
Logtalk 3

User Manual

Copyright © Paulo Moura

pmoura@logtalk.org
http://logtalk.org/

April 6, 2017

Updated for version 3.10.5

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

User Manual

Logtalk Features. 1
Logtalk Nomenclature. 5

Message Sending. 9
Objects. 15
Protocols. 29
Categories. 35
Predicates. 47
Inheritance. 73
Event-driven Programming. 79
Multi-threading Programming. 85
Error Handling. 93

Documenting Logtalk Programs. 97

Installing Logtalk. 101
Writing, Running, and Debugging Logtalk Applications. 109
Prolog Integration and Migration Guide. 129

Logtalk Features

Integration of logic and object-oriented programming. 1
Integration of event-driven and object-oriented programming. 1
Support for component-based programming. 2
Support for both prototype and class-based systems. 2
Support for multiple object hierarchies. 2
Separation between interface and implementation. 2
Private, protected, and public inheritance. 2
Private, protected, and public object predicates. 2
Parametric objects. 3
High level multi-threading programming support. 3
Smooth learning curve. 3
Compatibility with most Prologs and the ISO standard. 3
Performance. 3
Logtalk scope. 3

Logtalk Nomenclature

C++ nomenclature. 6

i

Contents

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

features.html#features_logic
features.html#features_events
features.html#features_categories
features.html#features_both
features.html#features_multiple
features.html#features_interface
features.html#features_inheritance
features.html#features_predicates
features.html#features_parametric
features.html#features_threading
features.html#features_learning
features.html#features_compatibility
features.html#features_performance
features.html#features_scope
nomenclature.html#nomenclature_cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Java nomenclature. 7

Message Sending

Operators used in message sending. 9
Sending a message to an object. 9
Delegating a message to an object. 9
Sending a message to self. 10
Broadcasting. 10
Calling imported and inherited predicate definitions. 10
Message sending and event generation. 11
Message sending performance. 11

Objects

Objects, prototypes, classes, and instances. 15
Prototypes. 15
Classes. 15

Defining a new object. 16
Parametric objects. 18
Finding defined objects. 19
Creating a new object in runtime. 20
Abolishing an existing object. 20
Object directives. 20

Object initialization. 21
Dynamic objects. 22
Object documentation. 22
Loading files into an object. 22

Object relationships. 22
Object properties. 24
Built-in objects. 26

The built-in pseudo-object user. 26
The built-in object logtalk. 26

Protocols

Defining a new protocol. 29
Finding defined protocols. 30
Creating a new protocol in runtime. 30
Abolishing an existing protocol. 30
Protocol directives. 30

Dynamic protocols. 31
Protocol documentation. 31
Loading files into a protocol. 31

Protocol relationships. 31
Protocol properties. 32
Implementing protocols. 33
Built-in protocols. 33

The built-in protocol expanding. 33

ii

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

nomenclature.html#nomenclature_java
messages.html#messages_operators
messages.html#messages_sending
messages.html#messages_delegating
messages.html#messages_self
messages.html#messages_broadcasting
messages.html#messages_super
messages.html#messages_events
messages.html#messages_performance
objects.html#objects_kind
objects.html#objects_prototypes
objects.html#objects_classes
objects.html#objects_defining
objects.html#objects_parametric
objects.html#objects_finding
objects.html#objects_creating
objects.html#objects_abolishing
objects.html#objects_directives
objects.html#objects_initialization
objects.html#objects_dynamic
objects.html#objects_documentation
objects.html#objects_include
objects.html#objects_relationships
objects.html#objects_properties
objects.html#objects_built_in
objects.html#objects_user
objects.html#objects_logtalk
protocols.html#protocols_defining
protocols.html#protocols_finding
protocols.html#protocols_creating
protocols.html#protocols_abolishing
protocols.html#protocols_directives
protocols.html#protocols_dynamic
protocols.html#protocols_documentation
protocols.html#protocols_include
protocols.html#protocols_relationships
protocols.html#protocols_properties
protocols.html#protocols_implementing
protocols.html#protocols_built_in
protocols.html#protocols_expanding
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The built-in protocol monitoring. 34
The built-in protocol forwarding. 34

Categories

Defining a new category. 35
Hot patching. 37

Finding defined categories. 38
Creating a new category in runtime. 38
Abolishing an existing category. 39
Category directives. 39

Dynamic categories. 39
Category documentation. 40
Loading files into a category. 40

Category relationships. 40
Category properties. 41
Importing categories. 43
Calling category predicates. 43
Parametric categories. 44

Predicates

Reserved predicate names. 47
Declaring predicates. 47

Scope directives. 47
Mode directive. 48
Meta-predicate directive. 49
Discontiguous directive. 50
Dynamic directive. 50
Operator directive. 51
Uses directive. 51
Alias directive. 52
Documenting directive. 54
Multifile directive. 54
Coinductive directive. 56

Defining predicates. 56
Object predicates. 56
Category predicates. 56
Meta-predicates. 57
Lambda expressions. 58
Definite clause grammar rules. 59

Built-in object predicates (methods). 62
Execution context methods. 62
Database methods. 64
Meta-call methods. 64
All solutions methods. 64
Reflection methods. 64
Definite clause grammar parsing methods and non-terminals. 65
Term and goal expansion methods. 65

iii

Contents

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

protocols.html#protocols_monitoring
protocols.html#protocols_forwarding
categories.html#categories_defining
categories.html#categories_patching
categories.html#categories_finding
categories.html#categories_creating
categories.html#categories_abolishing
categories.html#categories_directives
categories.html#categories_dynamic
categories.html#categories_documentation
categories.html#categories_include
categories.html#categories_relationships
categories.html#categories_properties
categories.html#categories_importing
categories.html#categories_predicates
categories.html#categories_parametric
predicates.html#predicates_reserved
predicates.html#predicates_declaring
predicates.html#predicates_scope
predicates.html#predicates_mode
predicates.html#predicates_meta
predicates.html#predicates_discontiguous
predicates.html#predicates_dynamic
predicates.html#predicates_op
predicates.html#predicates_uses
predicates.html#predicates_alias
predicates.html#predicates_info
predicates.html#predicates_multifile
predicates.html#predicates_coinductive
predicates.html#predicates_defining
predicates.html#predicates_objects
predicates.html#predicates_categories
predicates.html#predicates_metadef
predicates.html#predicates_lambdas
predicates.html#predicates_dcgs
predicates.html#predicates_methods
predicates.html#predicates_context
predicates.html#predicates_database
predicates.html#predicates_metacalls
predicates.html#predicates_solutions
predicates.html#predicates_reflection
predicates.html#predicates_parsing
predicates.html#predicates_expanding
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Printing messages. 65
Asking questions. 67

Predicate properties. 68
Finding declared predicates. 69
Calling Prolog built-in predicates. 70

Calling Prolog non-standard meta-predicates. 70
Calling Prolog user-defined predicates. 71

Calling Prolog module predicates. 71

Inheritance

Protocol inheritance. 73
Search order for prototype hierarchies. 73
Search order for class hierarchies. 73

Implementation inheritance. 73
Search order for prototype hierarchies. 74
Search order for class hierarchies. 74
Inheritance versus predicate redefinition. 74

Public, protected, and private inheritance. 77
Composition versus multiple inheritance. 78

Event-driven Programming

Definitions. 79
Event. 79
Monitor. 80

Event generation. 80
Communicating events to monitors. 80
Performance concerns. 81
Monitor semantics. 81
Activation order of monitors. 81
Event handling. 81

Defining new events. 82
Abolishing defined events. 82
Finding defined events. 82
Defining event handlers. 82

Multi-threading Programming

Enabling multi-threading support. 85
Enabling objects to make multi-threading calls. 85
Multi-threading built-in predicates. 85

Proving goals concurrently using threads. 85
Proving goals asynchronously using threads. 86
One-way asynchronous calls. 88

iv

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

predicates.html#predicates_messages
predicates.html#predicates_questions
predicates.html#predicates_properties
predicates.html#predicates_finding
predicates.html#predicates_prolog
predicates.html#predicates_prolog_meta
predicates.html#predicates_prolog_user
predicates.html#predicates_prolog_module
inheritance.html#inheritance_protocol
inheritance.html#inheritance_protocol_prototype
inheritance.html#inheritance_protocol_class
inheritance.html#inheritance_implementation
inheritance.html#inheritance_implementation_prototype
inheritance.html#inheritance_implementation_class
inheritance.html#inheritance_implementation_redefinition
inheritance.html#inheritance_types
inheritance.html#inheritance_composition
events.html#events_definitions
events.html#events_event
events.html#events_monitor
events.html#events_generation
events.html#events_communicating
events.html#events_performance
events.html#events_semantics
events.html#events_order
events.html#events_handling
events.html#events_defining
events.html#events_abolishing
events.html#events_finding
events.html#events_handlers
threads.html#threads_enabling
threads.html#threads_directive
threads.html#threads_predicates
threads.html#threads_threaded
threads.html#threads_call
threads.html#threads_ignore
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Asynchronous calls and synchronized predicates. 88
Synchronizing threads through notifications. 90
Engines. 90
Multi-threading performance. 91

Error Handling

Compiler warnings and errors. 93
Unknown entities. 93
Singleton variables. 93
Redefinition of Prolog built-in predicates. 93
Redefinition of Logtalk built-in predicates. 94
Redefinition of Logtalk built-in methods. 94
Misspell calls of local predicates. 94
Portability warnings. 94
Missing directives. 94
Redefinition of predicates declared in uses/2 and use_module/2 directives. 94
Other warnings and errors. 94

Runtime errors. 94
Logtalk built-in predicates. 94
Logtalk built-in methods. 94
Message sending. 95

Documenting Logtalk Programs

Documenting directives. 97
Entity directives. 97
Predicate directives. 98

Processing and viewing documenting files. 99

Installing Logtalk

Installing Logtalk. 101
Hardware and software requirements. 101

Computer and operating system. 101
Prolog compiler. 101

Logtalk installers. 102
Source distribution. 102
Directories and files organization. 102

Adapter files. 104
Settings files. 105
Logtalk compiler and runtime. 106
Library. 106
Examples. 107
Logtalk source files. 107

v

Contents

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

threads.html#threads_synchronized_predicates
threads.html#threads_notifications
threads.html#threads_engines
threads.html#threads_performance
errors.html#errors_compiler
errors.html#errors_unknown
errors.html#errors_singletons
errors.html#errors_prolog
errors.html#errors_redefinion_predicates
errors.html#errors_redefinion_methods
errors.html#errors_misspell
errors.html#errors_portability
errors.html#errors_missing_directives
errors.html#errors_predicate_redefinition
errors.html#errors_others
errors.html#errors_runtime
errors.html#errors_predicates
errors.html#errors_methods
errors.html#errors_sending
documenting.html#documenting_directives
documenting.html#documenting_entity
documenting.html#documenting_predicate
documenting.html#documenting_processing
installing.html#installing_installing
installing.html#installing_requirements
installing.html#installing_computer
installing.html#installing_compiler
installing.html#installing_installers
installing.html#installing_sources
installing.html#installing_organization
installing.html#installing_adapters
installing.html#installing_settings
installing.html#installing_runtime
installing.html#installing_library
installing.html#installing_examples
installing.html#installing_entities
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Writing, Running, and Debugging Logtalk Applications

Writing applications. 109
Source files. 109
Loader utility files. 112
Libraries of source files. 113
Portable applications. 110
Conditional compilation. 110
Avoiding common errors. 110
Coding style guidelines. 110

