v

Logtalk 3

User Manual

Copyright © Paulo Moura

pmoura@logtalk.org
http://logtalk.org/

April 6, 2017

Updated for version 3.10.5

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

XML to PDFE by RenderX XEP XSL-FO Formatter. visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Contents

User Manual

Logtalk FEatUrES.o 1
Logtalk NOMENCIAIUre. o e e et e e e et e e e e 5
MESSAgE SENAING. . . .ottt e e e e 9
(@ o] = £ 15
PrOtOCOIS. . o 29
(O = [0 == 35
PrEdiCalES. . . o oot 47
INNEI ANCE. . . o .o 73
Event-driven Programming.ttt e e e e e e e 79
Multi-threading Programiming.ottt e e e e e e e 85
Error Handling.o 93
Documenting Logtalk Programs.ot e e 97
INStAlliNg LOGLalK.o 101
Writing, Running, and Debugging Logtalk Applications. i e 109
Prolog Integration and Migration GUIE. oottt e e 129

Logtalk Features

Integration of logic and object-oriented programming.ttt e 1
Integration of event-driven and object-oriented programming. 1
Support for component-based programming.ot 2
Support for both prototype and class-based Systems.o 2
Support for multiple object hierarchies. 2
Separation between interface and implementation.« . e 2
Private, protected, and public iNheritanCe. o 2
Private, protected, and public object prediCates.o ot 2
ParameEtriC 0D ECLS. oot 3
High level multi-threading programming SUPPOM.ottt e et et et ettt 3
SMOOLh [€AIMING CUIVE. oottt e e e e e e e e e e e e e e e e e e e 3
Compatibility with most Prologsand the ISO standard. i i 3
PErfOIMENCE. 3
LOgtalK SCOPE. . . . oot 3

Logtalk Nomenclature

CHt NOMENCIAIUIE. . . . o ottt et e e e e e e e e e e e e e 6

httpo://www.renderx.com/

features.html#features_logic
features.html#features_events
features.html#features_categories
features.html#features_both
features.html#features_multiple
features.html#features_interface
features.html#features_inheritance
features.html#features_predicates
features.html#features_parametric
features.html#features_threading
features.html#features_learning
features.html#features_compatibility
features.html#features_performance
features.html#features_scope
nomenclature.html#nomenclature_cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Java NOMENCIAIUNE. oottt e e e e e e e e e e 7

Message Sending

Operators used iNMeSSage SENAING. oo ittt e e e e e e 9
Sending amessageto an ObJECt. oo e 9
Delegating amessage to an ObjECt.ottt e 9
Sending amessage to SElf. o 10
BroadCasting.ot e 10
Calling imported and inherited predicate definitions. i 10
Message sending and event generation.o vttt e e 11
Message SENdiNg PEI OIMANCE. ottt e ettt e ettt e e 11
Objects

Objects, prototypes, classes, and INSLANCES.ttt e e et e e 15

Pr O O Y PES. . . . ot 15

L aSSES. . o o vt 15
Defining @ New ObJECE. oo 16
ParametriC ObjECES. oot 18
Finding defined ObjeCtS.ot e 19
Creating anew ODJECt INTUNLIME. o e e e e e e e e 20
Abalishing an existing ObJECt. o i 20
ObJECt dIrECtIVES. . . . oot e e e e 20

Object INItIAliZation.o e 21

DYyNnamiC ODJECES.ot 22

Object dOCUMENLALION. oottt et e e e e e e e e e e e e e 22

Loading filesinto an ObjECt.o 22
ObJECt relalioNSNIPS. . . . o .ttt e e e e e 22
(@ o] =t B o 0] = 1 == 24
BUIIt-IN ODJECES. . . . oo 26

The built-in pseudo-0bJECt USEY.ot 26

The built-in object logtalk. 26

Protocols

Defining @ New ProtOCol.ot 29
Finding defined protoColS.o 30
Creating anew ProtoCol IN FUNTIMIE.ottt e et ettt e e e e e ettt 30
Abolishing an existing ProtoCol.t 30
ProtoCol dirECHIVES. e 30

DyNnamiC ProtOCOIS. oottt e e e e e e e e e 31

Protocol docUumENtation. o 31

Loading files into @ protoCol.o 31
Protocol relationSnips.ot 31
ProtOCOl PrOPEIiES. . . . oottt 32
Implementing ProtOCOIS. ot e 33
BUILE-IN PrOtOCOIS. . . o oottt e et e e e e e 33

The built-in protocol expanding.ot 33

httpo://www.renderx.com/

nomenclature.html#nomenclature_java
messages.html#messages_operators
messages.html#messages_sending
messages.html#messages_delegating
messages.html#messages_self
messages.html#messages_broadcasting
messages.html#messages_super
messages.html#messages_events
messages.html#messages_performance
objects.html#objects_kind
objects.html#objects_prototypes
objects.html#objects_classes
objects.html#objects_defining
objects.html#objects_parametric
objects.html#objects_finding
objects.html#objects_creating
objects.html#objects_abolishing
objects.html#objects_directives
objects.html#objects_initialization
objects.html#objects_dynamic
objects.html#objects_documentation
objects.html#objects_include
objects.html#objects_relationships
objects.html#objects_properties
objects.html#objects_built_in
objects.html#objects_user
objects.html#objects_logtalk
protocols.html#protocols_defining
protocols.html#protocols_finding
protocols.html#protocols_creating
protocols.html#protocols_abolishing
protocols.html#protocols_directives
protocols.html#protocols_dynamic
protocols.html#protocols_documentation
protocols.html#protocols_include
protocols.html#protocols_relationships
protocols.html#protocols_properties
protocols.html#protocols_implementing
protocols.html#protocols_built_in
protocols.html#protocols_expanding
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Contents

The built-in Protocol MONITOIrING.ot e e e et et et et e 34
The built-in protocol forwarding.o 34
Categories
DefiNiNg @ NEW CABLEJONY. . . . o o\ttt ettt et e e e e e e e e e e e e e e e e 35
HOt PalChing.o e 37
Finding defined Categories.o .ot 38
Creating anew Category iNTUNLIME.ottt et e et e e e e e e e e et 38
Abolishing an existing CalEQOIY. oottt e e e e e e e e e 39
Category diTECHIVES. . . oottt et e e 39
DYNAMIC CalBgO B, . . o vttt ettt e e ettt et e e e e 39
Category dOCUMENTALION. oo\ ittt ettt et e e e e e e e e e e e e e e et 40
Loading fileSint0 @ CalegOry. . . . oo ittt et e e e 40
Category relationNSNiPS.o 40
(@ (=00 Y o0 0= g 1= 41
IMPOMING CalBgOMIES. . . o\ ottt ettt ettt e e e e e e et e e e e 43
Calling Category PrediCates.ottt et e e e e e 43
ParamEtriC CalBgONTES. . . o . ottt ettt e e e e e e 44
Predicates

Reserved prediCate NaMES.ttt e 47
Declaring prediCates.o e 47
SCOPE AITECHIVES. . o ottt e e 47
MOOE QITECHIVE. . . oot e e e e e e e 48
Metapredicate direCtive.o 49
DisCONtigUOUS dirECtIVE.ottt e e e e e e e e 50
DynamiC direCiVE. oot e e e e e 50
(@707 = 0] B 11 = oX {1 51

USES dITECLIVE. . . . oottt e e e e e e e e e 51
AlIES dIrECHIVE. . . .o 52
Documenting direCliVe.ot e 54
MUIIfile direCtiVe. e 54
CoiNAUCEIVE TITECLIVE. . . . o ottt et e e e e e e e e e e e e 56
Defining prediCates.ot 56
ObJECt PrediCaES. oottt e e e e 56
Category PrediCates.ot e 56
MEta-PrEdiCalES. . . . oottt et e e 57
LambOa EXPrESSIONS. . . ottt ittt e 58
Definite clause grammar TUIES. ot e e e e 59
Built-in object predicates (Methods).o 62
Execution context Methods.ot 62
Datahase MEthoOs.o 64
Meta-call MEthOOS. 64

All solUtioNS MELhOAS.o 64
Reflection MethOdS. 64
Definite clause grammar parsing methods and non-terminals. i 65

Term and goa expansion MEthOOS.ot 65

1

httpo://www.renderx.com/

protocols.html#protocols_monitoring
protocols.html#protocols_forwarding
categories.html#categories_defining
categories.html#categories_patching
categories.html#categories_finding
categories.html#categories_creating
categories.html#categories_abolishing
categories.html#categories_directives
categories.html#categories_dynamic
categories.html#categories_documentation
categories.html#categories_include
categories.html#categories_relationships
categories.html#categories_properties
categories.html#categories_importing
categories.html#categories_predicates
categories.html#categories_parametric
predicates.html#predicates_reserved
predicates.html#predicates_declaring
predicates.html#predicates_scope
predicates.html#predicates_mode
predicates.html#predicates_meta
predicates.html#predicates_discontiguous
predicates.html#predicates_dynamic
predicates.html#predicates_op
predicates.html#predicates_uses
predicates.html#predicates_alias
predicates.html#predicates_info
predicates.html#predicates_multifile
predicates.html#predicates_coinductive
predicates.html#predicates_defining
predicates.html#predicates_objects
predicates.html#predicates_categories
predicates.html#predicates_metadef
predicates.html#predicates_lambdas
predicates.html#predicates_dcgs
predicates.html#predicates_methods
predicates.html#predicates_context
predicates.html#predicates_database
predicates.html#predicates_metacalls
predicates.html#predicates_solutions
predicates.html#predicates_reflection
predicates.html#predicates_parsing
predicates.html#predicates_expanding
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

PriNiNg MBS AgES. . . . vttt ittt ettt i e 65
ASKING QUESLIONS. . . . oot ettt ettt e e e e e e e 67
PrediCale PrOPE I ES. . . oottt e 68
Finding declared prediCates. oot e 69
Calling Prolog built-in prediCates.o 70
Cadling Prolog non-standard meta-prediCales.t e 70
Calling Prolog user-defined prediCates. v it e 71
Calling Prolog module prediCates.ottt 71
Inheritance
Protocol INNEritanCe.ot 73
Search order for prototype hierarChies. 73
Search order for class hierarchies. 73
Implementation INhEritanCe. o e 73
Search order for prototype hierarChies. 74
Search order for class hierarchies. 74
Inheritance versus predicate redefinition. 74
Public, protected, and private INhErtanCe.ottt 7
Composition versus multiple iINheritance.ot 78

Event-driven Programming

DEfiNItIONS. . . . o e e e e 79
Y 79
177 o 1 (o) P 80
BVENt QENEIatioN.o 80
CommuniCating BVENtS 10 MONITOIS. . . o ..ottt ettt et ettt e e e ettt 80
PeErfOrmManCe CONCEIMS.ttt e e e e e et e e e e e e e e e e e e 8l
MONITOr SEMANLICS. ottt ettt e e e e e e e e e e e e e e 81
Activation order Of MONITOrS.o o e e e e 81
Bvent handling. 81
DEfINING MBIV VNS,o e e 82
Abolishing defined VeNtS. o 82
Finding defined avents. oot e 82
Defining event handlers. o e 82

Multi-threading Programming

Enabling multi-threading SUPPOIT. oot e e e e 85
Enabling objects to make multi-threading calls. i e 85
Multi-threading built-in prediCates. o e 85
Proving goals concurrently using threads. oot 85
Proving goals asynchronously using threads. i i e 86
One-way asynchronous CallS. o e e 88

render

httpo://www.renderx.com/

predicates.html#predicates_messages
predicates.html#predicates_questions
predicates.html#predicates_properties
predicates.html#predicates_finding
predicates.html#predicates_prolog
predicates.html#predicates_prolog_meta
predicates.html#predicates_prolog_user
predicates.html#predicates_prolog_module
inheritance.html#inheritance_protocol
inheritance.html#inheritance_protocol_prototype
inheritance.html#inheritance_protocol_class
inheritance.html#inheritance_implementation
inheritance.html#inheritance_implementation_prototype
inheritance.html#inheritance_implementation_class
inheritance.html#inheritance_implementation_redefinition
inheritance.html#inheritance_types
inheritance.html#inheritance_composition
events.html#events_definitions
events.html#events_event
events.html#events_monitor
events.html#events_generation
events.html#events_communicating
events.html#events_performance
events.html#events_semantics
events.html#events_order
events.html#events_handling
events.html#events_defining
events.html#events_abolishing
events.html#events_finding
events.html#events_handlers
threads.html#threads_enabling
threads.html#threads_directive
threads.html#threads_predicates
threads.html#threads_threaded
threads.html#threads_call
threads.html#threads_ignore
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Contents

Asynchronous calls and synchronized predicates.ottt e 88
Synchronizing threads through notifications. 90
ENQiNES. . .ot 90
Multi-threading performance. oo e 91

Error Handling

Compiler Warnings and ©TOrS.ttt et et e e e et e e e e e e 93
UNKNOWN BNtitiES. . ..ottt e e e e e e e e 93
SINgleton Variables. o e 93
Redefinition of Prolog built-in predicates. 93
Redefinition of Logtalk built-in predicates. 94
Redefinition of Logtalk built-inmethods. e 94
Misspell callsof local predicates.t 94
Portability Warnings. oo e 94
MiISSING AIFECHIVES.ottt e e e e e e e e e e 94
Redefinition of predicates declared in uses/ 2 and use_nodul e/ 2 directives. 94
Other warnings and ETOrS.ottt ettt e e e e e e e e e 94

RUNLIME BITOrS. . . o oottt e et e e e e e e e e e e et e e e e e e 94
Logtalk built-in prediCates. oo e 94
Logtalk built-in methods. o 94
MESSAgE SENAING. . .« . vttt et et e e e e e e e 95

Documenting Logtalk Programs

Documenting dir€CHIVES.ot e e e e e e e e e 97
ENtity direCtiVES. . . . o 97
Predicate direCtiVES. o 98

Processing and viewing documenting files. 99

Installing Logtalk

INStAlliNg LOGLalK. oo 101
Hardware and Software reqUIremMEntS. oo vttt ettt et e e et ettt e 101
Computer and Operating Sy StEM. oottt 101
Prolog COmMPIlEr. . oo 101
Logtalk INStallers. . ..o e 102
Source distribULioN. 102
Directories and files organization.ottt 102
Adapter filES. . ..o 104
SEtiNgS filES. . . o 105
Logtalk compiler and runtime. o 106

LD Y. o 106
EXAMPIES. . ..o 107
Logtalk SoUrce files. 107

\'

httpo://www.renderx.com/

threads.html#threads_synchronized_predicates
threads.html#threads_notifications
threads.html#threads_engines
threads.html#threads_performance
errors.html#errors_compiler
errors.html#errors_unknown
errors.html#errors_singletons
errors.html#errors_prolog
errors.html#errors_redefinion_predicates
errors.html#errors_redefinion_methods
errors.html#errors_misspell
errors.html#errors_portability
errors.html#errors_missing_directives
errors.html#errors_predicate_redefinition
errors.html#errors_others
errors.html#errors_runtime
errors.html#errors_predicates
errors.html#errors_methods
errors.html#errors_sending
documenting.html#documenting_directives
documenting.html#documenting_entity
documenting.html#documenting_predicate
documenting.html#documenting_processing
installing.html#installing_installing
installing.html#installing_requirements
installing.html#installing_computer
installing.html#installing_compiler
installing.html#installing_installers
installing.html#installing_sources
installing.html#installing_organization
installing.html#installing_adapters
installing.html#installing_settings
installing.html#installing_runtime
installing.html#installing_library
installing.html#installing_examples
installing.html#installing_entities
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Writing, Running, and Debugging Logtalk Applications

WIItINg @ppliCalioNS. . . . oot e 109
SOUNCE fIl S, . et 109
Loader Utility files. 112
Libraries of SoUrce files.ot e 113
Portable appliCations. 110
Conditional ComPilation.t 110
AVOIdING COMIMON EITOIS. . . o o\ ittt et et e e e e 110
Coding style QUIdEIINES.o 110

RUNNING @ LOgtalk SESSI0N.ottt e 111
Starting LogtalK.o 111
Compiling and loading your appliCations.ttt e e e 111
Compiler flags.o 114
Reloading and smart compilation of sourcefiles. i 119
Using Logtalk for batch processing. 119

Optimizing PErfOIMENCE.o e e e e e e e e e e e e 123

Debugging Logtalk applications.t 120
Compiling source filesand entitiesindebugmode. 120
Logtalk Procedure Box MOGEL.ot 121
DefiNing SPY POINES. . . o .ottt e e e e e e e e e e e e 122
Tracing Program EXECULION. oo\ttt et e e e e e e e e e e e e e e e 123
Debugging USING SPY POINES. . . . oottt ettt e e e e et e e e 124
Debugging ComMMaNGS.ottt e e 124
Context-swWitChing Calls. it e 126
Using compilation hooks and term expansion for debugging. 127

Prolog Integration and Migration Guide

Source files with both Prolog codeand Logtalk code. 129
Encapsulating plain Prolog code in ObJeCtS.ot 129

Prolog multifile prediCates.ot 130
Converting Prolog moduleS into ObJECES.ottt 130
Compiling Prolog modules @s 0bjeCtS. oot e 131

Supported module direClIVES.t 131

Current limitations and WOrKaroUNdS.ot i e e 132
Dealing with proprietary Prolog direCtives. o 133
Calling Prolog module prediCates. oot e 133
Compiling Prolog module multifile predicates. 133

Vi

httpo://www.renderx.com/

programming.html#programming_writing
programming.html#programming_source_files
programming.html#programming_loaders
programming.html#programming_libraries
programming.html#programming_portability
programming.html#programming_cc
programming.html#programming_errors
programming.html#programming_style
programming.html#programming_session
programming.html#programming_starting
programming.html#programming_compiling
programming.html#programming_flags
programming.html#programming_smart
programming.html#programming_batch
programming.html#programming_performance
programming.html#programming_debugging
programming.html#programming_debugmode
programming.html#programming_boxmodel
programming.html#programming_spypoints
programming.html#programming_trace
programming.html#programming_debug
programming.html#programming_commands
programming.html#programming_context
programming.html#programming_hooks
migration.html#migration_hybrid
migration.html#migration_encapsulating
migration.html#migration_multifile
migration.html#migration_converting
migration.html#migration_compiling
migration.html#migration_compatibility
migration.html#migration_limitations
migration.html#migration_proprietary
migration.html#migration_calling
migration.html#migration_module
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk main features

Logtalk main features

Some years ago, | decided that the best way to learn object-oriented programming was to build my own object-oriented
language. Prolog aways being my favorite language, | chose to extend it with object-oriented capabilities. Eventually this
work has lead to the Logtalk system. The first public release of Logtalk 1.x occurred in February of 1995. Based on
feedback by users and on the author subsequent work, the second major version went public in July of 1998.

Although thisversion of Logtalk shares many ideas and goal swith previous 1.x versions, programswritten for one version
are not compatible with the other (however, conversion from previous versions can easily be accomplished in most cases).
This is a consequence of the desire to have a more friendly system, with a very smooth learning curve, bringing L ogtalk
programming closer to traditional Prolog programming. There are, of course, also other important changes, that result in
amore powerful and funnier system. Logtalk 2.x development provides the following features:

Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On one hand,
the object orientation allows us to work with the same set of entitiesin the successive phases of application
development, giving us away of organizing and encapsulating the knowledge of each entity within agiven
domain. On the other hand, logic programming allows usto represent, in a declarative way, the knowledge
we have of each entity. Together, these two advantages allow us to minimize the distance between an ap-
plication and its problem domain, turning the writing and maintenance of programming easier and more
productive.

In a more pragmatically view, Logtalk objects provide Prolog with the possibility of defining several
namespaces, instead of the traditional Prolog single database, addressing some of the needs of large software
projects.

Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which takes place
at each moment is a result of the observation of occurring events. This integration complements object-
oriented programming, in which each computing is initiated by the explicit sending of a message to an
object. The user dynamically defines what events are to be observed and establishes monitors for these
events. Thisis specialy useful when representing relationships between objects that imply constraints in
the state of participating objects [Rumbaugh 87, Rumbaugh 88, Fornarino 89, Razek 92]. Other common
uses are reflective applications like code debugging or profiling [Maes 87]. Predicates can be implicitly
called when a spied event occurs, allowing programming solutions which minimize object coupling. In
addition, events provide support for behaviora reflection and can be used to implement the concepts of
pointcut and advice found on Aspect-Oriented Programming.

httpo://www.renderx.com/

../bibliography.html#Rumbaugh87
../bibliography.html#Rumbaugh88
../bibliography.html#Fornarino89
../bibliography.html#Razek92
../bibliography.html#Maes87
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without any code
duplication and irrespective of object hierarchies. A category is a first-class encapsulation entity, at the
same level as objects and protocols, which can be used as a component when building new objects. Thus,
objects may be defined through composition of categories, which act as fine-grained units of code reuse.
Categories may also extend existing objects. Categories can be used to implement mixins and aspects.
Categories alows for code reuse between non-related objects, independent of hierarchy relations, in the
same vein as protocols allow for interface reuse.

Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages avail able today are either class-based or prototype-based
[Lieberman 86], with a strong predominance of class-based languages. Logtalk provides support for both
hierarchy types. That is, we can have both prototype and class hierarchiesin the same application. Prototypes
solve aproblem of class-based systems where we sometimes have to define a class that will have only one
instance in order to reuse a piece of code. Classes solves a dual problem in prototype based systems where
it isnot possibleto encapsul ate some codeto be reused by other objects but not by the encapsul ating object.
Stand-alone objects, that is, objectsthat do not belong to any hierarchy, are a convenient solution to encap-
sulate code that will be reused by several unrelated objects.

Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg 83], Objective-C [Cox 86] and Java [Joy et al. 00] defineasingle
hierarchy rooted in a class usually named Obj ect . This makes it easy to ensure that all objects share a
common behavior but also tendsto result in lengthy hierarchieswhereit isdifficult to express objectswhich
represent exceptions to default behavior. In Logtalk we can have multiple, independent, object hierarchies.
Some of them can be prototype-based while others can be class-based. Furthermore, stand-alone objects
provide a simple way to encapsulate utility predicates that do not need or fit in an object hierarchy.

Separation between interface and implementation

Thisisan expected (should we say standard ?) feature of almost any modern programming language. Logtalk
provides support for separating interface from implementation in a flexible way: protocol directives can
be contained in an object, a category or a protocol (first-order entitiesin Logtalk) or can be spread in both
objects, categories and protocols.

Private, protected and public inheritance
Logtalk supports private, protected and public inheritancein asimilar way to C++ [Stroustrup 86], enabling
usto restrict the scope of inherited, imported or implemented predicates (by default inheritance is public).

Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in a way
similar to C++ [Stroustrup 86]. Private predicates can only be called from the container object. Protected
predicates can be called by the container object or by the container descendants. Public predicates can be
called from any object.

httpo://www.renderx.com/

../bibliography.html#Lieberman86
../bibliography.html#Goldberg83
../bibliography.html#Cox86
../bibliography.html#Joy00
../bibliography.html#Stroustrup86
../bibliography.html#Stroustrup86
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk main features

Parametric objects

Object names can be compound terms (instead of atoms), providing away to parameterize object predicates.
Parametric objects areimplemented in asimilar way to L&O[McCabe 92], OL(P) [Fromherz 93] or SI CSt us
bj ects [SICStus 95] (however, access to parameter values is done via a built-in method instead of
making the parameters scope global over the whole object). Parametric objects allows us to treat any pre-
dicate clause as defining an instantiation of a parametric object. Thus, a parametric object allows us to en-
capsulate and associate any number of predicates with a compound term.

High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected back-end Prolog
compilers, allowing objects to support both synchronous and asynchronous messages. Logtalk allows pro-
grammers to take advantage of modern multi-processor and multi-core computers without bothering with
the details of creating and destroying threads, implement thread communication, or synchronizing threads.

Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an incremental
learning and use of most of its features.

Compatibility with most Prologs and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilersand, in particular, with
the 1SO Prolog standard [1SO 95]. It runsin almost any computer system with a modern Prolog compiler.

Performance

The current Logtalk implementation works as a pre-processor: Logtalk source files are first compiled to
Prolog sourcefiles, which are then compiled by the chosen Prolog compiler. Therefore, Logtalk performance
necessarily depends on the back-end Prolog compiler. The Logtalk compiler respects the programmers
choices when writing efficient code that takes advantage of tail recursion and first-argument indexing.

Asan object-oriented language, L ogtalk uses both static binding and dynamic binding for matching messages
and methods. Furthermore, Logtalk entities (objects, protocols, and categories) areindependently compiled,
allowing for a very flexible programming development. Entities can be edited, compiled, and loaded at
runtime, without necessarily implying recompilation of all related entities.

When dynamic binding is used, the Logtalk runtime engineimplements caching of method lookups (including
messages to self and super calls), ensuring aperformance level closeto what could be achieved when using
static binding.

Logtalk scope

Logtalk, being a superset of Prolog, shareswith it the same preferred areas of application but also extends them with those
areas where object-oriented features provide an advantage compared to plain Prolog. Among these areas we have:

L ogic and object-oriented programming teaching and resear ching
Logtalk smooth learning curve, combined with support for both prototype and class-based programming, pro-
tocols, components or aspects via category-based composition, and other advanced object-oriented features

httpo://www.renderx.com/

../bibliography.html#McCabe92
../bibliography.html#Fromherz93
../bibliography.html#SICStus95
../bibliography.html#ISO95
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

allow asmooth introduction to object-oriented programming to people with abackground in Prolog programming.
The distribution of Logtalk source code using an open-source license provides aframework for peopleto learn
and then modify to try out new ideas on object-oriented programming research. In addition, the Logtalk distri-
bution includes plenty of programming examplesthat can be used in the classroom for teaching logic and object-
oriented programming concepts.

Structured knowledge representations and knowledge-based systems
L ogtalk objects, coupled with event-driven programming features, enable easy implementation of frame-like
systems and similar structured knowledge representations.

Blackboard systems, agent-based systems and systems with complex object relationships
Logtalk support for event-driven programming can provide a basis for the dynamic and reactive nature of
blackboard type applications.

Highly portable applications
Logtalk is compatible with amost any modern Prolog compiler. Used as away to provide Prolog with
namespaces, it avoids the porting problems of most Prolog module systems. Platform, operating system, or
compiler specific code can be isolated from the rest of the code by encapsulating it in objects with well defined
interfaces.

Alternative to a Prolog module system
Logtalk can be used as an alternative to a Prolog compiler module system. Any Prolog application that use
modules can be converted to a Logtalk application, improving portability across Prolog compilers and taking
advantage of the stronger encapsulation and reuse framework provided by Logtalk object-oriented features.

Integration with other programming languages
Logtalk support for most key object-oriented features helps users integrating Prolog with object-oriented lan-
guages like C++, Java, or Smalltalk by providing an high-level mapping between the two languages.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Nomenclature

Nomenclature

Depending on your Object-oriented Programming background (or lack of it), you may find Logtalk nomenclature either
familiar or at odds with the terms used in other languages. In addition, being a superset of Prolog, terms such as predicate
and method are often used interchangeably. Logtalk inherits most of its nomenclature from Smalltalk, arguably (and
somehow sadly) not the most popular OOP language nowadays. In this section, we map nomenclatures from popular OOP
languages such as C++ and Javato the Logtalk nomenclature.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

C++ nomenclature

There are several C++ glossaries available on the Internet. Thelist that follows rel ates the most commonly used C++ terms
with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for creating
new instancesis an abstract class. Moreover, Logtalk supports interfaces/protocols, which are often a better
way to provide the functionality of C++ abstract classes.

base class
Logtalk uses the term superclass with the same meaning.

data member
Logtalk uses predicates for representing both behavior and data.

constructor function
There are no special methodsfor creating new objectsin Logtalk. Instead, L ogtalk providesabuilt-in predicate,
creat e_obj ect/ 4, which is often used to define more sophisticated object creation predicates.

derived class
Logtalk uses the term subclass with the same meaning.

destructor function
There are no special methodsfor del eting new objectsin Logtalk. Instead, L ogtalk providesabuilt-in predicate,
abol i sh_obj ect/ 1, which is often used to define more sophisticated object deletion predicates.

friend function
Not supported in Logtalk. Nevertheless, see the manual section on meta-predicates.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in asourcefilein the
same way as classes.

member
Logtalk uses the term predicate.

member function
Logtalk uses predicates for representing both behavior and data.

namespace
Logtalk does not support multipleidentifier namespaces. All Logtalk entity identifiers share the same namespace
(Logtalk entities are objects, categories, and protocols).

nested class
Logtalk does not support nested classes.

template
Logtalk supports parametric objects, which allows you to get the similar functionality of templates at runtime.

this
Logtalk uses the built-in context method sel f / 1 for retrieving the current instance. Logtalk also provides a
t hi s/ 1 method but for returning the class containing the method being executed. Why the name clashes? Well,
the notion of self was inherited from Smalltalk, which predates C++.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Nomenclature

virtual member function
Thereisnovi rt ual keywordin Logtalk. By default, Logtalk uses dynamic binding for locating both method
declarations and method definitions. Moreover, methods that are declared but not defined simply fail when
caled.

Java nomenclature

There are several Javaglossaries available on the Internet. Thelist that followsrelates the most commonly used Javaterms
with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for creating
new instancesis an abstract class. |.e. thereisno abst ract keyword in Logtalk.

abstract method
In Logtalk, you may simply declare a method (predicate) in a class without defining it, leaving its definition
to some descendant sub-class.

assertion
Thereisnoasserti on keyword in Logtalk. Assertions are supported using Logtalk compilation hooks and
developer tools.

extends
Thereisnoext ends keywordin Logtalk. Classinheritanceisindicated using specialization relations. Moreover,
the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface
Logtalk uses the term protocol with the same meaning.

callback method
Logtalk supports event-driven programming, the most common use context of callback methods.

class method
Classmethods may beimplemented in L ogtalk by using ametaclassfor the class and defining the class methods
in the metaclass. |.e. class methods are simply instance methods of the class metaclass.

classvariable
True class variables may be implemented in Logtalk by using a metaclass for the class and defining the class
variablesin the class. |.e. class variables are simply instance variables of the class metaclass. Shared instance
variablesmay beimplemented by using the built-in database methods (which can be used to implement variable

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

assignment) to access and updated a single occurrence of the variable stored in the class (thereisno st ati ¢
keyword in Logtalk).

constructor
There are no special methodsfor creating new objectsin Logtalk. Instead, L ogtalk providesabuilt-in predicate,
creat e_obj ect/ 4, which is often used to define more sophisticated object creation predicates.

final
Thereisnofi nal keyword in Logtalk; methods may always be redefined in subclasses (and instances!).

inner class
Inner classes are not supported in Logtalk.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in asourcefilein the
same way as classes.

method
Logtalk uses the term predicate interchangeably with the term method.

method call
Logtalk usually uses the expression message sending for method calls, true to its Smalltalk heritage.

method signature
Logtalk selects the method/predicate to execute in order to answer a method call based only on the method
name (functor) and number of arguments (arity). Logtalk (and Prolog) are not typed languages in the same
sense as Java.

reflection
Logtalk supports both structural reflection (using a set of built-in predicates and built-in methods) and behavi-
oral reflection (using event-driven programming).

static
Thereisnost at i ¢ keyword in Logtalk. See the entries on class methods and class variables.

super
Instead of asuper keyword, Logtalk provides a super operator, 2~/ 1, for calling overridden methods.

synchronized
Logtalk supports multi-threading programming in selected Prolog compilers, including asynchr oni zed/ 1
predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates using per-predicate or
per-predicate-set mutexes.

this
Logtalk uses the built-in context method sel f / 1 for retrieving the current instance. Logtalk also provides a
t hi s/ 1 method but for returning the class containing the method being executed. Why the name clashes? Well,
the notion of self was inherited from Smalltalk, which predates Java.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Message sending

Message sending

Messagesallowsusto call object predicates. L ogtalk usesthe same nomenclature found in other object-oriented programming
languages such as Smalltalk. Therefore, the terms predicate and method are often used interchangeably when referring to
predicates defined inside objects and categories. A message must always match a predicate within the scope of the sender
object.

