/0

 		
 print_flags/1

 		
 print_message/3

 		
 print_message_token/4

 		
 print_message_tokens/3

 		
 product/2

 		
 product/3

 		
 program_to_clauses/2

 		
 proper_prefix/2

 		
 proper_prefix/3

 		
 proper_suffix/2

 		
 proper_suffix/3

 		
 prove/2

 		
 prove/3

 		
 provides/2

 		
 question_hook/6

 		
 question_prompt_stream/4

 		
 quick_check/1

 		
 quick_check/2

 		
 quick_check/3

 		
 random/1

 		
 random/3

 		
 random_node/1

 		
 random_tree/1

 		
 randomize/1

 		
 randseq/4

 		
 randset/4

 		
 range/2

 		
 rdirectories/1

 		
 rdirectories/2

 		
 rdirectory/1

 		
 rdirectory/2

 		
 rdirectory/3

 		
 rdirectory_score/2

 		
 read_file/2

 		
 read_file/3

 		
 read_file_by_line/2

 		
 read_file_by_line/3

 		
 read_from_atom/2

 		
 read_from_chars/2

 		
 read_from_codes/2

 		
 read_only_device_path/1

 		
 read_stream/2

 		
 read_stream/3

 		
 read_stream_by_line/2

 		
 read_stream_by_line/3

 		
 read_term_from_atom/3

 		
 read_term_from_chars/3

 		
 read_term_from_chars/4

 		
 read_term_from_codes/3

 		
 read_term_from_codes/4

 		
 readme/1

 		
 readme/2

 		
 recorda/2

 		
 recorda/3

 		
 recorded/2

 		
 recorded/3

 		
 recordz/2

 		
 recordz/3

 		
 relative_standard_deviation/2

 		
 removeDependent/1

 		
 remove_duplicates/2

 		
 rename_file/2

 		
 replace/3

 		
 replace_sub_atom/4

 		
 rescale/3

 		
 reset/0

 		
 reset/1

 		
 reset_counter/1

 		
 reset_counters/0

 		
 reset_flags/0

 		
 reset_flags/1

 		
 reset_genint/0

 		
 reset_genint/1

 		
 reset_gensym/0

 		
 reset_gensym/1

 		
 reset_monitor/0

 		
 reset_seed/0

 		
 restore/1

 		
 restore/2

 		
 reverse/2

 		
 rewind/2

 		
 rewind/3

 		
 rlibraries/1

 		
 rlibraries/2

 		
 rlibrary/1

 		
 rlibrary/2

 		
 rlibrary_score/2

 		
 rule/2

 		
 rule/3

 		
 rule/4

 		
 run/0

 		
 run/1

 		
 run/2

 		
 run_test_sets/1

 		
 same_length/2

 		
 same_length/3

 		
 save/0

 		
 save/1

 		
 save/2

 		
 scalar_product/3

 		
 scan_left/4

 		
 scan_left_1/3

 		
 scan_right/4

 		
 scan_right_1/3

 		
 search/1

 		
 select/3

 		
 select/4

 		
 selectchk/3

 		
 selectchk/4

 		
 send/3

 		
 sequence/3

 		
 sequence/4

 		
 sequence/5

 		
 sequential_occurrences/2

 		
 sequential_occurrences/3

 		
 serve/3

 		
 set/1

 		
 set/4

 		
 set_element/2

 		
 set_field/2

 		
 set_flag_value/2

 		
 set_flag_value/3

 		
 set_monitor/4

 		
 set_seed/1

 		
 set_spy_point/4

 		
 set_write_max_depth/1

 		
 setup/0

 		
 shell/1

 		
 shell/2

 		
 shell_command/1

 		
 shrink/3

 		
 shrink_sequence/3

 		
 shrinker/1

 		
 sign//1

 		
 singletons/2

 		
 size/2

 		
 skewness/2

 		
 sleep/1

 		
 softmax/2

 		
 softmax/3

 		
 sort/2

 		
 sort/3

 		
 sort/4

 		
 source_file_extension/1

 		
 space//0

 		