Running a Logtalk session. 111
Starting Logtalk. 111
Compiling and loading your applications. 111
Compiler flags. 114
Reloading and smart compilation of source files. 119
Using Logtalk for batch processing. 119

Optimizing performance. 123
Debugging Logtalk applications. 120

Compiling source files and entities in debug mode. 120
Logtalk Procedure Box model. 121
Defining spy points. 122
Tracing program execution. 123
Debugging using spy points. 124
Debugging commands. 124
Context-switching calls. 126
Using compilation hooks and term expansion for debugging. 127

Prolog Integration and Migration Guide

Source files with both Prolog code and Logtalk code. 129
Encapsulating plain Prolog code in objects. 129

Prolog multifile predicates. 130
Converting Prolog modules into objects. 130
Compiling Prolog modules as objects. 131

Supported module directives. 131
Current limitations and workarounds. 132

Dealing with proprietary Prolog directives. 133
Calling Prolog module predicates. 133
Compiling Prolog module multifile predicates. 133

vi

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

programming.html#programming_writing
programming.html#programming_source_files
programming.html#programming_loaders
programming.html#programming_libraries
programming.html#programming_portability
programming.html#programming_cc
programming.html#programming_errors
programming.html#programming_style
programming.html#programming_session
programming.html#programming_starting
programming.html#programming_compiling
programming.html#programming_flags
programming.html#programming_smart
programming.html#programming_batch
programming.html#programming_performance
programming.html#programming_debugging
programming.html#programming_debugmode
programming.html#programming_boxmodel
programming.html#programming_spypoints
programming.html#programming_trace
programming.html#programming_debug
programming.html#programming_commands
programming.html#programming_context
programming.html#programming_hooks
migration.html#migration_hybrid
migration.html#migration_encapsulating
migration.html#migration_multifile
migration.html#migration_converting
migration.html#migration_compiling
migration.html#migration_compatibility
migration.html#migration_limitations
migration.html#migration_proprietary
migration.html#migration_calling
migration.html#migration_module
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk main features

Some years ago, I decided that the best way to learn object-oriented programming was to build my own object-oriented
language. Prolog always being my favorite language, I chose to extend it with object-oriented capabilities. Eventually this
work has lead to the Logtalk system. The first public release of Logtalk 1.x occurred in February of 1995. Based on
feedback by users and on the author subsequent work, the second major version went public in July of 1998.

Although this version of Logtalk shares many ideas and goals with previous 1.x versions, programs written for one version
are not compatible with the other (however, conversion from previous versions can easily be accomplished in most cases).
This is a consequence of the desire to have a more friendly system, with a very smooth learning curve, bringing Logtalk
programming closer to traditional Prolog programming. There are, of course, also other important changes, that result in
a more powerful and funnier system. Logtalk 2.x development provides the following features:

Integration of logic and object-oriented programming

Logtalk tries to bring together the main advantages of these two programming paradigms. On one hand,
the object orientation allows us to work with the same set of entities in the successive phases of application
development, giving us a way of organizing and encapsulating the knowledge of each entity within a given
domain. On the other hand, logic programming allows us to represent, in a declarative way, the knowledge
we have of each entity. Together, these two advantages allow us to minimize the distance between an ap-
plication and its problem domain, turning the writing and maintenance of programming easier and more
productive.

In a more pragmatically view, Logtalk objects provide Prolog with the possibility of defining several
namespaces, instead of the traditional Prolog single database, addressing some of the needs of large software
projects.

Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computing which takes place
at each moment is a result of the observation of occurring events. This integration complements object-
oriented programming, in which each computing is initiated by the explicit sending of a message to an
object. The user dynamically defines what events are to be observed and establishes monitors for these
events. This is specially useful when representing relationships between objects that imply constraints in
the state of participating objects [Rumbaugh 87, Rumbaugh 88, Fornarino 89, Razek 92]. Other common
uses are reflective applications like code debugging or profiling [Maes 87]. Predicates can be implicitly
called when a spied event occurs, allowing programming solutions which minimize object coupling. In
addition, events provide support for behavioral reflection and can be used to implement the concepts of
pointcut and advice found on Aspect-Oriented Programming.

1

Logtalk main features

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#Rumbaugh87
../bibliography.html#Rumbaugh88
../bibliography.html#Fornarino89
../bibliography.html#Razek92
../bibliography.html#Maes87
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Support for component-based programming

Predicates can be encapsulated inside categories which can be imported by any object, without any code
duplication and irrespective of object hierarchies. A category is a first-class encapsulation entity, at the
same level as objects and protocols, which can be used as a component when building new objects. Thus,
objects may be defined through composition of categories, which act as fine-grained units of code reuse.
Categories may also extend existing objects. Categories can be used to implement mixins and aspects.
Categories allows for code reuse between non-related objects, independent of hierarchy relations, in the
same vein as protocols allow for interface reuse.

Support for both prototype and class-based systems

Almost any (if not all) object-oriented languages available today are either class-based or prototype-based
[Lieberman 86], with a strong predominance of class-based languages. Logtalk provides support for both
hierarchy types. That is, we can have both prototype and class hierarchies in the same application. Prototypes
solve a problem of class-based systems where we sometimes have to define a class that will have only one
instance in order to reuse a piece of code. Classes solves a dual problem in prototype based systems where
it is not possible to encapsulate some code to be reused by other objects but not by the encapsulating object.
Stand-alone objects, that is, objects that do not belong to any hierarchy, are a convenient solution to encap-
sulate code that will be reused by several unrelated objects.

Support for multiple object hierarchies

Languages like Smalltalk-80 [Goldberg 83], Objective-C [Cox 86] and Java [Joy et al. 00] define a single
hierarchy rooted in a class usually named Object. This makes it easy to ensure that all objects share a
common behavior but also tends to result in lengthy hierarchies where it is difficult to express objects which
represent exceptions to default behavior. In Logtalk we can have multiple, independent, object hierarchies.
Some of them can be prototype-based while others can be class-based. Furthermore, stand-alone objects
provide a simple way to encapsulate utility predicates that do not need or fit in an object hierarchy.

Separation between interface and implementation

This is an expected (should we say standard ?) feature of almost any modern programming language. Logtalk
provides support for separating interface from implementation in a flexible way: protocol directives can
be contained in an object, a category or a protocol (first-order entities in Logtalk) or can be spread in both
objects, categories and protocols.

Private, protected and public inheritance

Logtalk supports private, protected and public inheritance in a similar way to C++ [Stroustrup 86], enabling
us to restrict the scope of inherited, imported or implemented predicates (by default inheritance is public).

Private, protected and public object predicates

Logtalk supports data hiding by implementing private, protected and public object predicates in a way
similar to C++ [Stroustrup 86]. Private predicates can only be called from the container object. Protected
predicates can be called by the container object or by the container descendants. Public predicates can be
called from any object.

2

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#Lieberman86
../bibliography.html#Goldberg83
../bibliography.html#Cox86
../bibliography.html#Joy00
../bibliography.html#Stroustrup86
../bibliography.html#Stroustrup86
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parametric objects

Object names can be compound terms (instead of atoms), providing a way to parameterize object predicates.
Parametric objects are implemented in a similar way to L&O [McCabe 92], OL(P) [Fromherz 93] or SICStus
Objects [SICStus 95] (however, access to parameter values is done via a built-in method instead of
making the parameters scope global over the whole object). Parametric objects allows us to treat any pre-
dicate clause as defining an instantiation of a parametric object. Thus, a parametric object allows us to en-
capsulate and associate any number of predicates with a compound term.

High level multi-threading programming support

High level multi-threading programming is available when running Logtalk with selected back-end Prolog
compilers, allowing objects to support both synchronous and asynchronous messages. Logtalk allows pro-
grammers to take advantage of modern multi-processor and multi-core computers without bothering with
the details of creating and destroying threads, implement thread communication, or synchronizing threads.

Smooth learning curve

Logtalk has a smooth learning curve, by adopting standard Prolog syntax and by enabling an incremental
learning and use of most of its features.

Compatibility with most Prologs and the ISO standard

The Logtalk system has been designed to be compatible with most Prolog compilers and, in particular, with
the ISO Prolog standard [ISO 95]. It runs in almost any computer system with a modern Prolog compiler.

Performance

The current Logtalk implementation works as a pre-processor: Logtalk source files are first compiled to
Prolog source files, which are then compiled by the chosen Prolog compiler. Therefore, Logtalk performance
necessarily depends on the back-end Prolog compiler. The Logtalk compiler respects the programmers
choices when writing efficient code that takes advantage of tail recursion and first-argument indexing.

As an object-oriented language, Logtalk uses both static binding and dynamic binding for matching messages
and methods. Furthermore, Logtalk entities (objects, protocols, and categories) are independently compiled,
allowing for a very flexible programming development. Entities can be edited, compiled, and loaded at
runtime, without necessarily implying recompilation of all related entities.

When dynamic binding is used, the Logtalk runtime engine implements caching of method lookups (including
messages to self and super calls), ensuring a performance level close to what could be achieved when using
static binding.

Logtalk scope

Logtalk, being a superset of Prolog, shares with it the same preferred areas of application but also extends them with those
areas where object-oriented features provide an advantage compared to plain Prolog. Among these areas we have:

Logic and object-oriented programming teaching and researching
Logtalk smooth learning curve, combined with support for both prototype and class-based programming, pro-
tocols, components or aspects via category-based composition, and other advanced object-oriented features

3

Logtalk main features

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#McCabe92
../bibliography.html#Fromherz93
../bibliography.html#SICStus95
../bibliography.html#ISO95
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

allow a smooth introduction to object-oriented programming to people with a background in Prolog programming.
The distribution of Logtalk source code using an open-source license provides a framework for people to learn
and then modify to try out new ideas on object-oriented programming research. In addition, the Logtalk distri-
bution includes plenty of programming examples that can be used in the classroom for teaching logic and object-
oriented programming concepts.

Structured knowledge representations and knowledge-based systems
Logtalk objects, coupled with event-driven programming features, enable easy implementation of frame-like
systems and similar structured knowledge representations.

Blackboard systems, agent-based systems and systems with complex object relationships
Logtalk support for event-driven programming can provide a basis for the dynamic and reactive nature of
blackboard type applications.

Highly portable applications
Logtalk is compatible with almost any modern Prolog compiler. Used as a way to provide Prolog with
namespaces, it avoids the porting problems of most Prolog module systems. Platform, operating system, or
compiler specific code can be isolated from the rest of the code by encapsulating it in objects with well defined
interfaces.

Alternative to a Prolog module system
Logtalk can be used as an alternative to a Prolog compiler module system. Any Prolog application that use
modules can be converted to a Logtalk application, improving portability across Prolog compilers and taking
advantage of the stronger encapsulation and reuse framework provided by Logtalk object-oriented features.

Integration with other programming languages
Logtalk support for most key object-oriented features helps users integrating Prolog with object-oriented lan-
guages like C++, Java, or Smalltalk by providing an high-level mapping between the two languages.

4

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Nomenclature

Depending on your Object-oriented Programming background (or lack of it), you may find Logtalk nomenclature either
familiar or at odds with the terms used in other languages. In addition, being a superset of Prolog, terms such as predicate
and method are often used interchangeably. Logtalk inherits most of its nomenclature from Smalltalk, arguably (and
somehow sadly) not the most popular OOP language nowadays. In this section, we map nomenclatures from popular OOP
languages such as C++ and Java to the Logtalk nomenclature.