Notethat message sending is only the same as calling an object's predicate if the object does not inherit (or import) predicate
definitions from other objects (or categories). Otherwise, the predicate definition that will be executed may depend on the
relationships of the object with other Logtalk entities.

Operators used in message sending

Logtalk declares the following operators for the message sending control constructs:

:- op(600, xfy, ::).
:- op(600, fy, ::).
:- op(600, fy, ~N).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded) until the end of
the Prolog session (thisisthe usual behavior of most Prolog compilers). Note that these operator definitions are compatible
with the pre-defined operators in the Prolog 1SO standard.

Sending a message to an object

Sending a message to an object is accomplished by using the: : / 2 control construct:

| ?- QObject::Message.

The message must match a public predicate declared for the receiving object. The message may also correspond to apro-
tected or private predicate if the sender matches the predicate scope container. If the predicate is declared but not defined,
the message simply fails (as per the closed-world assumption).

Delegating a message to an object

Itisalso possibleto send amessage to an object while preserving the original sender by usingthe[]/ 1 delegation control
construct:

[Coj ect : : Message] ,

httpo://www.renderx.com/

../refman/control/send_to_object_2.html
../refman/control/delegate_message_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

This control construct can only be used within objects and categories (at the interpreter top-level, the sender is alwaysthe
pseudo-object user so using thiscontrol construct would be equivalent to usethe: : / 2 message sending control construct).
Sending a message to self

While defining a predicate, we sometimes need to send a message to sdlf, i.e., to the same object that has received the
original message. Thisis donein Logtalk through the: : / 1 control construct:

. Message

The message must match either a public or protected predicate declared for the receiving object or a private predicate
within the scope of the sender otherwise an error will be thrown (see the Reference Manual for details). If the messageis
sent from inside a category or if we are using private inheritance, then the message may also match a private predicate.
Again, if the predicate is declared but not defined, the message simply fails (as per the closed-world assumption).

Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This can be
achieved by using the message sending method described above. However, for convenience, Logtalk implements an ex-
tended syntax for message sending that may improve program readability in some cases. This extended syntax uses the
(,)/2,(;)!2,and (->)/ 2 control constructs. For example, if we wish to send several messages to the same object, we
can write:

| ?- Onject::(Messagel, Message2, ...).

Thisis semantically equivalent to:

| ?- Onject::Mssagel, oject::Mssage?2,

This extended syntax may also be used with the : : / 1 message sending control construct.

Calling imported and inherited predicate definitions

When redefining a predicate, sometimes we need to call the inherited definition in the new code. Thisfunctionality, intro-
duced by the Smalltalk language through the super primitive, isavailablein Logtalk using the~~/ 1 control construct:

ANPredi cat e

Most of the time we will use this control construct by instantiating the pattern:

Predicate : -
., % do sonet hi ng
ANPredi cat e, % call inherited definition
% do sonet hi ng nore

Thiscontrol construct isgeneralized in Logtalk where it may be used to call any imported or inherited predicate definition.
Thiscontrol construct may be used within objects and categories. When combined with static binding, this control construct

10

httpo://www.renderx.com/

../refman/control/send_to_self_1.html
../refman/control/call_super_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Message sending

allows imported and inherited predicates to be called with the same performance of local predicates. As with the message
sending control constructs, the 2~/ 1 call simply fails when the predicate is declared but not defined (as per the closed-
world assumption).

Message sending and event generation

Every message sent using the: : / 2 control construct generatestwo events, one before and one after the message execution.
Messages that are sent using the : : / 1 (message to self) control construct or the ~”/ 1 super mechanism described above
do not generate any events. Therational behind thisdistinction isthat messagesto self and super callsare only used internally
in the definition of methods or to execute additional messages with the same target object (represented by self). In other
words, events are only generated when using an object's public interface; they cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

Predi cate : -
sel f(Self), % get self reference
Sel f:: Message, % send a nmessage to self using ::/2

If we also need the sender of the message to be other than the object containing the predicate definition, we can write:

Predicate : -
sel f(Self), % send a nessage to self using ::/2
{Sel f::Message}, % sender will be the pseudo-object user

When events are not used, is possible to turn off event generation on a per object basis by using theevent s/ 1 compiler
flag. See the section on event-driven programming for more details.

Message sending performance

Logtalk supports both static binding and dynamic binding. Static binding is used whenever messagesaresent (using: : / 2)
to static objects already |oaded and with the opt i ni ze compiler flag turned on. When that is not the case (or when using
;11 1), Logtalk uses dynamic binding coupled with a caching mechanism that avoids repeated |ookups of predicate declar-
ations and predicate definitions. Thisis a solution common to other programming languages supporting dynamic binding.
Message lookups are automatically cached the first time amessage is sent. Cache entries are automatically removed when
loading entities or using Logtalk dynamic features that invalidate the cached lookups.

Whenever static binding is used, message sending performance is roughly the same as a predicate call in plain Prolog.
When discussing Logtalk dynamic binding performance, two distinct cases should be considered: messages sent by the
user from the top-level interpreter and messages sent from compiled objects. In addition, the message declaration and
definition lookups may, or may not be already cached by the runtime engine. In what follows, we will assume that the
message |ookups are aready cached.

11

httpo://www.renderx.com/

../refman/control/send_to_object_2.html
../refman/control/send_to_self_1.html
../refman/control/call_super_1.html
programming.html#programming_flags
events.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Translating message processing to predicate calls

In order to better understand the performance tradeoffs of using Logtalk dynamic binding when compared to plain Prolog
or to Prolog module systems, is useful to translate message processing in terms of predicate calls. However, in doing this,
we should keep in mind that the number of predicate callsis not necessarily proportional to the time taken to execute them.

With event-support turned on, a message sent from a compiled object to another object translates to three predicate calls:

checking for before events

one call to the built-in predicate\ +/ 1, assuming that no events are defined
method call using the cached lookup

one call to adynamic predicate (the cache entry)
checking for after events

one call to the built-in predicate\ +/ 1, assuming that no events are defined

Given that events can be dynamically defined at runtime, there is no room for reducing the number of predicate calls
without turning off support for event-driven programming. When events are defined, the number of predicate calls grows
proportional to the number of events and event handlers (monitors). Event-driven programming support can be switched
off for specific object using the compiler flag event s/ 1. Doing so, reduces the number of predicate calls from three to
just one.

Messages to self and super calls are transparent regarding events and, as such, imply only one predicate call (to the cache
entry, adynamic predicate).

When a message is sent by the user from the top-level interpreter, Logtalk needs to perform a runtime translation of the
messageterm in order to provethe corresponding goal. Thus, while sending amessage from acompiled object corresponds
to either three predicate calls (event-support on) or one predicate call (event-support off), the same message sent by the
user from the top-level interpreter necessarily implies an overhead. Considering the time taken for the user to type the
goal and read the reply, this overhead is of no practical consequence.

When a message is not cached, the number of predicate calls depends on the number of steps needed for the Logtalk
runtime engine to lookup the corresponding predicate scope declaration (to check if the message is valid) and then to
lookup a predicate definition for answering the message.

Processing time

Not all predicate calls take the same time. Moreover, the time taken to process a specific predicate call depends on the
Prolog compiler implementation details. As such, the only valid performance measure is the time taken for processing a

message.

The usual way of measuring the time taken by a predicate call isto repeat the call anumber of times and than to calculate
the average time. A sufficient large number of repetitions would hopefully lead to an accurate measure. Care should be
taken to subtract the time taken by the repetition code itself. In addition, we should be aware of any limitations of the
predicates used to measure execution times. One way to make sense of numbers we get is to repeat the test with the same
predicate using plain Prolog and with the predicate encapsulated in a module.

12

httpo://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Message sending

A simple predicate for helping benchmarking predicate calls could be:

benchmar k(N, Goal) : -

repeat (N),
cal |l (Goal),
fail.

benchmark(_, _).

Therational of using afailure-driven loop isto try to avoid any interference on our timing measurements from garbage-
collection or memory expansion mechanisms. Based on the predicate benchnar k/ 2, we may define a more convenient
predicate for performing our benchmarks. For example:

benchmar k(Goal) : -

N = 10000000, % sone sufficiently |arge nunber of repetitions
wite(' Number of repetitions: "), wite(N), nl,
get _cpu_ti ne(Secondsl), % repl ace by your Prol og-specific predicate

benchmar k(N, Goal),

get _cpu_tine(Seconds?2),

Average is (Seconds2 - Secondsl)/N,

wite('Average tinme per call: "), wite(Average), wite(' seconds'), nl,
Speed is 1.0/ Average,

write(' Nunber of calls per second: '), wite(Speed), nl.

We can get abaseline for our timings by doing:

| ?- benchmark(true).

For comparing message sending performance across several Prolog compilers, wewould call thebenchnar k/ 1 predicate
with a suitable argument. For example:

| ?- benchmark(list::length([1, 2, 3, 4, 5, 6, 7, 8 9, 0],)).

For comparing message sending performance with predicate callsin plain Prolog and with callsto predicates encapsul ated
in modules, we should use exactly the same predicate definition in the three cases.

It should be stressed that message sending is only one of the factors affecting the performance of a Logtalk application
(and often not the most important one). The strengths and limitations of the chosen Prolog compiler play acrucial role on
all aspects of the development, reliability, usability, and performance of a Logtalk application. It is advisable to take ad-
vantage of the L ogtalk wide compatibility with most Prolog compilersto test for the best match for developing your Logtalk
applications.

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

14

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Objects

Objects

The main goal of Logtalk objectsis the encapsulation and reuse of predicates. Instead of a single database containing all
your code, Logtalk objects provide separated namespaces or databases allowing the partitioning of codein more manageable
parts. Logtalk does not aim to bring some sort of new dynamic state change concept to Logic Programming or Prolog.

In Logtalk, the only pre-defined objects are the built-in objectsuser and | ogt al k, which are described at the end of this
section.

Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk uses the term
object in abroad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and instance always designate
an object. Different names are used to emphasize the role played by an object in a particular context. |.e. we use aterm
other than object when we want to make the rel ationship with other objects explicit. For example, an object with an instan-
tiation relation with other object plays the role of an instance, while the instantiated object plays the role of a class; an
object with a specialization relation with other object plays the role of a subclass, while the speciaized object plays the
role of a superclass; an object with an extension relation with other object plays the role of a prototype, the same for the
extended object. A stand-alone object, i.e. an object with no relationswith other objects, isawaysinterpreted asaprototype.
In Logtalk, entity relations essentially define patterns of code reuse. An entity iscompiled accordingly to therolesit plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-based. You
may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs, use parametric objects,
and take advantage of protocols and categories (think components).

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they share
common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually represent concrete
objects in the application domain. When linking prototypes using extension relations, Logtalk uses the term prototype
hierarchies although most authors prefer to use the term hierarchy only with class generalization/specialization relations.
In the context of logic programming, prototypes are often the ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes provide an ideal structuring
solution when you want to express hierarchies of abstractions or work with many similar objects. Classes are used indirectly
through instantiation. Contrary to most object-oriented programming languages, instances can be created both dynamically
at runtime or defined in a sourcefile like other objects.

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Defining a new object

We can define anew object in the same way we write Prolog code: by using atext editor. Logtalk source files may contain
one or more objects, categories, or protocols. If you prefer to define each entity in its own sourcefile, it is recommended
that the file be named after the object. By default, al Logtalk source files use the extension . | gt but thisis optional and
can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler) have, by default, a
_l gt suffixanda. pl extension. Again, this can be set to match the needs of a particular Prolog compiler in the corres-
ponding adapter file. For instance, we may define an object named vehi cl e and saveit in avehi cl e. | gt sourcefile
which will becompiledtoavehi cl e_I gt. pl Prolog file (depending on the backend compiler, the names of theinterme-
diate Prolog files may include a directory hash).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects, categories, and
protocols share the same name space: we cannot have an object with the same name as a protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: obj ect/ 1-5 and
end_obj ect / 0. The most simple object will be one that is self-contained, not depending on any other Logtalk entity:

:- object(Object).

;- end_obj ect.

If an object implements one or more protocols then the opening directive will be:

:- obj ect (Obj ect,
i mpl ement s([Protocol 1, Protocol2, ...])).

:- end_obj ect.

An object can import one or more categories:

;- obj ect (Obj ect,
i mports([Categoryl, Category2, ...])).

:- end_obj ect.

If an object both implements protocols and imports categories then we will write:

.- obj ect (bj ect,
i mpl enent s([Protocol 1, Protocol2, ...]),
i mports([Categoryl, Category2, ...])).

:- end_obj ect.

16

httpo://www.renderx.com/

../refman/directives/object_1_5.html
../refman/directives/end_object_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Objects

In object-oriented programming objects are usually organized in hierarchies that enable interface and code sharing by in-
heritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:- obj ect (Prototype,
extends(Parent)).

;- end_obj ect.

We can also have class-based hierarchies by defining instantiation and specialization relations between objects. To define
an object as a class instance we will write:

;- obj ect (bj ect,
instanti ates(d ass)).

:- end_obj ect.

A class may specialize another class, its superclass:

.- object(d ass,
speci al i zes(Supercl ass)).

:- end_obj ect.

If we are defining areflexive system where every classisaso an instance, we will probably be using the following pattern:

.- object(d ass,
i nstanti at es(Met acl ass),
speci al i zes(Supercl ass)).

:- end_obj ect.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be prototype-based
(defined by extending other objects) or class-based (with instantiation and specialization relations). An object may aso
implement one or more protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation, or specialization relations with other objects) isalways
compiled as a prototype, that is, a self-describing object. If we want to use classes and instances, then we will need to

17

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

specify at least one instantiation or specialization relation. The best way to do thisisto define a set of objectsthat provide
the basis of areflective system [Cointe 87, Moura 94]. For example:

:- obj ect (object, % def aul t root of the inheritance graph
instantiates(class)). % pr edi cates common to all objects

;- end_obj ect.

:- object(class, % default netaclass for all classes
i nstanti ates(cl ass), % predi cates conmon to all instantiable classes

speci al i zes(abstract _cl ass)).

:- end_obj ect.

.- object(abstract_cl ass, % default netaclass for all abstract classes
i nstanti ates(cl ass), % predi cates common to all classes

speci al i zes(obj ect)).

:- end_object.

Note that with these instantiation and specialization relations, obj ect , cl ass, and abstract _cl ass are, at the same
time, classes and instances of some class. In addition, each object inherits its own predicates and the predicates of the
other two objects without any inheritance loop problems.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making an object an
instance of itself, i.e. by making a class its own metaclass. For example:

:- object(class,
instantiates(cl ass)).

;- end_obj ect.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange messages between
all objects). We cannot however mix the two types of hierarchiesby, e.g., specializing an object that extends another object
in this current Logtalk version.

Parametric objects

Parametric objects have acompound term for nameinstead of an atom. Thiscompound term usually containsfree variables
that can be instantiated when sending or as a consegquence of sending a message to the object, thus acting as object para
meters. The object predicates can then be coded to depend on those parameters, which are logical variables shared by all
object predicates. When an object state is set at object creation and never changed, parameters provide a better solution
than using the object's database via asserts. Parametric objects can also be used to associate a set of predicates to terms
that share acommon functor and arity.

18

httpo://www.renderx.com/

../bibliography.html#Cointe87
../bibliography.html#Moura94
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Objects

In order to give access to an object parameters, Logtalk providesthe par anet er / 2 built-in local method:

.- object(Functor(Argl, Arg2, ...)).

Predicate : -

@y

par anet er (Number, Val ue),

An alternative solution isto use the built-in local method t hi s/ 1. For example:

:- object(foo(Arg)).

bar : -

ilhi.'s(foo(Arg)),

Both solutions are equally efficient because the runtime cost of the methodst hi s/ 1 and par anet er/ 2 isnegligible. The
drawback of this second solution is that we must check all calls of t hi s/ 1 if we change the object name. Note that we
can't use these method with the message sending operators (: : / 2, :: /1, or ~*/ 1).

When storing a parametric object in its own source file, the convention is to name the file after the object, with the object
arity appended. For instance, when defining an object named sort (Type) , we may saveitinasort _1.1 gt text file.
Thisway it is easy to avoid file name clashes when saving Logtalk entities that have the same functor but different arity.

Compound terms with the same functor and with the same number of arguments as a parametric object identifier may act
as proxies to a parametric object. Proxies may be stored on the database as Prolog facts and be used to represent different
instantiations of a parametric object identifier. Logtalk provides a convenient notation for accessing proxies represented
as Prolog facts when sending a message:

{Proxy}:: Message

In this context, the proxy argument is proved as aplain Prolog goal. If successful, the message is sent to the corresponding
parametric object. Typically, the proof allowsretrieving of parameter instantiations. This construct can either be used with
aproxy argument that is sufficiently instantiated in order to unify with asingle Prolog fact or with a proxy argument that
unifies with several facts on backtracking.

Finding defined objects

We can find, by backtracking, all defined objectsby callingthecurrent _obj ect/ 1 built-in predicate with anon-instan-
tiated variable:

| ?- current_object(Cbject).

19

render

httpo://www.renderx.com/

../refman/methods/parameter_2.html
../refman/methods/this_1.html
../refman/control/send_to_object_2.html
../refman/control/send_to_self_1.html
../refman/control/call_super_1.html
../refman/predicates/current_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

This predicate can also be used to test if an object isdefined by calling it with avalid object identifier (an atom or acom-
pound term).

Creating a new object in runtime

An object can be dynamically created at runtime by using the cr eat e_obj ect / 4 built-in predicate:

| ?- create_object(Onject, Relations, Directives, C auses).

The first argument should be either a variable or the name of the new object (a Prolog atom or compound term, which
must not match any existing entity name). The remaining three arguments correspond to the relations described in the
opening object directive and to the object code contents (directives and clauses).

For instance, the call:

| ?- create_object(foo, [extends(bar)], [public(foo/1)], [foo(l), foo(2)]).

is equivalent to compiling and loading the object:

:- object(foo,
ext ends(bar)).

;- dynam c.
:- public(foo/1l).

foo(1l).
foo(2).

;- end_obj ect.

If we need to create alot of (dynamic) objects at runtime, then is best to define a metaclass or a prototype with a predicate
that will call this built-in predicate to make new objects. This predicate may provide automatic object name generation,
name checking, and accept object initialization options.

Abolishing an existing object

Dynamic objects can be abolished using the abol i sh_obj ect / 1 built-in predicate:

| ?- abolish_object(Chject).

The argument must be an identifier of a defined dynamic object, otherwise an error will be thrown.

Object directives

Object directives are used to set initialization goal s, define object properties, to document an object dependencies on other
Logtalk entities, and to load the contents of files into an object.

20

httpo://www.renderx.com/

../refman/predicates/create_object_4.html
../refman/predicates/abolish_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Objects

Object initialization

We can define agoal to be executed as soon as an object is (compiled and) loaded to memory withthei ni ti al i zati on/ 1
directive:

:- initialization(Goal).

The argument can be any valid Prolog or Logtalk goal, including a message to other object. For example:

:- object(foo).

:- initialization(init).
:- private(init/0).

init :-

;- end_obj ect.

Or:

:- object(assenbler).

:- initialization(control::start).

;- end_obj ect.

Theinitialization goal can also be amessageto self in order to call aninherited or imported predicate. For example, assuming
that we have anoni t or category defining ar eset / 0 predicate:

;- object(profiler,
i mports(nmonitor)).

:- initialization(::reset).

;- end_obj ect.

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes the object that
contains the directive. Also note that by initialization we do not necessarily mean setting an object dynamic state.

21

render
httpo://www.renderx.com/

../refman/directives/initialization_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution of aprogram
isaways dynamic. An object defined in afile can be either dynamic or static. Dynamic objects are declared by using the
dynanmi ¢/ 0 directive in the object source code:

:- dynam c.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code resultsin a per-
formance hit when compared to static code. We should only use dynamic objects when these need to be abolished during
program execution. In addition, note that we can declare and define dynamic predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information by using thei nf o/ 1 directive:

:- info(List).

See the documenting Logtalk programs section for details.

Loading files into an object

Thei ncl ude/ 1 directive can be used to load the contents of afile into an object. A typical usage scenario isto load a
plain Prolog database into an object thus providing a smple way to encapsulate it. For example, assume aci ti es. pl
file defining factsfor aci t y/ 4 predicate. We could define awrapper for this database by writing:

:- object(cities).
i- public(city/4).
;- include(dbs('cities.pl')).

;- end_obj ect.

Thei ncl ude/ 1 directive can also be used when creating an object dynamically. For example:

| ?- create_object(cities, [], [public(city/4), include(dbs('cities.pl'))], []).

Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the possible relationships that an
object may have with other entities.

The built-in predicatesi nst anti at es_cl ass/ 2 andi nst anti at es_cl ass/ 3 can be used to query al instantiation
relations:

| ?- instantiates_class(lnstance, C ass).

22

httpo://www.renderx.com/

../refman/directives/dynamic_0.html
../refman/directives/info_1.html
documenting.html
../refman/directives/include_1.html
../refman/predicates/instantiates_class_2_3.html
../refman/predicates/instantiates_class_2_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Objects

or, if we want to know the instantiation scope:

| ?- instantiates_class(lnstance, O ass, Scope).

Specialization relations can be found by using either the speci al i zes_cl ass/ 2 or thespeci al i zes_cl ass/ 3 built-
in predicates:

| ?- specializes_class(C ass, Superclass).

or, if we want to know the specialization scope:

| ?- specializes_class(Cl ass, Superclass, Scope).

For prototypes, we can query extension relations with the ext ends_obj ect / 2 or the ext ends_obj ect / 3 built-in pre-
dicates:

| ?- extends_object(Cbject, Parent).

or, if we want to know the extension scope:

| ?- extends_object(Cbject, Parent, Scope).

In order to find which objects import which categories we can use the built-in predicates i nports_cat egory/ 2 or
i mports_category/ 3:

| ?- inports_category(Object, Category).

or, if we want to know the importation scope:

| ?- inports_category(Object, Category, Scope).

To find which objects implements which protocols we can use the inplenents_protocol/2-3 and
conforms_to_protocol /2- 3 built-in predicates:

| ?- inplenents_protocol (Object, Protocol, Scope).

or, if we also want inherited protocols:

| ?- conforns_to_protocol (Object, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to usethe cur r ent _obj ect / 1 built-
in predicate to ensure that the entity returned is an object and not a category.

23

render

s httpo://www.renderx.com/

../refman/predicates/specializes_class_2_3.html
../refman/predicates/specializes_class_2_3.html
../refman/predicates/extends_object_2_3.html
../refman/predicates/extends_object_2_3.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/implements_protocol_2_3.html
../refman/predicates/conforms_to_protocol_2_3.html
../refman/predicates/current_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

To find which objects are explicitly complemented by categories we can use the conpl enent s_obj ect/ 2 built-in pre-
dicate:

| ?- conpl enents_obj ect (Category, Cbject).

Note that more than one category may explicitly complement a single object.

Object properties

We can find the properties of defined objects by calling the built-in predicate obj ect _property/ 2:

| ?- object_property(Object, Property).

The following object properties are supported:

static
The object is static
dynami c
The object is dynamic (and thus can be abolished in runtime by calling the abol i sh_obj ect / 1 built-in pre-
dicate)
built_in
The object is a built-in object (and thus always avail abl€)
t hr eaded
The object supports/makes multi-threading calls
file(Path)

Absolute path of the source file defining the object (if applicable)
file(Basenane, Directory)

Basename and directory of the source file defining the object (if applicable)
| i nes(Begi nLi ne, EndLi ne)

Source file begin and end lines of the object definition (if applicable)
context_swi tching_calls

The object supports context switching calls (i.e. can be used with the <</ 2 debugging control construct)
dynami c_decl arati ons

The object supports dynamic declarations of predicates
events

Messages sent from the object generate events
source_data

Source data available for the object
conpl enent s(Per m ssi on)

The object supports complementing categories with the specified permission (al | oworrestrict)
conpl enent s

The object supports complementing categories
publ i c(Predi cat es)

List of public predicates declared by the object
pr ot ect ed(Predi cat es)

List of protected predicates declared by the object
privat e(Predi cat es)

List of private predicates declared by the object

24

render

httpo://www.renderx.com/

../refman/predicates/complements_object_2.html
../refman/predicates/object_property_2.html
../refman/predicates/abolish_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Objects

decl ares(Predicate, Properties)
List of properties for a predicate declared by the object

defines(Predicate, Properties)
List of properties for a predicate defined by the object

i ncl udes(Predicate, Entity, Properties)
List of propertiesfor an object multifile predicate that are defined in the specified entity (the propertiesinclude
nunber _of _cl auses(Nunber), nunmber _of _rul es(Nunber),andl i ne_count (Li ne) withLi ne being
the begin line of the multifile predicate clause)

provi des(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the object (the propertiesinclude
nunber _of _cl auses(Nunber), nunber _of _rul es(Nunber),andl i ne_count (Li ne) withLi ne being
the begin line of the multifile predicate clause)

al i as(Predicate, Properties)
List of properties for a predicate alias declared by the object (the propertiesincludef or (Ori gi nal),
fromEntity),non_termninal (NonTernminal),andline_count(Line) withLi ne beingthebeginline
of the alias directive)

calls(Call, Properties)
List of propertiesfor predicate calls made by the object (Cal | iseither apredicateindicator or acontrol construct
suchas: :/ 1-2 or 2"/ 1 with a predicate indicator as argument; note that Cal | may not be ground in case of
acall toacontrol construct whereitsargument isonly know at runtime; the propertiesincludecal | er (Cal | er),
alias(Alias),andline_count(Line) withbothCal | er and Al i as being predicateindicatorsand Li ne
being the begin line of the predicate clause or directive making the call)

updat es(Predi cate, Properties)
List of properties for dynamic predicate updates (and also access using the cl ause/ 2 predicate) made by the
object (Pr edi cat e iseither apredicateindicator or acontrol construct suchas: : / 1- 2 or : / 2 with apredicate
indicator as argument; note that Pr edi cat e may not be ground in case of a control construct argument only
know at runtime; the propertiesincludeupdat er (Updat er) ,al i as(Al i as),andl i ne_count (Li ne) with
Updat er being a (possibly multifile) predicate indicator, Al i as being a predicate indicator, and Li ne being
the begin line of the predicate clause or directive updating the predicate)

nunber _of cl auses(Nunber)
Total number of predicate clauses defined in the object at compilation time (includes both user-defined clauses
and auxiliary clauses generated by the compiler or by the expansion hooks)

nunber _of _rul es(Nunber)
Total number of predicate rules defined in the object at compilation time (includes both user-defined rules and
auxiliary rules generated by the compiler or by the expansion hooks)

nunber _of _user _cl auses(Nunber)
Total number of user-defined predicate clauses defined in the object at compilation time

nunber _of _user _rul es(Nunber)
Total number of user-defined predicate rules defined in the object at compilation time

When apredicateis called fromani ni ti al i zati on/ 1 directive, the argument of thecal | er/ 1 property is: -/ 1.

Some of the properties such as line numbers are only available when the object is defined in a source file compiled with
the sour ce_dat a flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the object for both
multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile predicates contributed by
other entities.

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Built-in objects
Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

Logtalk definesabuilt-in, pseudo-object named user that virtually containsall user predicate definitions not encapsul ated
inaLogtak entity. These predicates are assumed to be implicitly declared public. Messages sent from this pseudo-object,
which includes messages sent from the top-level interpreter, always generate events. Defining complementing categories
for this pseudo-object is not supported.

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk (com-
piler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-object user virtually
contains all user predicate definitions defined in the module where Logtalk was |oaded.

The built-in object logtalk

Logtalk definesabuilt-in object named | ogt al k that provides structured message printing mechanism predicates, structured
question asking predicates, debugging event predicates, predicates for accessing the internal database of loaded files and
their properties, and also a set of low-level utility predicates normally used when defining hook objects.

The following predicates are defined:

expand_l i brary_path(Li brary, Path)
Expands afile specification in library notation to a full operating-system path.

| oaded_fil e(Pat h)
Returns the full path of a currently loaded sourcefile.

| oaded_file_property(Path, Property)
Returnsaproperty for acurrently loaded sourcefile. Valid propertiesarebasenane/ 1,di rect ory/ 1,f 1 ags/ 1
(explicit flags used when the file was loaded), t ext _properti es/ 1 (list, possibly empty, whose possible
elementsare encodi ng/ 1 and bont 1), t ar get / 1 (full path for the Prolog file generated by the compilation
of the loaded source file), nodi f i ed/ 1 (time stamp that should be treated as an opague term but that may be
used for comparisons), par ent / 1 (parent file, if it exists, that |oaded thefile; afile may have multiple parents),
andl i brary/ 1 (library name when thereisalibrary whose location is the same as the loaded file directory).

conpi | e_aux_cl auses(C auses)
Compilesalist of clausesin the context of the entity under compilation. This method is usually called from
goal _expansi on/ 2 hooksin order to compile auxiliary clauses generated for supporting an expanded goal.
The compilation of the clauses avoids the risk of making the predicate whose clause is being goal-expanded
discontiguous by accident.

entity prefix(Entity, Prefix)
Converts an entity identifier into itsinternal prefix or an internal prefix into an entity identifier.

conpi | e_predi cat e_heads(Heads, Entity, Transl atedHeads, ContextArgunent)
Compiles a predicate head or alist of predicate heads in the context of the specified entity or in the context of
the entity being compiled when Ent i t y is not instantiated.

conpi |l e_predicate_indicators(Predi catelndi cators, Entity, Transl atedPredicatel ndi cators)
Compiles a predicate indicator or alist of predicate indicators in the context of the specified entity or in the
context of the entity being compiled when Ent i t y is not instantiated.

deconpi | e_predi cat e_heads(Transl at edHeads, Entity, EntityType, Heads)
Decompiles a compiled predicate head or alist of compiled predicate heads returning the entity, entity type,
and source level heads. Requires the entity to be currently loaded.

26

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Objects

deconpi | e_predi cate_indi cators(Transl at edPredi cat el ndi cators, Entity, EntityType,

Pr edi cat el ndi cat ors)
Decompiles acompiled predicate indicator or alist of compiled predicate indicators returning the entity, entity
type, and source level predicate indicators. Requires the entity to be currently loaded.

execution_cont ext (ExecutionContext, Entity, Sender, This, Self, MetaCall Context, Stack)
Allows constructing and accessing execution context components.

print_nessage(Ki nd, Conponent, Term
Printsamessage term after converting it into alist of tokensusing thenessage_t okens/ / 2 hook non-terminal.
When the conversion fails, the message term itself is printed.
print_nessage_t okens(Stream Prefix, Tokens)
Prints alist of message tokens to the specified stream and prefixing each line with the specified prefix.
print_nessage_t oken(Stream Prefix, Token, Tokens)
Hook predicate, declared multifile and dynamic, allowing the default printing of atoken to be overridden.
nmessage_t okens(Term Conponent)
Hook non-terminal, declared multifile and dynamic, allowing the translation of a message into alist of tokens
for printing.
message_prefix_strean(Ki nd, Conponent, Prefix, Stream
Hook predicate, declared multifile and dynamic, allowing the definition of line prefix and output stream for
messages.
message_hook(Term Kind, Conponent, Tokens)
Hook predicate, declared multifile and dynamic, allowing the overriding the default printing of a message.

trace_event (Event, Event Executi onContext)
Hook predicate, declared multifile and dynamic, for handling trace events generated by the execution of source
code compiled in debug mode. The Logtalk runtime callsall defined handlersusing afailure-driven loop. Thus,
care must be taken that the handlers are deterministic to avoid potential termination issues.

debug_handl er _provi der (Provi der)
Multifile predicate for declaring an object that provides a debug handler. There can only be one debug handler
provider loaded at the sametime. The Logtalk runtime usesthis hook predicate for detecting multiple instances
of the handler and for better error reporting.

debug_handl er (Event, Event Executi onCont ext)
Multifile predicate for handling debug events generated by the execution of source code compiled in debug
mode.

To use these predicates, smply send the corresponding message to the | ogt al k object.

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

28

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Protocols

Protocols

Protocols enable the separation between interface and implementation: severa objects can implement the same protocol
and an object can implement several protocols. Protocols may contain only predicate declarations. In some languages the
term interface is used with similar meaning. Logtalk allows predicate declarations of any scope within protocols, contrary
to some languages that only allow public declarations.