 spaces//0

 		
 split/3

 		
 split/4

 		
 spy/1

 		
 spy/3

 		
 spy/4

 		
 spy_point/4

 		
 spying/1

 		
 spying/3

 		
 spying/4

 		
 standard_cauchy/3

 		
 standard_deviation/2

 		
 standard_exponential/1

 		
 standard_gamma/2

 		
 standard_normal/1

 		
 standard_t/2

 		
 start/0

 		
 start_redirect_to_file/2

 		
 started_by/2

 		
 starts/2

 		
 stop/0

 		
 stop_redirect_to_file/0

 		
 stream_to_bytes/2

 		
 stream_to_bytes/3

 		
 stream_to_chars/2

 		
 stream_to_chars/3

 		
 stream_to_codes/2

 		
 stream_to_codes/3

 		
 stream_to_terms/2

 		
 stream_to_terms/3

 		
 subclass/1

 		
 subclasses/1

 		
 sublist/2

 		
 subsequence/3

 		
 subsequence/4

 		
 subset/2

 		
 substitute/4

 		
 subsumes/2

 		
 subterm/2

 		
 subtract/3

 		
 succ/2

 		
 suffix/2

 		
 suffix/3

 		
 sum/2

 		
 superclass/1

 		
 superclasses/1

 		
 suspend_monitor/0

 		
 swap/2

 		
 swap_consecutive/2

 		
 symdiff/3

 		
 tab//0

 		
 tabs//0

 		
 take/3

 		
 temporary_directory/1

 		
 term_expansion/2

 		
 terms_to_array/2

 		
 test/1

 		
 time_stamp/1

 		
 timeout/1

 		
 timestamp/2

 		
 timestamp/8

 		
 today/3

 		
 tolerance_equal/4

 		
 top/3

 		
 top_next/5

 		
 trace/0

 		
 trace_event/2

 		
 transpose/2

 		
 triangular/4

 		
 true/1

 		
 type/1

 		
 unexpected/1

 		
 unexpecteds/2

 		
 uniform/1

 		
 uniform/3

 		
 uninstall/0

 		
 uninstall/1

 		
 uninstall/2

 		
 union/3

 		
 union/4

 		
 union_all/3

 		
 unpin/0

 		
 unpin/1

 		
 unzip/2

 		
 update/0

 		
 update/1

 		
 update/2

 		
 update/3

 		
 update/4

 		
 update/5

 		
 update_in/4

 		
 update_in/5

 		
 uuid_null/1

 		
 uuid_v1/2

 		
 uuid_v4/1

 		
 valid/1

 		
 valid/2

 		
 valid/3

 		
 valid_date/3

 		
 valid_option/1

 		
 valid_options/1

 		
 validate/1

 		
 value/1

 		
 value/3

 		
 value_reference/2

 		
 values/2

 		
 variables/2

 		
 variance/2

 		
 variant/2

 		
 varnumbers/2

 		
 varnumbers/3

 		
 verify_commands_availability/0

 		
 version/6

 		
 versions/3

 		
 void/1

 		
 void_element/1

 		
 von_mises/3

 		
 wald/3

 		
 wall_time/1

 		
 weibull/3

 		
 weighted_mean/3

 		
 welcome/0

 		
 when/2

 		
 whiledo/2

 		
 white_space//0

 		
 white_spaces//0

 		
 with_output_to/2

 		
 without//2

 		
 working_directory/1

 		
 write_file/3

 		
 write_max_depth/1

 		
 write_stream/3

 		
 write_term_to_atom/3

 		
 write_term_to_chars/3

 		
 write_term_to_chars/4

 		
 write_term_to_codes/3

 		
 write_term_to_codes/4

 		
 write_to_atom/2

 		
 write_to_chars/2

 		
 write_to_codes/2

 		
 z_normalization/2

 		
 zero_or_more//0

 		
 zero_or_more//1

 		
 zero_or_more//2

 		
 zip/2

 		
 zip/3

 		
 zip_at_index/4

mstile-150x150.png

_static/plus.png

_static/logtalk.gif

_static/file.png

_static/minus.png