5

Nomenclature

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

C++ nomenclature

There are several C++ glossaries available on the Internet. The list that follows relates the most commonly used C++ terms
with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for creating
new instances is an abstract class. Moreover, Logtalk supports interfaces/protocols, which are often a better
way to provide the functionality of C++ abstract classes.

base class
Logtalk uses the term superclass with the same meaning.

data member
Logtalk uses predicates for representing both behavior and data.

constructor function
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in predicate,
create_object/4, which is often used to define more sophisticated object creation predicates.

derived class
Logtalk uses the term subclass with the same meaning.

destructor function
There are no special methods for deleting new objects in Logtalk. Instead, Logtalk provides a built-in predicate,
abolish_object/1, which is often used to define more sophisticated object deletion predicates.

friend function
Not supported in Logtalk. Nevertheless, see the manual section on meta-predicates.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source file in the
same way as classes.

member
Logtalk uses the term predicate.

member function
Logtalk uses predicates for representing both behavior and data.

namespace
Logtalk does not support multiple identifier namespaces. All Logtalk entity identifiers share the same namespace
(Logtalk entities are objects, categories, and protocols).

nested class
Logtalk does not support nested classes.

template
Logtalk supports parametric objects, which allows you to get the similar functionality of templates at runtime.

this
Logtalk uses the built-in context method self/1 for retrieving the current instance. Logtalk also provides a
this/1 method but for returning the class containing the method being executed. Why the name clashes? Well,
the notion of self was inherited from Smalltalk, which predates C++.

6

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

virtual member function
There is no virtual keyword in Logtalk. By default, Logtalk uses dynamic binding for locating both method
declarations and method definitions. Moreover, methods that are declared but not defined simply fail when
called.

Java nomenclature

There are several Java glossaries available on the Internet. The list that follows relates the most commonly used Java terms
with their Logtalk equivalents.

abstract class
Logtalk uses an operational definition of abstract class: any class that does not inherit a method for creating
new instances is an abstract class. I.e. there is no abstract keyword in Logtalk.

abstract method
In Logtalk, you may simply declare a method (predicate) in a class without defining it, leaving its definition
to some descendant sub-class.

assertion
There is no assertion keyword in Logtalk. Assertions are supported using Logtalk compilation hooks and
developer tools.

extends
There is no extends keyword in Logtalk. Class inheritance is indicated using specialization relations. Moreover,
the extends relation is used in Logtalk to indicate protocol, category, or prototype extension.

interface
Logtalk uses the term protocol with the same meaning.

callback method
Logtalk supports event-driven programming, the most common use context of callback methods.

class method
Class methods may be implemented in Logtalk by using a metaclass for the class and defining the class methods
in the metaclass. I.e. class methods are simply instance methods of the class metaclass.

class variable
True class variables may be implemented in Logtalk by using a metaclass for the class and defining the class
variables in the class. I.e. class variables are simply instance variables of the class metaclass. Shared instance
variables may be implemented by using the built-in database methods (which can be used to implement variable

7

Nomenclature

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assignment) to access and updated a single occurrence of the variable stored in the class (there is no static
keyword in Logtalk).

constructor
There are no special methods for creating new objects in Logtalk. Instead, Logtalk provides a built-in predicate,
create_object/4, which is often used to define more sophisticated object creation predicates.

final
There is no final keyword in Logtalk; methods may always be redefined in subclasses (and instances!).

inner class
Inner classes are not supported in Logtalk.

instance
In Logtalk, an instance can be either created dynamically at runtime or defined statically in a source file in the
same way as classes.

method
Logtalk uses the term predicate interchangeably with the term method.

method call
Logtalk usually uses the expression message sending for method calls, true to its Smalltalk heritage.

method signature
Logtalk selects the method/predicate to execute in order to answer a method call based only on the method
name (functor) and number of arguments (arity). Logtalk (and Prolog) are not typed languages in the same
sense as Java.

reflection
Logtalk supports both structural reflection (using a set of built-in predicates and built-in methods) and behavi-
oral reflection (using event-driven programming).

static
There is no static keyword in Logtalk. See the entries on class methods and class variables.

super
Instead of a super keyword, Logtalk provides a super operator, ^^/1, for calling overridden methods.

synchronized
Logtalk supports multi-threading programming in selected Prolog compilers, including a synchronized/1
predicate directive. Logtalk allows you to synchronize a predicate or a set of predicates using per-predicate or
per-predicate-set mutexes.

this
Logtalk uses the built-in context method self/1 for retrieving the current instance. Logtalk also provides a
this/1 method but for returning the class containing the method being executed. Why the name clashes? Well,
the notion of self was inherited from Smalltalk, which predates Java.

8

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Message sending

Messages allows us to call object predicates. Logtalk uses the same nomenclature found in other object-oriented programming
languages such as Smalltalk. Therefore, the terms predicate and method are often used interchangeably when referring to
predicates defined inside objects and categories. A message must always match a predicate within the scope of the sender
object.

Note that message sending is only the same as calling an object's predicate if the object does not inherit (or import) predicate
definitions from other objects (or categories). Otherwise, the predicate definition that will be executed may depend on the
relationships of the object with other Logtalk entities.

Operators used in message sending

Logtalk declares the following operators for the message sending control constructs:

:- op(600, xfy, ::).

:- op(600, fy, ::).

:- op(600, fy, ^^).

It is assumed that these operators remain active (once the Logtalk compiler and runtime files are loaded) until the end of
the Prolog session (this is the usual behavior of most Prolog compilers). Note that these operator definitions are compatible
with the pre-defined operators in the Prolog ISO standard.

Sending a message to an object

Sending a message to an object is accomplished by using the ::/2 control construct:

| ?- Object::Message.

The message must match a public predicate declared for the receiving object. The message may also correspond to a pro-
tected or private predicate if the sender matches the predicate scope container. If the predicate is declared but not defined,
the message simply fails (as per the closed-world assumption).

Delegating a message to an object

It is also possible to send a message to an object while preserving the original sender by using the []/1 delegation control
construct:

..., [Object::Message],

9

Message sending

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/send_to_object_2.html
../refman/control/delegate_message_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This control construct can only be used within objects and categories (at the interpreter top-level, the sender is always the
pseudo-object user so using this control construct would be equivalent to use the ::/2 message sending control construct).

Sending a message to self

While defining a predicate, we sometimes need to send a message to self, i.e., to the same object that has received the
original message. This is done in Logtalk through the ::/1 control construct:

::Message

The message must match either a public or protected predicate declared for the receiving object or a private predicate
within the scope of the sender otherwise an error will be thrown (see the Reference Manual for details). If the message is
sent from inside a category or if we are using private inheritance, then the message may also match a private predicate.
Again, if the predicate is declared but not defined, the message simply fails (as per the closed-world assumption).

Broadcasting

In the Logtalk context, broadcasting is interpreted as the sending of several messages to the same object. This can be
achieved by using the message sending method described above. However, for convenience, Logtalk implements an ex-
tended syntax for message sending that may improve program readability in some cases. This extended syntax uses the
(,)/2, (;)/2, and (->)/2 control constructs. For example, if we wish to send several messages to the same object, we
can write:

| ?- Object::(Message1, Message2, ...).

This is semantically equivalent to:

| ?- Object::Message1, Object::Message2,

This extended syntax may also be used with the ::/1 message sending control construct.

Calling imported and inherited predicate definitions

When redefining a predicate, sometimes we need to call the inherited definition in the new code. This functionality, intro-
duced by the Smalltalk language through the super primitive, is available in Logtalk using the ^^/1 control construct:

^^Predicate

Most of the time we will use this control construct by instantiating the pattern:

Predicate :-

 ..., % do something

 ^^Predicate, % call inherited definition

 % do something more

This control construct is generalized in Logtalk where it may be used to call any imported or inherited predicate definition.
This control construct may be used within objects and categories. When combined with static binding, this control construct

10

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/send_to_self_1.html
../refman/control/call_super_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

allows imported and inherited predicates to be called with the same performance of local predicates. As with the message
sending control constructs, the ^^/1 call simply fails when the predicate is declared but not defined (as per the closed-
world assumption).

Message sending and event generation

Every message sent using the ::/2 control construct generates two events, one before and one after the message execution.
Messages that are sent using the ::/1 (message to self) control construct or the ^^/1 super mechanism described above
do not generate any events. The rational behind this distinction is that messages to self and super calls are only used internally
in the definition of methods or to execute additional messages with the same target object (represented by self). In other
words, events are only generated when using an object's public interface; they cannot be used to break object encapsulation.

If we need to generate events for a public message sent to self, then we just need to write something like:

Predicate :-

 ...,

 self(Self), % get self reference

 Self::Message, % send a message to self using ::/2

If we also need the sender of the message to be other than the object containing the predicate definition, we can write:

Predicate :-

 ...,

 self(Self), % send a message to self using ::/2

 {Self::Message}, % sender will be the pseudo-object user

When events are not used, is possible to turn off event generation on a per object basis by using the events/1 compiler
flag. See the section on event-driven programming for more details.

Message sending performance

Logtalk supports both static binding and dynamic binding. Static binding is used whenever messages are sent (using ::/2)
to static objects already loaded and with the optimize compiler flag turned on. When that is not the case (or when using
::/1), Logtalk uses dynamic binding coupled with a caching mechanism that avoids repeated lookups of predicate declar-
ations and predicate definitions. This is a solution common to other programming languages supporting dynamic binding.
Message lookups are automatically cached the first time a message is sent. Cache entries are automatically removed when
loading entities or using Logtalk dynamic features that invalidate the cached lookups.

Whenever static binding is used, message sending performance is roughly the same as a predicate call in plain Prolog.
When discussing Logtalk dynamic binding performance, two distinct cases should be considered: messages sent by the
user from the top-level interpreter and messages sent from compiled objects. In addition, the message declaration and
definition lookups may, or may not be already cached by the runtime engine. In what follows, we will assume that the
message lookups are already cached.

11

Message sending

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/send_to_object_2.html
../refman/control/send_to_self_1.html
../refman/control/call_super_1.html
programming.html#programming_flags
events.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Translating message processing to predicate calls

In order to better understand the performance tradeoffs of using Logtalk dynamic binding when compared to plain Prolog
or to Prolog module systems, is useful to translate message processing in terms of predicate calls. However, in doing this,
we should keep in mind that the number of predicate calls is not necessarily proportional to the time taken to execute them.

With event-support turned on, a message sent from a compiled object to another object translates to three predicate calls:

checking for before events
one call to the built-in predicate \+/1, assuming that no events are defined

method call using the cached lookup
one call to a dynamic predicate (the cache entry)

checking for after events
one call to the built-in predicate \+/1, assuming that no events are defined

Given that events can be dynamically defined at runtime, there is no room for reducing the number of predicate calls
without turning off support for event-driven programming. When events are defined, the number of predicate calls grows
proportional to the number of events and event handlers (monitors). Event-driven programming support can be switched
off for specific object using the compiler flag events/1. Doing so, reduces the number of predicate calls from three to
just one.

Messages to self and super calls are transparent regarding events and, as such, imply only one predicate call (to the cache
entry, a dynamic predicate).

When a message is sent by the user from the top-level interpreter, Logtalk needs to perform a runtime translation of the
message term in order to prove the corresponding goal. Thus, while sending a message from a compiled object corresponds
to either three predicate calls (event-support on) or one predicate call (event-support off), the same message sent by the
user from the top-level interpreter necessarily implies an overhead. Considering the time taken for the user to type the
goal and read the reply, this overhead is of no practical consequence.