Logtalk defines three built-in protocols, moni t or i ng, expandi ng, and f or war di ng, which are described at the end of
this section.

Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source files may
contain one or more objects, categories, or protocols. If you prefer to define each entity in its own sourcefile, it is recom-
mended that the file be named after the protocol. By default, all Logtalk source files use the extension . | gt but thisis
optional and can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler) have, by
default, a_| gt suffix and a. pl extension. Again, this can be set to match the needs of a particular Prolog compiler in
the corresponding adapter file. For example, we may define a protocol named | i st p and saveitinali st p. | gt source
filethat will be compiledtoal i st p_I gt. pl Prolog file (depending on the backend compiler, the names of the interme-
diate Prolog files may include a directory hash).

Protocol names must be atoms. Objects, categories and protocols share the same name space: we cannot have a protocol
with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives. pr ot ocol / 1- 2 and end_pr ot ocol / 0.
The most simple protocol will be one that is self-contained, not depending on any other Logtalk entity:

;- protocol (Protocol).

:- end_protocol .

If aprotocol extends one or more protocols, then the opening directive will be:

.- protocol (Protocol,
extends([Protocol 1, Protocol2, ...])).

;- end_protocol .

In order to maximize protocol reuse, al predicates specified in aprotocol should relate to the same functionality. Therefore,
the only recommended use of protocol extension is when you need both a minimal protocol and an extended version of
the same protocol with additional, useful predicates.

29

httpo://www.renderx.com/

../refman/directives/protocol_1_2.html
../refman/directives/end_protocol_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Finding defined protocols

We can find, by backtracking, al defined protocols by using the cur rent _pr ot ocol / 1 built-in predicate with a non-
instantiated variable:

| ?- current_protocol (Protocol).

This predicate can also be used to test if a protocol is defined by calling it with avalid protocol identifier (an atom).

Creating a new protocol in runtime

We can create a new (dynamic) protocol in runtime by calling the Logtalk built-in predicate cr eat e_pr ot ocol / 3:

| ?- create_protocol (Protocol, Relations, Directives).

The first argument should be either avariable or the name of the new protocol (a Prolog atom, which must not match an
existing entity name). The remaining two arguments correspond to the rel ations described in the opening protocol directive
and to the protocol directives.

For instance, the call:

| ?- create_protocol (ppp, [extends(qqq)], [public([foo/1, bar/1])]).

is equivalent to compiling and loading the protocol :

:- protocol (ppp,
extends(qqq)) .

;- dynam c.
:- public([foo/1, bar/1]).

:- end_protocol .

If we need to create alot of (dynamic) protocolsat runtime, thenis best to define ametaclass or a prototype with a predicate
that will call this built-in predicate in order to provide more sophisticated behavior.

Abolishing an existing protocol

Dynamic protocols can be abolished using the abol i sh_pr ot ocol / 1 built-in predicate:

| ?- abolish_protocol (Protocol).

The argument must be an identifier of a defined dynamic protocol, otherwise an error will be thrown.

Protocol directives

Protocol directives are used to define protocol properties and documentation.

30

httpo://www.renderx.com/

../refman/predicates/current_protocol_1.html
../refman/predicates/create_protocol_3.html
../refman/predicates/abolish_protocol_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Protocols

Dynamic protocols

Asusually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during the execution
of aprogramisawaysdynamic. A protocol defined in afile can be either dynamic or static. Dynamic protocols are declared
by using the dynani c/ 0 directive in the protocol source code:

;- dynam c.

The directive must precede any predicate directives. Please be aware that using dynamic code resultsin a performance hit
when compared to static code. We should only use dynamic protocols when these need to be abolished during program
execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using thei nf o/ 1 directive:

:- info(List).

See the documenting Logtalk programs section for details.

Loading files into a protocol

Thei ncl ude/ 1 directive can be used to load the contents of afile into a protocol. See the objects section for an example
of using this directive.

Protocol relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible relationships that a
protocol have with other entities.

The built-in predicates ext ends_pr ot ocol / 2 and ext ends_pr ot ocol / 3 return al pairs of protocols so that the first
one extends the second:

| ?- extends_protocol (Protocol 1, Protocol 2).

or, if we want to know the extension scope:

| ?- extends_protocol (Protocol 1, Protocol 2, Scope).

To find which objects or categories implement which protocols we can call the i npl ements_protocol /2 or
i mpl ement s_pr ot ocol / 2 built-in predicates:

| ?- inplenents_protocol (Obj ect Or Cat egory, Protocol).

or, if we want to know the implementation scope:

| ?- inplenents_protocol (Obj ect Or Category, Protocol, Scope).

31

httpo://www.renderx.com/

../refman/directives/dynamic_0.html
../refman/directives/info_1.html
documenting.html
../refman/directives/include_1.html
objects.html
../refman/predicates/extends_protocol_2_3.html
../refman/predicates/extends_protocol_2_3.html
../refman/predicates/implements_protocol_2_3.html
../refman/predicates/implements_protocol_2_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current _obj ect/ 1 or
current _cat egory/ 1 built-in predicates to identify the kind of entity returned.

Protocol properties

We can find the properties of defined protocols by calling the pr ot ocol _pr opert y/ 2 built-in predicate:

| ?- protocol _property(Protocol, Property).

A protocol may have the property st at i ¢, dynani ¢, or bui I t _i n. Dynamic protocols can be abolished in runtime by
calling the abol i sh_pr ot ocol / 1 built-in predicate. Depending on the back-end Prolog compiler, a protocol may have
additional properties related to the source file where it is defined.

The following protocol properties are supported:

static
The protocol is static
dynami c
The protocol is dynamic (and thus can be abolished in runtime by calling the abol i sh_cat egor y/ 1 built-in
predicate)
built_in
The protocol isabuilt-in protocol (and thus always available)
sour ce_dat a
Source data available for the protocol
file(Path)
Absolute path of the source file defining the protocol (if applicable)
file(Basenane, Directory)
Basename and directory of the source file defining the protocoal (if applicable)
| i nes(Begi nLi ne, EndLi ne)
Source file begin and end lines of the protocol definition (if applicable)
publ i c(Predicates)
List of public predicates declared by the protocol
pr ot ect ed(Predi cat es)
List of protected predicates declared by the protocol
privat e(Predi cat es)
List of private predicates declared by the protocol
decl ares(Predicate, Properties)
List of properties for a predicate declared by the protocol
al i as(Predicate, Properties)
List of properties for a predicate alias declared by the protocol (the propertiesincludef or (Ori gi nal),
from(Entity),non_terninal (NonTerminal),andline_count (Li ne) withLi ne being the beginline
of the dias directive)

Some of the properties such as line numbers are only available when the protocol is defined in asource file compiled with
the sour ce_dat a flag turned on.

32

render
httpo://www.renderx.com/

../refman/predicates/current_object_1.html
../refman/predicates/current_category_1.html
../refman/predicates/protocol_property_2.html
../refman/predicates/abolish_protocol_1.html
../refman/predicates/abolish_category_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protocols

Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:- obj ect (Obj ect,
i mpl enment s(Protocol)).

:- end_obj ect.

or, in the case of a category:

:- category(ject,
i mpl enment s(Protocol)).

:- end_category.

To makeall public predicates declared viaan implemented protocol protected or to make all public and protected predicates
private we prefix the protocol's name with the corresponding keyword. For instance:

:- object (Object,
i npl enents(private::Protocol)).

end_obj ect .

or:

:- obj ect (Obj ect,
i mpl enent s(protected:: Protocol)).

end_obj ect .

Omitting the scope keyword is equivalent to writing:

:- obj ect (Obj ect,
i mpl enent s(public::Protocol)).

;- end_obj ect.

The same rules applies to protocols implemented by categories.

Built-in protocols
Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

Logtalk defines a built-in protocol named expandi ng that contains declarations for the t er m expansi on/ 2 and
goal _expansi on/ 2 predicates. See the description of the hook compiler flag for more details.

33

render

httpo://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

The built-in protocol monitoring

Logtalk defines a built-in protocol named moni t or i ng that contains declarationsfor thebef or e/ 3 and af t er / 3 public
event handler predicates. See the event-driven programming section for more details.

The built-in protocol forwarding

Logtak definesabuilt-in protocol named f or war di ng that containsadeclaration for thef or war d/ 1 user-defined message
forwarding handler, which is automatically called (if defined) by the runtime for any message that the receiving object
does not understand. See aso the []/1 control construct.

34

render

httpo://www.renderx.com/

events.html
../refman/control/delegate_message_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Categories

Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories provide a
way to encapsulate a set of related predicate declarations and definitions that do not represent a complete object and that
only make sense when composed with other predicates. Categories may also be used to break a complex object in func-
tional units. A category can be imported by several objects (without code duplication), including objects participating in
prototype or class-based hierarchies. This concept of categories shares someideaswith Smalltalk-80 functional categories
[Goldberg 83], Flavors mix-ins [Moon 86] (without necessarily implying multi-inheritance), and Objective-C categories
[Cox 86]. Categories may also complement existing objects, thus providing a hot patching mechanism inspired by the
Objective-C categories functionality.

Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source files may
contain one or more objects, categories, or protocols. If you prefer to define each entity inits own sourcefile, it is recom-
mended that the file be named after the category. By default, all Logtalk source files use the extension . | gt but thisis
optional and can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler) have, by
default, a_| gt suffix and a. pl extension. Again, this can be set to match the needs of a particular Prolog compiler in
the corresponding adapter file. For instance, we may define a category named docunenting and save it in a
docunent i ng. | gt sourcefilethat will be compiledto adocunent i ng_I gt. pl Prolog file (depending on the backend
compiler, the names of the intermediate Prolog files may include a directory hash).

Category names can be atoms or compound terms (when defining parametric categories). Objects, categories, and protocols
share the same name space: we cannot have a category with the same name as an object or a protocol.

Category code (directives and predicates) istextually encapsulated by using two Logtalk directives: cat egory/ 1- 3 and
end_cat egor y/ 0. Themost simple category will be onethat is self-contained, not depending on any other Logtalk entity:

.- category(Category).

;- end_category.

If a category implements one or more protocols then the opening directive will be:

;- category(Category,
i mpl enents([Protocol 1, Protocol2, ...])).

.- end_category.

35

httpo://www.renderx.com/

../bibliography.html#Goldberg83
../bibliography.html#Moon86
../bibliography.html#Cox86
../refman/directives/category_1_3.html
../refman/directives/end_category_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

A category may be defined as a composition of other categories by writing:

.- category(Category,
extends([Categoryl, Category2, ...])).

:- end_cat egory.

Thisfeature should only be used when extending a category without breaking its functional cohesion (for example, when
amodified version of a category is needed for importing on several unrelated objects). The preferred way of composing
several categoriesisby importing theminto an object. When acategory overrides a predicate defined in an extended category,
the overridden definition can till be used by using the al i as/ 2 predicate directive.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates. Thisrestriction
applies because a category can be imported by several objects and because we cannot use the database handling built-in
methods with categories (messages can only be sent to objects). However, categories may contain declarationsfor dynamic
predicates and they can contain predicates which handle dynamic predicates. For example:

:- category(attributes).

:- public(attribute/?2).
:- public(set_attribute/?2).
:- public(del _attribute/?2).

:- private(attribute /2).
;- dynami c(attribute /2).

attribute(Attribute, Value) :-
crattribute_(Attribute, Value). %called in the context of "self"

set _attribute(Attribute, Value) :-
c:retractall (attribute (Attribute,)), %retracts clauses in "self"

c:assertz(attribute (Attribute, Value)). %asserts clause in "self"

del _attribute(Attribute, Value) :-
ciretract(attribute (Attribute, Value)). %retracts clause in "self"

:- end_category.

Each object importing this category will have its own attribute_/ 2 private, dynamic predicate. The predicates
attribute/2,set_attribute/2,anddel _attri bute/ 2 awaysaccessand modify the dynamic predicate contained

36

render

httpo://www.renderx.com/

../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Categories

inthe object receiving the corresponding messages (i.e. self). But it's also possible to define predicates that handle dynamic
predicatesin the context of thisinstead of self. For example:

:- category(attributes).

:- public(attribute/?2).
:- public(set_attribute/?2).
:- public(del _attribute/?2).

:- private(attribute /2).
:- dynamic(attribute_/2).

attribute(Attribute, Value) :-
attribute (Attribute, Value). %called in the context of "this"

set_attribute(Attribute, Value) :-
retractal |l (attribute_(Attribute,)), %retracts clauses in "this"

assertz(attribute_(Attribute, Value)). % asserts clause in "this"

del _attribute(Attribute, Value) :-
retract (attribute_(Attribute, Value)). %retracts clause in "this"

;- end_category.

When defining a category that declares and handles dynamic predicates, working in the context of thisties those dynamic
predicates to the object importing the category while working in the context of self allows each object inheriting from the
object that imports the category to have its own set of clauses for those dynamic predicates.

Hot patching

A category may explicitly complement one or more existing objects, thus providing hot patching functionality inspired
by Objective-C categories:

:- category(Category,
conpl enent s([Obj ectl, Chject2,])).

;- end_category.

Thisallows usto add missing directives (e.g. to define aliases for complemented object predicates), replace broken predicate
definitions, add new predicates, and add protocols and categories to existing objects without requiring access or modific-
aionsto their source code. Common scenarios are adding logging or debugging predicatesto aset of objects. Complemented
objects need to be compiled with the conpl enent s compiler flag set al | ow (to allow both patching and adding function-
aity) orrestri ct (toallow only adding new functionality). A complementing category takes preference over apreviously
loaded complementing category for the same object thus allowing patching a previous patch if necessary.

Note that super calls from predicates defined in complementing categories|ookup inherited definitions asif the callswere
made from the complemented object instead of the category ancestors. This allows more comprehensive object patching.
But it also means that, if you want to patch an object so that it imports a category that extends another category and uses
super callsto access the extended category predicates, you will need to define a (possibly empty) complementing category
that extends the category that you want to add.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category is that it
disables the use of static binding optimizations for messages sent to the complemented object as it can always be later
patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local calers of the
replaced predicate will still call the unpatched version of the predicate. This is a consequence of the lack of a portable
solution at the backend Prolog compiler level for destructively replacing stetic predicates.

Finding defined categories

We can find, by backtracking, all defined categories by using thecur rent _cat egory/ 1 Logtak built-in predicate with
anon-instantiated variable:

| ?- current_category(Category).

This predicate can also be used to test if a category is defined by calling it with avalid category identifier (an atom or a
compound term).

Creating a new category in runtime

A category can be dynamically created at runtime by using the cr eat e_cat egor y/ 4 built-in predicate:

| ?- create_category(Category, Relations, Directives, Cl auses).

Thefirst argument should be either avariable or the name of the new category (a Prolog atom, which must not match with
an existing entity name). The remaining three arguments correspond to the relations described in the opening category
directive and to the category code contents (directives and clauses).

For instance, the call:

| ?- create_category(ccc,
[inpl ements(ppp)],
[private(bar/1)],
[(foo(X):-bar(X)), bar(1), bar(2)]).

38

httpo://www.renderx.com/

../refman/predicates/current_category_1.html
../refman/predicates/create_category_4.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Categories

is equivalent to compiling and loading the category:

.- category(ccc,
i mpl enent s(ppp)) .

:- dynami c.
:- private(bar/1).

foo(X) :-
bar (X) .

bar (1) .
bar (2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then is best to to define a metaclass or a prototype with a
predicate that will call this built-in predicate in order to provide more sophisticated behavior.

Abolishing an existing category

Dynamic categories can be abolished using the abol i sh_cat egor y/ 1 built-in predicate:

| ?- abolish_category(Category).

The argument must be an identifier of a defined dynamic category, otherwise an error will be thrown.

Category directives

Category directives are used to define category properties, to document a category dependencies on other Logtalk entities,
and to load the contents of filesinto a category.

Dynamic categories

Asusually happens with Prolog code, a category can be either static or dynamic. A category created during the execution
of aprogramisawaysdynamic. A category defined in afile can be either dynamic or static. Dynamic categoriesare declared
by using the dynami c/ 0 directive in the category source code;

;- dynam c.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code resultsin a per-
formance hit when compared to static code. We should only use dynamic categories when these need to be abolished
during program execution.

39

render
httpo://www.renderx.com/

../refman/predicates/abolish_category_1.html
../refman/directives/dynamic_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Category documentation

A category can be documented with arbitrary user-defined information by using thei nf o/ 1 directive:

:- info(List).

See the documenting Logtalk programs section for details.

Loading files into a category

Thei ncl ude/ 1 directive can be used to load the contents of afile into acategory. See the objects section for an example
of using this directive.

Category relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible relationships that a
category can have with other entities.

The built-in predicatesi npl ement s_pr ot ocol / 2- 3 and conf or ms_t o_pr ot ocol / 2- 3 allows usto find which cat-
egories implements which protocols:

| ?- inplements_protocol (Category, Protocol, Scope).

or, if we also want inherited protocols:

| ?- conforms_to_protocol (Category, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current _category/ 1
built-in predicate to ensure that the returned entity is a category and not an object.

To find which objects import which categories we can use thei nports_cat egory/ 2 ori nport s_cat egory/ 3 built-
in predicates:

| ?- inmports_category(Object, Category).

or, if we want to know the importation scope:

| ?- inports_category(Object, Category, Scope).

Note that a category may be imported by several objects.

To find which categories extend other categorieswe can usetheext ends_cat egor y/ 2 or ext ends_cat egor y/ 3 built-
in predicates:

| ?- extends_category(Categoryl, Category?2).

40

render

httpo://www.renderx.com/

../refman/directives/info_1.html
documenting.html
../refman/directives/include_1.html
objects.html
../refman/predicates/implements_protocol_2_3.html
../refman/predicates/conforms_to_protocol_2_3.html
../refman/predicates/current_category_1.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/extends_category_2_3.html
../refman/predicates/extends_category_2_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Categories

or, if we want to know the extension scope:

| ?- extends_category(Categoryl, Category2, Scope).

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objectswe can usetheconpl enent s_obj ect / 2 built-in predicate;

| ?- conpl enents_obj ect (Cat egory, OCbject).

Note that a category may explicitly complement several objects.

Category properties

We can find the properties of defined categories by calling the built-in predicate cat egory_property/ 2:

| ?- category_property(Category, Property).

The following category properties are supported:

static
The category is static
dynami c
The category is dynamic (and thus can be abolished in runtime by calling the abol i sh_cat egor y/ 1 built-in
predicate)
built_in
The category is abuilt-in category (and thus always availabl€)
file(Path)

Absolute path of the source file defining the category (if applicable)
file(Basenane, Directory)

Basename and directory of the source file defining the category (if applicable)
| i nes(Begi nLi ne, EndLi ne)

Source file begin and end lines of the category definition (if applicable)
events

Messages sent from the category generate events
sour ce_dat a

Source data available for the category
publ i c(Predi cat es)

List of public predicates declared by the category
pr ot ect ed(Predi cat es)

List of protected predicates declared by the category
privat e(Predi cat es)

List of private predicates declared by the category
decl ares(Predi cate, Properties)

List of properties for a predicate declared by the category
defines(Predicate, Properties)

List of properties for a predicate defined by the category

41

render

httpo://www.renderx.com/

../refman/predicates/complements_object_2.html
../refman/predicates/category_property_2.html
../refman/predicates/abolish_category_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

i ncludes(Predicate, Entity, Properties)
List of propertiesfor an object multifile predicate that are defined in the specified entity (the propertiesinclude
nunber _of _cl auses(Nunber),nunber _of rul es(Nunber),andl i ne_count (Li ne) withLi ne being
the begin line of the multifile predicate clause)

provi des(Predicate, Entity, Properties)
List of properties for other entity multifile predicate that are defined in the category (the properties include
nunber _of _cl auses(Nunber), nunber _of _rul es(Nunber),andl i ne_count (Li ne) withLi ne being
the begin line of the multifile predicate clause)

al i as(Predicate, Properties)
List of properties for a predicate alias declared by the category (the propertiesincludef or (Ori gi nal),
from(Entity),non_termninal (NonTerminal),andline_count (Li ne) withLi ne being the beginline
of the dias directive)

calls(Call, Properties)
List of properties for predicate calls made by the category (Cal | is either a predicate indicator or a control
construct such as: : / 1- 2 or ~*/ 1 with a predicate indicator as argument; note that Cal | may not be ground
in case of acall to acontrol construct where its argument is only know at runtime; the properties include
caller(Caller),alias(Alias),andline_count(Line) withbothCaller andAl i as being predicate
indicatorsand Li ne being the begin line of the predicate clause or directive making the call)

updat es(Predi cate, Properties)
List of properties for dynamic predicate updates (and also access using the cl ause/ 2 predicate) made by the
object (Pr edi cat e iseither apredicateindicator or acontrol construct suchas: : / 1- 2 or : / 2 with apredicate
indicator as argument; note that Pr edi cat e may not be ground in case of a control construct argument only
know at runtime; the propertiesincludeupdat er (Updat er) ,al i as(Al i as),andl i ne_count (Li ne) with
Updat er being a (possibly multifile) predicate indicator, Al i as being a predicate indicator, and Li ne being
the begin line of the predicate clause or directive updating the predicate)

nunber _of _cl auses(Nunber)
Total number of predicate clauses defined in the category (includes both user-defined clauses and auxiliary
clauses generated by the compiler or by the expansion hooks)

nunber _of _rul es(Nunber)
Total number of predicate rules defined in the category (includes both user-defined rules and auxiliary rules
generated by the compiler or by the expansion hooks)

nunber _of _user _cl auses(Nunber)
Total number of user-defined predicate clauses defined in the category

nunber _of _user _rul es(Nunber)
Total number of user-defined predicate rules defined in the category

Some of the properties such asline numbers are only available when the category is defined in a source file compiled with
thesour ce_dat a flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the object for both
multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile predicates contributed by
other entities.

42

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Categories

Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories. The syntax is
very smple:

;- obj ect (Ohj ect,
i mports([Categoryl, Category2, ...])).

;- end_obj ect.

To make all public predicatesimported via a category protected or to make all public and protected predicates private we
prefix the category's name with the corresponding keyword:

:- obj ect (Obj ect,
i mports(private:: Category)).

;- end_obj ect.

or:

:- obj ect (Obj ect,
i mport s(protected:: Category)).

:- end_obj ect.

Omitting the scope keyword is equivalent to writing:

;- obj ect (Obj ect,
i mports(public::Category)).

:- end_obj ect.

Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call. Consider the
following category:

:- category(output).
:- public(out/1).

out (X) :-
wite(X), nl.

:- end_category.

43

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

The predicate out / 1 can be called from within an object importing the category by simply sending a message to self. For
example:

:- obj ect (wor ker,
i mports(output)).

do(Task) : -
execut e(Task, Result),
::out (Result).

:- end_obj ect.

This is the recommended way of calling a category predicate that can be specialized/overriden in a descendant object as
the predicate definition lookup will start from self.

A direct call the predicate definition found in an imported category can be made using the ~~/ 1 control construct. For
example:

:- obj ect (wor ker,
i mports(output)).

do(Task) : -
execut e(Task, Result),
Ahout (Resul t).

:- end_obj ect.

This alternative should only be used when the user knows a priori that the category predicates will not be specialized or
redefined by descendant objects of the object importing the category. Its advantage is that, when the opt i i ze compiler
flag is turned on, the Logtalk compiler will try to optimize the calls by using static binding. When dynamic binding is
used due to e.g. the lack of sufficient information at compilation time, the performance is similar to calling the category
predicate using a message to self (in both cases a predicate lookup caching mechanism is used).

Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term as the category
identifier and by calling the par anet er / 2 built-in local method in the category predicate clauses. Category parameter
values can be defined by the importing objects. For example:

:- obj ect (speech(Season, Event),
i mports([dress(Season), speech(Event)])).

;- end_obj ect.

44

httpo://www.renderx.com/

../refman/control/call_super_1.html
../refman/methods/parameter_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Categories

Note that access to category parametersis only possible using the par anet er / 2 method from within the category. Calls
tothet hi s/ 1 built-inlocal method from category predicates always access theimporting object identifier (and thus object
parameters, not category parameters).

45

render

httpo://www.renderx.com/

../refman/methods/this_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

46

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain predicate
directives. From the point-of-view of an object-oriented language, predicates allows both object state and object behavior
to be represented. Mutable object state can be represented using dynamic object predicates.

Reserved predicate names

For performance reasons, afew predicates have afixed interpretation. These predicates are declared in the built-protocols.
They are: goal _expansi on/ 2 andt er m expansi on/ 2, declaredintheexpandi ng protocol; bef ore/ 3andafter/ 3,
declared in the moni t or i ng protocol; and f or war d/ 1, declared in the f or war di ng protocol. By default, the compiler
prints a warning when a definition for one of these predicates are found but the reference to the corresponding built-in
protocol is missing.

Declaring predicates

All object (or category) predicates that we want to access from other objects must be explicitly declared. A predicate de-
claration must contain, at least, a scope directive. Other directives may be used to document the predicate or to ensure
proper compilation of the predicate definitions.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can be public,
protected, private, or local. Public predicates can be called from any object. Protected predicates can only be called from
the container object or from a container descendant. Private predicates can only be called from the container object. Local
predicates, like private predicates, can only be called from the container object (or category) but they are invisible to the
reflection built-in methods (cur r ent _op/ 3,current _predi cat e/ 1,andpr edi cat e_pr oper t y/ 2) andtothemessage
error handling mechanisms (i.e. sending amessage corresponding to alocal predicateresultsinapr edi cat e_decl arati on
existence error, not in a scope error).

The scope declarations are made using the directivespubl i ¢/ 1, prot ect ed/ 1, and pri vat e/ 1. For example:

:- public(init/1).
:- protected(valid_init_option/1).

:- private(process_init_options/1).

If apredicate does not have a scope declaration, it is assumed that the predicate islocal. Note that we do not need to write
scopedeclarationsfor all defined predicates. One exceptionislocal dynamic predicates: declaring them as private predicates
may allow the Logtalk compiler to generate optimized code for asserting and retracting clauses.

47

httpo://www.renderx.com/

../refman/directives/public_1.html
../refman/directives/protected_1.html
../refman/directives/private_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Note that a predicate scope directive doesn't specify where a predicateis, or can be, defined. For example, a private pre-
dicate can only be called from an object holding its scope directive. But it can be defined in descendant objects. A typical
exampleisan object playing therole of aclass defining aprivate (possibly dynamic) predicate for its descendant instances.
Only the class can call (and possibly assert/retract clauses for) the predicate but its clauses can be found/defined in the
instances themselves.

Mode directive

Often predicates can only called using specific argument patterns. The valid arguments and instantiation modes of those
arguments can be documented by using the node/ 2 directive. For example:

;- nmode(nenber(?term ?list), zero_or_nore).

The first directive argument describes a valid calling mode. The minimum information will be the instantiation mode of
each argument. The first four possible values are described in [1SO 95]). The remaining two can be found in use in some
Prolog systems.

+
Argument must be instantiated (but not necessarily ground).

Argument should be a free (non-instantiated) variable (when bound, the call will unify the returned term with
the given term).

Argument can either be instantiated or free.

Argument will not be further instantiated (modified).
++

Argument must be ground.

Argument must be unbound.

These four mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to include
type information for each argument like in the example above. Some of the possible type values are: event , obj ect ,
cat egory, protocol, cal | abl e, t erm nonvar, var, at oni ¢, at om nunber, i nt eger, fl oat, conpound, and
l'i st. Thefirst four are Logtalk specific. The remaining are common Prolog types. We can a so use our own types that
can be either atoms or ground compound terms.

The second directive argument documents the number of proofs (not necessarily distinct solutions) for the specified mode.
Note that different modes for the same predicate often have different determinism. The possible values are:

zero

Predicate always fails.
one

Predicate always succeeds once.
Zero_or_one

Predicate either fails or succeeds.
zero_or_nore

Predicate has zero or more proofs.
one_or _nore

Predicate has one or more proofs.

48

httpo://www.renderx.com/

../refman/directives/mode_2.html
../bibliography.html#ISO95
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Predicates

one_or _error
Predicate either succeeds once or throws an error (see below).
error
Predicate will throw an error (see below).

Mode declarations can aso be used to document that some call modes will throw an error. For instance, regarding the
ar g/ 3 1SO Prolog built-in predicate, we may write:

.- nmode(arg(-, -, +), error).

Note that most predicates have more than one valid mode implying several mode directives. For example, to document
the possible use modes of the at om concat / 3 1SO built-in predicate we would write;

;- node(atom concat (?atom ?atom +aton), one_or_nore).
;- node(at om concat (+atom +atom -aton), zero_or_one).

Some old Prolog compilers supported some sort of mode directivesto improve performance. To the best of my knowledge,
there is no modern Prolog compiler supporting these kind of directive. The current version of the Logtalk compiler just
parses and than discards this directive (however, see the description on synchronized predicates on the multi-threading
programming section). Nevertheless, the use of mode directivesisagood starting point for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals or closures that will be used for constructing agoal. To
ensure that these goalswill be executed in the correct scope (i.e. in the calling context, not in the meta-predicate definition
context) we need to use the net a_pr edi cat e/ 1 directive. For example:

:- neta_predicate(findall(*, 0, *)).

The meta-predicate mode arguments in this directive have the following meaning:

0
Meta-argument that will be called asagoal.

Meta-argument that will be a closure used to construct a call by appending N arguments. The value of N must
be a non-negative integer.

Argument that is context-aware but that will not be called as a goal.
Goal that may be existentially quantified (Var s~ Goal).

Normal argument.

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to deal with
proprietary built-in meta-predicates and meta-directives:

/
Predicate indicator (Funct or / Ari ty), list of predicate indicators, or conjunction of predicate indicators.
I
Non-terminal indicator (Funct or// Ari ty), list of predicate indicators, or conjunction of predicate indicators.

49

render

httpo://www.renderx.com/

threads.html#threads_synchronized_predicates
threads.html
threads.html
../refman/directives/meta_predicate_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

[0]
List of goals.
[N
List of closures.
[/]
List of predicate indicators.
[//1]
List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures has first introduced on Quintus Prolog
for providing information for predicate cross-reference tools.

Aseach Logtalk entity isindependently compiled, this directive must beincluded in every object or category that contains
a definition for the described meta-predicate, even if the meta-predicate declaration is inherited from another entity, to
ensure proper compilation of meta-arguments.

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the predicate discon-
tiguous by using the di scont i guous/ 1 directive:

:- discontiguous(foo/1l).

Thisis adirective that we should avoid using: it makes your code harder to read and it is not supported by some Prolog
compilers.

As each Logtalk entity is compiled independently from other entities, this directive must be included in every object or
category that contains a definition for the described predicate (even if the predicate declaration is inherited from other
entity).

Dynamic directive

An object predicate can be static or dynamic. By default, all object predicates are static. To declare a dynamic predicate
we use thedynani ¢/ 1 directive:

:- dynam c(foo/1).

This directive may also be used to declare dynamic grammar rule non-terminals. As each Logtalk entity is compiled inde-
pendently from other entities, this directive must be included in every object that contains a definition for the described
predicate (even if the predicate declaration is inherited from other object or imported from a category). If we omit the
dynamic declaration then the predicate definition will be compiled static. In the case of dynamic objects, static predicates
cannot be redefined using the database built-in methods (despite being internally compiled to dynamic code).

Dynamic predicates can be used to represent persistant mutabl e object state. Note that static objects may declare and define
dynamic predicates.

50

httpo://www.renderx.com/

../refman/directives/discontiguous_1.html
../refman/directives/dynamic_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/ 3 directive:

:- op(Priority, Specifier, Operator).

Operators are local to the object (or category) where they are declared. This meansthat, if you declare a public predicate
as an operator, you cannot use operator notation when sending to an object (where the predicate is visible) the respective
message (as this would imply visibility of the operator declaration in the context of the sender of the message). If you
want to declare global operators and, at the same time, use them inside an entity, just write the corresponding directives
at the top of your source file, before the entity opening directive.