When a message is not cached, the number of predicate calls depends on the number of steps needed for the Logtalk
runtime engine to lookup the corresponding predicate scope declaration (to check if the message is valid) and then to
lookup a predicate definition for answering the message.

Processing time

Not all predicate calls take the same time. Moreover, the time taken to process a specific predicate call depends on the
Prolog compiler implementation details. As such, the only valid performance measure is the time taken for processing a
message.

The usual way of measuring the time taken by a predicate call is to repeat the call a number of times and than to calculate
the average time. A sufficient large number of repetitions would hopefully lead to an accurate measure. Care should be
taken to subtract the time taken by the repetition code itself. In addition, we should be aware of any limitations of the
predicates used to measure execution times. One way to make sense of numbers we get is to repeat the test with the same
predicate using plain Prolog and with the predicate encapsulated in a module.

12

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A simple predicate for helping benchmarking predicate calls could be:

benchmark(N, Goal) :-

 repeat(N),

 call(Goal),

 fail.

benchmark(_, _).

The rational of using a failure-driven loop is to try to avoid any interference on our timing measurements from garbage-
collection or memory expansion mechanisms. Based on the predicate benchmark/2, we may define a more convenient
predicate for performing our benchmarks. For example:

benchmark(Goal) :-

 N = 10000000, % some sufficiently large number of repetitions

 write('Number of repetitions: '), write(N), nl,

 get_cpu_time(Seconds1), % replace by your Prolog-specific predicate

 benchmark(N, Goal),

 get_cpu_time(Seconds2),

 Average is (Seconds2 - Seconds1)/N,

 write('Average time per call: '), write(Average), write(' seconds'), nl,

 Speed is 1.0/Average,

 write('Number of calls per second: '), write(Speed), nl.

We can get a baseline for our timings by doing:

| ?- benchmark(true).

For comparing message sending performance across several Prolog compilers, we would call the benchmark/1 predicate
with a suitable argument. For example:

| ?- benchmark(list::length([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], _)).

For comparing message sending performance with predicate calls in plain Prolog and with calls to predicates encapsulated
in modules, we should use exactly the same predicate definition in the three cases.

It should be stressed that message sending is only one of the factors affecting the performance of a Logtalk application
(and often not the most important one). The strengths and limitations of the chosen Prolog compiler play a crucial role on
all aspects of the development, reliability, usability, and performance of a Logtalk application. It is advisable to take ad-
vantage of the Logtalk wide compatibility with most Prolog compilers to test for the best match for developing your Logtalk
applications.

13

Message sending

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

14

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Objects

The main goal of Logtalk objects is the encapsulation and reuse of predicates. Instead of a single database containing all
your code, Logtalk objects provide separated namespaces or databases allowing the partitioning of code in more manageable
parts. Logtalk does not aim to bring some sort of new dynamic state change concept to Logic Programming or Prolog.

In Logtalk, the only pre-defined objects are the built-in objects user and logtalk, which are described at the end of this
section.

Objects, prototypes, classes, and instances

There are only three kinds of encapsulation entities in Logtalk: objects, protocols, and categories. Logtalk uses the term
object in a broad sense. The terms prototype, parent, class, subclass, superclass, metaclass, and instance always designate
an object. Different names are used to emphasize the role played by an object in a particular context. I.e. we use a term
other than object when we want to make the relationship with other objects explicit. For example, an object with an instan-
tiation relation with other object plays the role of an instance, while the instantiated object plays the role of a class; an
object with a specialization relation with other object plays the role of a subclass, while the specialized object plays the
role of a superclass; an object with an extension relation with other object plays the role of a prototype, the same for the
extended object. A stand-alone object, i.e. an object with no relations with other objects, is always interpreted as a prototype.
In Logtalk, entity relations essentially define patterns of code reuse. An entity is compiled accordingly to the roles it plays.

Logtalk allows you to work from standalone objects to any kind of hierarchy, either class-based or prototype-based. You
may use single or multiple inheritance, use or forgo metaclasses, implement reflective designs, use parametric objects,
and take advantage of protocols and categories (think components).

Prototypes

Prototypes are either self-defined objects or objects defined as extensions to other prototypes with whom they share
common properties. Prototypes are ideal for representing one-of-a-kind objects. Prototypes usually represent concrete
objects in the application domain. When linking prototypes using extension relations, Logtalk uses the term prototype
hierarchies although most authors prefer to use the term hierarchy only with class generalization/specialization relations.
In the context of logic programming, prototypes are often the ideal replacement for modules.

Classes

Classes are used to represent abstractions of common properties of sets of objects. Classes provide an ideal structuring
solution when you want to express hierarchies of abstractions or work with many similar objects. Classes are used indirectly
through instantiation. Contrary to most object-oriented programming languages, instances can be created both dynamically
at runtime or defined in a source file like other objects.

15

Objects

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor. Logtalk source files may contain
one or more objects, categories, or protocols. If you prefer to define each entity in its own source file, it is recommended
that the file be named after the object. By default, all Logtalk source files use the extension .lgt but this is optional and
can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler) have, by default, a
_lgt suffix and a .pl extension. Again, this can be set to match the needs of a particular Prolog compiler in the corres-
ponding adapter file. For instance, we may define an object named vehicle and save it in a vehicle.lgt source file
which will be compiled to a vehicle_lgt.pl Prolog file (depending on the backend compiler, the names of the interme-
diate Prolog files may include a directory hash).

Object names can be atoms or compound terms (when defining parametric objects, see below). Objects, categories, and
protocols share the same name space: we cannot have an object with the same name as a protocol or a category.

Object code (directives and predicates) is textually encapsulated by using two Logtalk directives: object/1-5 and
end_object/0. The most simple object will be one that is self-contained, not depending on any other Logtalk entity:

:- object(Object).

 ...

:- end_object.

If an object implements one or more protocols then the opening directive will be:

:- object(Object,

 implements([Protocol1, Protocol2, ...])).

 ...

:- end_object.

An object can import one or more categories:

:- object(Object,

 imports([Category1, Category2, ...])).

 ...

:- end_object.

If an object both implements protocols and imports categories then we will write:

:- object(Object,

 implements([Protocol1, Protocol2, ...]),

 imports([Category1, Category2, ...])).

 ...

:- end_object.

16

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/object_1_5.html
../refman/directives/end_object_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

In object-oriented programming objects are usually organized in hierarchies that enable interface and code sharing by in-
heritance. In Logtalk, we can construct prototype-based hierarchies by writing:

:- object(Prototype,

 extends(Parent)).

 ...

:- end_object.

We can also have class-based hierarchies by defining instantiation and specialization relations between objects. To define
an object as a class instance we will write:

:- object(Object,

 instantiates(Class)).

 ...

:- end_object.

A class may specialize another class, its superclass:

:- object(Class,

 specializes(Superclass)).

 ...

:- end_object.

If we are defining a reflexive system where every class is also an instance, we will probably be using the following pattern:

:- object(Class,

 instantiates(Metaclass),

 specializes(Superclass)).

 ...

:- end_object.

In short, an object can be a stand-alone object or be part of an object hierarchy. The hierarchy can be prototype-based
(defined by extending other objects) or class-based (with instantiation and specialization relations). An object may also
implement one or more protocols or import one or more categories.

A stand-alone object (i.e. an object with no extension, instantiation, or specialization relations with other objects) is always
compiled as a prototype, that is, a self-describing object. If we want to use classes and instances, then we will need to

17

Objects

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

specify at least one instantiation or specialization relation. The best way to do this is to define a set of objects that provide
the basis of a reflective system [Cointe 87, Moura 94]. For example:

:- object(object, % default root of the inheritance graph

 instantiates(class)). % predicates common to all objects

 ...

:- end_object.

:- object(class, % default metaclass for all classes

 instantiates(class), % predicates common to all instantiable classes

 specializes(abstract_class)).

 ...

:- end_object.

:- object(abstract_class, % default metaclass for all abstract classes

 instantiates(class), % predicates common to all classes

 specializes(object)).

 ...

:- end_object.

Note that with these instantiation and specialization relations, object, class, and abstract_class are, at the same
time, classes and instances of some class. In addition, each object inherits its own predicates and the predicates of the
other two objects without any inheritance loop problems.

When a full-blown reflective system solution is not needed, the above scheme can be simplified by making an object an
instance of itself, i.e. by making a class its own metaclass. For example:

:- object(class,

 instantiates(class)).

 ...

:- end_object.

We can use, in the same application, both prototype and class-based hierarchies (and freely exchange messages between
all objects). We cannot however mix the two types of hierarchies by, e.g., specializing an object that extends another object
in this current Logtalk version.

Parametric objects

Parametric objects have a compound term for name instead of an atom. This compound term usually contains free variables
that can be instantiated when sending or as a consequence of sending a message to the object, thus acting as object para-
meters. The object predicates can then be coded to depend on those parameters, which are logical variables shared by all
object predicates. When an object state is set at object creation and never changed, parameters provide a better solution
than using the object's database via asserts. Parametric objects can also be used to associate a set of predicates to terms
that share a common functor and arity.

18

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#Cointe87
../bibliography.html#Moura94
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

In order to give access to an object parameters, Logtalk provides the parameter/2 built-in local method:

:- object(Functor(Arg1, Arg2, ...)).

 ...

 Predicate :-

 ...,

 parameter(Number, Value),

An alternative solution is to use the built-in local method this/1. For example:

:- object(foo(Arg)).

 ...

 bar :-

 ...,

 this(foo(Arg)),

Both solutions are equally efficient because the runtime cost of the methods this/1 and parameter/2 is negligible. The
drawback of this second solution is that we must check all calls of this/1 if we change the object name. Note that we
can't use these method with the message sending operators (::/2, ::/1, or ^^/1).

When storing a parametric object in its own source file, the convention is to name the file after the object, with the object
arity appended. For instance, when defining an object named sort(Type), we may save it in a sort_1.lgt text file.
This way it is easy to avoid file name clashes when saving Logtalk entities that have the same functor but different arity.

Compound terms with the same functor and with the same number of arguments as a parametric object identifier may act
as proxies to a parametric object. Proxies may be stored on the database as Prolog facts and be used to represent different
instantiations of a parametric object identifier. Logtalk provides a convenient notation for accessing proxies represented
as Prolog facts when sending a message:

{Proxy}::Message

In this context, the proxy argument is proved as a plain Prolog goal. If successful, the message is sent to the corresponding
parametric object. Typically, the proof allows retrieving of parameter instantiations. This construct can either be used with
a proxy argument that is sufficiently instantiated in order to unify with a single Prolog fact or with a proxy argument that
unifies with several facts on backtracking.

Finding defined objects

We can find, by backtracking, all defined objects by calling the current_object/1 built-in predicate with a non-instan-
tiated variable:

| ?- current_object(Object).

19

Objects

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/parameter_2.html
../refman/methods/this_1.html
../refman/control/send_to_object_2.html
../refman/control/send_to_self_1.html
../refman/control/call_super_1.html
../refman/predicates/current_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This predicate can also be used to test if an object is defined by calling it with a valid object identifier (an atom or a com-
pound term).

Creating a new object in runtime

An object can be dynamically created at runtime by using the create_object/4 built-in predicate:

| ?- create_object(Object, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new object (a Prolog atom or compound term, which
must not match any existing entity name). The remaining three arguments correspond to the relations described in the
opening object directive and to the object code contents (directives and clauses).

For instance, the call:

| ?- create_object(foo, [extends(bar)], [public(foo/1)], [foo(1), foo(2)]).

is equivalent to compiling and loading the object:

:- object(foo,

 extends(bar)).

 :- dynamic.

 :- public(foo/1).

 foo(1).

 foo(2).

:- end_object.

If we need to create a lot of (dynamic) objects at runtime, then is best to define a metaclass or a prototype with a predicate
that will call this built-in predicate to make new objects. This predicate may provide automatic object name generation,
name checking, and accept object initialization options.

Abolishing an existing object

Dynamic objects can be abolished using the abolish_object/1 built-in predicate:

| ?- abolish_object(Object).

The argument must be an identifier of a defined dynamic object, otherwise an error will be thrown.

Object directives

Object directives are used to set initialization goals, define object properties, to document an object dependencies on other
Logtalk entities, and to load the contents of files into an object.

20

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/create_object_4.html
../refman/predicates/abolish_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded to memory with the initialization/1
directive:

:- initialization(Goal).

The argument can be any valid Prolog or Logtalk goal, including a message to other object. For example:

:- object(foo).

 :- initialization(init).

 :- private(init/0).

 init :-

 ...

:- end_object.

Or:

:- object(assembler).

 :- initialization(control::start).

 ...

:- end_object.

The initialization goal can also be a message to self in order to call an inherited or imported predicate. For example, assuming
that we have a monitor category defining a reset/0 predicate:

:- object(profiler,

 imports(monitor)).

 :- initialization(::reset).

 ...

:- end_object.

Note, however, that descendant objects do not inherit initialization directives. In this context, self denotes the object that
contains the directive. Also note that by initialization we do not necessarily mean setting an object dynamic state.

21

Objects

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/initialization_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Dynamic objects

Similar to Prolog predicates, an object can be either static or dynamic. An object created during the execution of a program
is always dynamic. An object defined in a file can be either dynamic or static. Dynamic objects are declared by using the
dynamic/0 directive in the object source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code results in a per-
formance hit when compared to static code. We should only use dynamic objects when these need to be abolished during
program execution. In addition, note that we can declare and define dynamic predicates within a static object.

Object documentation

An object can be documented with arbitrary user-defined information by using the info/1 directive:

:- info(List).

See the documenting Logtalk programs section for details.

Loading files into an object

The include/1 directive can be used to load the contents of a file into an object. A typical usage scenario is to load a
plain Prolog database into an object thus providing a simple way to encapsulate it. For example, assume a cities.pl
file defining facts for a city/4 predicate. We could define a wrapper for this database by writing:

:- object(cities).

 :- public(city/4).

 :- include(dbs('cities.pl')).

:- end_object.

The include/1 directive can also be used when creating an object dynamically. For example:

| ?- create_object(cities, [], [public(city/4), include(dbs('cities.pl'))], []).

Object relationships

Logtalk provides six sets of built-in predicates that enable us to query the system about the possible relationships that an
object may have with other entities.

The built-in predicates instantiates_class/2 and instantiates_class/3 can be used to query all instantiation
relations:

| ?- instantiates_class(Instance, Class).

22

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/dynamic_0.html
../refman/directives/info_1.html
documenting.html
../refman/directives/include_1.html
../refman/predicates/instantiates_class_2_3.html
../refman/predicates/instantiates_class_2_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

or, if we want to know the instantiation scope:

| ?- instantiates_class(Instance, Class, Scope).

Specialization relations can be found by using either the specializes_class/2 or the specializes_class/3 built-
in predicates:

| ?- specializes_class(Class, Superclass).

or, if we want to know the specialization scope:

| ?- specializes_class(Class, Superclass, Scope).

For prototypes, we can query extension relations with the extends_object/2 or the extends_object/3 built-in pre-
dicates:

| ?- extends_object(Object, Parent).

or, if we want to know the extension scope:

| ?- extends_object(Object, Parent, Scope).

In order to find which objects import which categories we can use the built-in predicates imports_category/2 or
imports_category/3:

| ?- imports_category(Object, Category).

or, if we want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

To find which objects implements which protocols we can use the implements_protocol/2-3 and
conforms_to_protocol/2-3 built-in predicates:

| ?- implements_protocol(Object, Protocol, Scope).

or, if we also want inherited protocols:

| ?- conforms_to_protocol(Object, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/1 built-
in predicate to ensure that the entity returned is an object and not a category.

23

Objects

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/specializes_class_2_3.html
../refman/predicates/specializes_class_2_3.html
../refman/predicates/extends_object_2_3.html
../refman/predicates/extends_object_2_3.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/implements_protocol_2_3.html
../refman/predicates/conforms_to_protocol_2_3.html
../refman/predicates/current_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

To find which objects are explicitly complemented by categories we can use the complements_object/2 built-in pre-
dicate:

| ?- complements_object(Category, Object).

Note that more than one category may explicitly complement a single object.

Object properties

We can find the properties of defined objects by calling the built-in predicate object_property/2:

| ?- object_property(Object, Property).

The following object properties are supported:

static

The object is static
dynamic

The object is dynamic (and thus can be abolished in runtime by calling the abolish_object/1 built-in pre-
dicate)

built_in

The object is a built-in object (and thus always available)
threaded

The object supports/makes multi-threading calls
file(Path)

Absolute path of the source file defining the object (if applicable)
file(Basename, Directory)

Basename and directory of the source file defining the object (if applicable)
lines(BeginLine, EndLine)

Source file begin and end lines of the object definition (if applicable)
context_switching_calls

The object supports context switching calls (i.e. can be used with the <</2 debugging control construct)
dynamic_declarations

The object supports dynamic declarations of predicates
events

Messages sent from the object generate events
source_data

Source data available for the object
complements(Permission)

The object supports complementing categories with the specified permission (allow or restrict)
complements

The object supports complementing categories
public(Predicates)

List of public predicates declared by the object
protected(Predicates)

List of protected predicates declared by the object
private(Predicates)

List of private predicates declared by the object

24

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/complements_object_2.html
../refman/predicates/object_property_2.html
../refman/predicates/abolish_object_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

declares(Predicate, Properties)

List of properties for a predicate declared by the object
defines(Predicate, Properties)

List of properties for a predicate defined by the object
includes(Predicate, Entity, Properties)

List of properties for an object multifile predicate that are defined in the specified entity (the properties include
number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being
the begin line of the multifile predicate clause)

provides(Predicate, Entity, Properties)

List of properties for other entity multifile predicate that are defined in the object (the properties include
number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being
the begin line of the multifile predicate clause)

alias(Predicate, Properties)

List of properties for a predicate alias declared by the object (the properties include for(Original),
from(Entity), non_terminal(NonTerminal), and line_count(Line) with Line being the begin line
of the alias directive)

calls(Call, Properties)

List of properties for predicate calls made by the object (Call is either a predicate indicator or a control construct
such as ::/1-2 or ^^/1 with a predicate indicator as argument; note that Call may not be ground in case of
a call to a control construct where its argument is only know at runtime; the properties include caller(Caller),
alias(Alias), and line_count(Line) with both Caller and Alias being predicate indicators and Line
being the begin line of the predicate clause or directive making the call)

updates(Predicate, Properties)

List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made by the
object (Predicate is either a predicate indicator or a control construct such as ::/1-2 or :/2 with a predicate
indicator as argument; note that Predicate may not be ground in case of a control construct argument only
know at runtime; the properties include updater(Updater), alias(Alias), and line_count(Line) with
Updater being a (possibly multifile) predicate indicator, Alias being a predicate indicator, and Line being
the begin line of the predicate clause or directive updating the predicate)

number_of_clauses(Number)

Total number of predicate clauses defined in the object at compilation time (includes both user-defined clauses
and auxiliary clauses generated by the compiler or by the expansion hooks)

number_of_rules(Number)

Total number of predicate rules defined in the object at compilation time (includes both user-defined rules and
auxiliary rules generated by the compiler or by the expansion hooks)

number_of_user_clauses(Number)

Total number of user-defined predicate clauses defined in the object at compilation time
number_of_user_rules(Number)

Total number of user-defined predicate rules defined in the object at compilation time

When a predicate is called from an initialization/1 directive, the argument of the caller/1 property is :-/1.

Some of the properties such as line numbers are only available when the object is defined in a source file compiled with
the source_data flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the object for both
multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile predicates contributed by
other entities.

25

Objects

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Built-in objects

Logtalk defines some built-in objects that are always available for any application.

The built-in pseudo-object user

Logtalk defines a built-in, pseudo-object named user that virtually contains all user predicate definitions not encapsulated
in a Logtalk entity. These predicates are assumed to be implicitly declared public. Messages sent from this pseudo-object,
which includes messages sent from the top-level interpreter, always generate events. Defining complementing categories
for this pseudo-object is not supported.

With some of the backend Prolog compilers that support a module system, it is possible to load (the) Logtalk (com-
piler/runtime) into a module other than the pseudo-module user. In this case, the Logtalk pseudo-object user virtually
contains all user predicate definitions defined in the module where Logtalk was loaded.

The built-in object logtalk

Logtalk defines a built-in object named logtalk that provides structured message printing mechanism predicates, structured
question asking predicates, debugging event predicates, predicates for accessing the internal database of loaded files and
their properties, and also a set of low-level utility predicates normally used when defining hook objects.

The following predicates are defined:

expand_library_path(Library, Path)

Expands a file specification in library notation to a full operating-system path.
loaded_file(Path)

Returns the full path of a currently loaded source file.
loaded_file_property(Path, Property)

Returns a property for a currently loaded source file. Valid properties are basename/1, directory/1, flags/1
(explicit flags used when the file was loaded), text_properties/1 (list, possibly empty, whose possible
elements are encoding/1 and bom/1), target/1 (full path for the Prolog file generated by the compilation
of the loaded source file), modified/1 (time stamp that should be treated as an opaque term but that may be
used for comparisons), parent/1 (parent file, if it exists, that loaded the file; a file may have multiple parents),
and library/1 (library name when there is a library whose location is the same as the loaded file directory).

compile_aux_clauses(Clauses)

Compiles a list of clauses in the context of the entity under compilation. This method is usually called from
goal_expansion/2 hooks in order to compile auxiliary clauses generated for supporting an expanded goal.
The compilation of the clauses avoids the risk of making the predicate whose clause is being goal-expanded
discontiguous by accident.

entity_prefix(Entity, Prefix)

Converts an entity identifier into its internal prefix or an internal prefix into an entity identifier.

compile_predicate_heads(Heads, Entity, TranslatedHeads, ContextArgument)

Compiles a predicate head or a list of predicate heads in the context of the specified entity or in the context of
the entity being compiled when Entity is not instantiated.

compile_predicate_indicators(PredicateIndicators, Entity, TranslatedPredicateIndicators)

Compiles a predicate indicator or a list of predicate indicators in the context of the specified entity or in the
context of the entity being compiled when Entity is not instantiated.

decompile_predicate_heads(TranslatedHeads, Entity, EntityType, Heads)

Decompiles a compiled predicate head or a list of compiled predicate heads returning the entity, entity type,
and source level heads. Requires the entity to be currently loaded.