When the same operators are used on several entities within the same sourcefile, the corresponding directives must appear
before any entity that uses them. However, this results in a global scope for the operators. If you prefer the operators to
be local to the source file, just undefine them at the end of the file. For example:

:- op(400, xfx, results). %before any entity that uses the operator

:- op(0, xfx, results). % after all entities that used the operator

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose due to all
the necessary message sending goals. Consider the following example:

foo :-

findall (X, list::menber(X, L), A,
list::append(A B, O,
list::select(Y, C R,

Logtalk provides a directive, uses/ 2, which allows us to simplify the code above. The usage template for this directive
is:

:- uses(oject, [Functorl/Arityl, Functor2/Arity2, ...]).

51

httpo://www.renderx.com/

../refman/directives/op_3.html
../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Rewriting the code above using this directive results in a simplified and more readable predicate definition:;

c- uses(list, [
append/ 3, nenber/2, select/3
1).

foo :-

findall (X, nenmber(X L), A,
append(A, B, O,
select(Y, C R,

Logtalk also supports an extended version of this directive that allows the declaration of predicate alias using the notation
Predi cate as Ali as (or the aternative notation Pr edi cat e: : Al i as). For example:

:- uses(btrees, [new 1 as new btree/1]).
:- uses(queues, [new 1 as new _queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/ 2 directives or just
for giving new names to the predicates that will be more meaningful on their using context.

Theuses/ 2 directive allows simpler predicate definitions aslong asthere are no conflicts between the predicates declared
in the directive and the predicates defined in the object (or category) containing the directive. A predicate (or its alias if
defined) cannot be listed in more than one uses/ 2 directive. In addition, auses/ 2 directive cannot list a predicate (or
its alias if defined) which is defined in the object (or category) containing the directive. Any conflicts are reported by
Logtalk as compilation errors.

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inherited or imported
grammar rule non-terminal) through the use of the al i as/ 2 directive:

:- alias(Entity, [Predicatel as Aliasl, Predicate2 as Alias2, ...]).

This directive can be used in objects, protocols, or categories. The first argument, Ent i t y, must be an entity referenced
in the opening directive of the entity containing the al i as/ 2 directive. It can be an implemented protocol, an imported
category, an extended prototype, an instantiated class, or a specialized class. The second argument is a list of pairs of
predicate indicators (or grammar rule non-terminal indicators) using the as infix operator as connector.

52

httpo://www.renderx.com/

../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

A common use for the al i as/ 2 directive is to give an aternative name to an inherited predicate in order to improve
readability. For example:

:- obj ect (square,
extends(rectangle)).

.- alias(rectangle, [width/1 as side/1]).

:- end_obj ect.

The directive allows both wi dt h/ 1 and si de/ 1 to be used as messages to the object squar e. Thus, using this directive,
thereisno need to explicitly declareand definea"new" si de/ 1 predicate. Notethat theal i as/ 2 directive doesnot rename
apredicate, only provides an alternative, additional name; the original name continues to be available (although it may be
masked due to the default inheritance conflict mechanism).

Another common usefor this directive isto solve conflicts when two inherited predicates have the same functor and arity.
We may want to call the predicate which is masked out by the Logtalk lookup algorithm (see the Inheritance section) or
wemay heed to call both predicates. Thisissimply accomplished by usingtheal i as/ 2 directiveto give aternative names
to masked out or conflicting predicates. Consider the following example:

:- object(ny_data_structure,
extends(list, set)).

:- alias(list, [menber/2 as |ist_nenber/2]).
.- alias(set, [nenber/2 as set_nenber/2]).

:- end_obj ect.

Assuming that both | i st and set objectsdefineamenber / 2 predicate, without the al i as/ 2 directives, only the defin-
ition of nenber / 2 predicate in the object | i st would be visible on the object nmy_dat a_st r uct ur e, asaresult of the
application of the Logtalk predicate lookup algorithm. By usingtheal i as/ 2 directives, all the following messageswould
be valid (assuming a public scope for the predicates):

| ?- my_data_structure::list_nmenmber(X, L). % uses |ist nenber/2
| ?- nmy_data_structure::set_nenber(X, L). % uses set nenber/2
| ?- nmy_data_structure::menber (X, L). % uses |ist menber/2

When used this way, the al i as/ 2 directive provides functionality similar to programming constructs of other object-

oriented languages which support multi-inheritance (the most notable example probably being the renaming of inherited

featuresin Eiffel).

Note that the al i as/ 2 directive never hides a predicate which is visible on the entity containing the directive as a result

of the Logtalk lookup algorithm. However, it may be used to make visible a predicate which otherwise would be masked

by another predicate, asillustrated in the above example.

53

httpo://www.renderx.com/

inheritance.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Theal i as/ 2 directive may also be used to give access to an inherited predicate, which otherwise would be masked by
another inherited predicate, while keeping the original name as follows:

:- object(ny_data_structure,
extends(list, set)).

:- alias(list, [nmenber/2 as |ist_nenber/2]).
:- alias(set, [nenber/2 as set_nenber/2]).

menber (X, L) :-
i set_nmenber (X, L).

;- end_obj ect.

Thus, when sending the message menber / 2 tony_dat a_st r uct ur e, the predicate definitioninset will be used instead
of the one containedin| i st .

Documenting directive

A predicate can be documented with arbitrary user-defined information by using thei nf o/ 2 directive:

:- info(Functor/Arity, List).

The second argument isalist of Key i s Val ue terms. See the Documenting Logtalk programs section for details.

Multifile directive

A predicate can be declared multifile by using thenul ti fi | e/ 1 directive:

- multifile(Functor/Arity).

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that should be
used with care. Support for this directive have been added to Logtalk primarily to support migration of Prolog module
code. Spreading clauses for a predicate among several Logtalk entities can be handy in some cases but can al so make your
code difficult to understand. Logtalk precludes using a multifile predicate for breaking object encapsulation by checking
that the object (or category) declaring the predicate (using a scope directive) definesit also as multifile. This entity issaid
to contain the primary declaration for the multifile predicate. In addition, notethat therul ti fi | e/ 1 directiveismandatory
when defining multifile predicates.

Consider the following simple example:

.- object(nmin).

:- public(al/l).
- multifile(all).
a(l).

;- end_obj ect.

54

httpo://www.renderx.com/

../refman/directives/info_2.html
documenting.html
../refman/directives/multifile_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

After compiling and loading the mai n object, we can define other objects (or categories) that contribute with clauses for
the multifile predicate. For example:

:- object(other).

- multifile(main::all).

mai n::a(2).
main::a(X) :-
b(X).
b(3).
b(4).

;- end_object.

After compiling and loading the above objects, you can use queries such as.

| ?- main::a(Xx).

X X X X
I
»wN PR

yes

Entities containing primary multifile predicate declarations must always be compiled before entities defining clauses for
those multifile predicates. The Logtalk compiler will print awarning if the scope directive is missing.

Multifile predicates may also bedeclared dynamic usingthesameEnt i ty: : Funct or/ Ari t y notation (multifile predicates
are static by default).

When aclause of amultifile predicate isarule, its body is compiled within the context of the object or category defining
the clause. This alows clauses for multifile predicates to call local object or category predicates. But the values of the
sender, this, and self in the implicit execution context are passed from the clause head to the clause body. Thisis necessary
to ensure that these values are always valid and to allow muiltifile predicate clauses to be defined in categories. A call to
the par anmet er / 2 execution context methods, however, retrieves parameters of the entity defining the clause, not from
the entity for which the clause is defined. The parameters of the entity for which the clause is defined can be accessed by
simple unification at the clause head.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the object own
database instead of the database of the entity holding the multifile predicate primary declaration. Similarly, local callsto
the expand_term 2 and expand_goal / 2 methods from a multifile predicate clause look for clauses of the
t er m expansi on/ 2 andgoal _expansi on/ 2 hook predicates starting from the entity defining the clause instead of the
entity holding the multifile predicate primary declaration. Local calls to the current_predicate/1,
predi cate_property/2,andcurrent _op/ 3 methodsfrom multifile predicate clauses defined in an object al so lookup
predicates and their propertiesin the object own database instead of the database of the entity holding the multifile predicate
primary declaration.

55

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Coinductive directive

A predicate can be declared coinductive by using the coi nduct i ve/ 1 directive. For example:

:- coi nductive(conenber/ 2).

Logtalk support for coinductive predicates is experimental and requires a back-end Prolog compiler with minimal support
for cyclic terms.

Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference be that we have four more
control structures (the three message sending operators plus the external call operator) to play with. For example, if we
wish to define an object containing common utility list predicateslike append/ 2 or menber / 2 we could write something
like:

:- object(list).

:- public(append/ 3).
;- public(menber/2).

append([], L, L).
append([H T], L, [H T2]) :-
append(T, L, T2).

menber(H, [H _]).

menber(H, [_| T]) :-
menber (H, T).
;- end_obj ect.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have written is
plain Prolog. Callsin a predicate definition body default to the local predicates, unless we use the message sending oper-
ators or the external call operator. This enables easy conversion from Prolog code to Logtalk objects: we just need to add
the necessary encapsulation and scope directives to the old code.

Category predicates

Because a category can be imported by multiple objects, dynamic private predicates must be called either in the context
of self, using the message to self control structure, : : / 1, or inthe context of this(i.e. in the context of the object importing

56

httpo://www.renderx.com/

../refman/directives/coinductive_1.html
../refman/control/send_to_self_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

the category). For example, if we want to define a category implementing variables using destructive assignment where
the variable values are stored in self we could write:

:- category(variable).

:- public(get/2).
:- public(set/2).

:- private(value_/2).
dynam c(val ue_/ 2).

get (Var, Value) :-
::value_(Var, Value).

set (Var, Value) :-
c:retractall (value_(Var,)),

::asserta(val ue_(Var, Value).

:- end_category.

Inthiscase, theget / 2 and set / 2 predicates will always access/update the correct definition, contained in the object re-
celving the messages. The alternative, storing the variable valuesin this, such that each object importing the category will
have its own definition for the val ue_/ 2 private predicate is ssimple: just omit the use of the: : / 1 control construct in
the code above.

A category can only contain clauses for static predicates. Nevertheless, as the example above illustrates, there are no re-
strictions in declaring and calling dynamic predicates from inside a category.

Meta-predicates

Meta-predicates may be defined inside objects (and categories) as any other predicate. A meta-predicate is declared using
thenet a_pr edi cat e/ 1 directive as described earlier on this section. When defining a meta-predicate, the argumentsin
the clause heads corresponding to the meta-arguments must be variables. All meta-arguments are called in the context of
the entity calling the meta-predicate.

Some meta-predicates have meta-arguments which are not goals but closures. Logtalk supports the definition of meta-
predicatesthat are called with closuresinstead of goals aslong asthe definition usesthe Logtalk built-in predicatecal | / N
to call the closure with the additional arguments. For example:

:- public(all_true/2).
:- neta_predicate(all _true(1, *)).

all _true(_, []).

all _true(C osure, [Arg| Args]) :-
call (C osure, Arg),
all _true(d osure, Args).

Notethat in this case the meta-predicate directive specifies that the closure will be extended with exactly one extraargument.

When calling ameta-predicate, aclosure can correspond to a user-defined predicate, abuilt-in predicate, alambdaexpression,
or acontrol construct.

57

httpo://www.renderx.com/

../refman/methods/call_N.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary predicates for
the sole purpose of calling the meta-predicates. A simple example of alambda expressioniis:

| ?- meta::map([X Y]>>(Y is 2*X), [1,2,3], Ys).
Ys = [2, 4, 6]
yes

Inthisexample, alambdaexpression, [X, Y] >>(Y i s 2*X), isused asan argument to the map/ 3 list mapping predicate,
defined in the library object net a, in order to double the elements of alist of integers. Using alambda expression avoids
writing an auxiliary predicate for the sole purpose of doubling the list elements. The lambda parameters are represented
by thelist [X, Y], which is connected to the lambdagoal, (Y i s 2*X), by the (>>)/ 2 operator.

Currying is supported. |.e. it is possible to write alambda expression whose goal is another |lambda expression. The above
example can be rewritten as:

| ?- meta::map([X]>>([Y]>>(Y is 2*X)), [1,2,3], Ys).
Ys = [2,4,6]
yes

Lambda expressions may also contain lambda free variables. |.e. variables that are global to the lambda expression. For
example, using GNU Prolog as the back-end compiler, we can write:

| ?- nmeta::map({Z}/[X Y]>>(Z#=X+Y), [1,2,3], Zs).

Z = _#22(3..268435455)

Zs = [_#3(2..268435454), #66(1..268435453), #110(0..268435452)]
yes

The 1SO Prolog construct { } / 1 for representing the lambda free variables as this representation is often associated with
set representation. Note that the order of the free variables is of no consequence (on the other hand, alist is used for the
lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example by Markus
Triska:

| ?- nmeta::map([A B, B-A >>true, [1l-a,2-b,3-c], Zs).
Zs = [a-1,b-2,c-3]
yes

58

httpo://www.renderx.com/

http://en.wikipedia.org/wiki/Lambda_calculus
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

Lambda expressions can be used, as expected, in non-deterministic queries asin the following example using SWI-Prolog
as the back-end compiler and Markus Triska's CLP(FD) library:

| ?- meta::map({Z}/[X Y]>>(cl pfd: (Z#=X+Y)), Xs, Ys).
Xs =[],

Ys =[] ;

Xs [_G1369],

Ys = [_G1378],
_Gl369+_G1378#=Z ;

Xs = [_G1579, _G1582],

Ys = [_G1591, _G1594],
_G1582+_G1594#=Z,
_G1579+_G1591#=Z ;

Xs = [_Gl789, _Gl792, _Gl795],
Ys = [_Gl804, _Gl1807, _(G1810],
_Gl795+_G1810#=2,
_Gl792+_Gl1807#=2,
_Gl789+_Gl1804#=Z ;

Asillustrated by the above examples, lambda expression syntax reuses the 1SO Prolog construct {}/ 1 and the standard
operators (/) / 2 and (>>) / 2, thus avoiding defining new operators, which is awaystricky for a portable system such as
Logtalk. The operator (>>) / 2 was chosen as it suggests an arrow, similar to the syntax used in other languages such as
OCaml and Haskell to connect lambda parameters with lambda functions. This syntax was also chosen in order to simplify
parsing, error checking, and compilation of lambda expressions. The full specification of the lambda expression syntax
can be found in the reference manual .

The compiler checks whenever possible that al variables in alambda expression are either classified as free variables or
as lambda parameters. The use of non-classified variables in alambda expression should be regarded as a programming
error. Unfortunately, the dynamic features of the language and lack of sufficient information at compile time may prevent
the compiler of checking all uses of lambda expressions. The compiler also checksif avariableis classified as both afree
variable and alambda parameter. An optimizing meta-predicate and lambda expression compiler, based on the term-ex-
pansion mechanism, is provided for practical performance.

Definite clause grammar rules

Definite clause grammar rules provide a convenient notation to represent the rewrite rules common of most grammarsin
Prolog. In Logtalk, definite clause grammar rules can be encapsulated in objects and categories. Currently, the ISO/IEC
WG17 group is working on a draft specification for a definite clause grammars Prolog standard. Therefore, in the mean
time, Logtalk follows the common practice of Prolog compilers supporting definite clause grammars, extending it to

59

httpo://www.renderx.com/

http://logtalk.org/manuals/refman/grammar.html#grammar_lambdas
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

support calling grammar rules contained in categories and objects. A common example of a definite clause grammar is
the definition of a set of rules for parsing simple arithmetic expressions:

:- object(calculator).
;- public(parsel/?2).

par se(Expr essi on, Val ue) : -
phrase(expr (Val ue), Expression).

expr(z) -->term(X), "+", expr(Y), {Zis X + Y}.
expr(z) -->term(X), "-", expr(Y), {Zis X - Y}.
expr(X) --> termX).

term(2) --> nunber(X), "*", termY), {Zis X * Y}.
term(Z) --> nunber(X), "/", termY), {Zis X/ Y}.
term(Z) --> nunber(Z2).

nunmber (C) --> "+", nunber(C).
nunber (C) --> "-", nunber(X), {Cis -X}.
nunber(X) -->[C, {000 =< C, C=< 09, Xis C- 0'0}.

;- end_obj ect.

The predicate phr ase/ 2 caled in the definition of predicate par se/ 2 above isaLogtak built-in method, similar to the
predicate with the same name found on most Prolog compilers that support definite clause grammars. After compiling
and loading this object, we can test the grammar rules with calls such as the following one:

| ?- calculator::parse("1+2-3*4", Result).

Result = -9
yes

In most cases, the predicates resulting from the transl ation of the grammar rulesto regular clauses are not declared. | nstead,
these predicates are usually called by using the built-in methodsphr ase/ 2 and phr ase/ 3 asshown in the example above.
When we want to use the built-in methods phr ase/ 2 and phr ase/ 3, the non-terminal used as first argument must be
within the scope of the sender. For the above example, assuming that we want the predicate corresponding to theexpr// 1
non-terminal to be public, the corresponding scope directive would be:

:- public(expr//1).

The/ / infix operator used abovetellsthe Logtalk compiler that the scope directive refersto agrammar rule non-terminal,
not to a predicate. The idea is that the predicate corresponding to the translation of the expr// 1 non-termina will have
anumber of arguments equal to one plus the number of additional arguments necessary for processing the subjacent lists
of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from categories, or
contained in other objects. Thisis accomplished by using non-terminals as messages. Using a non-terminal as a message
to self alows us to call grammar rules in categories and ancestor objects. To call grammar rules encapsulated in other

60

httpo://www.renderx.com/

../refman/methods/phrase_2.html
../refman/methods/phrase_2.html
../refman/methods/phrase_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

objects, we use a non-terminal as a message to those objects. Consider the following example, containing grammar rules
for parsing natural language sentences:

:- object(sentence,
i mports(determ ners, nouns, verbs)).

:- public(parsel/?2).
parse(List, true) :-

phrase(sent ence, List).
parse(_, false).

sent ence --> noun_phrase, verb_phrase.

noun_phrase --> ::determner, ::noun.
noun_phrase --> ::noun.

verb_phrase --> ::verb.
verb_phrase --> ::verb, noun_phrase.

:- end_obj ect.

The categories imported by the object would contain the necessary grammar rules for parsing determiners, nouns, and
verbs. For example:

;- category(determ ners).
:- private(determner//0).

determner --> [the].
determ ner --> [a].

:- end_category.

Along with the message sending operators (: : /1, : : / 2, and ~*/ 1), we may also use other control constructs such as
\+/1,1/0,;/2,->/2,and{}/ 1 inthebody of agrammar. In addition, grammar rules may contain meta-calls (avariable
taking the place of anon-terminal), which are trandlated to calls of the built-in method phr ase/ 3.

You may have noticed that Logtalk defines {}/ 1 as a control construct for bypassing the compiler when compiling a
clause body goal. As exemplified above, thisis the same control construct that is used in grammar rules for bypassing the
expansion of rule body goals when aruleis converted into a clause. Both control constructs can be combined in order to

61

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

call agoa from a grammar rule body, while bypassing at the same time the Logtalk compiler. Consider the following
example:

bar : -
wite(' bar predicate called), nl.

.- obj ect (bypass).
;- public(foo//0).
foo --> {{bar}}.

:- end_obj ect.

After compiling and loading this code, we may try the following query:

| ?- logtal k << phrase(bypass::foo, _,).

bar predicate called
yes

Thisisthe expected result as the expansion of the grammar rule into aclause leavesthe { bar } goal untouched, which, in
turn, is converted into the goal bar when the clause is compiled.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using the same
Functor// Arity notation illustrated above for the scope directives. In addition, grammar rule non-terminals can be
documented using the i nf o/ 2 directive, asin the following example:

:- public(sentence//0).

;- info(sentence//0, [
comment is 'Rewites a sentence into a noun phrase and a verb phrase.']).

Built-in object predicates (methods)

Logtalk defines a set of built-in object predicates or methods to access message execution context, to find sets of solutions,
to inspect objects, for database handling, for term and goal expansion, and for printing messages. Similar to Prolog built-
in predicates, these built-in methods should not be redefined.

Execution context methods

Logtalk defines four built-in private methods to access an object execution context. These methods (with the possible ex-
ception of par anet er / 2) are trandated to a single unification performed at compile time with a clause head context ar-
gument. Therefore, they can be freely used without worrying about performance penaties. When caled from inside a
category, these methods refer to the execution context of the object importing the category. These methods cannot be used
as messages to objects.

To find the object that received the message under execution we may use the sel f/ 1 method. We may also retrieve the
object that has sent the message under execution using the sender / 1 method.

62

httpo://www.renderx.com/

../refman/directives/info_2.html
../refman/methods/self_1.html
../refman/methods/sender_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Predicates

Themethod t hi s/ 1 enables usto retrieve the name of the object for which the predicate clause whose body is being ex-
ecuted isdefined instead of using the name directly. Thishelpsto avoid breaking the codeif we decide to change the object
name and forget to change the name references. This method may also be used from within a category. In this case, the
method returns the object importing the category on whose behalf the predicate clause is being executed.

Hereis ashort exampleincluding calls to these three object execution context methods:

:- Object(test).
:- public(test/0).

test :-
thi s(This),
wite('Calling a predicate definition contained in '), witeq(This), nl,
sel f(Self),
wite('to answer a nessage received by '), witeq(Self), nl,
sender (Sender)
wite('that was sent by '), witeq(Sender), nl, nl.

;- end_obj ect.

:- obj ect (descendant,
extends(test)).

;- end_obj ect.

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Calling a predicate definition contained in test
to answer a message recei ved by descendant

that was sent by user

yes

Note that the goalssel f (Sel f), sender (Sender), and t hi s(Thi s), being trandated to unifications with the clause
head context arguments at compile time, are effectively removed from the clause body. Therefore, a clause such as:

predi cate(Arg) :-
sel f(Sel f),
aton(Arg),

iscompiled with the goal at on{ Ar g) asthefirst condition on the clause body. As such, the use of these context execution
methods do not interfere with the optimizations that some Prolog compilers perform when the first clause body condition
isacall to abuilt-in type-test predicate or a comparison operator.

63

render

httpo://www.renderx.com/

../refman/methods/this_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

For parametric objects and categories, the method par anet er / 2 enables us to retrieve current parameter values (see the
section on parametric objects for a detailed description). For example:

:- object(block(_Color)).
:- public(test/O0).
test :-
paraneter (1, Color),

wite(' Color paraneter value is '), witeqg(Color), nl.

:- end_obj ect.

After compiling and loading these two objects, we can try the following goal:

| ?- block(blue)::test.

Col or paraneter value is blue
yes

Callsto the par anet er / 2 method are translated to a compile time unification when the second argument is a variable.
When the second argument is bound, the calls are translated to a call to the built-in predicate ar g/ 3.

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog predicates:
abolish/1,assertal/l,assertz/1,clause/2,retract/1,andretractal |/ 1. These methods aways operate on
the database of the object receiving the corresponding message.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand_t er n1 2 convert a
grammar rule into a clause that can than be used with the database methods.

Meta-call methods

Logtalk supports the generalized cal | / 1- N meta-predicate. This built-in private meta-predicate must be used in the im-
plementation of meta-predicates which work with closures instead of goals. In addition, Logtalk supports the built-in
private meta-predicatesi gnor e/ 1, once/ 1, and\ +/ 1. These methods cannot be used as messages to objects.

All solutions methods

The usua al solutions meta-predicates are built-in private methodsin Logtalk: bagof/ 3, findal I/ 3,findal | / 4, and
set of / 3. Thereisaso af oral | / 2 method that implements generate and test loops. These methods cannot be used as
messages to objects.

Reflection methods

Logtak provides acomprehensive set of built-in predicates and built-in methods for querying about entities and predicates.
Some of information, however, requires that the source files are compiled with the sour ce_dat a flag turned on.

Thereflection API supports two different views on entities and their contents, which we may call the transparent box view
and the black box view. In the transparent box view, we look into an entity disregarding how it will be used and returning
al information available on it, including predicate declarations and predicate definitions. This view is supported by the

64

httpo://www.renderx.com/

../refman/methods/parameter_2.html
objects.html#objects_parametric
../refman/methods/abolish_1.html
../refman/methods/asserta_1.html
../refman/methods/assertz_1.html
../refman/methods/clause_2.html
../refman/methods/retract_1.html
../refman/methods/retractall_1.html
../refman/methods/expand_term_2.html
../refman/methods/call_N.html
../refman/methods/ignore_1.html
../refman/methods/once_1.html
../refman/methods/not_1.html
../refman/methods/bagof_3.html
../refman/methods/findall_3.html
../refman/methods/findall_4.html
../refman/methods/setof_3.html
../refman/methods/forall_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

entity property built-in predicates. In the black box view, we look into an entity from an usage point-of-view using built-
in methods for inspecting object operators and predicates that are within scope from where we are making the call:
current _op/ 3, which returns operator specifications, pr edi cat e_property/ 2, which returns predicate properties,
and current _predi cat e/ 1, which enables us to query about predicate definitions. See below for a more detailed de-
scription of these methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supportstwo definite clause grammar parsing built-in private methods, phr ase/ 2 and phr ase/ 3, with definitions
similar to the predicates with the same name found on most Prolog compilersthat support definite clause grammars. These
methods cannot be used as messages to objects.

Logtalk also supportsphrase// 1,cal | // 1- N,and eos/ / 0 built-in non-terminals. Thecal | / / 1- Nnon-terminalstakes
aclosure (which can be alambda expression) plus zero or more additional arguments and are processed by appending the
input list of tokens and the list of remaining tokens to the arguments.

Term and goal expansion methods

Logtalk supports a expand_t er nf 2 built-in method for expanding a term into another term or a list of terms. This
method is mainly used to translate grammar rulesinto Prolog clauses. It can be customized, e.g. for bypassing the default
Logtalk grammar rule translator, by defining clauses for thet er m expansi on/ 2 hook predicate. Logtalk also supports
aexpand_goal / 2 built-in method for expanding agoal. This method can also be customized by defining clauses for the
goal _expansi on/ 2 hook predicate.

Term and goal expansion may be performed either by calling theexpand_t er mi 2 and expand_goal / 2 built-in methods
explicitly or by using hook objects. An hook object is simply an object defining clauses for the term- and goal-expansion
hook predicates. To compile a source file using a hook object for expanding its terms and goals, you can use the hook/ 1

compiler flag in the second argument of thel ogt al k_conpi | e/ 2 orl ogt al k_| oad/ 2 built-in predicates. In aternative,
you can useaset _| ogt al k_f | ag/ 2 directive in the source file itself. When compiling a source file, the compiler will

first try the source file specific hook object, if defined. If that fails, it tries the default hook object, if defined. If that also

fails, the compiler tries the Prolog dialect specific expansion predicate definitions if defined in the adapter file.

Sometimeswe have multiple hook objectsthat we need to usein the compilation of asourcefile. The Logtalk library includes
support for two basic expansion workflows: a pipeline of hook objects, where the expansion results from an hook object
are feed to the next hook object in the pipeline, and a set of hook objects, where expansions are tried until one of isfound
that succeeds. These workflows are implemented as parametric objects allowing combining them to implement more
sophisticated expansion workflows.

Clauses for the t er m expansi on/ 2 and goal _expansi on/ 2 predicates defined within an object or a category are
never used in the compilation of the object or the category itself, however. In order to use clauses for the
t erm expansi on/ 2 andgoal _expansi on/ 2 predicatesdefined in plain Prolog, simply specify the pseudo-object user

as the hook object when compiling source files. When using backend Prolog compilers that support a module system, it
can al so be specified amodul e containing clauses for the expanding predicates aslong asthe module name doesn't coincide
with an object name.

Logtalk provides al ogt al k_I oad_cont ext / 2 built-in predicate that can be used to access the compilation/loading
context when performing term-expansion or goal-expansion.

Printing messages

Logtalk features a structured message printing mechanism. This mechanism givesthe programmer full control of message
printing, allowing it to filter, rewrite, or redirect any message. The origins of the message printing mechanism that inspired
the Logtalk implementation goes back to Quintus Prolog, where it was apparently implemented by Dave Bowen (thanks

65

httpo://www.renderx.com/

../refman/methods/current_op_3.html
../refman/methods/predicate_property_2.html
../refman/methods/current_predicate_1.html
../refman/methods/phrase_2.html
../refman/methods/phrase_3.html
../refman/methods/phrase_1.html
../refman/methods/call_1.html
../refman/methods/eos_0.html
../refman/methods/expand_term_2.html
../refman/methods/term_expansion_2.html
../refman/methods/expand_goal_2.html
../refman/methods/goal_expansion_2.html
programming.html#programming_flags
../refman/predicates/logtalk_compile_2.html
../refman/predicates/logtalk_load_2.html
../refman/directives/set_logtalk_flag_2.html
../refman/predicates/logtalk_load_context_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

to Richard O'Keefefor the historical bits). Variations of this mechanism can also be found currently on e.g. SICStus Prolog,
SWI-Prolog, and YAP.

Why a mechanism for printing messages? Consider the different componentsin a Logtalk application development and
execution. At the bottom level, you have the Logtalk compiler and runtime. The Logtalk compiler writes messages related
to e.g. compiling and loading files, compiling entities, compilation warnings and errors. The Logtalk runtime may write
banner messages and handles execution errors that may result in printing human-level messages. The development envir-
onment can be console-based or you may be using a GUI tool such as PDT. In the latter case, PDT needsto intercept the
Logtalk compiler and runtime messages to present the relevant information using its GUI. Then you have all the other
components in atypical application. For example, your own libraries and third-party libraries. The libraries may want to
print messages on its own, e.g. banners, debugging information, or logging information. Asyou assemble all your applic-
ation components, you want to have the final word on which messages are printed, where, an in what conditions. Uncon-
trolled message printing by libraries could potentially e.g. disturb application flow, expose implementation details, spam
the user with irrelevant details, or break user interfaces.

The Logtalk message printing mechanism provides you with a set of predicates, defined in the | ogt al k built-in object,
and some hook predicates. Two of the most important predicates are pri nt _nessage(Ki nd, Conponent, Ternj,
which isused for printing amessage, and message_hook(Term Ki nd, Conponent, Tokens), auser-defined hook
predicate used for intercepting messages. The Ki nd argument is used to represent the nature of the message being printed.
It can be e.g. alogging message, a warning message or an error message, In Logtalk this argument can be either an atom,
e.g.error, or acompound term, e.g. comment (| oadi ng) . Using acompound term allows easy partitioning of messages
of the same kind in different groups. The following kinds of message are recognized by default:

banner
banner messages (used e.g. when loading tools or main application components; can be suppressed by setting
ther eport flagtowar ni ngs or of f)
hel p
messages printed in reply for the user asking for help (mostly for helping port existing Prolog code)
i nformati on andi nf or mati on(G oup)
messages printed usually in reply to a user request for information
silent andsil ent (G oup)
not printed by default (but can be intercepted using the message_hook/ 4 predicate)
comment and comment (G oup)
useful but usually not essential messages (can be suppressed by setting ther epor t flag towar ni ngs or of)
war ni ng and war ni ng(Gr oup)
warning messages (generated e.g. by the compiler; can be suppressed by turning off ther eport flag)
error anderror (G oup)
error messages (generated e.g. by the compiler)

Note that you can define your own alternative message kind identifiers, for your own components, together with suitable
definitions for their associated prefixes and output streams.

Messages are represented by atoms or compound terms, handy for machine-processing, and converted into alist of tokens,
for human consumption. This conversion is performed using the multifile non-terminal message_t okens(Term
Conponent) . A simple exampleis:

- multifile(logtalk::nessage_t okens//2).
;- dynam c(l ogt al k: : mressage_t okens// 2).

| ogt al k: : nessage_t okens(| oaded_settings _file(Path), core) -->
['Loaded settings file found on directory ~w -[Path], nl, nl].

66

render

httpo://www.renderx.com/

../refman/methods/print_message_3.html
../refman/methods/message_hook_4.html
../refman/methods/message_tokens_2.html
../refman/methods/message_tokens_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

The Conponent argument is new in the Logtalk implementation and is useful to filter messages belonging to a specific
component (e.g. the Logtalk compiler and runtime is identified by the atom cor e) and aso to avoid conflicts when two
components define the same message term (e.g. banner).