26

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

decompile_predicate_indicators(TranslatedPredicateIndicators, Entity, EntityType,

PredicateIndicators)

Decompiles a compiled predicate indicator or a list of compiled predicate indicators returning the entity, entity
type, and source level predicate indicators. Requires the entity to be currently loaded.

execution_context(ExecutionContext, Entity, Sender, This, Self, MetaCallContext, Stack)

Allows constructing and accessing execution context components.

print_message(Kind, Component, Term)

Prints a message term after converting it into a list of tokens using the message_tokens//2 hook non-terminal.
When the conversion fails, the message term itself is printed.

print_message_tokens(Stream, Prefix, Tokens)

Prints a list of message tokens to the specified stream and prefixing each line with the specified prefix.
print_message_token(Stream, Prefix, Token, Tokens)

Hook predicate, declared multifile and dynamic, allowing the default printing of a token to be overridden.
message_tokens(Term, Component)

Hook non-terminal, declared multifile and dynamic, allowing the translation of a message into a list of tokens
for printing.

message_prefix_stream(Kind, Component, Prefix, Stream)

Hook predicate, declared multifile and dynamic, allowing the definition of line prefix and output stream for
messages.

message_hook(Term, Kind, Component, Tokens)

Hook predicate, declared multifile and dynamic, allowing the overriding the default printing of a message.

trace_event(Event, EventExecutionContext)

Hook predicate, declared multifile and dynamic, for handling trace events generated by the execution of source
code compiled in debug mode. The Logtalk runtime calls all defined handlers using a failure-driven loop. Thus,
care must be taken that the handlers are deterministic to avoid potential termination issues.

debug_handler_provider(Provider)

Multifile predicate for declaring an object that provides a debug handler. There can only be one debug handler
provider loaded at the same time. The Logtalk runtime uses this hook predicate for detecting multiple instances
of the handler and for better error reporting.

debug_handler(Event, EventExecutionContext)

Multifile predicate for handling debug events generated by the execution of source code compiled in debug
mode.

To use these predicates, simply send the corresponding message to the logtalk object.

27

Objects

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

28

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protocols

Protocols enable the separation between interface and implementation: several objects can implement the same protocol
and an object can implement several protocols. Protocols may contain only predicate declarations. In some languages the
term interface is used with similar meaning. Logtalk allows predicate declarations of any scope within protocols, contrary
to some languages that only allow public declarations.

Logtalk defines three built-in protocols, monitoring, expanding, and forwarding, which are described at the end of
this section.

Defining a new protocol

We can define a new protocol in the same way we write Prolog code: by using a text editor. Logtalk source files may
contain one or more objects, categories, or protocols. If you prefer to define each entity in its own source file, it is recom-
mended that the file be named after the protocol. By default, all Logtalk source files use the extension .lgt but this is
optional and can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler) have, by
default, a _lgt suffix and a .pl extension. Again, this can be set to match the needs of a particular Prolog compiler in
the corresponding adapter file. For example, we may define a protocol named listp and save it in a listp.lgt source
file that will be compiled to a listp_lgt.pl Prolog file (depending on the backend compiler, the names of the interme-
diate Prolog files may include a directory hash).

Protocol names must be atoms. Objects, categories and protocols share the same name space: we cannot have a protocol
with the same name as an object or a category.

Protocol directives are textually encapsulated by using two Logtalk directives: protocol/1-2 and end_protocol/0.
The most simple protocol will be one that is self-contained, not depending on any other Logtalk entity:

:- protocol(Protocol).

 ...

:- end_protocol.

If a protocol extends one or more protocols, then the opening directive will be:

:- protocol(Protocol,

 extends([Protocol1, Protocol2, ...])).

 ...

:- end_protocol.

In order to maximize protocol reuse, all predicates specified in a protocol should relate to the same functionality. Therefore,
the only recommended use of protocol extension is when you need both a minimal protocol and an extended version of
the same protocol with additional, useful predicates.

29

Protocols

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/protocol_1_2.html
../refman/directives/end_protocol_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Finding defined protocols

We can find, by backtracking, all defined protocols by using the current_protocol/1 built-in predicate with a non-
instantiated variable:

| ?- current_protocol(Protocol).

This predicate can also be used to test if a protocol is defined by calling it with a valid protocol identifier (an atom).

Creating a new protocol in runtime

We can create a new (dynamic) protocol in runtime by calling the Logtalk built-in predicate create_protocol/3:

| ?- create_protocol(Protocol, Relations, Directives).

The first argument should be either a variable or the name of the new protocol (a Prolog atom, which must not match an
existing entity name). The remaining two arguments correspond to the relations described in the opening protocol directive
and to the protocol directives.

For instance, the call:

| ?- create_protocol(ppp, [extends(qqq)], [public([foo/1, bar/1])]).

is equivalent to compiling and loading the protocol:

:- protocol(ppp,

 extends(qqq)).

 :- dynamic.

 :- public([foo/1, bar/1]).

:- end_protocol.

If we need to create a lot of (dynamic) protocols at runtime, then is best to define a metaclass or a prototype with a predicate
that will call this built-in predicate in order to provide more sophisticated behavior.

Abolishing an existing protocol

Dynamic protocols can be abolished using the abolish_protocol/1 built-in predicate:

| ?- abolish_protocol(Protocol).

The argument must be an identifier of a defined dynamic protocol, otherwise an error will be thrown.

Protocol directives

Protocol directives are used to define protocol properties and documentation.

30

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/current_protocol_1.html
../refman/predicates/create_protocol_3.html
../refman/predicates/abolish_protocol_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Dynamic protocols

As usually happens with Prolog code, a protocol can be either static or dynamic. A protocol created during the execution
of a program is always dynamic. A protocol defined in a file can be either dynamic or static. Dynamic protocols are declared
by using the dynamic/0 directive in the protocol source code:

:- dynamic.

The directive must precede any predicate directives. Please be aware that using dynamic code results in a performance hit
when compared to static code. We should only use dynamic protocols when these need to be abolished during program
execution.

Protocol documentation

A protocol can be documented with arbitrary user-defined information by using the info/1 directive:

:- info(List).

See the documenting Logtalk programs section for details.

Loading files into a protocol

The include/1 directive can be used to load the contents of a file into a protocol. See the objects section for an example
of using this directive.

Protocol relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible relationships that a
protocol have with other entities.

The built-in predicates extends_protocol/2 and extends_protocol/3 return all pairs of protocols so that the first
one extends the second:

| ?- extends_protocol(Protocol1, Protocol2).

or, if we want to know the extension scope:

| ?- extends_protocol(Protocol1, Protocol2, Scope).

To find which objects or categories implement which protocols we can call the implements_protocol/2 or
implements_protocol/2 built-in predicates:

| ?- implements_protocol(ObjectOrCategory, Protocol).

or, if we want to know the implementation scope:

| ?- implements_protocol(ObjectOrCategory, Protocol, Scope).

31

Protocols

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/dynamic_0.html
../refman/directives/info_1.html
documenting.html
../refman/directives/include_1.html
objects.html
../refman/predicates/extends_protocol_2_3.html
../refman/predicates/extends_protocol_2_3.html
../refman/predicates/implements_protocol_2_3.html
../refman/predicates/implements_protocol_2_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_object/1 or
current_category/1 built-in predicates to identify the kind of entity returned.

Protocol properties

We can find the properties of defined protocols by calling the protocol_property/2 built-in predicate:

| ?- protocol_property(Protocol, Property).

A protocol may have the property static, dynamic, or built_in. Dynamic protocols can be abolished in runtime by
calling the abolish_protocol/1 built-in predicate. Depending on the back-end Prolog compiler, a protocol may have
additional properties related to the source file where it is defined.

The following protocol properties are supported:

static

The protocol is static
dynamic

The protocol is dynamic (and thus can be abolished in runtime by calling the abolish_category/1 built-in
predicate)

built_in

The protocol is a built-in protocol (and thus always available)
source_data

Source data available for the protocol
file(Path)

Absolute path of the source file defining the protocol (if applicable)
file(Basename, Directory)

Basename and directory of the source file defining the protocol (if applicable)
lines(BeginLine, EndLine)

Source file begin and end lines of the protocol definition (if applicable)
public(Predicates)

List of public predicates declared by the protocol
protected(Predicates)

List of protected predicates declared by the protocol
private(Predicates)

List of private predicates declared by the protocol
declares(Predicate, Properties)

List of properties for a predicate declared by the protocol
alias(Predicate, Properties)

List of properties for a predicate alias declared by the protocol (the properties include for(Original),
from(Entity), non_terminal(NonTerminal), and line_count(Line) with Line being the begin line
of the alias directive)

Some of the properties such as line numbers are only available when the protocol is defined in a source file compiled with
the source_data flag turned on.

32

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/current_object_1.html
../refman/predicates/current_category_1.html
../refman/predicates/protocol_property_2.html
../refman/predicates/abolish_protocol_1.html
../refman/predicates/abolish_category_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implementing protocols

Any number of objects or categories can implement a protocol. The syntax is very simple:

:- object(Object,

 implements(Protocol)).

 ...

:- end_object.

or, in the case of a category:

:- category(Object,

 implements(Protocol)).

 ...

:- end_category.

To make all public predicates declared via an implemented protocol protected or to make all public and protected predicates
private we prefix the protocol's name with the corresponding keyword. For instance:

:- object(Object,

 implements(private::Protocol)).

 ...

:- end_object.

or:

:- object(Object,

 implements(protected::Protocol)).

 ...

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,

 implements(public::Protocol)).

 ...

:- end_object.

The same rules applies to protocols implemented by categories.

Built-in protocols

Logtalk defines a set of built-in protocols that are always available for any application.

The built-in protocol expanding

Logtalk defines a built-in protocol named expanding that contains declarations for the term_expansion/2 and
goal_expansion/2 predicates. See the description of the hook compiler flag for more details.

33

Protocols

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The built-in protocol monitoring

Logtalk defines a built-in protocol named monitoring that contains declarations for the before/3 and after/3 public
event handler predicates. See the event-driven programming section for more details.

The built-in protocol forwarding

Logtalk defines a built-in protocol named forwarding that contains a declaration for the forward/1 user-defined message
forwarding handler, which is automatically called (if defined) by the runtime for any message that the receiving object
does not understand. See also the []/1 control construct.

34

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

events.html
../refman/control/delegate_message_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Categories

Categories are fine-grained units of code reuse and can be regarded as a dual concept of protocols. Categories provide a
way to encapsulate a set of related predicate declarations and definitions that do not represent a complete object and that
only make sense when composed with other predicates. Categories may also be used to break a complex object in func-
tional units. A category can be imported by several objects (without code duplication), including objects participating in
prototype or class-based hierarchies. This concept of categories shares some ideas with Smalltalk-80 functional categories
[Goldberg 83], Flavors mix-ins [Moon 86] (without necessarily implying multi-inheritance), and Objective-C categories
[Cox 86]. Categories may also complement existing objects, thus providing a hot patching mechanism inspired by the
Objective-C categories functionality.

Defining a new category

We can define a new category in the same way we write Prolog code: by using a text editor. Logtalk source files may
contain one or more objects, categories, or protocols. If you prefer to define each entity in its own source file, it is recom-
mended that the file be named after the category. By default, all Logtalk source files use the extension .lgt but this is
optional and can be set in the adapter files. Intermediate Prolog source files (generated by the Logtalk compiler) have, by
default, a _lgt suffix and a .pl extension. Again, this can be set to match the needs of a particular Prolog compiler in
the corresponding adapter file. For instance, we may define a category named documenting and save it in a
documenting.lgt source file that will be compiled to a documenting_lgt.pl Prolog file (depending on the backend
compiler, the names of the intermediate Prolog files may include a directory hash).

Category names can be atoms or compound terms (when defining parametric categories). Objects, categories, and protocols
share the same name space: we cannot have a category with the same name as an object or a protocol.

Category code (directives and predicates) is textually encapsulated by using two Logtalk directives: category/1-3 and
end_category/0. The most simple category will be one that is self-contained, not depending on any other Logtalk entity:

:- category(Category).

 ...

:- end_category.

If a category implements one or more protocols then the opening directive will be:

:- category(Category,

 implements([Protocol1, Protocol2, ...])).

 ...

:- end_category.

35

Categories

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#Goldberg83
../bibliography.html#Moon86
../bibliography.html#Cox86
../refman/directives/category_1_3.html
../refman/directives/end_category_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A category may be defined as a composition of other categories by writing:

:- category(Category,

 extends([Category1, Category2, ...])).

 ...

:- end_category.

This feature should only be used when extending a category without breaking its functional cohesion (for example, when
a modified version of a category is needed for importing on several unrelated objects). The preferred way of composing
several categories is by importing them into an object. When a category overrides a predicate defined in an extended category,
the overridden definition can still be used by using the alias/2 predicate directive.

Categories cannot inherit from objects. In addition, categories cannot define clauses for dynamic predicates. This restriction
applies because a category can be imported by several objects and because we cannot use the database handling built-in
methods with categories (messages can only be sent to objects). However, categories may contain declarations for dynamic
predicates and they can contain predicates which handle dynamic predicates. For example:

:- category(attributes).

 :- public(attribute/2).

 :- public(set_attribute/2).

 :- public(del_attribute/2).

 :- private(attribute_/2).

 :- dynamic(attribute_/2).

 attribute(Attribute, Value) :-

 ::attribute_(Attribute, Value). % called in the context of "self"

 set_attribute(Attribute, Value) :-

 ::retractall(attribute_(Attribute, _)), % retracts clauses in "self"

 ::assertz(attribute_(Attribute, Value)). % asserts clause in "self"

 del_attribute(Attribute, Value) :-

 ::retract(attribute_(Attribute, Value)). % retracts clause in "self"

:- end_category.

Each object importing this category will have its own attribute_/2 private, dynamic predicate. The predicates
attribute/2, set_attribute/2, and del_attribute/2 always access and modify the dynamic predicate contained

36

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

in the object receiving the corresponding messages (i.e. self). But it's also possible to define predicates that handle dynamic
predicates in the context of this instead of self. For example:

:- category(attributes).

 :- public(attribute/2).

 :- public(set_attribute/2).

 :- public(del_attribute/2).

 :- private(attribute_/2).

 :- dynamic(attribute_/2).

 attribute(Attribute, Value) :-

 attribute_(Attribute, Value). % called in the context of "this"

 set_attribute(Attribute, Value) :-

 retractall(attribute_(Attribute, _)), % retracts clauses in "this"

 assertz(attribute_(Attribute, Value)). % asserts clause in "this"

 del_attribute(Attribute, Value) :-

 retract(attribute_(Attribute, Value)). % retracts clause in "this"

:- end_category.

When defining a category that declares and handles dynamic predicates, working in the context of this ties those dynamic
predicates to the object importing the category while working in the context of self allows each object inheriting from the
object that imports the category to have its own set of clauses for those dynamic predicates.

Hot patching

A category may explicitly complement one or more existing objects, thus providing hot patching functionality inspired
by Objective-C categories:

:- category(Category,

 complements([Object1, Object2,])).

 ...

:- end_category.

This allows us to add missing directives (e.g. to define aliases for complemented object predicates), replace broken predicate
definitions, add new predicates, and add protocols and categories to existing objects without requiring access or modific-
ations to their source code. Common scenarios are adding logging or debugging predicates to a set of objects. Complemented
objects need to be compiled with the complements compiler flag set allow (to allow both patching and adding function-
ality) or restrict (to allow only adding new functionality). A complementing category takes preference over a previously
loaded complementing category for the same object thus allowing patching a previous patch if necessary.

Note that super calls from predicates defined in complementing categories lookup inherited definitions as if the calls were
made from the complemented object instead of the category ancestors. This allows more comprehensive object patching.
But it also means that, if you want to patch an object so that it imports a category that extends another category and uses
super calls to access the extended category predicates, you will need to define a (possibly empty) complementing category
that extends the category that you want to add.

37

Categories

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

An unfortunate consequence of allowing an object to be patched at runtime using a complementing category is that it
disables the use of static binding optimizations for messages sent to the complemented object as it can always be later
patched, thus rendering the static binding optimizations invalid.

Another important caveat is that, while a complementing category can replace a predicate definition, local callers of the
replaced predicate will still call the unpatched version of the predicate. This is a consequence of the lack of a portable
solution at the backend Prolog compiler level for destructively replacing static predicates.

Finding defined categories

We can find, by backtracking, all defined categories by using the current_category/1 Logtalk built-in predicate with
a non-instantiated variable:

| ?- current_category(Category).

This predicate can also be used to test if a category is defined by calling it with a valid category identifier (an atom or a
compound term).

Creating a new category in runtime

A category can be dynamically created at runtime by using the create_category/4 built-in predicate:

| ?- create_category(Category, Relations, Directives, Clauses).

The first argument should be either a variable or the name of the new category (a Prolog atom, which must not match with
an existing entity name). The remaining three arguments correspond to the relations described in the opening category
directive and to the category code contents (directives and clauses).

For instance, the call:

| ?- create_category(ccc,

 [implements(ppp)],

 [private(bar/1)],

 [(foo(X):-bar(X)), bar(1), bar(2)]).

38

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/current_category_1.html
../refman/predicates/create_category_4.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

is equivalent to compiling and loading the category:

:- category(ccc,

 implements(ppp)).

 :- dynamic.

 :- private(bar/1).

 foo(X) :-

 bar(X).

 bar(1).

 bar(2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then is best to to define a metaclass or a prototype with a
predicate that will call this built-in predicate in order to provide more sophisticated behavior.

Abolishing an existing category

Dynamic categories can be abolished using the abolish_category/1 built-in predicate:

| ?- abolish_category(Category).

The argument must be an identifier of a defined dynamic category, otherwise an error will be thrown.

Category directives

Category directives are used to define category properties, to document a category dependencies on other Logtalk entities,
and to load the contents of files into a category.

Dynamic categories

As usually happens with Prolog code, a category can be either static or dynamic. A category created during the execution
of a program is always dynamic. A category defined in a file can be either dynamic or static. Dynamic categories are declared
by using the dynamic/0 directive in the category source code:

:- dynamic.

The directive must precede any predicate directives or clauses. Please be aware that using dynamic code results in a per-
formance hit when compared to static code. We should only use dynamic categories when these need to be abolished
during program execution.

39

Categories

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/abolish_category_1.html
../refman/directives/dynamic_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Category documentation

A category can be documented with arbitrary user-defined information by using the info/1 directive:

:- info(List).

See the documenting Logtalk programs section for details.

Loading files into a category

The include/1 directive can be used to load the contents of a file into a category. See the objects section for an example
of using this directive.

Category relationships

Logtalk provides two sets of built-in predicates that enable us to query the system about the possible relationships that a
category can have with other entities.

The built-in predicates implements_protocol/2-3 and conforms_to_protocol/2-3 allows us to find which cat-
egories implements which protocols:

| ?- implements_protocol(Category, Protocol, Scope).

or, if we also want inherited protocols:

| ?- conforms_to_protocol(Category, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to use the current_category/1
built-in predicate to ensure that the returned entity is a category and not an object.

To find which objects import which categories we can use the imports_category/2 or imports_category/3 built-
in predicates:

| ?- imports_category(Object, Category).

or, if we want to know the importation scope:

| ?- imports_category(Object, Category, Scope).

Note that a category may be imported by several objects.

To find which categories extend other categories we can use the extends_category/2 or extends_category/3 built-
in predicates:

| ?- extends_category(Category1, Category2).

40

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/info_1.html
documenting.html
../refman/directives/include_1.html
objects.html
../refman/predicates/implements_protocol_2_3.html
../refman/predicates/conforms_to_protocol_2_3.html
../refman/predicates/current_category_1.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/imports_category_2_3.html
../refman/predicates/extends_category_2_3.html
../refman/predicates/extends_category_2_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

or, if we want to know the extension scope:

| ?- extends_category(Category1, Category2, Scope).

Note that a category may be extended by several categories.

To find which categories explicitly complement existing objects we can use the complements_object/2 built-in predicate:

| ?- complements_object(Category, Object).

Note that a category may explicitly complement several objects.

Category properties

We can find the properties of defined categories by calling the built-in predicate category_property/2:

| ?- category_property(Category, Property).

The following category properties are supported:

static

The category is static
dynamic

The category is dynamic (and thus can be abolished in runtime by calling the abolish_category/1 built-in
predicate)

built_in

The category is a built-in category (and thus always available)
file(Path)

Absolute path of the source file defining the category (if applicable)
file(Basename, Directory)

Basename and directory of the source file defining the category (if applicable)
lines(BeginLine, EndLine)

Source file begin and end lines of the category definition (if applicable)
events

Messages sent from the category generate events
source_data

Source data available for the category
public(Predicates)

List of public predicates declared by the category
protected(Predicates)

List of protected predicates declared by the category
private(Predicates)

List of private predicates declared by the category
declares(Predicate, Properties)

List of properties for a predicate declared by the category
defines(Predicate, Properties)

List of properties for a predicate defined by the category

41

Categories

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/complements_object_2.html
../refman/predicates/category_property_2.html
../refman/predicates/abolish_category_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

includes(Predicate, Entity, Properties)

List of properties for an object multifile predicate that are defined in the specified entity (the properties include
number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being
the begin line of the multifile predicate clause)

provides(Predicate, Entity, Properties)

List of properties for other entity multifile predicate that are defined in the category (the properties include
number_of_clauses(Number), number_of_rules(Number), and line_count(Line) with Line being
the begin line of the multifile predicate clause)

alias(Predicate, Properties)

List of properties for a predicate alias declared by the category (the properties include for(Original),
from(Entity), non_terminal(NonTerminal), and line_count(Line) with Line being the begin line
of the alias directive)

calls(Call, Properties)

List of properties for predicate calls made by the category (Call is either a predicate indicator or a control
construct such as ::/1-2 or ^^/1 with a predicate indicator as argument; note that Call may not be ground
in case of a call to a control construct where its argument is only know at runtime; the properties include
caller(Caller), alias(Alias), and line_count(Line) with both Caller and Alias being predicate
indicators and Line being the begin line of the predicate clause or directive making the call)

updates(Predicate, Properties)

List of properties for dynamic predicate updates (and also access using the clause/2 predicate) made by the
object (Predicate is either a predicate indicator or a control construct such as ::/1-2 or :/2 with a predicate
indicator as argument; note that Predicate may not be ground in case of a control construct argument only
know at runtime; the properties include updater(Updater), alias(Alias), and line_count(Line) with
Updater being a (possibly multifile) predicate indicator, Alias being a predicate indicator, and Line being
the begin line of the predicate clause or directive updating the predicate)

number_of_clauses(Number)

Total number of predicate clauses defined in the category (includes both user-defined clauses and auxiliary
clauses generated by the compiler or by the expansion hooks)

number_of_rules(Number)

Total number of predicate rules defined in the category (includes both user-defined rules and auxiliary rules
generated by the compiler or by the expansion hooks)

number_of_user_clauses(Number)

Total number of user-defined predicate clauses defined in the category
number_of_user_rules(Number)

Total number of user-defined predicate rules defined in the category

Some of the properties such as line numbers are only available when the category is defined in a source file compiled with
the source_data flag turned on.

The properties that return the number of clauses (rules) report the clauses (rules) textually defined in the object for both
multifile and non-multifile predicates. Thus, these numbers exclude clauses (rules) for multifile predicates contributed by
other entities.