The following tokens can be used when translating a message:

at _sane_line
Signals afollowing part to a multi-part message with no line break in between; this token isignored when it's
not thefirst in the list of tokens

flush
Flush the output stream (by calling thef | ush_out put / 1 standard predicate)

nl
Change line in the output stream

For mat - Ar gunent s
For mat must be an atom and Ar gunent s must be alist of format arguments (the token arguments are passed
toacall tothef or mat / 3 de facto standard predicate)

term Term Options)
Ter mcan beany term and Opt i ons must bealist of validwr i t e_t er m’ 3 output options (the token arguments
arepassedto acall tothewr i t e_t er m 3 standard predicate)

ansi (Attributes, Format, Argunents)
Taken from SWI-Prolog; by default, do nothing; can be used for styled output

begi n(Ki nd, Var)
Taken from SWI-Prolog; by default, do nothing; can be used together with end(Var) to wrap a sequence of
message tokens

end(Var)
Taken from SWI-Prolog; by default, do nothing

There are also predicates for printing a list of tokens, pri nt _message_t okens(Stream Prefix, Tokens), for
hooking into printing an individual token, pri nt _message_t oken(Stream Prefix, Token, Tokens), and for
setting default output stream and message prefixes, message_pr ef i x_strean(Ki nd, Conponent, Prefix, Strean).
For example, the SWI-Prolog adapter file uses the pri nt _nmessage_t oken/ 4 hook predicate to enable coloring of
messages printed on a console.

Using the message printing mechanism in your applications and librariesis easy. Simply chose a unique component name
for your application (e.g. the name of the application itself), call | ogt al k: : pri nt _message/ 3 for every message that
you may want to print, and define default trandations for your message terms using the multifile non-terminal
| ogt al k: : message_t okens/ 2. For afull programming example, see e.g. thel gt uni t tool source code.

Asking questions

Logtalk features astructured question asking mechanism that complements the message printing mechanism. Thisfeature
provides an abstraction for the common task of asking a user a question and reading back its reply. By default, this
mechanism writes the question, writes a prompt, and reads the answer from the current user input and output streams but
allows both steps to be intercepted, filtered, rewritten, and redirected. Two typical examples are using a GUI diaog for
asking questions and automatically providing answers to specific questions.

The question asking mechanism works in tandem with the message printing mechanism, using it to print the question text
and aprompt. It provides aasking predicate and ahook predicate, both declared and defined inthel ogt al k built-in object.
Theasking predicate, ask_questi on(Ki nd, Conponent, Question, Check, Answer),isusedforask aquestion
and read the answer. The hook predicate, questi on_hook(Questi on, Kind, Conponent, Tokens, Check,

Answer), is used for intercepting questions. The Ki nd argument is used to represent the nature of the question being
asked. Its default valueis quest i on but it can be any atom or compound term, e.g. quest i on(par anet ers) . Using a

67

httpo://www.renderx.com/

../refman/methods/print_message_tokens_3.html
../refman/methods/print_message_token_4.html
../refman/methods/message_prefix_stream_4.html
../refman/methods/ask_question_5.html
../refman/methods/question_hook_6.html
../refman/methods/question_hook_6.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

compound term allows easy partitioning of messages of the same kind in different groups. The Check argument is a
closure that is converted into a checking goal taking as argument the user answer. The ask_quest i on/ 5 implements a
read loop that terminates when this checking predicate is true. The question itself isaterm that is translated into printing
tokens using the nessage_t okens/ 2 multifile predicate described above.

There is aso a user-defined multifile predicate for setting default prompt and input streams,
questi on_pronpt _strean Ki nd, Conponent, Pronpt, Strean).

An usage example of this mechanism can be found in the debugger tool where it's used to abstract the user interaction
when tracing agoal execution in debug mode.
Predicate properties

We can find the properties of visible predicates by calling the pr edi cat e_pr oper t y/ 2 built-in method. For example:

| ?- bar::predicate_property(foo(_), Property).

Note that this method respects the predicate's scope declarations. For instance, the above call will only return properties
for public predicates.

An object's set of visible predicatesis the union of al the predicates declared for the object with all the built-in methods
and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope(Scope)
The predicate scope (useful for finding the predicate scope with asingle call to pr edi cat e_property/ 2)
public,protected,private
The predicate scope (useful for testing if a predicate have a specific scope)
static,dynam c
All predicates are either static or dynamic (note, however, that a dynamic predicate can only be abolished if it
was dynamically declared)
| ogt al k, prol og, foreign
A predicate can be defined in Logtalk source code, Prolog code, or in foreign code (e.g. in C)
built _in
The predicate is a built-in predicate
multifile
The predicate is declared multifile (i.e. it can have clauses defined in several entities)
nmet a_pr edi cat e(Tenpl at e)
The predicate is declared as a meta-predicate with the specified template
coi nducti ve(Tenpl at e)
The predicate is declared as a coinductive predicate with the specified template
decl ared_in(Entity)
The predicate is declared (using a scope directive) in the specified entity
defined_i n(Entity)
The predicate definition is looked up in the specified entity (note that this property does not necessarily imply
that clausesfor the predicateexist in Ent i t y; the predicate can simply befal se as per the closed-world assump-
tion)
redefined from(Entity)
The predicate is aredefinition of a predicate definition inherited from the specified entity

68

render

httpo://www.renderx.com/

../refman/methods/question_prompt_stream_4.html
../refman/methods/predicate_property_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

non_term nal (NonTermnal //Arity)
The predicate resulted from the compilation of the specified grammar rule non-terminal
al i as_of (Predicate)
The predicate (name) is an alias for the specified predicate
alias_declared_in(Entity)
The predicate dliasis declared in the specified entity
synchroni zed
The predicate is declared as synchronized (i.e. it's a deterministic predicate synchronized using a mutex when
using a backend Prolog compiler supporting a compatible multi-threading implementation)

Some properties are only available when the entities are defined in source files and when those source files are compiled
with the sour ce_dat a flag turned on:

inline
The predicate definition isinlined

auxiliary
The predicate is not user-defined but rather automatically generated by the compiler or the term-expansion
mechanism

node(Mode, Sol utions)
Instantiation, type, and determinism mode for the predicate (which can have multiple modes)
i nfo(ListO Pairs)
Documentation key-value pairs as specified in the user-defined i nf o/ 2 directive
nunber _of _cl auses(N)
The number of clauses for the predicate existing at compilation time (note that this property is not updated at
runtime when asserting and retracting clauses for dynamic predicates)
nunber _of _rul es(N)
The number of rules for the predicate existing at compilation time (note that this property is not updated at
runtime when asserting and retracting clauses for dynamic predicates)
declared_in(Entity, Line)
The predicate is declared (using a scope directive) in the specified entity in a source file at the specified line
(if applicable)
defined_in(Entity, Line)
The predicate is defined in the specified entity in a sourcefile at the specified line (if applicable)
redefined fronm(Entity, Line)
The predicate is aredefinition of a predicate definition inherited from the specified entity, which is defined in
asource file at the specified line (if applicable)
alias_declared_in(Entity, Line)
The predicate aliasis declared in the specified entity in a source file at the specified line (if applicable)

The properties decl ared_i n/ 1- 2, defi ned_i n/ 1- 2, and r edef i ned_f r oml 1- 2 do not apply to built-in methods
and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by the object, it will
be the category name — not the object name — that will be returned by the property decl ar ed_i n/ 1. The sameistrue
for protocol declared predicates.

Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the cur r ent _pr edi cat e/ 1 built-in method. This
method respects the predicate's scope declarations. For instance, the following call:

?- sone_object::current_predicate(Functor/Arity).

69

httpo://www.renderx.com/

../refman/methods/current_predicate_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

will only return user predicatesthat are declared public. The predicate property non_t er mi nal / 1 may beused to retrieve
all grammar rule non-terminals declared for an object. For example:

current_non_term nal (Cobject, NonTerm nal//Args) :-
Obj ect::current_predi cate(Functor/Arity),
functor(Predi cate, Functor, Arity),
oj ect: : predi cate_property(Predicate, non_termi nal (NonTermi nal//Args)).

Usually, the non-terminal and the corresponding predicate share the same functor but users should not rely on this always
being true.

Calling Prolog built-in predicates

In predicate definitions, predicate calls which are not prefixed with a message sending operator (either : : or ~*), are
compiled to either callsto local predicates or as calls to Logta k/Prolog built-in predicates. A predicate call is compiled
asacall toalocal predicate if the object (or category) contains a scope directive, a definition for the called predicate, or
adynamic declaration for it. When the object (or category) does not contain either a definition of the called predicate or
acorresponding dynamic declaration, Logtalk testsif the call correspondsto al ogtalk or Prolog built-in predicate. Calling
a predicate which is neither alocal predicate nor a Logtalk/Prolog built-in predicate results in a compile time warning.
This means that, in the following example:

foo :-

wite(bar),

thecall tothepredicatewr i t e/ 1 will becompiled asacall to the corresponding Prolog built-in predicate unless the object
(or category) encapsulating the above definition also contains a predicate named wr i t e/ 1 or a dynamic declaration for
the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prol og arithmetic functions, you may runinto
portability problems while trying your applications with different back-end Prolog compilers (non-standard predicates
and non-standard arithmetic functions are often specific to a Prolog compiler). You may use the Logtalk compiler flag
portability/ 1 tohelp check for problematic callsin your code.

Calling Prolog non-standard meta-predicates

Prolog built-in meta-predicates may only be called locally within objectsor categories, i.e. they cannot be used as messages.
Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however, as there is no standard way of
checkingif abuilt-in predicateis also ameta-predicate and finding out which areits meta-arguments. But L ogtalk supports
override the origina meta-predicate template if not programmatically available or usable. For example, assume a
det _cal I / 1 Prolog built-in meta-predicate that takes a goal as argument. We can add to the object (or category) calling
it the directive:

:- neta_predicate(user:det_call (0)).

70

httpo://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Predicates

Another solution is to explicitly declare al non-standard Prolog meta-predicates in the corresponding adapter file using
theinternal predicate' $I gt _prol og_net a_pr edi cat e' / 3. For example:

"$l gt _prol og_neta_predicate' (det_call(_), det_call(0), predicate).

The third argument can be either the atom pr edi cat e or the atom cont rol _const r uct, adistinction that is useful
when compiling in debug mode.

Calling Prolog user-defined predicates

Prolog user-defined predicates can be called from within objects or categories by using the{}/ 1 compiler bypass control
construct. For example:

foo :-

{bar}.

In alternative, you can also use the uses/ 2 directive and write:

;- uses(user, [bar/0]).

foo :-

bar,

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated (either in a
Logtak entity or a Prolog module).

Calling Prolog module predicates

To call Prolog module predicates from within objects or categories you can use simply write:

foo :-

nmodul e: bar,

You can also usein aternative the use_nodul e/ 2 directive:

;- use_nodul e(nodul e, [bar/0]).
foo :-

bar,

71

httpo://www.renderx.com/

../refman/control/external_call_1.html
../refman/directives/uses_2.html
../refman/directives/use_module_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Note that thefirst argument of theuse_nodul e/ 2, when used within an object or a category, is amodule name, not afile
name. The actual module code should be loaded prior to compilation of Logtalk that usesit. In particular, programmers
should not expect that the module be auto-loaded (when using back-end Prolog compilers supporting an autoloading
mechanism).

When the module predicate is a meta-predicate but for some reason you don't want its calls to be compiled as such, you
can usethe{}/ 1 compiler bypass control construct as before:

foo :-

{nodul e: bar},

This workaround is sometimes necessary when calling module meta-predi cates whose meta-predicate templates are am-
biguous and cannot be processed by the Logtalk compiler (note, however, that it's often possible to specify an overriding
meta-predicate directive within the object or category making the call as explained above).

72

httpo://www.renderx.com/

../refman/control/external_call_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Inheritance

Inheritance

The inheritance mechanisms found on object-oriented programming languages allow us the specialization of previously
defined objects, avoiding the unnecessary repetition of code. In the context of logic programming, we can interpret inher-
itance asaform of theory extension: an object will virtually contain, besidesits own predicates, all the predicates inherited
from other objects that are not redefined by itself.

Logtalk uses adepth-first lookup procedure for finding predicate declarations and predicate definitions, as explained bel ow.
Thelookup procedures|ocate the entities hol ding the predi cate decl aration and the predicate definition using, respectively,
the predicate indicator and the predicate template (constructed from the predicate indicator).

Theal i as/ 2 predicate directive may be used to defining alternative namesfor inherited predicatesfor solving inheritance
conflicts and for giving access to al inherited definitions.

Protocol inheritance

Protocol inheritance refersto theinheritance of predicate declarations (scope directives). These can be contained in objects,
in protocols, or in categories. Logtalk supports single and multi-inheritance of protocols: an object or a category may im-
plement several protocols and a protocol may extend several protocols.

Search order for prototype hierarchies

The search order for predicate declarations is first the object, second the implemented protocols (and the protocols that
these may extend), third the imported categories (and the protocols that they may implement), and last the objects that the
object extends. This search is performed in a depth-first way. When an object inherits two different declarations for the
same predicate, by default, only the first one will be considered.

Search order for class hierarchies

The search order for predicate declarations starts in the object classes. Following the classes declaration order, the search
startsin the classesimplemented protocols (and the protocol s that these may extend), third the classesimported categories
(and the protocols that they may implement), and last the superclasses of the object classes. This search is performed in
adepth-first way. If the object inherits two different declarations for the same predicate, by default only the first one will
be considered.

Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in objects or in cat-
egories. Logtalk supports multi-inheritance of implementation: an object may import several categoriesor extend, specialize,
or instantiate several objects.

73

httpo://www.renderx.com/

../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Search order for prototype hierarchies

The search order for predicate definitionsis similar to the search for predicate declarations except that implemented pro-
tocols are ignored (as they can only contain predicate directives).

Search order for class hierarchies

The search order for predicate definitionsis similar to the search for predicate declarations except that implemented pro-
tocolsareignored (asthey can only contain predicate directives) and that the search starts at theinstance itself (that received
the message) before proceeding, if no predicate definition is found there, to the instance classes.

Inheritance versus predicate redefinition

When we define a predicate that is already inherited from other object, the inherited definitions are hidden by the new
definitions. Thisis called overriding inheritance: alocal definition overrides any inherited ones. For exampl e, assume that
we have the following two objects:

:- object(root).

;- public(bar/1).
:- public(foo/1l).

bar (root).
foo(root).
;- end_obj ect.

.- obj ect (descendant,
extends(root)).

f oo(descendant) .

:- end_obj ect.

After compiling and loading these objects, we can check the overriding behavior by trying the following queries:

| ?- root::(bar(Bar), foo(Foo0)).

Bar = root
Foo = root
yes

| ?- descendant::(bar(Bar), foo(Foo)).

Bar = root
Foo = descendant
yes

However, we can explicitly program other behaviors. Let us see afew examples.

74

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Inheritance

Specialization inheritance

Specialization of inherited definitions: the new definition uses the inherited definitions, adding to this new code. Thisis
accomplished by calling the~~/ 1 operator in the new definition.

:- object(root).
:- public(init/0).

init :-
wite('root init'), nl.

end_obj ect .

:- obj ect (descendant,
ext ends(root)).

init :-
wite('descendant init'), nl,
ANinit.
:- end_obj ect.

| ?- descendant::init.

descendant init
root init

yes

Union inheritance

Union of the new with the inherited definitions: all the definitions are taken into account, the calling order being defined
by the inheritance mechanisms. This can be accomplished by writing a clause that just calls, using the~~/ 1 operator, the

75

render
httpo://www.renderx.com/

../refman/control/call_super_1.html
../refman/control/call_super_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

inherited definitions. The relative position of this clause among the other definition clauses sets the calling order for the
local and inherited definitions.

:- object(root).
:- public(foo/1l).

foo(1l).
foo(2).

end_obj ect .

:- obj ect (descendant,
extends(root)).

foo(3).
foo(Foo) :-
A foo(Foo) .

:- end_obj ect.

| ?- descendant::foo(Foo).

Foo = 3 ;
Foo =1 ;
Foo = 2 ;
no

76

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Inheritance

Selective inheritance

Hiding some of theinherited definitions, or differential inheritance: thisform of inheritanceisnormally used in the repres-
entation of exceptions to generic definitions. Here we will need to use the ~*/ 1 operator to test and possibly reject some
of theinherited definitions.

%o}
Mo

no

obj ect (bird).
:- public(node/1).

nmode(wal ks) .
nmode(flies).

end_obj ect .

obj ect (pengui n,
extends(bird)).

nmode(swi ns) .

node(Mbde) : -
AMnode(Mode) ,
Mode \= flies.

end_obj ect .

?- pengui n: : node(Mbde) .

de SW N8B ;
de = wal ks ;

Public, protected, and private inheritance

To make all public predicates declared viaimplemented protocols, imported categories, or inherited objects protected or
tomakeadll public and protected predi cates private we prefix the entity's name with the corresponding keyword. For instance:

obj ect (vj ect,
i mpl enent s(private:: Protocol)).

end_obj ect .

% all the Protocol public and protected
% pr edi cat es beconme private predicates
% for the hject clients

or:

obj ect (d ass,

speci al i zes(protected:: Supercl ass)).

end_obj ect .

% all the Superclass public predicates becone
% protected predicates for the Class clients

77

httpo://www.renderx.com/

../refman/control/call_super_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Omitting the scope keyword is equivalent to using the public scope keyword. For example:

.- obj ect (Obj ect,
i mports(public::Category)).

:- end_obj ect.

Thisisthe same as:

.- obj ect (bj ect,
i mports(Category)).

;- end_obj ect.

Thisway we ensure backward compatibility with older Logtalk versions and asimplified syntax when protected or private
inheritance are not used.

Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring to the long and probably endless debate on single
versus multipleinheritance. The singleinheritance mechanism can beimplemented in an very efficient way, but it imposes
severa limitations on reusing, even if the multiple characteristics we intend to inherit are orthogonal. On the other hand,
the multiple inheritance mechanisms are attractive in their apparent capability of modeling complex situations. However,
they include a potential for conflict between inherited definitions whose variety does not allow a single and satisfactory
solution for all the cases.

Until now, no solution that we might consider satisfactory for al the problems presented by the multiple inheritance
mechanisms has been found. From the simplicity of some extensions that use the Prolog search strategy like [McCabe 92]
or [Moss 94] and to the sophisticated algorithms of CLOS [Bobrow 88], there is no adequate solution for all the situations.
Besides, the use of multiple inheritance carries some complex problemsin the domain of software engineering, particularly
in the reuse and maintenance of the applications. All these problems are substantially reduced if we preferably usein our
software development composition mechanisms instead of specialization mechanisms [Taenzer 89]. Multiple inheritance
can and should be seen more as a useful analysis and project abstraction, than as an implementation technique [Shan 93].
Logtalk provides first-class support for software composition using categories.

Nevertheless, Logtalk supports multi-inheritance by enabling an object to extend, instantiate, or specialize more than one
object. The current Logtalk release provides a predicate directive, al i as/ 2, which may be used to solve some multi-in-
heritance conflicts. Lastly, it should be noted that the multi-inheritance support does not compromise performance when
we use single-inheritance.

78

httpo://www.renderx.com/

../bibliography.html#McCabe92
../bibliography.html#Moss94
../bibliography.html#Bobrow88
../bibliography.html#Taenzer89
../bibliography.html#Shan93
categories.html
../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Event-driven programming

Event-driven programming

The addition of event-driven programming capacities to the Logtalk language [Moura 94] is based on a simple but
powerful idea:

The computations must result, not only from message sending, but also from the observation of message
sending.

The need to associate computations to the occurrence of eventswas very early recognized in several knowledge represent-
ation languages, in some programming languages [Stefik 86, Moon 86], and in the implementation of operative systems
[Tanenbaum 87] and graphical user interfaces.

With the integration between object-oriented and event-driven programming, we intend to achieve the following goals:

» Minimize the coupling between objects. An object should only contain what isintrinsic to it. If an object observes an-
other object, that meansthat it should depend only on the (public) protocol of the object observed, and not ontheimple-
mentation of that same protocol.

* Provideamechanism for building reflexive systemsin L ogtalk based on the dynamic behavior of objectsin complement
to the reflective information of the object's contents and relations.

* Provideamechanism for easily defining method pre- and post-conditionsthat can betoggled using theevent s compiler
flag. The pre- and post-conditions may be defined in the same object containing the methods or distributed between
several objects acting as method monitors.

Definitions

The words event and monitor have multiple meaningsin computer science, so, to avoid misunderstandings, it is advisable
that we start by defining them in the Logtalk context.

Event

In an object-oriented system, all computations start through message sending. It thus becomes quite natural to declare that
the only event that can occur inthiskind of system is precisely the sending of amessage. An event can thus be represented
by the ordered tuple (Qoj ect, Message, Sender).

If we consider message processing an indivisible activity, we can interpret the sending of a message and the return of the
control to the object that has sent the message as two distinct events. This distinction allows us to have a more precise
control over a system dynamics. In Logtalk, these two types of events have been named bef or e and af t er , respectively

79

httpo://www.renderx.com/

../bibliography.html#Moura94
../bibliography.html#Stefik86
../bibliography.html#Moon86
../bibliography.html#Tanenbaum87
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

for message sending and returning. Therefore, we end up by representing an event by the ordered tuple (Event, bj ect,
Message, Sender).

The implementation of the event notion in Logtalk enjoys the following properties:

Independence between the two types of events
We can choose to watch only one event type or to process each one of the events associated to a message
sending in an independent way.

All events are automatically generated by the message sending mechanism
Thetask of generating events is accomplished, in a transparent way, by the message sending mechanism. The
user just defines which are the eventsin which heisinterested in.

The events watched at any moment can be dynamically changed during program execution
The notion of event allows the user not only to have the possibility of observing, but also of controlling and
maodifying an application behavior, namely by dynamically changing the observed events during program exe-
cution. Itisour goal to provide the user with the possibility of modeling the largest possible number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor is an object that is automatically notified by
the message sending mechanismswhenever certain events occur. A monitor should naturally define the actionsto be carried
out whenever amonitored event occurs.

The implementation of the monitor notion in Logtalk enjoys the following properties:

Any object can act as a monitor
The monitor statusis arole that any object can perform during its existence. The minimum protocol necessary
isdeclared in the built-in protocol noni t or i ng. Strictly speaking, the referenceto this protocol isonly needed
when specializing event handlers. Nevertheless, it is considered good programming practice to always refer
the protocol when defining event handlers.

Unlimited number of monitors for each event
Several monitors can observe the same event because of distinct reasons. Therefore, the number of monitors
per event is bounded only by the available computing resources.

The monitor status of an object can be dynamically changed in runtime
This property does not imply that an object must be dynamic to act asamonitor (the monitor status of an object
is not stored in the object).

The execution of actions, defined in a monitor, associated to each event, never affectsthetermthat denotesthe message

involved
In other words, if the message contains uninstantiated variables, these are not affected by the acting of monitors
associated to the event.

Event generation

For each message that is sent (using the : : / 2 message sending mechanism) the runtime system automatically generates
two events. The first — bef ore event — is generated when the message is sent. The second — aft er event —is
generated after the message has successfully been executed.

Communicating events to monitors

Whenever a spied event occurs, the message sending mechanisms call the corresponding event handlers directly for all
registered monitors. These calls are made bypassing the message sending primitives in order to avoid potential endless

80

httpo://www.renderx.com/

../refman/control/send_to_object_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Event-driven programming

loops. The event handlers consist in user definitionsfor the public predicatesdeclared inthenoni t or i ng built-in protocol
(one for each event kind; see below for more details).

Performance concerns

Ideally, the existence of monitored messages should not affect the processing of the remaining messages. On the other
hand, for each message that has been sent, the system must verify if its respective event is monitored. Whenever possible,
this verification should be performed in constant time and independently from the number of monitored events. The events
representation takes advantage of the first argument indexing performed by most Prolog compilers, which ensure — in
the general case — an access in constant time.

Event-support can be turned off on a per-object (or per-category) basis using the compiler flag event s/ 1. With event-
support turned off, Logtalk uses optimized code for processing message sending callsthat skipsthe checking of monitored
events, resulting in a small but measurable performance improvement.

Monitor semantics

The established semantics for monitors actions consists on considering its success as anecessary condition so that amessage
can succeed:

« All actions associated to events of type bef or e must succeed, so that the message processing can start.

« All actions associated to events of type af t er also have to succeed so that the message itself succeeds. The failure of
any action associated to an event of type af t er forces backtracking over the message execution (the failure of amon-
itor never causes backtracking over the preceding monitor actions).

Note that thisis the most general choice. If we wish atransparent presence of monitors in a message processing, we just
have to define the monitor actions in such away that they never fail (which is very simple to accomplish).

Activation order of monitors

Ideally, whenever there are several monitors defined for the same event, the calling order should not interfere with the
result. However, thisis not always possible. In the case of an event of type bef or e, the failure of a monitor prevents a
message from being sent and prevents the execution of the remaining monitors. In case of an event of type after, a
monitor failure will force backtracking over message execution. Different orders of monitor activation can therefore lead
to different resultsif the monitor actionsimply object modifications unrecoverablein case of backtracking. Therefore, the
order for monitor activation should be assumed as arbitrary. In effect, to assume or to try to impose a specific sequence
requires a global knowledge of an application dynamics, which is not always possible. Furthermore, that knowledge can
reved itself asincorrect if there is any changing in the execution conditions. Note that, given the independence between
monitors, it does not make sense that a failure forces backtracking over the actions previously executed.

Event handling

Logtalk providesthree built-in predicates for event handling. These predicates enable you to find what events are defined,
to define new events and to abolish events when they are no longer needed. If you plan to use events extensively in your
application, then you should probably define aset of objectsthat use the built-in predicates described bel ow to implement
more sophisticated and high-level behavior.

81

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Defining new events

New events can be defined using the Logtalk built-in predicate def i ne_event s/ 5:

| ?- define_events(Event, Object, Message, Sender, Monitor).

Notethat if any of the Event , Obj ect , Message, and Sender argumentsisafreevariable or contains free variables, this
call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the abol i sh_event s/ 5 built-in predicate:

| ?- abolish_events(Event, Object, Message, Sender, Monitor).

If called with free variables, this goal will remove all matching events.

Finding defined events

The events that are currently defined can be retrieved using the Logtalk built-in predicate cur r ent _event / 5:

| ?- current_event(Event, Object, Message, Sender, Monitor).

Note that this predicate will return sets of matching events if some of the returned arguments are free variables or contain
free variables.

Defining event handlers

Thenoni t or i ng built-in protocol declarestwo public predicates, bef or e/ 3 and af t er / 3, that are automatically called
to handle bef or e and af t er events. Any object that plays the role of monitor must define one or both of these event
handler methods:

bef or e(Obj ect, Message, Sender) :-

after (Obj ect, Message, Sender) :-

82

httpo://www.renderx.com/

../refman/predicates/define_events_5.html
../refman/predicates/abolish_events_5.html
../refman/predicates/current_event_5.html
../refman/methods/before_3.html
../refman/methods/after_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Event-driven programming

The arguments in both methods are instantiated by the message sending mechanisms when a monitored event occurs. For
example, assume that we want to define amonitor called t r acer that will track any message sent to an object by printing
adescribing text to the standard output. Its definition could be something like:

.- object(tracer,
i mpl enent s(nonitoring)). % built-in protocol for event handl er nethods

bef ore(Obj ect, Message, Sender) : -
wite('call: "), witeq(Cbject), wite(' <-- "), witeq(Mssage),
wite(' from'), witeq(Sender), nl.

after (Obj ect, Message, Sender) : -
wite('exit: '), witeq(Object), wite(' <-- "), witeq(Mssage),

wite(' from'), witeq(Sender), nl.

:- end_obj ect.

Assume that we also have the following object:

;- object(any).

:- public(bar/1)
:- public(foo/1l)

bar (bar) .
foo(foo).

;- end_obj ect.

After compiling and loading both objects (note that the object any must be compiled with theflag event s(al | ow)), we
can start tracing every message sent to any object by calling the def i ne_event s/ 5 built-in predicate:

| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent to any object will be traced to the standard output stream:

| ?- any::bar(X).

call: any <-- bar(X) from user
exit: any <-- bar(bar) from user
X = bar

yes

render

httpo://www.renderx.com/

83

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

To stop tracing, we can use the abol i sh_event s/ 5 built-in predicate;

| ?- abolish_events(_, _, _, _, tracer).

yes

Thenoni t ori ng protocol declares the event handlers as public predicates. If necessary, protected or private implement-
ation of the protocol may be used in order to change the scope of the event handler predicates. Note that the message
sending processing mechanisms are able to call the event handlers irrespective of their scope. Nevertheless, the scope of
the event handlers may be restricted in order to prevent other objects from calling them.

84

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Multi-threading programming

Multi-threading programming

Logtalk provides experimental support for multi-threading programming on selected Prolog compilers. Logtalk makes
use of the low-level Prolog built-in predicates that implement message queues and interface with POSIX threads and
mutexes (or a suitable emulation), providing a small set of high-level predicates and directives that allows programmers
to easily take advantage of modern multi-processor and multi-core computers without worrying about the detail s of creating,
synchronizing, or communicating with threads. Logtalk multi-threading programming integrates with object-oriented
programming providing athreaded enginesAPI, enabling objects and categoriesto prove goals concurrently, and supporting
synchronous and asynchronous messages.

Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on the Prolog adapter files of supported compilers
by setting the read-only compiler flag t hr eads to support ed.

Enabling objects to make multi-threading calls

Thet hr eaded/ 0 object directive is used to enable an object to make multi-threading calls:

- threaded.

Thisdirective resultsin the automatic creation and set up of an object message queue when the object isloaded or created
at runtime. Object message queues are used for exchanging thread notifications and for storing concurrent goal solutions
and repliesto the multi-threading calls made within the object. The message queue for the pseudo-object user isautomat-
icaly created at Logtalk startup (provided that multi-threading programming is supported and enabled for the chosen
Prolog compiler).

Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading programming. For simple tasks where you simply
want to prove a set of goals, each oneinitsown thread, Logtalk providesat hr eaded/ 1 built-in predicate. The remaining
predicates allow for fine-grained control, including postponing retrieving of thread goal results at alater time, supporting
non-deterministic thread goals, and making one-way asynchronous calls. Together, these predicates provide high-level
support for multi-threading programming, covering most common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk built-in predicate t hr eaded/ 1. Each goal in the set
runsin its own thread.

85

httpo://www.renderx.com/

../refman/directives/threaded_0.html
../refman/predicates/threaded_1.html
../refman/predicates/threaded_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

When the t hr eaded/ 1 predicate argument is a conjunction of goals, the predicate call is akin to and-parallelism. For
example, assume that we want to find all the prime numbersin agiveninterval, [N, M . We can split theinterval in two
parts and then span two threads to compute the primes numbers in each sub-interval:

pri me_nunbers(N, M Prines) :-
M > N,
NLis N+ (M- N // 2,
N2 is N1 + 1,
t hr eaded((
prime_nunbers(N2, M [], Acc),
pri me_nunbers(N, N1, Acc, Prines)

)).

pri me_nunmbers(N, M Acc, Prinmes) :-

Thet hr eaded/ 1 call terminates when the two implicit threads terminate. In a computer with two or more processors (or
with a processor with two or more cores) the code above can be expected to provide better computation times when
compared with single-threaded code for sufficiently large intervals.

Whenthet hr eaded/ 1 predicate argument isadisunction of goals, the predicate call is akin to or-parallelism, hererein-
terpreted as a set of goals competing to find a solution. For example, consider the different methods that we can use to
find the roots of rea functions. Depending on the function, some methods will faster than others. Some methods will
converge into the solution while others may diverge and never find it. We can try all the methods simultaneously by
writing:

find_root (Function, A B, Error, Zero, Algorithnm :-
t hr eaded((
(bisection::find_root(Function, A B, Error, Zero), Al gorithm = bisection)
; (newton::find_root(Function, A B, Error, Zero), Al gorithm = newton)
(muller::find_root(Function, A B, Error, Zero), Al gorithm= nuller)

).

The abovet hr eaded/ 1 goa succeeds when one of the implicit threads succeeds in finding the function root, leading to
the termination of al the remaining competing threads.

Thet hr eaded/ 1 built-in predicate is most useful for lengthy, independent deterministic computations where the compu-
tational costs of each goal outweigh the overhead of the implicit thread creation and management.

Proving goals asynchronously using threads

A goa may be proved asynchronously using a new thread by calling the Logtalk built-in predicatet hr eaded_cal | / 1.
Callsto this predicate are always true and return immediately (assuming a callable argument). The term representing the
goal is copied, not shared with the thread. The thread computes the first solution to the goal, postsit to the message queue
of the object from where the t hr eaded_cal | / 1 predicate was called, and suspends waiting for either a request for an
alternative solution or for the program to commit to the current solution.

Theresults of proving agoa asynchronoudly in anew thread may be later retrieved by calling the Logtalk built-in predicate
t hreaded_exi t/ 1 within the same object where the call to the t hreaded_cal | /1 predicate was made. The
t hr eaded_exi t/ 1 calls suspend execution until the results of thet hr eaded_cal | / 1 calls are sent back to the object

message queue.

86

httpo://www.renderx.com/

../refman/predicates/threaded_call_1_2.html
../refman/predicates/threaded_exit_1_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Multi-threading programming

Thet hr eaded_exi t/ 1 predicate allow us to retrieve aternative solutions through backtracking (if you want to commit
to the first solution, you may use the t hr eaded_once/ 1 predicate instead of the t hr eaded_cal | / 1 predicate). For
example, assuming al i st s object implementing the usual nenber / 2 predicate, we could write:

| ?- threaded_call (lists::menber(X, [1,2,3])).

X = G189
yes

| ?- threaded_exit(lists::menber(X, [1,2,3])).

X X X
Il
N

Inthiscase, thet hr eaded_cal | / 1 andthet hr eaded_exi t / 1 callsare made within the pseudo-object user. Theimplicit
thread runningthel i st s: : menber/ 2 goal suspendsitself after providing asolution, waiting for arequest to an alternative
solution; the thread is automatical ly terminated when the runtime engine detectsthat backtracking tothet hr eaded_exi t/ 1
call isno longer possible.

Callstothet hr eaded_exi t / 1 predicate block the caller until the object message queue receives the reply to the asyn-
chronous call. The predicate t hr eaded_peek/ 1 may be used to check if areply is already available without removing
it from the thread queue. Thet hr eaded_peek/ 1 predicate call succeeds or failsimmediately without blocking the caller.
However, keep in mind that repeated use of this predicate is equivalent to polling a message queue, which may severely
hurt performance.

Be careful when using thet hr eaded_exi t / 1 predicate inside failure-driven loops. When all the solutions have been
found (and the thread generating them is therefore terminated), re-calling the predicate will generate an exception. Note
that failing instead of throwing an exception is not an acceptable solution as it could be misinterpreted as afailure of the
t hr eaded_exi t/ 1 argument.

The example on the previous section with prime numbers could be rewritten using the t hr eaded_cal I /1 and
t hr eaded_exi t/ 1 predicates:

pri me_nunbers(N, M Prines) :-
M > N,
NLis N+ (M- N // 2,
N2 is N1 + 1,
threaded cal | (pri me_numbers(N2, M [], Acc)),
threaded_cal | (prime_nunbers(N, N1, Acc, Prines)),
t hreaded_exit(prime_nunbers(N2, M [], Acc)),
t hreaded_exit (prime_nunbers(N, N1, Acc, Prines)).

prime_nunmbers(N, M Acc, Primes) :-

When using asynchronous calls, the link between at hr eaded_exi t / 1 call and the corresponding t hr eaded_cal | / 1
call is established using unification. If there are multiple t hr eaded_cal | / 1 calls for a matching t hr eaded_exi t/ 1

87

httpo://www.renderx.com/

../refman/predicates/threaded_once_1_2.html
../refman/predicates/threaded_peek_1_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

call, the connection can potentialy be established with any of them. Nevertheless, you can easily use a tag the calls by
using the extended t hr eaded_cal | / 2 and t hr eaded_exi t / 2 built-in predicates. For example:

?- threaded cal |l (member (X, [1,2,3]), Tag).

Tag = 1
yes

?- threaded_cal | (menmber (X, [1,2,3]), Tag).

Tag = 2
yes

?- threaded_exit(nenber(X, [1,2,3]), 2).

X X X
o
N

yes

When using these predicates, the tags shall be considered as an opaque term; users shall not rely on itstype.

One-way asynchronous calls

Sometimes we want to prove agoal in anew thread without caring about the results. This may be accomplished by using
thebuilt-in predicatet hr eaded_i gnor e/ 1. For example, assume that we are devel oping amulti-agent application where
an agent may send an "happy birthday" message to another agent. We could write:

., threaded_i gnore(agent:: happy_bi rthday),

The call succeeds with no reply of the goal success, failure, or even exception ever being sent back to the object making
the call. Note that this predicate implicitly performs adeterministic call of its argument.

Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems when the goal results in side-effects such asin-
put/output operations or modifications to an object database. For example, if a new thread is started with the same goal
before the first one finished its job, we may end up with mixed output, a corrupted database, or unexpected goal failures.
In order to solvethis problem, predicates (and grammar rule non-terminals) with side-effects can be declared as synchronized
by using the synchr oni zed/ 1 predicate directive. Proving a query to a synchronized predicate (or synchronized non-
terminal) isinternally protected by a mutex, thus allowing for easy thread synchronization. For example:

.- synchroni zed(db_update/ 1). % ensure thread synchronization

db_updat e(Update) : - % predi cate with side-effects

88

httpo://www.renderx.com/

../refman/predicates/threaded_call_1_2.html
../refman/predicates/threaded_exit_1_2.html
../refman/predicates/threaded_ignore_1.html
../refman/directives/synchronized_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Multi-threading programming

A second example: assume an object defining two predicates for writing, respectively, even and odd numbersin a given
interval to the standard output. Given alarge interval, agoal such as:

| ?- threaded_call (obj::odd_nunbers(1,100)), threaded_call (obj::even_nunbers(1,100)).

13246857 10...

will most likely result in a mixed up output. By declaring the odd_nunber s/ 2 and even_nunber s/ 2 predicates syn-
chroni zed:

;- synchroni zed([
odd_nunbers/ 2,
even_nunbers/ 2]).

one goal will only start after the other one finished:

| ?- threaded_ignore(obj::odd_nunbers(1,99)), threaded_ignore(obj::even_nunbers(1l,99)).
1357911 ...

246810 12 ...

Note that, in a more realistic scenario, the two t hr eaded_i gnor e/ 1 calls would be made concurrently from different
objects. Using the same synchronized directive for a set of predicatesimply that they all use the same mutex, as required
for this example.

Aseach Logtak entity isindependently compiled, thisdirective must beincluded in every object or category that contains
adefinition for the described predicate, even if the predicate declaration isinherited from another entity, in order to ensure
proper compilation. Note that a synchronized predicate cannot be declared dynamic. To ensure atomic updates of adynamic
predicate, declare as synchronized the predicate performing the update.

Synchronized predicates may be used as wrappers to messages sent to objects that are not multi-threading aware. For ex-
ample, assume ar andomobject defining ar andoni 1 predicate that generates random numbers, using side-effects on its
implementation (e.g. for storing the generator seed). We can specify and definee.g. async_r andoni 1 predicate asfollows:

;- synchroni zed(sync_randont 1) .

sync_r andom Random) : -
random : r andon{ Randon) .

and then always usethe sync_r andont 1 predicate instead of the predicate r andont 1 from multi-threaded code.

The synchronization entity and predicate directives may be used when defining objects that may be reused in both single-
threaded and multi-threaded L ogtalk applications. The directives are simply ignored (i.e. the synchronized predicates are
interpreted as normal predicates) when the objects are used in a single-threaded application.

89

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they are not executed at the same time by different
threads. Sometimes we need to suspend a thread not on a synchronization lock but on some condition that must hold true
for athread goal to proceed. |.e. we want a thread goal to be suspended until a condition becomes true instead of simply
failing. The built-in predicatet hr eaded_wai t / 1 allows usto suspend a predicate execution (running in its own thread)
until anotification is received. Notifications are posted using the built-in predicatet hr eaded_not i f y/ 1. A notification
isaProlog term that a programmer chooses to represent some condition becoming true. Any Prolog term can be used as
anotification argument for these predicates. Related callstothet hr eaded_wai t / 1 andt hr eaded_noti f y/ 1 must be
made within the same object, this, as the object message queue is used internally for posting and retrieving notifications.

Each notification posted by a call to thet hr eaded_not i fy/ 1 predicate is consumed by asinglet hr eaded_wai t/ 1
predicate call (i.e. these predicates implement a peer-to-peer mechanism). Care should be taken to avoid deadl ocks when
two (or more) threads both wait and post notifications to each other.

Engines

Threaded engines provide an alternative to the multi-threading predicates described in the previous sections. An engine
is a computing thread whose solutions can be lazily computed and retrieved. In addition, an engine also supports aterm
gueue that allows passing arbitrary terms to the engine.

Anengineiscreated by calling thet hr eaded_engi ne_cr eat e/ 3 built-in predicates. For example:

| ?- threaded_engi ne create(X, nenber(X, [1,2,3]), worker).
yes

Thefirst argument is an answer template to be used for retrieving solution bindings. The user can name the engine, asin
this example where the atom wor ker isused, or have the runtime generate a name, which should be treated as an opaque
term.

Enginesare scoped by the object withinwhichthet hr eaded_engi ne_cr eat e/ 3 call takesplace. Thus, different objects
can create engines with the same names with no conflicts. Morevover, engines share the visible predicates of the object
creating them.

The engine computes the first solution of its goal argument and suspends waiting for it to be retrieved. Solutions can be
retrieved one at atime using thet hr eaded_engi ne_next / 2 built-in predicate:

| ?- threaded_engi ne_next (worker, X).

The call blocks until asolution is available and fails if there are no solutions left. After returning a solution, this predicate
signals the engine to start computing the next one. Note that this predicate is deterministic. In constrast with the
t hr eaded_exi t/ 1- 2 built-in predicates, retrieving the next solution requires calling the predicate again instead of by
backtracking into its call.

There is aso an aternative reified version of the predicate, t hr eaded_engi ne_next _rei fi ed/ 2, which returns
t he(Answer), no, and excepti on(Error) termsasanswers.

90

httpo://www.renderx.com/

../refman/predicates/threaded_wait_1.html
../refman/predicates/threaded_notify_1.html
../refman/predicates/threaded_engine_create_3.html
../refman/predicates/threaded_engine_next_2.html
../refman/predicates/threaded_engine_next_reified_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Multi-threading programming

Engines must be explicitly terminated using thet hr eaded_engi ne_dest r oy/ 1 built-in predicate:

| ?- threaded_engi ne_destroy(worker).
yes

A common usage pattern for engines is to define a recursive predicate that uses the engine term queue to retrieve a task
to be performed. For example, assume we define the following predicate:

| oop : -
t hr eaded_engi ne_f et ch(Task),
handl e(Task),
| oop.

Thet hr eaded_engi ne_f et ch/ 1 built-in predicate fetches a task for the engine term queue. The engine clients would
use thet hr eaded_engi ne_post/ 2 built-in predicate to post tasks into the engine term queue. The engine would be
created using the call:

| ?- threaded_engi ne_create(none, |oop, worker).
yes

The handl e/ 1 predicate, after performing atask, can use thet hr eaded_engi ne_yi el d/ 1 built-in predicate to make
the task results available for consumption using thet hr eaded_engi ne_next / 2 built-in predicate. Blocking semantics
areused by thesetwo predicates. thet hr eaded_engi ne_yi el d/ 1 predicate blocksuntil the returned solution is consumed
whilethet hr eaded_engi ne_next / 2 predicate blocks until a solution becomes available.

Multi-threading performance

The performance of multi-threading applications is highly dependent on the back-end Prolog compiler, on the operating-
system, and on the use of dynamic binding and dynamic predicates. All compatible back-end Prolog compilersthat support
multi-threading features make use of POSI X threads or pthreads. The performance of the underlying pthreadsimplement-
ation can exhibit significant differences between operating systems. Animportant point is synchronized accessto dynamic
predicates. As different threads may try to simultaneously access and update dynamic predicates, these operations must
be protected by alock, usually implemented using a mutex. Poor mutex lock operating-system performance, combined
with alarge number of collisions by several threads trying to acquire the same lock, often result in severe performance
penalties. Thus, whenever possible, avoid using dynamic predicates and dynamic binding.

91

httpo://www.renderx.com/

../refman/predicates/threaded_engine_destroy_1.html
../refman/predicates/threaded_engine_fetch_1.html
../refman/predicates/threaded_engine_post_2.html
../refman/predicates/threaded_engine_yield_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

92

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Error handling

Error handling

All error handling isdonein Logtalk by using the SO defined cat ch/ 3 andt hr ow/ 1 predicates [ISO 95]. Errorsthrown
by Logtalk have the following format:

error(Error, logtal k(Goal, Entity))

In this exception term, Goal isthe goal that triggered the error Er r or and Ent i t y isthe entity in whose context Goal is
called. For example:

error(perm ssion_error(nodify, private_predicate, p), |ogtal k(foo::abolish(p/0), user))

Note, however, that Goal and Ent i ty can be variables when the corresponding information is not available (usually due
to compiler optimizations that throw away the necessary error context information).

Compiler warnings and errors

The current Logtalk compiler usesther ead_t er mi 3 1SO Prolog defined built-in predicate to read and compile aL ogtalk
source file. One consequence of thisisthat invalid Prolog terms or syntax errors may abort the compilation process with
limited information given to the user (due to the inherent limitations of ther ead_t er nf 3 predicate).

If al thetermsin asourcefile are valid, then there isa set of errors or potential errors, described below, that the compiler
will try to detect and report, depending on the used compiler flags (see the Writing, running, and debugging programs
section of this manual for details).

Unknown entities

The Logtalk compiler warns about any referenced entity that is not currently loaded. The warning may reveal a misspell
entity name or just an entity that it will be loaded later. Out-of-oder loading should be avoided when possible asit prevents
some code optimizations such as static binding od messages to methods.

Singleton variables

Singleton variablesin aclause are often misspell variables and, as such, one of the most common errorswhen programming
in Prolog. when the backend Prolog compiler complies with the Prolog | SO standard or at least supportsthe | SO predicate
read_t er nf 3 called with the option si ngl et ons(S), the Logtalk compiler warns about any singleton variable found
while compiling a sourcefile.

Redefinition of Prolog built-in predicates

The Logtalk compiler will warn us of any redefinition of a Prolog built-in predicate inside an object or category. Sometimes
the redefinition is intended. In other cases, the user may not be aware that the subjacent Prolog compiler may already

93

httpo://www.renderx.com/

../bibliography.html#ISO95
programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

providethe predicate asabuilt-in or we may want to ensure code portability among several Prolog compilerswith different
sets of built-in predicates.

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn usif wetry to redefine a Logtalk
built-in. The redefinition will probably be an error in amost all (if not all) cases.

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in method inside an entity. The default behavior is to
report the error and abort the compilation of the offending entity.

Misspell calls of local predicates

A warning will be reported if Logtalk finds (in the body of a predicate definition) a call to alocal predicate that is not
defined, built-in (either in Prolog or in Logtalk) or declared dynamic. In most cases these calls are simple misspell errors.

Portability warnings

A warning will be reported if a predicate clause contains a call to a non-1SO specified built-in predicate or arithmetic
function, Portability warnings are also reported for non-standard flags or flag values. These warnings often cannot be
avoided due to the limited scope of the SO Prolog standard.

Missing directives

A warning will be reported for any missing dynamic, discontiguous, meta-predicate, and public predicate directive.

Redefinition of predicates declared in uses/ 2 and use_nodul e/ 2 directives

A error will bereported for any attempt to definelocally apredicatethat isalready listedinauses/ 2 orinause_nodul e/ 2
directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause or a directive that cannot be parsed. The default
behavior is to report the error and abort the compilation of the offending entity.

Runtime errors

This section briefly describes runtime errors that result from misuse of Logtalk built-in predicates, built-in methods or
from message sending. For a complete and detailed description of runtime errors please consult the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates checks the type and mode of the calling arguments, throwing an exception in case of
misuse.

Logtalk built-in methods

Most Logtalk built-in method checksthe type and mode of the calling arguments, throwing an exception in case of misuse.

94

httpo://www.renderx.com/

../refman/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Error handling

Message sending

The message sending mechanisms always check if the receiver of amessage isadefined object and if the message corres-
ponds to a declared predicate within the scope of the sender. The built-in protocol f or war di ng declares a predicate,
f orwar d/ 1, which isautomatically called (if defined) by the runtime for any message that the receiving object does not
understand. The usual definition for this error handler is to delegate or forward the message to another object that might
be able to answer it:

f orwar d(Message) : -
[Ooj ect:: Message]. % forward the nessage whil e preserving the original sender

If preserving the original sender is not required, this definition can be simplified to:

f orwar d(Message) : -
bj ect : : Message.

More sophisticated definitions are, of course, possible.

95

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

96

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Documenting Logtalk programs

Documenting Logtalk programs

By setting the compiler flag sour ce_dat a, Logtalk savesall relevant documenting information collected when compiling
asourcefile. The provided | gt doc tool can access thisinformation by using Logtalk's reflection support and generate a
documentation file for each compiled entity (object, protocol, or category) in XML format. Contents of the XML fileinclude
the entity name, type, and compilation mode (static or dynamic), the entity relations with other entities, and a description
of any declared predicates (name, compilation mode, scope, ...).

The XML documentation files can be enriched with arbitrary user-defined information, either about an entity or about its
predicates, by using the two directives described bel ow.
Documenting directives

Logtalk supports two documentation directives for providing arbitrary user-defined information about an entity or a pre-
dicate. These two directives complement other Logtalk directives that also provide important documentation information
like node/ 2.

Entity directives

Arbitrary user-defined entity information can be represented using the i nf o/ 1 directive:

c- info([
Keyl is Val uel,
Key2 is Val ue2,

1).

In this pattern, keys should be atoms and values should be ground terms. The following keys are pre-defined and may be
processed specialy by Logtalk:

comrent
Comment describing entity purpose (an atom).
aut hor
Entity author(s) (an atom or acompound term { ent i t y} whereent ity isthe name of aXML entity defined
inthecust om ent file).
ver si on
Version number (a number).
dat e
Date of last modification (formatted as Year/Month/Day).
par aneters
Parameter names and descriptions for parametric entities (alist of key-values where both keys and values are
atoms).

97

httpo://www.renderx.com/

http://www.w3.org/XML/
../refman/directives/mode_2.html
../refman/directives/info_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

par nanmes
Parameter names for parametric entities (alist of atoms; a simpler version of the previous key, used when
parameter descriptions are deemed unnecessary).

copyri ght
Copyright noticefor the entity source code (an atom or acompoundterm{ ent i t y} whereent it y isthename
of aXML entity defined inthecust om ent file).

I'icense
Licensetermsfor the entity source code; usually, just the license name (an atom or acompoundterm{ ent i t y}
whereent i ty isthe name of a XML entity defined inthe cust om ent file).

remar ks
List of general remarks about the entity using the format Topic - Text. Both the topic and the text must be
atoms.

see_al so
List of related entities.

For example:

c- info([
version is 2.1,
aut hor is 'Paul o Moura',
date is 2000/ 4/ 20,
comment is 'Building representation.’,
diagramis 'UML C ass D agram #312'

).

Use only the keywords that make sense for your application and remember that you are free to invent your own keywords.
All key-value pairs can be retrieved programmatically using the reflection APl and are visibleto | gt doc tool.

Predicate directives

Arbitrary user-defined predicate information can be represented using thei nf o/ 2 directive:

:- info(Functor/Arity, [
Keyl is Val uel,
Key2 is Val ue2,

1).

Thefirst argument can also agrammar rule non-terminal indicator, Funct or / / Ari t y. Keys should be atoms and values
should be bound terms. The following keys are pre-defined and may be processed specially by Logtalk:

comrent
Comment describing predicate purpose (an atom).

argunent s
Names and descriptions of predicate arguments for pretty print output (alist of key-values where both keys
and values are atoms).

ar gnanes
Names of predicate arguments for pretty print output (alist of atoms; a simpler version of the previous key,
used when argument descriptions are deemed unnecessary).

98

render

httpo://www.renderx.com/

../refman/directives/info_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Documenting Logtalk programs

al [ocation
Objectswherewe should define the predicate. Some possiblevaluesarecont ai ner ,descendant s, i nst ances,
cl asses, subcl asses, and any.

redefinition
Describesif predicate is expected to be redefined and, if so, in what way. Some possible values are never,
free,specialize,call_super first,call_super_ | ast.

exceptions
List of possible exceptionsthrow by the predicate using the format Description - Exception term. The description
must be an atom. The exception term must be a non-variable term.

exanpl es
List of typical predicate call examples using the format Description - Predicate call - Variable bindings. The
description must be an atom. The predicate call term must be a non-variable term. The variable bindings term
usestheformat { Variable=Term, ...} . When there are no variable bindings, the success or failure of the predicate
call should be represented by theterms{ yes} or { no}, respectively.

remar ks
List of general remarks about the predicate using the format Topic - Text. Both the topic and the text must be
atoms.

For example:

:- info(color/1, [
coment is 'Table of defined colors.',
argnanes is ['Color'],
constraint is 'Only a maxi mum of four visible colors allowed."

1).

Aswiththei nf o/ 1 directive, use only the keywords that make sense for your application and remember that you are free
to invent your own keywords. All key-value pairs can also be retrieved programmatically using the reflection APl and are
visibleto| gt doc toal.

Processing and viewing documenting files

Thel gt doc tool generatesa XML documenting file per entity. It can also generate directory, entity, and predicate indexes
when documenting libraries and directories. For example, assuming the default filename extensions, at r ace object and
asort (_) parametric object will resultintrace_0.xm andsort_1.xm XML files.

Each entity XML file contains referencesto two other files, aXML specification fileand a X SL style-sheet file. The XML
specification file can be either aDTD file (I ogt al k_entity. dtd) or aXML Schemefile (I ogt al k_enti ty. xsd).
The XSL style-sheet file is responsible for converting the XML files to some desired format such as HTML or PDF. The
default names for the XML specification file and the XSL style-sheet file are defined by the | gt doc tool but can be
overiden by passing a list of options to the tool predicates. The | gt doc/ xm sub-directory in the Logtalk installation
directory containsthe XML specification files described above, along with several sample X SL style-sheet filesand sample
scripts for converting XML documenting files to several formats (e.g. Markdown, HTML, and PDF). Please read the
NOTES file included in the directory for details. You may use the supplied sample files as a starting point for generating
the documentation of your Logtalk applications.

The Logtalk DTD file, | ogt al k_ent i ty. dt d, contains a reference to a user-customizable file, cust om ent , which
declares XML entities for source code author names, license terms, and copyright string. After editing the cust om ent

99

httpo://www.renderx.com/

http://www.w3.org/Style/XSL/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

fileto reflect your personal data, you may usethe XML entitiesoni nf o/ 1 documenting directives. For example, assuming
that the XML entities are named author, license, and copyright we may write:

c- info([
version is 1.1,
aut hor is {author},
license is {license},
copyright is {copyright}
1).

The entity references are replaced by the value of the corresponding XML entity when the XML documenting files are
processed (not when they are generated; this notation is just a shortcut to take advantage of XML entities).

The | gt doc tool supports a set of options that can be used to control the generation of the XML documentation files.
Please see the tool documentation for details.

Inline formatting in comments text

Inline formatting in comments text can be accomplished by using Markdown syntax and converting XML documenting
filesto Markdown files (and these, if required, to e.g. HTML or PDF).

100

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Installing Logtalk

Installing Logtalk

This page provides an overview of Logtalk installation requirements and instructions and a description of the files contained
on the Logtalk distribution. For detailed, up-to-date installation and configuration instructions, please see the READMVE. nd,
I NSTALL. nmd, and CUSTOM ZE. nd files distributed with Logtalk. The broad compatibility of Logtalk, both with Prolog
compilers and operating-systems, together with all the possible user scenarios, means that installation can vary from very
simpleby running aninstaller or acouple of scriptsto the need of patching both Logtalk and Prolog compilersto workaround
the lack of strong Prolog standards or to cope with the requirements of less common operating-systems.

The preferred installation scenario isto have Logtalk installed in a system-wide location, thus available for all users, and
alocal copy of user-modifiable files on each user home directory (even when you are the single user of your computer).
This scenario alows each user to independently customize Logtalk and to freely modify the provided libraries and pro-
gramming examples. Logtalk installers, installation shell scripts, and Prolog integration scripts favor this installation
scenario, although alternative installation scenarios are always possible. The installers set two environment variables,
LOGTALKHOVE and LOGTALKUSER, pointing, respectively, to the Logtalk installation folder and to the Logtalk user fol der.

User applications should preferable be kept outside of the L ogtalk user folder created by the installation process, however,
as updating Logtalk often results in updating the contents of this folder. If your applications depend on customizations to
the distribution files, backup those changes before updating L ogtalk.

Hardware and software requirements

Computer and operating system

Logtalk is compatible with aimost any computer/operating-system with a modern, standars compliant, Prolog compiler
available.

Prolog compiler

Logtalk requires a backend Prolog compiler supporting official and de facto standards. Capabilities needed by Logtalk
that are not defined in the official 1SO Prolog Core standard include:

 accessto predicate properties

* operating-system access predicates

« defacto standard predicates not (yet) specified in the official standard

Logtalk needs access to the predicate property bui | t _i n to properly compile objects and categories that contain Prolog
built-in predicates calls. In addition, some Logtalk built-ins need to know the dynamic/static status of predicates to ensure
correct application. The SO standard for Prolog modules defines a pr edi cat e_pr oper ty/ 2 predicate that is aready
implemented by most Prolog compilers. Note that if these capabilities are not built-in the user cannot easily define them.

101

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

For optimal performance, Logtalk requiresthat the Prolog compiler supports fir st-ar gument indexing for both static and
dynamic code (most modern compilers support this feature).

Since most Prolog compilers are moving closer to the SO Prolog standard [I SO 95], it is advisable that you try to use the
most recent version of your favorite Prolog compiler.
Logtalk installers

Logtalk installers are available for MacOS X, Linux, and Microsoft Windows. Depending on the chosen installer, some
tasks (e.g. setting environment variables or integrating Logtalk with some Prolog compilers) may need to be performed
manually.

Source distribution

Logtalk sourcesare availableinat ar archive compressed with bzi p2, | gt 3xxx. t ar . bz2.You may expand the archive
by using a decompressing utility or by typing the following commands at the command-line:

% tar -jxvf |gt3xxx.tar.bz2

Thiswill create a sub-directory named | gt 3xxx in your current directory. Almost all filesin the Logtalk distribution are
text files. Different operating-systems use different end-of-line codes for text files. Ensure that your decompressing utility
converts the end-of-lines of all text files to match your operating system.

Directories and files organization
In the Logtalk installation directory, you will find the following files and directories:

Bl BLI OGRAPHY. bi b — Logtalk bibliography in BibTeX format

CUSTOM ZE. md — Logtalk end-user customization instructions

I NSTALL. md — Logtalk installation instructions

LI CENSE. t xt — Logtalk user license

NOTI CE. t xt —Logtalk copyright notice

QUI CK_START. nd — Quick start instructions for those that do not like to read manuals
README. md — several useful information

RELEASE_NOTES. nd — release notes for this version

UPGRADI NG. nd —instructions on how to upgrade your programs to the current Logtalk version
VERSI ON. t xt —file containing the current Logtalk version number (used for compatibility checking when upgrading
Logtalk)

| oader - sanpl e. | gt —sample loader file for user applications
settings-sanpl e. | gt —samplefilefor user-defined Logtalk settings
test er-sanpl e. | gt —samplefile for helping automating running user application unit tests

adapters
NOTES. nd — notes on the provided adapter files
t enpl at e. pl —template adapter file
... —9gpecific adapter files

codi ng
NOTES. nd — notes on syntax highlighter and text editor support files providing syntax coloring for publishing
and editing Logtalk source code

102

render

httpo://www.renderx.com/

../bibliography.html#ISO95
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Installing Logtalk

... —syntax coloring support files

contributions
NOTES. md — notes on the user-contributed code
. —user-contributed code files

core
NOTES. nd — notes on the current status of the compiler and runtime
. —core source files

docs
NOTES. nd — hotes on the provided documentation for core, library, tools, and contributions entities
i ndex. ht ml —root document for all entities documentation
. —other entity documentation files

exanpl es
NOTES. nd — short description of the provided examples
bricks

NOTES. nd — example description and other notes

SCRI PT. t xt — step by step example tutorial

| oader . | gt —loader utility file for the example objects
... —bricks example sourcefiles

. —other examples

i ntegration
NOTES. nd — notes on scripts for Logtalk integration with Prolog compilers
. —Prolog integration scripts

l'ibrary
NOTES. nd — short description of the library contents
al | _I oader. | gt —loader utility file for all library entities
... —library sourcefiles

man
... —POSIX man pages for the shell scripts

manual s
NOTES. nd — notes on the provided documentation
bi bl i ography. ht nl —bibliography
gl ossary. ht M —glossary
i ndex. ht M —root document for all documentation
. — other documentation files

pat hs
NOTES. nd — description on how to setup library and examples paths
pat hs. pl —default library and example paths

scratch
NOTES. nd — notes on the scratch directory

scripts
NOTES. nd — notes on scripts for Logtalk user setup, packaging, and installation

103

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

... —packaging, installation, and setup scripts

tests
NOTES. nmd — notes on the current status of the unit tests
. —unit tests for built-in features

tools
NOTES. nd — notes on the provided programming tools
... —programming tools

Adapter files

Adapter files provide the glue code between the Logtalk compiler/runtime and a Prolog compil er. Each adapter file contains
two sets of predicates: | SO Prolog standard predicates and directives not built-in in thetarget Prolog compiler and Logtal k-
specific predicates.

Logtalk already includes ready to use adapter files for most academic and commercia Prolog compilers. If a adapter file
is not available for the compiler that you intend to use, then you need to build a new one, starting from the included
tenpl at e. pl file. Start by making a copy of the template file. Carefully check (or complete if needed) each listed
definition. If your Prolog compiler conforms to the SO standard, this task should only take you a few minutes. In most
cases, you can borrow code from some of the predefined adapter files. If you are unsure that your Prolog compiler provides
all the SO predicates needed by Logtalk, try to run the system by setting the unknown predicate error handler to report
as an error any call to amissing predicate. Better yet, switch to a modern, ISO compliant, Prolog compiler. If you send
me your adapter file, with a reference to the target Prolog compiler, maybe | can include it in the next release of Logtalk.

The adapter files specifies default valuesfor most of the Logtalk compiler flags. Most of these compiler flags are described
in the next section. A few of these flags have read-only values and cannot be changed at runtime. These are:

settings_file
Allows or disables loading of settingsfiles at startup. Possible valuesare al | ow, restri ct, and deny. The
usual default valueisal | owbut it can be changed by editing the adapter file when e.g. embedding Logtalk in
acompiled application. With avalue of al | ow, settingsfilesare searched in the startup directory, in the Logtalk

104

httpo://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Installing Logtalk

user directory, and in the user home directory. With avalue of rest ri ct , settingsfiles are only searched in
the Logtalk user directory and in the user home directory.

prol og_di al ect
Name of the back-end Prolog compiler (an atom). This flag can be used for conditional compilation of Prolog

specific code.

prol og_version
Version of the back-end Prolog compiler (acompound term, (Mgj or, M nor, Pat ch), whose arguments
are integers). This flag availability depends on the Prolog compiler. Checking the value of this flag fails for
any Prolog compiler that does not provide access to version data.

prol og_conpati bl e_versi on
Compeatible version of the back-end Prolog compiler (acompound term, usually with theformat @=((Maj or,
M nor, Patch)), whose arguments are integers). This flag availability depends on the Prolog compiler.
Checking the value of thisflag fails for any Prolog compiler that does not provide access to version data.

pr ol og_confor nance
Level of conformance of the back-end Prolog compiler with the |SO Prolog Core standard. The possible values
arestri ct for compilersclaiming strict conformanceand ! ax for compilersclaiming only broad conformance.

uni code
Informs Logtalk if the back-end Prolog compiler supports the Unicode standard. Possible flag values are
unsupported, ful | (al Unicode planes supported), and bnp (supports only the Basic Multilingual Plane).

encodi ng_directive
Informs Logtalk if the back-end Prolog compiler supportsthe encodi ng/ 1 directive. Thisdirective is used
for declaring the text encoding of source files. Possible flag values are unsuppor t ed, f ul | (can be used in
both L ogtalk source filesand compiler generated Prolog files), and sour ce (can beused only in Logtalk source
files).

tabling
Informs Logtalk if the back-end Prolog compiler provides tabling programming support. Possible flag values
are unsupport ed and support ed.

t hr eads
Informs Logtalk if the back-end Prolog compiler provides suitable multi-threading programming support.
Possible flag values are unsuppor t ed and support ed.

nodul es
Informs Logtalk if the back-end Prolog compiler provides suitable module support. Possible flag values are
unsupport ed and suppor t ed (Logtalk provides limited support for compiling Prolog modules as objects).

coi nducti on
Informs Logtalk if the back-end Prolog compiler provides the minimal support for cyclic terms necessary for
working with coinductive predicates. Possible flag values are unsuppor t ed and suppor t ed.

Settings files

Although is always possible to edit the back-end Prolog compiler adapter files, the recommended solution to customize
compiler flagsisto edit theset ti ngs. | gt fileinthe Logtalk user folder or in the user home folder. Depending on the
back-end Prolog compiler and on the operating-system, is also possible to define per-project settings files by creating a
settings. | gt fileinthe project directory and by starting Logtalk from this directory. At startup, Logtalk tries to load
asettings. | gt filefromthestartup directory (assuming that theread-only set t i ngs flagissettoal | ow). If not found,

105

httpo://www.renderx.com/

../refman/directives/encoding_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Logtalk tries to load a settings. | gt file from the Logtalk user folder. If still not found, Logtalk tries to load a
settings. | gt file from the user home folder. If no settings files are found, Logtalk will use the default compiler flag
values set on the back-end Prolog compiler adapter files. When limitations of the back-end Prolog compiler or on the op-
erating-system prevent Logtalk from finding the settings files, these can always be loaded manually after Logtalk startup.

Settings files are normal Logtalk source files (although when automatically loaded by L ogtalk they are compiled silently
with any errors being simply ignored). The usual contentsisani ni ti al i zati on/ 1 Prolog directive containing callsto
theset | ogtal k_f | ag/ 2 Logtalk built-in predicate and asserting clausesfor thel ogt al k_I i brary_pat h/ 2 multifile
dynamic predicate. Note that the set _| ogt al k_f | ag/ 2 directive cannot be used as its scope is local to the source file
being compiled. For example, one of the troubles of writing portable applications is the different feature sets of Prolog
compilers. A typical issue is the lack of support for tabling. Using the Logtalk support for conditional compilation you
could write:

:- if(current_logtal k_flag(tabling, supported)).
% add tabling directives to the source code
:- table(foo/1l).
:- table(bar/2).

:- endif.

The Logtalk flag pr ol og_di al ect may also be used with the conditional compilation directives in order to define a
single settings file that can be used with several back-end Prolog compilers. For example;

if(current _logtal k flag(prolog _dialect, yap)).

% YAP specific settings

:- elif(current | ogtal k_flag(prol og_dial ect, gnu)).

% GNU Prol og specific settings

:- else.
% generic Prol og settings

:- endif.

Logtalk compiler and runtime

The conpi | er sub-directory contains the Prolog source file(s) that implement the Logtalk compiler and the Logtalk
runtime. The compiler and the runtime may be split in two (or more) separate files or combined in asinglefile, depending
on the Logtalk release that you are installing.

Library

Starting from version 2.7.0, Logtalk contains a standard library of useful objects, categories, and protocols. Read the cor-
responding NOTES. nd file for details about the library contents.

106

httpo://www.renderx.com/

../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/logtalk_library_path_2.html
../refman/directives/set_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Installing Logtalk

Examples

Logtalk 2.x contains new implementations of some of the examples provided with previous 1.x versions. The sources of
each one of these examples can be found included in a subdirectory with the same name, inside the directory examples.
The majority of these examplesinclude afile named SCRI PT. t xt that contains cases of simple utilization. Some examples
may depend on other examples and library objects to work properly. Read the corresponding NOTES. nd file for details
before running an example.

Logtalk source files

Logtalk sourcefiles aretext files containing one or more entity definitions (objects, categories, or protocols). The Logtalk
source files may also contain plain Prolog code. The extension . | gt is normally used. Logtalk compiles these files to
plain Prolog by appending to the file name a suffix derived from the extension and by replacing the . | gt extension with
.p! (. pl isthe default Prolog extension; if your Prolog compiler expects the Prolog source filenames to end with a spe-
cific, different extension, you can set it in the corresponding adapter file).

107

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

108

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Writing, running, and debugging applications

Writing, running, and debugging applications

Writing applications

For a successful programming in Logtalk, you need a good working knowledge of Prolog and an understanding of the
principles of object-oriented programming. Most guidelines for writing good Prolog code apply as well to Logtalk pro-
gramming. To those guidelines, you should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk isthat it enable usto use the currently available object-oriented methodo-
logies, tools, and metrics [Champaux 92] in Prolog programming. That said, writing applicationsin Logtalk is similar to
writing applications in Prolog: we define new predicates describing what is true about our domain objects, about our
problem solution. We encapsulate our predicate directives and definitions inside new objects, categories and protocols
that we create by hand with a text editor or by using the Logtalk built-in predicates. Some of the information collected
during the analysis and design phases can be integrated in the objects, categories and protocols that we define by using
the available entity and predicate documenting directives.

Source files

Logtalk source files may define any number of entities (objects, categories, or protocols) and Prolog code. If you prefer
to define each entity in its own sourcefile, then it is recommended that the source file be named after the entity identifier.
For parametric abjects, the identifier arity can be appended to the identifier functor. By default, all Logtalk source files
usethe extension . | gt but thisis optional and can be set in the adapter files. Intermediate Prolog source files (generated
by the Logtalk compiler) have, by default, a_| gt suffix and a. pl extension. Again, this can be set to match the needs
of aparticular Prolog compiler in the corresponding adapter file. For example, we may define an object named vehi cl e
and saveitinavenhi cl e. | gt sourcefilethat will be compiledtoavehi cl e_I| gt. pl Prologfile. If wehaveasort ()
parametric object we can saveit on asort _1. | gt source file that will be compiledtoasort _1_1|gt. pl Prolog file.
This name scheme helps avoid file name conflicts (remember that all Logtalk entities share the same name space). To
further prevent file name conflicts, depending on the backend compiler, the names of the intermediate Prolog files may
include a directory hash.

Logtalk source files may contain Prolog code interleaved with Logtalk entity definitions. Plain Prolog code is copied as-
isto the corresponding Prolog output file (except, of course, if subject to the term-expansion mechanism). Prolog modules
are compiled as objects. The following Prolog directives are processed when read (thus affecting the compilation of the
source code that follows): ensure_l oaded/ 1, use nodule/1-2, op/3, and set_prolog_flag/2. The
initialization/1Prologdirective may beusedfor defining aninitialization goal to be executed when loading asource
file.

Thetext encoding used in asource file may be declared using theencodi ng/ 1 directive when running Logtalk with back-
end Prolog compilers that support multiple encodings (check the encodi ng_di rect i ve flag in the adapter file of your
Prolog compiler). The encoding used (and, in the case of a Unicode encoding, any BOM present) in a source file will be
used for the intermediate Prolog file generated by the compiler. Logtalk uses the encoding names specified by IANA (in
those cases where a preferred MIME name aliasis specified, the aliasis used instead).

109

httpo://www.renderx.com/

../bibliography.html#Champaux92
../refman/directives/encoding_1.html
http://www.iana.org/assignments/character-sets
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Logtalk source files can include the text of other files by using thei ncl ude/ 1 directive. Although there's also a standard
Prologi ncl ude/ 1 directive, any occurrences of thisdirectivein aLogtalk sourcefileis handled by the Logtalk compiler,
not by the backend Prolog compiler.

Portable applications

Logtalk iscompatible with aimost all modern Prolog compilers. However, this does not necessarily imply that your Logtalk
applications will have the same level of portability. If possible, you should only usein your applications Logtalk built-in
predicates and I SO Prolog specified built-in predicates and arithmetic functions. If you need to use built-in predicates (or
built-in arithmetic functions) that may not be available in other Prolog compilers, you should try to encapsulate the non-
portable code in a small number of objects and provide a portable interface for that code through the use of Logtalk pro-
tocols. An example will be code that access operating-system specific features. The Logtalk compiler can warn you of the
use of non-1S0 specified built-in predicates and arithmetic functions by using the por t abi | i t y/ 1 compiler flag.

Conditional compilation

Logtalk supports conditional compilation within sourcefilesusing thei f/ 1,el i f/ 1, el se/ 0, and endi f/ 0 directives.
This support is similar to the support found in some Prolog compilers such as ECLiPSe, SWI-Prolog, or YAP.

Avoiding common errors

Try to write objects and protocol documentation befor e writing any other code; if you are having trouble documenting a
predicate perhaps we need to go back to the design stage.

Try to avoid lengthy hierarchies. Besides performance penalties, composition is often a better choice over inheritance for
defining new objects (L ogtalk supports component-based programming through the use of categories). In addition, prototype-
based hierarchies are conceptually simpler and more efficient than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we should awaystry to minimize the use of non-logical
features like destructive assignment (asserts and retracts).

Since each Logtalk entity is independently compiled, if an object inherits a dynamic or a meta-predicate predicate, then
we must repeat the respective directives in order to ensure a correct compilation.

In general, Logtalk does not verify if auser predicate call/return arguments comply with the declared modes. On the other
hand, Logtalk built-in predicates, built-in methods, and message sending control structures are carefully checked for
calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the chosen Prolog compiler. For instance, the error
terms that are generated by some Logtalk built-in predicates assume that the Prolog built-in predicates behave as defined
in the SO standard regarding error conditions. In particular, if your Prolog compiler does not support aread_term 3
built-in predicate compliant with the | SO Prolog Standard definition, then the current version of the Logtalk compiler may
not be able to detect misspell variables in your source code.

Coding style guidelines

It is suggested that al code between an entity opening and closing directives be indented by one tab stop. When defining
entity code, both directives and predicates, Prolog coding style guidelinesmay be applied. All Logtalk sourcefiles, examples,
and standard library entities use tabs (the recommended setting is a tab width equivalent to 4 spaces) for laying out code.
Closed related entities can be defined in the same source file. However, for best performance, is often necessary to have
an entity per sourcefile. Entitiesthat might be useful in different contexts (such aslibrary entities) are best defined in their
own source files.

110

httpo://www.renderx.com/

../refman/directives/include_1.html
../refman/directives/if_1.html
../refman/directives/elif_1.html
../refman/directives/else_0.html
../refman/directives/endif_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Writing, running, and debugging applications

Running a Logtalk session

We run Logtalk inside a normal Prolog session, after loading the necessary files. Logtalk extends but does not modify
your Prolog compiler. We can freely mix Prolog queries with the sending of messages and our applications can be made
of both normal Prolog clauses and object definitions.

Starting Logtalk

Depending on your Logtalk installation, you may use ascript or ashortcut to start L ogtalk with your chosen Prolog compiler.
On POSIX operating systems, the scripts should be available from the command-line; scripts are named upon the used
Prolog compilers. On Windows, the shortcuts should be available from the Start Menu. If no scripts or shortcuts are
availablefor your installation, operating-system, or Prolog compiler, you can always start aL ogtalk session by performing
the following steps:

1 Start your Prolog compiler.

2 Load the appropriate adapter file for your compiler. Adapter files for most common Prolog compilers can be found in
the adapt er s subdirectory.

3 Load thelibrary paths file corresponding to your Logtalk installation contained in the pat hs subdirectory.

4 Load the Logtalk compiler/runtime files contained in the conpi | er subdirectory.

Note that the adapter files, compiler/runtime files, and library paths file are Prolog source files. The predicate called to
load (and compile) them depends on your Prolog compiler. In case of doubt, consult your Prolog compiler reference
manual or take alook at the definition of the predicate’ $I gt _| oad_pr ol og_code' / 3 inthe corresponding adapter file.

Most Prolog compilers support automatic loading of an initialization file, which can include the necessary directives to
load both the Prolog adapter file and the Logtalk compiler. Thisfeature, when available, allows automatic loading of Logtalk
when you start your Prolog compiler.

Compiling and loading your applications

Your applications will be made of source files containing your objects, protocols, and categories. The source files can be
compiled to disk by calling the Logtalk built-in predicate| ogt al k_conpi | e/ 1:

| ?- logtal k_conpile([source_filel, source_file2, ...]).

This predicate runs the compiler on each file and, if no fatal errors are found, outputs Prolog source files that can then be
consulted or compiled in the usual way by your Prolog compiler.

To compileto disk and also load into memory the source fileswe can usethe Logtalk built-in predicatel ogt al k_| oad/ 1:

| ?- logtalk |oad([source filel, source file2, ...]).

This predicate worksin the sameway of the predicatel ogt al k_conpi | e/ 1 but also loadsthe compiled filesinto memory.

Both predicates expect a source file name or alist of source file names as an argument. The Logtalk source file name ex-
tension, as defined in the adapter file (by default, . | gt), can be omitted.

111

httpo://www.renderx.com/

../refman/predicates/logtalk_compile_1.html
../refman/predicates/logtalk_load_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

If you have more than a few source files then you may want to use a loader helper file containing the cals to the
| ogt al k_I oad/ 1- 2 predicates. Consulting or compiling the loader file will then compile and load all your Logtalk en-
titiesinto memory (see below for details).

With most Prolog back-end compilers, you can use the shorthands { Fi | e} for | ogt al k_| oad(File) and {Filel,
File2, ...} forlogtalk _load([Filel, File2, ...]).Theusetheseshorthands should be restricted to the Lo-
gtalk/Prolog top-level interpreter astheir are not part of the language specification and may be commented out in case of
conflicts with backend Prolog compiler features.

The built-in predicate| ogt al k_make/ 0 can be used to reload all modified sourcefiles. Files are also rel oaded when the
compilation mode changes. For example, assume that you have loaded your application files and found a bug. You can
easily recompile the files in debug mode by using the queries:

| ?- set_logtal k _flag(debug, on).

?- | ogtal k_make.

After debugging and fixing the bugs, you can reload the filesin normal (or optimized) mode by turning the debug flag off
and calling thel ogt al k_make/ 0 predicate again.

An extended version of this predicate, | ogt al k_nake/ 1, acceptsal | , cl ean, ni ssi ng, andci r cul ar argumentsfor,
respectively, reloading modified Logtalk sourcefiles, deleting any intermediate files generated by the compilation of Logtalk
source files, listing of missing entities and predicates, and listing of circular dependencies. With most Prolog backend
compilers, you can use the shorthands {*} for | ogtal k_nmake(all), {!} for | ogtal k_make(cl ean), {?} for
| ogt al k_make(m ssing),and{ @ forl ogt al k_make(circul ar).Thel ogt al k_make(cl ean) goal canbespecialy
useful before switching backend Prolog compilers as the generated intermediate files may not be compatible.

Loader utility files

Most examples directories contain a Logtalk utility file that can be used to load all included source files. These loader
utility files are usually named | oader . | gt or contain the word "loader" in their name. Loader files are ordinary source
file and thus compiled and loaded like any source file. For an example loader file named | oader . | gt we would type:

| ?- logtal k_| oad(| oader).

Usually thesefiles contain acall to the Logtalk built-in predicatesset _| ogt al k_f | ag/ 2 (e.g. for setting global, project-
specific, flag values) and | ogt al k_| oad/ 1 or | ogt al k_| oad/ 2 (for loading project files), wrapped inside a Prolog
initialization/1 directive. For instance, if your code is split in three Logtalk source files named sour cel. | gt
sour ce2. | gt,and sour ce3. | gt, then the contents of your loader file could be:

c- initialization((
% set project-specific global flags
set _logtal k_flag(events, allow),
% | oad the project source files
| ogtal k_| oad([sourcel, source2, source3])

)).

112

httpo://www.renderx.com/

../refman/predicates/logtalk_make_0.html
../refman/predicates/logtalk_make_1.html
../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/logtalk_load_1.html
../refman/predicates/logtalk_load_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Writing, running, and debugging applications

Another example of directives that are often used in a loader file would be op/ 3 directives declaring global operators
needed by your application. Loader files are also often used for setting source file-specific compiler flags (thisis useful
even when you only have asingle sourcefileif you alwaysload it with using the same set of compiler flags). For example:

c- initialization((
% set project-specific global flags
set | ogtal k_fl ag(underscore_vari abl es, dont_care),
set | ogtal k_fl ag(source_data, off),
% | oad the project source files

| ogt al k_| oad(

[sourcel, source2, source3],

[portability(warning)]), % source file-specific flags
| ogt al k_| oad(

[source4, source5],

[portability(silent)]) % source file-specific flags

).

To take the best advantage of loader files, define a clause for the multifile and dynamic | ogtal k_I i brary_path/ 2
predicate for the directory containing your source files as explained in the next section.

A common mistake is to try to set compiler flagsusing | ogt al k_| oad/ 2 with aloader file. For example, by writing:

| ?- logtal k_| oad(l oader, [underscore_vari abl es(dont_care), source_data(off)]).

Thiswill not work as you might expect as the compiler flagswill only be used in the compilation of thel oader . | gt file
itself and will not affect the compilation of files loaded through the i ni ti al i zati on/ 1 directive contained on the
loader file.

Libraries of source files

Logtalk defines alibrary simply as a directory containing source files. Library locations can be specified by defining or
asserting clauses for the dynamic and multifile predicate| ogt al k_Ii brary_pat h/ 2. For example:

- multifile(logtal k_library_path/2).
:- dynami c(logtal k_library_path/2).

I ogtal k_|ibrary_path(shapes, '$LOGTALKUSER/ exanpl es/ shapes/").

The first argument of the predicate is used as an alias for the path on the second argument. Library aliases may also be
used on the second argument. For example:

- multifile(logtal k_|ibrary_path/2).
:- dynam c(logtal k_|ibrary_path/2).

logtalk _library path(lgtuser, '$LOGTALKUSER/ ') .
|l ogtal k_library_path(exanples, |gtuser('exanples/')).
logtal k_library_path(vi ewpoints, exanples('viewoints/')).

113

httpo://www.renderx.com/

../refman/predicates/logtalk_library_path_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

This allows us to load a library source file without the need to first change the current working directory to the library
directory and then back to the original directory. For example, in order to load al oader . | gt file, contained in alibrary
named vi ewpoi nt s, we just need to type:

| ?- logtal k_| oad(vi ewpoi nts(| oader)).

The best way to take advantage of this feature is to load at startup a source file containing clauses for the
| ogtal k_library_path/2 predicate needed for all available libraries. This allows us to load library source files or
entire librarieswithout worrying about libraries paths, improving code portability. The directory paths on the second argu-
ment should always end with the path directory separator character. Most back-end Prolog compilers allows the use of
environment variablesin the second argument of thel ogt al k_| i brary_pat h/ 2 predicate. Use of POSIX relative paths
(eg.'../" or'./") for top-level library directories (e.g. | gt user in the example above) is not advised as different
back-end Prolog compilers may start with different initial working directories, which may result in portability problems
of your loader files.

The library notation provides functionality inspired by the fi | e_sear ch_pat h/ 2 mechanism introduced by Quintus
Prolog and later adopted by some other Prolog compilers.

Compiler flags

Thel ogtal k_I oad/ 1 and | ogt al k_conpi | e/ 1 always use the current set of default compiler flags as specified in
your settings file and the Logtalk adapter files or changed for the current session using the built-in predicate
set _| ogt al k_f | ag/ 2. Although the default flag values cover the usual cases, you may want to use a different set of
flag values while compiling or loading some of your Logtalk source files. This can be accomplished by using the
| ogt al k_I oad/ 2 orthel ogt al k_conpi | e/ 2 built-in predicates. These two predicates accept alist of options affecting
how a Logtalk source file is compiled and |oaded:

| ?- logtalk conpile(Files, Options).

or:

| ?- logtalk_|oad(Files, Options).

In fact, the | ogt al k_| oad/ 1 and | ogt al k_conpi | e/ 1 predicates are just shortcuts to the extended versions called
with the default compiler flag values. The options are represented by a compound term where the functor isthe flag name
and the sole argument is the flag value.

We may also changethe default flag valuesfrom the onesloaded from the adapter fileby usingtheset _| ogt al k_f 1 ag/ 2
built-in predicate. For example:

| ?- set_logtalk flag(unknown_entities, silent).

The current default flags values can be enumerated using the cur rent _| ogt al k_f | ag/ 2 built-in predicate:

| ?- current_|logtal k_flag(unknown_entities, Value).

Val ue = sil ent
yes

114

render

httpo://www.renderx.com/

../refman/predicates/logtalk_load_1.html
../refman/predicates/logtalk_compile_1.html
../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/logtalk_load_2.html
../refman/predicates/logtalk_compile_2.html
../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/current_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Writing, running, and debugging applications

Logtalk also implementsaset _| ogt al k_f | ag/ 2 directive, which can be used to set flags within a sourcefile or within
an entity. For example:

% conpile all objects in the source file with event support
:- set_logtal k_flag(events, allow).

;- object(foo).
% conpil e this object with support for dynam c predicate declarations

;- set_logtal k_flag(dynam c_decl arations, allow).

:- end_obj ect.

Note that the scope of the set _| ogt al k_f | ag/ 2 directiveislocal to the entity or to the source file containing it.

Version flags

ver si on_dat a(Val ue)
Read-only flag whose valueisthe compound term| ogt al k(Maj or, M nor, Pat ch, St at us) . Thefirst three
arguments are integers and the last argument is an atom, possibly empty, representing version status: aN for
aphaversions, bN for betaversions, r cN for release candidates (with N being a natural number), and st abl e
for stable versions. Thever si on_dat a flag is aso ade facto standard for Prolog compilers.

ver si on(Val ue)
Deprecated read-only flag, inherited from Logtalk 2.x, whose value is the compound term
ver si on(Maj or, M nor, Pat ch) . The arguments are integers. New applications that are not required to

support Logtalk 2.x should usethe ver si on_dat a flag instead.

115

httpo://www.renderx.com/

../refman/directives/set_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Lint flags

unknown_entities(Option)
Controls the unknown entity warnings, resulting from loading an entity that references some other entity that
isnot currently loaded. Possible option values are war ni ng (the usual default) and si | ent . Note that these
warnings are not always avoidable, specially when using reflective designs of class-based hierarchies.

unknown_pr edi cat es(Opti on)
Defines the compiler behavior when calls to unknown predicates (or non-terminals) are found. An unknown
predicate is a called predicate that is neither locally declared or defined. Possible option values areer r or
war ni ng (the usua default), and si | ent (hot recommended).

undefi ned_predi cat es(Opti on)
Defines the compiler behavior when calls to declared but undefined predicates (or non-terminals) are found.
Note that callsto declared but undefined predicates (or non-terminals) fail as per closed-world assumption.
Possible option values are er r or , war ni ng (the usual default), and si | ent (not recommended).

portability(Option)
Controls the non-1SO specified Prolog built-in predicate and non-1SO specified Prolog built-in arithmetic
function calls warnings plus use of non-standard Prolog flags and/or flag values. Possible option values are
war ni ng and si | ent (the usual default).

m ssing_directives(Option)
Controls the missing predicate directive warnings. Possible option values are war ni ng (the usual default) and
si | ent (not recommended).

redefined_built_ins(Option)
Controls the Logtalk and Prolog built-in predicate redefinition warnings. Possible option values are war ni ng
(the usual default) and si | ent . Warnings about redefined Prolog built-in predicates are often the result of
running a Logtalk application on several Prolog compilers as each Prolog compiler definesits set of built-in
predicates.

singl eton_vari abl es(Opti on)
Controls the singleton variable warnings. Possible option values are war ni ng (the usual default) and si | ent
(not recommended).

under score_vari abl es(Opti on)
Controls the interpretation of variables that start with an underscore (excluding the anonymous variable) that
occur oncein aterm aseither don't care variables or singleton variables. Possible option valuesaredont _car e
and si ngl et ons (the usua default). Note that, depending on your Prolog compiler, ther ead_t er i 3 built-
in predicate may report variables that start with an underscore as singleton variables. Thereis no standard be-
havior, hence this option.

Optional features compilation flags

conpl enent s(Opti on)
Allows objects to be compiled with support for complementing categories turned off in order to improve per-
formance and security. Possible option values are al | ow (allow complementing categories to override local
object predicate declarations and definitions), rest ri ct (allow complementing categories to add predicate
declarations and definitionsto an object but not to override them), and deny (ignore complementing categories;

116

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Writing, running, and debugging applications

the usual default). This option can be used on a per-object basis. Note that changing this option is of no con-
sequence for objects aready compiled and loaded.

dynami c_decl arati ons(Opti on)
Allows objects to be compiled with support for dynamic declaration of new predicates turned off in order to
improve performance and security. Possible option valuesare al | owand deny (the usual default). Thisoption
can be used on a per-object basis. Note that changing this option is of no consequence for objects already
compiled and loaded. This option isonly checked when sending an asserta/ 1 or assert z/ 1 messageto an
object. Local asserting of new predicates is always allowed.

event s(Opti on)
Allows message sending callsto be compiled with event-driven programming support disablein order to improve
performance. Possible option valuesareal | owand deny (the usual default). Objects (and categories) compiled
with this option set to deny use optimized code for message-sending calls that does not trigger events. As such,
this option can be used on a per-object (or per-category) basis. Notethat changing this option isof no consequence
for objects already compiled and loaded.

context _swi tching_cal | s(Option)
Allows context switching calls (<</ 2) to be either allowed or denied. Possible option values are al | owand
deny. The default flag valeis al | ow. Note that changing this option is of no consequence for objects already
compiled and loaded.

Back-end Prolog compiler and loader flags

prol og_conpi | er (Fl ags)
List of compiler flags for the generated Prolog files. The valid flags are specific to the used Prolog backend
compiler. The usual default isthe empty list. These flags are passed to the backend Prolog compiler built-in
predicatethat isresponsible for compiling to disk aProlog file. For Prolog compilersthat don't provide separate
predicates for compiling and loading afile, use instead the pr ol og_| oader/ 1 flag.

prol og_| oader (Fl ags)
List of loader flags for the generated Prolog files. The valid flags are specific to the used Prolog backend
compiler. The usual default isthe empty list. These flags are passed to the backend Prolog compiler built-in
predicate that is responsible for loading a (compiled) Prolog file.

Other flags

scratch_directory(Directory)
Sets the directory to be used to store the temporary files generated when compiling Logtalk source files. This
directory can be specified using an atom or using library notation. The directory must always end with aslash.
The default value is a sub-directory of the sourcefiles directory, either* . /1 gt _tnp/' or'./.lgt_tnp/'
(depending on the back-end Prolog compiler and operating-system). Rel ative directories must always start with
' . /" duetothelack of aportable solution to check if apath isrelative or absolute.

report(Option)
Controls the default printing of messages. Possible option values are on (by usual default, print all messages
that are not intercepted by the user), war ni ngs (only print warning and error messages that are not intercepted
by the user), and of f (do not print any messages that are not intercepted by the user).

code_prefix(Character)
Enables the definition of prefix for al functors of Prolog code generated by the Logtalk compiler. The option
value must be asingle character atom. Itsdefault valueis' $' . Specifying a code prefix providesaway to solve
possible conflicts between Logtalk compiled code and other Prolog code. In addition, some Prolog compilers

117

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

automatically hide predicates whose functor start with a specific prefix such as the character $. Although this
isnot aread-only flag, it should only be changed at startup time and before loading any source files.

optim ze(Option)
Controls the compiler optimizations. Possible option values are on (used by default for deployment) and of f
(used by default for development). Compiler optimizationsinclude the use of static binding whenever possible,
the removal of redundant callstot r ue/ 0 from predicate clauses, the removal of redundant unifications when
compiling grammar rules, and inlining of predicate definitionswith asingle clausethat linksto alocal predicate,
toaplain Prolog built-in (or foreign) predicate, or to a Prolog modul e predicate with the same arguments. Care
should be taken when devel oping applications with this flag turned on as changing and reloading a file may
render static binding optimizationsinvalid for code defining in other loaded files. Turning on this flag automat-
ically turns off the debug flag.

sour ce_dat a(Opti on)
Defines how much information is retained when compiling a source file. Possible option values are on (the
usua default for development) and of f . With thisflag set to on, Logtalk will keep theinformation represented
using documenting directives plus source location data (including source file names and line numbers). This
information can be retrieved using reflection and is useful for documenting, debugging, and integration with
third-party development tools. Thisflag can be turned off in order to generate more compact code.

debug(Opti on)
Controls the compilation of source files in debug mode (the Logtalk default debugger can only be used with
files compiled in this mode). Possible option values are on and of f (the usual default). Turning on thisflag
automatically turns off the opt i mi ze flag.

rel oad(Option)
Definesthe reloading behavior for sourcefiles. Possible option valuesare ski p (skip loading of already loaded
files; this value can be used to get similar functionality to the Prolog directive ensur e_| oaded/ 1 but should
be used only with fully debugged code), changed (the usual default; reload files only when they are changed
since last loaded provided that the any explicit flags and the compilation mode are the same as before), and
al ways (always reload files).

hook(Cbj ect)
Allows the definition of compiler hooks that are called for each term read form a source file and for each
compiled goal. This option specifies an object (which can be the pseudo-object user) implementing the
expandi ng built-in protocol. The hook object must be compiled and loaded when this option is used. It'salso
possible to specify a Prolog module instead of a Logtalk object but the module must be pre-loaded and its
identifier must be different from any object identifier. The object is expected to define clauses for the
t er m_expansi on/ 2 and goal _expansi on/ 2 predicates. In the case of thet er m expansi on/ 2 predicate,
thefirst argument is the term read form the source file while the second argument returns alist of terms corres-
ponding to the expansion of the first argument. In the case of the goal _expansi on/ 2 predicate, the second
argument should be agoal resulting from the expansion of the goal in the first argument. The predicate
goal _expansi on/ 2 isrecursively called on the expanded goal until afixed point is reached. Care must be
taken to avoid compilation loops.

cl ean(Opti on)
Controals cleaning of the intermediate Prolog files generated when compiling Logtalk source files. Possible
option values are of f and on (the usua default). When turned on, this flag also forces recompilation of all
source files, disregarding any existing intermediate files. Thus, it is strong advisable to turn on this flag when
switching backend Prolog compilers as the intermediate files generated by the compilation of source files may
not be portable (due to differences in the implementation of the standard wr i t e_canoni cal / 2 predicate).

118

httpo://www.renderx.com/

../refman/methods/term_expansion_2.html
../refman/methods/goal_expansion_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Writing, running, and debugging applications

User-defined flags

Logtalk providesa create_| ogt al k_f 1 ag/ 3 predicate that can be used for defining new flags.

Reloading and smart compilation of source files

Asageneral rule, reloading source files should never occur in production code and should be handled with care in devel-
opment code. Reloading a L ogtalk source file usually requires reloading the intermediate Prolog file that is generated by
the Logtalk compiler. The problem is that there is no standard behavior for reloading Prolog files. For static predicates,
almost all Prolog compilers replace the old definitions with the new ones. However, for dynamic predicates, the behavior
depends on the Prolog compiler. Most compilers replace the old definitions but some of them simply append the new ones,
which usually leads to trouble. See the compatibility notes for the back-end Prolog compiler you intend to use for more
information. There is an additional potential problem when using multi-threading programming. Reloading a threaded
object does not recreate from scratch its old message queue, which may still bein use (e.g. threads may be waiting on it).

When using library entities and stable code, you can avoid rel oading the corresponding source files (and, therefore, recom-
piling them) by setting the compiler flag r el oad to ski p. For code under development, you can turn off the cl ean flag
to avoid recompiling files that have not been modified since last compilation (assuming that back-end Prolog compiler
that you are using supports retrieving of file modification dates). You can disable deleting the intermediate files generated
when compiling source files by changing the default flag value in your settings file, by using the corresponding compiler
flag with the compiling and loading built-in predicates, or, for the remaining of aworking session, by using the call:

| ?- set logtalk flag(clean, off).

Some cavests that you should be aware. First, some warnings that might be produced when compiling a source file will
not show up if the corresponding object fileis up-to-date because the sourcefile is not being (re)compiled. Second, if you
are using several Prolog compilers with Logtalk, be sure to perform the first compilation of your source files with smart
compilation turned off: the intermediate Prolog files generated by the Logtalk compiler may be not compatible across
Prolog compilers or even for the same Prolog compiler across operating systems (e.g. due to the use of different character
encodings or end-of-line characters).

Using Logtalk for batch processing

If you use Logtalk for batch processing, you probably want to turn off the option r epor t to suppress all messages of type
banner, comment , comment (_), war ni ng, and war ni ng(_) that are normally printed. Note that error messages and
messages providing information requested by the user will still be printed.

Optimizing performance

The default compiler flag settings are appropriated for the development but not necessarily for the deployment of applic-
ations. To minimize the generated code size, turn the sour ce_dat a flag off. To optimize runtime performance, turn on
theopt i ni ze flag.

Pay specia attention to file compilation/loading order. Whenever possible, compile/load your files taking into account
file dependencies to enable static binding optimizations. The easiest way to find the dependencies and thus the best com-
pilation/loading order isto use the di agr ans tool to generate afile dependency diagram for your application.

Minimize the use of dynamic predicates. Parametric objects can often be used in alternative. When dynamic predicates
cannot be avoided, try to make them private. Declaring adynamic predicate also as a private predicate allows the compiler
to optimize local callsto the database methods (e.g. assert z/ 1 and r et r act / 1) that handle the predicate.

119

httpo://www.renderx.com/

../refman/predicates/create_logtalk_flag_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Sending a message to self implies dynamic binding but there are often cases where : : / 1 is misused to call an imported
or inherited predicate that is never going to be redefined in a descendant. In these cases, a super call, 2"/ 1, can be used
instead with the benefit of enabling static binding. Most of the guidelines for writing efficient Prolog code also apply to
Logtalk code. In particular, define your predicates to take advantage of first-argument indexing. In the case of recursive
predicates, define them as tail-recursive predicates whenever possible.

Debugging Logtalk applications

The Logtak distribution includesinitst ool s directory acommand-line debugger, implemented as a L ogtalk application.
It can be loaded by typing:

| ?- 1ogtal k_| oad(debugger (| oader)).

This tool implements debugging features similar to those found on most Prolog systems. There are some differences,
however, between the usual implementation of Prolog debuggers and the current implementation of the Logtalk debugger
that you should be aware. First, unlike some Prolog debuggers, the Logtalk debugger is not implemented as a meta-inter-
preter. This trandates to a different, although similar, set of debugging features when compared with some of the more
sophisticated Prolog debuggers. Second, debugging isonly possible for entities compiled in debug mode. When compiling
an entity in debug mode, Logtalk decorates clauses with source information to allow tracing of the goal execution. Third,
implementation of spy points allows the user to specify the execution context for entering the debugger. This featureisa
consequence of the encapsulation of predicates inside objects.

Compiling source files and entities in debug mode

Compilation of sourcefilesin debug modeis controlled by the compiler flag debug. The default valuefor thisflag, usually
of f , isdefined in the adapter files. Its value may be changed at runtime by writing:

| ?- set_logtal k _flag(debug, on).

In alternative, if we want to compile only some source files in debug mode, we may instead write:

| ?- logtalk_load([filel, file2, ...], [debug(on)]).

The compiler flag cl ean should be turned on whenever the debug flag isturned on at runtime. Thisis necessary because
debug code would not be generated for files previously compiled in normal mode if there are no changes to the source
files.

After loading the debugger, we may check or enumerate, by backtracking, all loaded entities compiled in debug mode as
follows:

| ?- debugger::debuggi ng(Entity).

To compile only a specific entity in debug mode, usetheset _| ogt al k_f | ag/ 2 directive inside the entity.

120

httpo://www.renderx.com/

../refman/directives/set_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Writing, running, and debugging applications

Logtalk Procedure Box model

Logtalk uses a Procedure Box model similar to those found on most Prolog compilers. The traditional Prolog procedure
box model uses four ports (call, exit, redo, and fail) for describing control flow when a predicate clause is used during
program execution:

cal

predicate call
exit

success of a predicate call
redo

backtracking into a predicate
fail

failure of a predicate call

Logtalk, asfound on somerecent Prolog compilers, adds a port for dealing with exceptionsthrown when calling a predicate:

exception
predicate call throws an exception

In addition to the ports described above, L ogtalk addstwo more ports, fact and rule, which show the result of the unification
of agoa with, respectively, afact and arule head:

f act

unification success between agoa and afact
rule

unification success between a goal and arule head

The user may define for which ports the debugger should pause for user interaction by specifying alist of leashed ports.
For example:

| ?- debugger::leash([call, exit, fail]).

Alternatively, the user may use an atom abbreviation for a pre-defined set of ports. For example:

| ?- debugger::|eash(l oose)

The abbreviations defined in Logtalk are similar to those defined on some Prolog compilers:

none
[]
| oose
[fact, rule, call]
hal f
[fact, rule, call, redo]
tight
[fact, rule, call, redo, fail, exception]
ful

[fact, rule, call, exit, redo, fail, exception]

By default, the debugger pauses at every port for user interaction.

121

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

Defining spy points

Logtalk spy points can be defined by simply stating which file line numbers or predicates should be spied, as in most
Prolog debuggers, or by fully specifying the context for activating a spy point. In the case of line number spy points, the
line number must correspond to the first line of an entity clause. To simplify the definition of line number spy points, these
are specified using the entity identifier instead of the file name (as al entities share a single namespace, an entity can only
be defined in asinglefile).

Defining line number and predicate spy points

Line number and predicate spy points are specified using the method spy/ 1. The argument can be either a pair entity
identifier - line number (Ent i t y- Li ne) or apredicate indicator (Funct or/ Ari ty) or alist of spy points. For example:

| ?- debugger:: spy(person-42).

Spy points set.
yes

| ?- debugger::spy(fool/?2).

Spy points set.
yes

| ?- debugger::spy([foo/4, bar/1]).

Spy points set.
yes

Line numbers and predicate spy points can be removed by using the method nospy/ 1. The argument can be a spy point,
alist of spy points, or a non-instantiated variable in which case all spy points will be removed. For example:

| ?- debugger::nospy(_).

Al'l matching predicate spy points renoved.
yes

Defining context spy points

A context spy point is aterm describing a message execution context and agoal :

(Sender, This, Self, Goal)

The debugger is evoked whenever the execution context istrue and when the spy point goal unifies with the goal currently
being executed. Variable bindings resulting from the unification between the current goal and the goal argument are dis-

122

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Writing, running, and debugging applications

carded. The user may establish any number of context spy points as necessary. For example, in order to call the debugger
whenever a predicate defined on an object named f oo is called we may define the following spy point:

| ?- debugger::spy(_, foo, _,).

Spy poi nt set.
yes

For example, we can spy all callsto af oo/ 2 predicate by setting the condition:

| ?- debugger::spy(_, _, _, foo(_,)).

Spy point set.
yes

The method nospy/ 4 may be used to remove all matching spy points. For example, the call:

| ?- debugger::nospy(_, _, foo,).

Al'l matchi ng context spy points renoved.
yes

will remove all context spy points where the value of Self matches the namef oo.

Removing all spy points

We may remove all line number, predicate, and context spy points by using the method nospyal | / 0:

| ?- debugger::nospyall.

Al'l |ine nunber spy points renoved.
Al'l predicate spy points renmpved.
Al'l context spy points renoved.
yes

Tracing program execution

Logtalk allows tracing of execution for all objects compiled in debug mode. To start the debugger in trace mode, write:

| ?- debugger::trace.

yes

Note that, when tracing, spy pointswill be ignored. While tracing, the debugger will pause for user input at each leashed
port, printing an informative message with the port name and the current goal. Before the port number, when a spy point
is set for the current clause or goal, the debugger will print a# character for line number spy points, a + character for
predicate spy points, and a* character for context spy points. The debugger also provides determinism information by
prefixing theexi t port with a* character when a call succeeds with choice-points pending. After the port name, the de-

123

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

bugger prints the goal invocation number. This invocation number is unique and can be used to correlate the port trace
messages.

To stop tracing and turning off the debugger, write:

| ?- debugger::notrace.

yes

Debugging using spy points

Tracing a program execution may generate large amounts of debugging data. Debugging using spy points allows the user
to concentrate its attention in specific points of its code. To start a debugging session using spy points, write:

| ?- debugger: : debug.

yes

At the beginning of a port description, the debugger will print a#, +, or * character before the current goal if thereis, re-
spectively, aline number, a predicate, or a context spy point defined.

To stop the debugger, write:

| ?- debugger: : nodebug.

yes

Note that stopping the debugger does not remove any defined spy points.

Debugging commands

The debugger pauses at leashed posts when tracing or when finding a spy point for user interaction. The commands
available are asfollows:

c — creep
go on; you may use the spacebar, return, or enter keys in alternative
| —leap
continues execution until the next spy point is found
s — skip
skips debugging for the current goal; valid at call, redo, and unification ports
q — quasi-skip
skips debugging until returning to the current goal or reaching a spy point; valid at call and redo ports
r —retry
retries the current goa but side-effects are not undone; valid at the fail port
j —jump
reads invocation number and continues execution until a port is reached for that number
z—2zap

reads port name and continues execution until that port is reached
reads negated port name and continues execution until a port other than the negated port is reached

124

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Writing, running, and debugging applications

i —ignore

ignores goal, assumesthat it succeeded; valid at call and redo ports
f —fail

forces backtracking; may aso be used to convert an exception into afailure
n — nodebug

turns off debugging
@— command; ! can be used in alternative
reads and executes a query

b — break
suspends execution and starts new interpreter; typeend_of _fi | e to terminate
a — abort
returns to top level interpreter
Q— quit
quits Logtalk
p — print
writes current goal using the print/1 predicate if available
d — display
writes current goal without using operator notation
w— write
writes current goal quoting atoms if necessary
$ — dollar
outputs the compiled form of the current goal (for low-level debugging)
X — context
prints execution context
. — context

printsfile, entity, predicate, and line number information at an unification port
e — exception
prints exception term thrown by the current goal

= — debugging

prints debugging information
< — write depth

sets the write term depth (set to 0 to reset)
* — add

adds a context spy point for the current goal
| — remove

removes a context spy point for the current goal
+—add

adds a predicate spy point for the current goal
- —remove

removes a predicate spy point for the current goal
—add

adds aline number spy point for the current clause
| — remove

removes aline number spy point for the current clause
h — condensed help

printslist of command options
? — extended help

printslist of command options

125

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Context-switching calls

Logtalk providesacontrol construct, <</ 2, which allowsthe execution of aquery within the context of an object. Common
debugging uses include checking an object local predicates (e.g. predicates representing internal dynamic state) and
sending a message from within an object. This control construct may also be used to write unit tests.

Consider the following toy example:

:- obj ect (broken).

;- public(a/l).
:- private([b/2, c/1]).
;- dynam c(c/1).

a(A) - b(A B), c(B).
b(1, 2). b(2, 4). b(3, 6).

c(3). %in areal-life exanple, this would be a clause asserted at runtine

;- end_obj ect.

Something is wrong when we try the object public predicate, a/ 1:

| ?- broken::a(A).

no

For hel ping diagnosing the problem, instead of compiling the object in debug mode and doing atrace of the query to check
the clauses for the non-public predicates, we can instead simply type:

| ?- broken << c¢(C).

c=3
yes

The<</ 2 control construct works by switching the execution context to the object in the first argument and then compiling
and executing the second argument within that context:

| ?- broken << (self(Self), sender(Sender), this(This)).
Sel f = broken
Sender = broken

This = broken

yes

As exemplified above, the <</ 2 control construct allows you to call an object local and private predicates. However, it is
important to stress that we are not bypassing or defeating an object predicate scope directives. The calls take place within
the context of the specified object, not within the context of the object making the <</ 2 call. Thus, the <</ 2 control
construct implements a form of execution-context switching.

126

httpo://www.renderx.com/

../refman/control/context_switch_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Writing, running, and debugging applications

Theavailability of the <</ 2 control construct iscontrolled by the compiler flag cont ext _swi t chi ng_cal | s (itsdefault
value is defined in the adapter files of the back-end Prolog compilers).

Using compilation hooks and term expansion for debugging

It ispossible to use compilation hooks and the term expansion mechanism for conditional compilation of debugging goals.
Assume that we chose the predicate debug/ 1 to represent debug goals. For example:

append([], List, List) :-
debug((wite(' Base case: '), witeq(append([], List, List)), nl)).
append([Head| Tail], List, [Head| Tail2]) :-
debug((write(' Recursive case: '), witeq(append(Tail, List, Tail2)), nl)),
append(Tail, List, Tail?2).

When debugging, we want to call the argument of the predicate debug/ 1. This can be easily accomplished by defining a
hook object containing the following definition for goal _expansi on/ 2:

goal _expansi on(debug(Goal), Goal).

When not debugging, we can use a second hook object to discard the debug/ 1 calls by defining the predicate
goal _expansi on/ 2 asfollows:

goal _expansi on(debug(_), true).

The Logtalk compiler automatically removes any redundant calls to the built-in predicatet r ue/ 0 when compiling object
predicates.

127

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk user manual

128

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Prolog Integration and Migration Guide

Prolog Integration and Migration Guide

An application may include plain Prolog files, Prolog modules, and Logtalk objects. Thisisaperfectly valid way of devel-
oping a complex application and, in some cases, it might be the most appropriated solution. Modules may be used for
legacy code or when a simple encapsulation mechanism is adequate. Logtalk objects may be used when more powerful
encapsulation, abstraction, and reuse features are necessary. Logtalk supports the compilation of source files containing
both plain Prolog and Prolog modules. This guide provides tips for helping integrating and migrating plain Prolog code
and Prolog module code to Logtalk. Step-by-step instructions are provided for encapsulating plain Prolog codein objects,
converting Prolog modules into objects, and compiling and reusing Prolog modules as objects from inside Logtalk. An
interesting application of the techniques described in this guide is a solution for running a Prolog application which uses
modules on a Prolog compiler with no module system.

Source files with both Prolog code and Logtalk code

Logtalk source files may contain plain Prolog code intermixed with Logtalk code. The Logtalk compiler simply copies
the plain Prolog code as-is to the generated Prolog file. With Prolog modules, it is assumed that the module code starts
with anodul e/ 1- 2 directive and ends at the end of the file. There is no module ending directive which would allowed
us to define more than one module per file. In fact, most if not all Prolog module systems always define a single module
per file. Some of them mandate that the nodul e/ 1- 2 directive bethefirst term on asourcefile. As such, when the L ogtalk
compiler findsanodul e/ 1- 2 directive, it assumesthat all code that follows until the end of the file bel ongsto the module.

Encapsulating plain Prolog code in objects

Most applications consist of several plain Prolog source files, each one defining afew top-level predicates and auxiliary
predicates that are not meant to be directly called by the user. Encapsulating plain Prolog code in objects allows us to
make clear the different roles of each predicate, to hide implementation details, to prevent auxiliary predicates from being
called outside the object, and to take advantage of Logtalk advanced code encapsulating and reusing features.

Encapsulating Prolog code using Logtalk objects is ssimple. First, for each source file, add an opening object directive,
obj ect / 1, to the beginning of thefile and an ending object directive, end_obj ect / 0, to end of thefile. Choose an object
name that reflects the purpose of source file code (this is a good opportunity for code refactoring if necessary). Second,
add public predicate directives, publ i c/ 1, for the top-level predicates that are used directly by the user or called from
other source files. Third, we need to be able to call from inside an object predicates defined in other source files/objects.
The easiest solution, which has the advantage of not requiring any changesto the predicate definitions, isto usetheuses/ 2
directive. If your Prolog compiler supports cross-referencing tools, you may use them to help you make sure that all calls
to predicates on other sourcefiles/objectsarelisted intheuses/ 2 directives. In aternative, compiling the resulting objects
withthe Logtalk unknown_pr edi cat es andpor t abi | i t y flagssettowar ni ng will help you identify callsto predicates
defined on other converted source files and possible portability issues.

129

httpo://www.renderx.com/

../refman/directives/object_1_5.html
../refman/directives/end_object_0.html
../refman/directives/public_1.html
../refman/directives/uses_2.html
../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

Prolog multifile predicates

Prolog multifile predicates are used when clauses for the same predicate are spread among several source files. When en-
capsulating plain Prolog code that uses multifile predicates, is often the case that the clauses of the multifile predicates
get spread between different objects and categories but conversion is straight-forward. In the Logtalk object (or category)
holding the muiltifile predicate primary declaration, add a predicate scope directiveand anul ti fil e/ 1 directive. In all
other objects (or categories) defining clauses for the multifile predicate, add amul ti fil e/ 1 directive and predicate
clauses using the format:

- multifile(Entity::Functor/Arity).

Entity:: Functor(...) :-

Seethe User Manual sectiononthenul tifil e/ 1 predicate directive for more information. An alternative solution isto
simply keep the clauses for the multifile predicates as plain Prolog code and define, if necessary, a parametric object to
encapsulate all predicates working with the multifile predicate clauses. For example, assumethefollowingmul tifile/ 1
directive:

% city(Nane, District, Population, Neighbors)
- multifile(city/4).

We can define a parametric object with ci t y/ 4 asitsidentifier:

:- object(city(_Nanme, _District, _Population, _Neighbors)).
% predi cates for working with city/4 clauses

;- end_obj ect.

This solution is preferred when the multifile predicates are used to represent large tables of data. See the section on para-
metric objects for more details.

Converting Prolog modules into objects

Converting Prolog modulesinto objects may allow an application to run on awider range of Prolog compilers, overcoming
compatibility problems. Some Prolog compilers don't support a module system. Among those Prolog compilers which
support amodule system, the lack of standardization leadsto several issues, specially with semantics, operators, and meta-
predicates. In addition, the conversion alows you to take advantage of Logtalk more powerful abstraction and reuse
mechanisms such as separation between interface from implementation, inheritance, parametric objects, and categories.

Converting a Prolog module into an object is easy as long as the directives used in the module are supported by Logtalk
(see below). Assuming that thisisthe case, apply the following steps:

1 Convert the module modul e/ 1 directive into an opening object directive, obj ect / 1, using the module name asthe
object name. For nodul e/ 2 directives apply the same conversion and convert the list of exported predicates into
Logtalk publ i c/ 1 predicate directives.

2 Add aclosing object directive, end_obj ect / 0, at the end of the module code.

130

httpo://www.renderx.com/

predicates.html#predicates_scope
predicates.html#predicates_multifile
objects.html#objects_parametric
objects.html#objects_parametric
../refman/directives/object_1_5.html
../refman/directives/public_1.html
../refman/directives/end_object_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Prolog Integration and Migration Guide

10

Convert any export/ 1 directivesinto publ i ¢/ 1 predicate directives.
Convert any use_nodul e/ 1 directivesinto use_nodul e/ 2 directives (see next section).

Convert any use_nodul e/ 2 directives referencing other modules also being converted to objects into Logtalk
uses/ 2 directives. If the referenced modules are not being converted into objects, simply keep the use_nodul e/ 2
directives unchanged.

Convert any net a_pr edi cat e/ 1 directivesinto Logtalk et a- pr edi cat e/ 1 directives by replacing the module
meta-argument indicator, : , into the Logtalk meta-predicate indicator, 0. Closures must be represented using an integer
denoting the number of additional arguments that will be appended to construct a goal. Arguments which are not
meta-arguments are represented by the * character.

Convert any explicit qualified calls to module predicates to messages by replacing the : / 2 operator with the: : / 2
message sending operator, assuming that the referenced modules are also being converted into objects. Callsin the
pseudo-module user can simply be encapsulated using the {}/ 1 Logtalk external call control construct. You can
also useinstead auses/ 2 directive where the first argument would be the atom user and the second argument alist
of all external predicates. Thisaternative have the advantage of not requiring changesto the code making the predicate
cals.

If your modul e uses the database built-in predicates to implement modulelocal mutabl e state using dynamic predicates,
add both pri vat e/ 1 and dynanmi ¢/ 1 directives for each dynamic predicate.

If your module declares or defines clauses for multifile module predicates, replace the : / 2 functor by : : / 2 in the
mul tifil e/l directives and in the clause heads (assuming that all modules defining the multifile predicates are
converted into objects; if that is not the case, just keep theul ti fi | e/ 1 directives and the clause heads as-is).

Compile the resulting objects with the Logtalk unknown_pr edi cat es, and por t abi | i t y flags set to war ni ng to
help you locate possible issues and calls to proprietary Prolog built-in predicates and to predicates defined on other
converted modules. In order to improve code portability, check the Logtalk library for possible aternatives to the
use of proprietary Prolog built-in predicates.

Before converting your modulesto objects, you may try to compilethem first asobjects (using thel ogt al k_conpi | e/ 1- 2
Logtalk built-in predicates) to help identify any issues that must be dealt with when doing the conversion to objects. Note
that Logtalk supports compiling Prolog files as L ogtalk source code without requiring changesto the file name extensions.

Compiling Prolog modules as objects

An alternative to convert Prolog modulesinto objectsisto just compilethe Prolog sourcefilesusingthel ogt al k_| oad/ 1- 2
and| ogt al k_conpi | e/ 1- 2 predicates(set the Logtalk por t abi | i t y flag settowar ni ng to help you catch any unnoticed
cross-module predicate calls). Thisallowsyou to reuse existing modul e code as objects. This has the advantage of requiring
littleif any code changes. There are, however, some limitationsthat you must be aware. These limitations are aconsequence
of the lack of standardization of Prolog module systems.

Supported module directives

Currently, Logtalk supports the following module directives:

nodul e/ 1
The module name becomes the object name.

131

httpo://www.renderx.com/

../refman/directives/uses_2.html
../refman/directives/meta_predicate_1.html
../refman/control/send_to_object_2.html
../refman/control/external_call_1.html
../refman/directives/uses_2.html
../refman/directives/private_1.html
../refman/directives/dynamic_1.html
../refman/predicates/logtalk_compile_1.html
../userman/programming.html#compiling
../userman/programming.html#compiling
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

nodul e/ 2
The module name becomes the object name. The exported predicates become public object predicates. The
exported grammar rule non-terminal s become public grammar rule non-terminals. The exported operators become
public object operators but are not active el sawhere when loading the code.

use_nodul e/ 2
Thisdirective is compiled asaLogtalk uses/ 2 directive in order to ensure correct compilation of the module
predicate clauses. Thefirst argument of this directive must be the module name (an atom), not amodulefile
specification (the adapter files attempt to use the Prolog dialect level term-expansion mechanism to find the
module name from the modul e file specification). Note that the module is not automatically loaded by Logtalk
(asit would be when compiling the directive using Prolog instead of Logtalk; the programmer may also want
the specified module to be compiled as an object). The second argument must be a predicate indicator
(Functor/ Ari ty), agrammar rule non-terminal indicator (Funct or// Ari ty), aoperator declaration, or a
list of predicate indicators, grammar rule non-terminal indicators, and operator declarations.

export/1
Exported predicates are compiled as public object predicates. The argument must be a predicate indicator
(Funct or/ Ari ty), agrammar rule non-terminal indicator (Funct or// Ari ty), aoperator declaration, or a
list of predicate indicators, grammar rule non-terminal indicators, and operator declarations.

reexport/2
Reexported predicates are compiled as public object predicates. The first argument is the module name. The
second argument must be a predicate indicator (Funct or / Ari ty), agrammar rule non-terminal indicator
(Functor// Arity), aoperator declaration, or alist of predicate indicators, grammar rule non-terminal indic-
ators, and operator declarations.

nmeta_predicate/ 1
M odul e meta-predi cates become object meta-predicates. Only predicate arguments marked as goals or closures
(using an integer) are interpreted as meta-arguments. In addition, Prolog module meta-predicates and Logtalk
meta-predicates don't share the same explicit-qualification calling semantics: in Logtalk, meta-arguments are
aways called in the context of the sender.

A common issue when compiling modules as objectsisthe use of theatomsdynani ¢, di sconti guous,andnul tifile
as operators in directives. For better portability avoid this usage. For example, write:

:- dynam c([foo/1, bar/2]).

instead of :

;- dynam c foo/1l, bar/2.

Another common issueismissing net a_pr edi cat e/ 1,dynani ¢/ 1, di sconti guous/ 1,andmul tifil e/ 1 predicate
directives. Logtalk allows detection of most missing directives (by setting its i ssi ng_di r ect i ves flag to war ni ng).

When compiling modules as objects, you probably don't need event support turned on. You may use the compiler flag
event s(deny) with the Logtalk compiling and loading built-in methods for a small performance gain for the compiled
code.

Current limitations and workarounds

Thereexport/ 1 and use_nodul e/ 1 directives are not directly supported by the Logtalk compiler. But most Prolog
adapter files provide support for compiling these directives using Logtalk's first stage of its term-expansion mechanism.
Nevertheless, these directives can be converted, respectively, intor eexport/ 2 anduse_nodul e/ 2 directives by finding
which predicates exported by the specified modules are reexported or imported into the module containing the directive.

132

httpo://www.renderx.com/

../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Prolog Integration and Migration Guide

Finding the names of theimported predicatesthat are actually used iseasy. First, comment out theuse_nodul e/ 1 directives
and compile the file (making sure that the compiler flag unknown_pr edi cat es is set to war ni ng). Logtalk will print a
warning with alist of predicates that are called but never defined. Second, use these list to replace ther eexport/ 1 and
use_nodul e/ 1 directives by, respectively, r eexport/ 2 and use_nodul e/ 2 directives. You should then be able to
compile the modified Prolog module as an object.

Although Logtalk supports term and goal expansion mechanisms, the semantics are different from similar mechanisms
found in some Prolog compilers. In particular, Logtalk does not support defining term and goal expansions clausesin a
sourcefilefor expanding the sourcefileitself. Logtalk forces aclean separation between expansions clauses and the source
filesthat will be subject to source-to-source expansions by using hook objects.

Dealing with proprietary Prolog directives and predicates

Most Prolog compilers define proprietary, non-standard, directives and predicates that may be used in both plain code and
module code. Non-standard Prolog built-in predicates are usually not problematic, as Logtalk is usually able to identify
and compile them correctly (but see the notes on built-in meta-predicates for possible caveats). However, Logtalk will
generate compilation errors on source files containing proprietary directives unless you first specify how the directives
should be handled. Several actions are possible on a per-directive basis: ignoring the directive (i.e. do not copy the directive,
although agoal can be proved as aconsequence), rewriting and copy the directiveto the generated Prolog files, or rewriting
and recompiling the resulting directive. To specify these actions, the adapter files contain clauses for the
" $l gt _prol og_term expansi on' / 2 predicate. For example, assumethat agiven Prolog compiler definesacoment / 2
directive for predicates using the format:

;- comment (foo/2, "Brief description of the predicate").

We can rewrite this predicate into a Logtalk info/2 directive by defining a suitable clause for the
" $l gt _prol og_t erm expansi on' /2 predicate:

"$l gt _prol og_term expansion' (comment (F/ A, String), info(F/A [comment is Atonj)) :-
atom codes(Atom String).

This Logtalk feature can be used to allow compilation of legacy Prolog code without the need of changing the sources.
When used, isadvisableto set thepor t abi | i t y/ 1 compiler flag towar ni ng in order to more easily identify sourcefiles
that are likely non-portable across Prolog compilers.

A second example, where a proprietary Prolog directive is discarded after triggering a side-effect:

'$l gt _prol og_term expansion' (|l oad_foreign_files(Files,Libs,InitRoutine), []) :-
| oad_foreign_files(Files,Libs,InitRoutine).

In this case, although the directiveis not copied to the generated Prolog file, the foreign library files are loaded as a side-
effect of the Logtalk compiler calling the' $I gt _pr ol og_t er m expansi on' / 2 hook predicate.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by simply using explicit module qualification,
i.e. by writing Modul e: Goal or Goal @wbdul e (depending on the module system). Logtalk also supports the use of
use_nodul e/ 2 directivesin object and categories (with the restriction that the first argument of the directive must be the
actual module name and not the module file name or the module file path). In this case, these directives are parsed in a

133

httpo://www.renderx.com/

../glossary.html#hook
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Logtalk user manual

similar way to Logtalk uses/ 2 directives, with calls to the specified module predicates being automatically transdated to
Modul e: Goal calls. For example, assume acl pf d Prolog module implementing a finite domain constraint solver. You
could write:

.- object(puzzle).
:- public(puzzlell).

:- use_nodul e(cl pfd, [
all _different/1, ins/2, label/1l, (#=)/2, (#\=)/2,
op(700, xfx, #=), op(700, xfx, #\ =)

1).

puzzle([S,E,N D + [MORE]

Vars = [SSEND MORY],

Vars ins 0..9,

all _different(Vars),
S*1000 + E*100 + N*10 + D +
M1000 + O*100 + R*10 + E #=

Mr10000 + O*1000 + N*100 + E*10 + Y,

M# =0, S # =0,

| 'abel ([M O NE, V]).

[MONEY]) :-

:- end_obj ect.

Asageneral rule, the Prolog modules should be loaded (e.g. inthe auxiliary Logtalk |oader files) before compiling objects
that make use of module predicates. Moreover, the Logtalk compiler does not generate code for the automatic |oading of
modulesreferencedinuse_nodul e/ 1- 2 directives. Thisisaconsequence of thelack of standardization of these directives,
whose first argument can be a module name, a straight file name, or afile name using some kind of library notation, de-
pending on the back-end Prolog compiler. Worse, modules are sometimes defined in files with names different from the
module names requiring finding, opening, and reading the file in order to find the actual module name.

Logtalk supports the declaration of predicate aliasesin use_nodul e/ 2 directives used within object and categories. For
example, the ECLiPSe IC Constraint Solversdefinea: : / 2 variable domain operator that clasheswith the Logtalk : : / 2
message sending operator. We can solve the conflict by writing:

:- use_nodule(ic, [(::)/2 as ins/2]).

With this directive, callsto thei ns/ 2 predicate alias will be automatically compiled by Logtalk to callsto the: : / 2 pre-
dicateinthei c module.

When calling Prolog module meta-predicates, the Logtalk compiler may need help to understand the corresponding meta-
predicate template. Despite some recent progress in standardization of the syntax of met a_pr edi cat e/ 1 directives and
of thenet a_pr edi cat e/ 1 property returned by the pr edi cat e_pr oper t y/ 2 reflection predicate, portability is still a
problem. Thus, Logtalk allowsthe original net a_pr edi cat e/ 1 directive to be overridden with alocal one that Logtalk
can make sense of. Note that the Logtalk library provides implementations of common meta-predicates, which can be
used in place of module meta-predicates.

Logtalk alows you to send a message to a module in order to call one of its predicates. Thisis usualy not advised as it
implies a performance penalty when compared to just using the Modul e: Cal | notation. Moreover, this works only if
there is no object with the same name as the module you are targeting. This feature is necessary, however, in order to

134

httpo://www.renderx.com/

../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Prolog Integration and Migration Guide

properly support compilation of modules containing use_nodul e/ 2 directives as objects. If the modules specified in the
use_nodul e/ 2 directives are not compiled as objects but are instead loaded as-is by Prolog, the exported predicates
would need to be called using the Modul e: Cal | notation but the converted module will be calling them through message
sending. Thus, this feature ensures that, on amodule compiled as an object, any predicate calling other module predicates
will work as expected either these other modules are loaded as-is or also compiled as objects.

Compiling Prolog module multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be defined in other
modules. This is accomplished by declaring the library predicate multifile and by explicitly prefixing predicate clause
heads with the library module identifier. For example:

- multifile(clpfd:run_propagator/2).
cl pfd: run_propagator(..., ...) :-

Logtalk supports the compilation of such clauses within objects and categories. While the clause head is compiled as-is,
the clause body is compiled in the same way as aregular object or category predicate, thus allowing calls to local object
or category predicates. For example:

:- object(...).
- multifile(clpfd:run_propagator/?2).
cl pfd: run_propagator(..., ...) :-

%calls to | ocal object predicates

;- end_obj ect.

The Logtalk compiler will print awarning if themul ti fil e/ 1 directiveis missing. These multifile predicates may also
be declared dynamic using the same Modul e: Funct or/ Ari t y notation.

135

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