42

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Importing categories

Any number of objects can import a category. In addition, an object may import any number of categories. The syntax is
very simple:

:- object(Object,

 imports([Category1, Category2, ...])).

 ...

:- end_object.

To make all public predicates imported via a category protected or to make all public and protected predicates private we
prefix the category's name with the corresponding keyword:

:- object(Object,

 imports(private::Category)).

 ...

:- end_object.

or:

:- object(Object,

 imports(protected::Category)).

 ...

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,

 imports(public::Category)).

 ...

:- end_object.

Calling category predicates

Category predicates can be called from within an object by sending a message to self or using a super call. Consider the
following category:

:- category(output).

 :- public(out/1).

 out(X) :-

 write(X), nl.

:- end_category.

43

Categories

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The predicate out/1 can be called from within an object importing the category by simply sending a message to self. For
example:

:- object(worker,

 imports(output)).

 ...

 do(Task) :-

 execute(Task, Result),

 ::out(Result).

 ...

:- end_object.

This is the recommended way of calling a category predicate that can be specialized/overriden in a descendant object as
the predicate definition lookup will start from self.

A direct call the predicate definition found in an imported category can be made using the ^^/1 control construct. For
example:

:- object(worker,

 imports(output)).

 ...

 do(Task) :-

 execute(Task, Result),

 ^^out(Result).

 ...

:- end_object.

This alternative should only be used when the user knows a priori that the category predicates will not be specialized or
redefined by descendant objects of the object importing the category. Its advantage is that, when the optimize compiler
flag is turned on, the Logtalk compiler will try to optimize the calls by using static binding. When dynamic binding is
used due to e.g. the lack of sufficient information at compilation time, the performance is similar to calling the category
predicate using a message to self (in both cases a predicate lookup caching mechanism is used).

Parametric categories

Category predicates can be parameterized in the same way as object predicates by using a compound term as the category
identifier and by calling the parameter/2 built-in local method in the category predicate clauses. Category parameter
values can be defined by the importing objects. For example:

:- object(speech(Season, Event),

 imports([dress(Season), speech(Event)])).

 ...

:- end_object.

44

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/call_super_1.html
../refman/methods/parameter_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note that access to category parameters is only possible using the parameter/2 method from within the category. Calls
to the this/1 built-in local method from category predicates always access the importing object identifier (and thus object
parameters, not category parameters).

45

Categories

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/this_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

46

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Predicates

Predicate directives and clauses can be encapsulated inside objects and categories. Protocols can only contain predicate
directives. From the point-of-view of an object-oriented language, predicates allows both object state and object behavior
to be represented. Mutable object state can be represented using dynamic object predicates.

Reserved predicate names

For performance reasons, a few predicates have a fixed interpretation. These predicates are declared in the built-protocols.
They are: goal_expansion/2 and term_expansion/2, declared in the expanding protocol; before/3 and after/3,
declared in the monitoring protocol; and forward/1, declared in the forwarding protocol. By default, the compiler
prints a warning when a definition for one of these predicates are found but the reference to the corresponding built-in
protocol is missing.

Declaring predicates

All object (or category) predicates that we want to access from other objects must be explicitly declared. A predicate de-
claration must contain, at least, a scope directive. Other directives may be used to document the predicate or to ensure
proper compilation of the predicate definitions.

Scope directives

A predicate scope directive specifies from where the predicate can be called, i.e. its visibility. Predicates can be public,
protected, private, or local. Public predicates can be called from any object. Protected predicates can only be called from
the container object or from a container descendant. Private predicates can only be called from the container object. Local
predicates, like private predicates, can only be called from the container object (or category) but they are invisible to the
reflection built-in methods (current_op/3, current_predicate/1, and predicate_property/2) and to the message
error handling mechanisms (i.e. sending a message corresponding to a local predicate results in a predicate_declaration
existence error, not in a scope error).

The scope declarations are made using the directives public/1, protected/1, and private/1. For example:

:- public(init/1).

:- protected(valid_init_option/1).

:- private(process_init_options/1).

If a predicate does not have a scope declaration, it is assumed that the predicate is local. Note that we do not need to write
scope declarations for all defined predicates. One exception is local dynamic predicates: declaring them as private predicates
may allow the Logtalk compiler to generate optimized code for asserting and retracting clauses.

47

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/public_1.html
../refman/directives/protected_1.html
../refman/directives/private_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note that a predicate scope directive doesn't specify where a predicate is, or can be, defined. For example, a private pre-
dicate can only be called from an object holding its scope directive. But it can be defined in descendant objects. A typical
example is an object playing the role of a class defining a private (possibly dynamic) predicate for its descendant instances.
Only the class can call (and possibly assert/retract clauses for) the predicate but its clauses can be found/defined in the
instances themselves.

Mode directive

Often predicates can only called using specific argument patterns. The valid arguments and instantiation modes of those
arguments can be documented by using the mode/2 directive. For example:

:- mode(member(?term, ?list), zero_or_more).

The first directive argument describes a valid calling mode. The minimum information will be the instantiation mode of
each argument. The first four possible values are described in [ISO 95]). The remaining two can be found in use in some
Prolog systems.

+

Argument must be instantiated (but not necessarily ground).
-

Argument should be a free (non-instantiated) variable (when bound, the call will unify the returned term with
the given term).

?

Argument can either be instantiated or free.
@

Argument will not be further instantiated (modified).
++

Argument must be ground.
--

Argument must be unbound.

These four mode atoms are also declared as prefix operators by the Logtalk compiler. This makes it possible to include
type information for each argument like in the example above. Some of the possible type values are: event, object,
category, protocol, callable, term, nonvar, var, atomic, atom, number, integer, float, compound, and
list. The first four are Logtalk specific. The remaining are common Prolog types. We can also use our own types that
can be either atoms or ground compound terms.

The second directive argument documents the number of proofs (not necessarily distinct solutions) for the specified mode.
Note that different modes for the same predicate often have different determinism. The possible values are:

zero

Predicate always fails.
one

Predicate always succeeds once.
zero_or_one

Predicate either fails or succeeds.
zero_or_more

Predicate has zero or more proofs.
one_or_more

Predicate has one or more proofs.

48

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/mode_2.html
../bibliography.html#ISO95
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

one_or_error

Predicate either succeeds once or throws an error (see below).
error

Predicate will throw an error (see below).

Mode declarations can also be used to document that some call modes will throw an error. For instance, regarding the
arg/3 ISO Prolog built-in predicate, we may write:

:- mode(arg(-, -, +), error).

Note that most predicates have more than one valid mode implying several mode directives. For example, to document
the possible use modes of the atom_concat/3 ISO built-in predicate we would write:

:- mode(atom_concat(?atom, ?atom, +atom), one_or_more).

:- mode(atom_concat(+atom, +atom, -atom), zero_or_one).

Some old Prolog compilers supported some sort of mode directives to improve performance. To the best of my knowledge,
there is no modern Prolog compiler supporting these kind of directive. The current version of the Logtalk compiler just
parses and than discards this directive (however, see the description on synchronized predicates on the multi-threading
programming section). Nevertheless, the use of mode directives is a good starting point for documenting your predicates.

Meta-predicate directive

Some predicates may have arguments that will be called as goals or closures that will be used for constructing a goal. To
ensure that these goals will be executed in the correct scope (i.e. in the calling context, not in the meta-predicate definition
context) we need to use the meta_predicate/1 directive. For example:

:- meta_predicate(findall(*, 0, *)).

The meta-predicate mode arguments in this directive have the following meaning:

0

Meta-argument that will be called as a goal.
N

Meta-argument that will be a closure used to construct a call by appending N arguments. The value of N must
be a non-negative integer.

::

Argument that is context-aware but that will not be called as a goal.
^

Goal that may be existentially quantified (Vars^Goal).
*

Normal argument.

The following meta-predicate mode arguments are for use only when writing backend Prolog adapter files to deal with
proprietary built-in meta-predicates and meta-directives:

/

Predicate indicator (Functor/Arity), list of predicate indicators, or conjunction of predicate indicators.
//

Non-terminal indicator (Functor//Arity), list of predicate indicators, or conjunction of predicate indicators.

49

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

threads.html#threads_synchronized_predicates
threads.html
threads.html
../refman/directives/meta_predicate_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

[0]

List of goals.
[N]

List of closures.
[/]

List of predicate indicators.
[//]

List of non-terminal indicators.

To the best of my knowledge, the use of non-negative integers to specify closures has first introduced on Quintus Prolog
for providing information for predicate cross-reference tools.

As each Logtalk entity is independently compiled, this directive must be included in every object or category that contains
a definition for the described meta-predicate, even if the meta-predicate declaration is inherited from another entity, to
ensure proper compilation of meta-arguments.

Discontiguous directive

The clause of an object (or category) predicate may not be contiguous. In that case, we must declare the predicate discon-
tiguous by using the discontiguous/1 directive:

:- discontiguous(foo/1).

This is a directive that we should avoid using: it makes your code harder to read and it is not supported by some Prolog
compilers.

As each Logtalk entity is compiled independently from other entities, this directive must be included in every object or
category that contains a definition for the described predicate (even if the predicate declaration is inherited from other
entity).

Dynamic directive

An object predicate can be static or dynamic. By default, all object predicates are static. To declare a dynamic predicate
we use the dynamic/1 directive:

:- dynamic(foo/1).

This directive may also be used to declare dynamic grammar rule non-terminals. As each Logtalk entity is compiled inde-
pendently from other entities, this directive must be included in every object that contains a definition for the described
predicate (even if the predicate declaration is inherited from other object or imported from a category). If we omit the
dynamic declaration then the predicate definition will be compiled static. In the case of dynamic objects, static predicates
cannot be redefined using the database built-in methods (despite being internally compiled to dynamic code).

Dynamic predicates can be used to represent persistant mutable object state. Note that static objects may declare and define
dynamic predicates.

50

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/discontiguous_1.html
../refman/directives/dynamic_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Operator directive

An object (or category) predicate can be declared as an operator using the familiar op/3 directive:

:- op(Priority, Specifier, Operator).

Operators are local to the object (or category) where they are declared. This means that, if you declare a public predicate
as an operator, you cannot use operator notation when sending to an object (where the predicate is visible) the respective
message (as this would imply visibility of the operator declaration in the context of the sender of the message). If you
want to declare global operators and, at the same time, use them inside an entity, just write the corresponding directives
at the top of your source file, before the entity opening directive.

When the same operators are used on several entities within the same source file, the corresponding directives must appear
before any entity that uses them. However, this results in a global scope for the operators. If you prefer the operators to
be local to the source file, just undefine them at the end of the file. For example:

:- op(400, xfx, results). % before any entity that uses the operator

...

:- op(0, xfx, results). % after all entities that used the operator

Uses directive

When a predicate makes heavy use of predicates defined on other objects, its predicate clauses can be verbose due to all
the necessary message sending goals. Consider the following example:

foo :-

 ...,

 findall(X, list::member(X, L), A),

 list::append(A, B, C),

 list::select(Y, C, R),

 ...

Logtalk provides a directive, uses/2, which allows us to simplify the code above. The usage template for this directive
is:

:- uses(Object, [Functor1/Arity1, Functor2/Arity2, ...]).

51

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/op_3.html
../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Rewriting the code above using this directive results in a simplified and more readable predicate definition:

:- uses(list, [

 append/3, member/2, select/3

]).

foo :-

 ...,

 findall(X, member(X, L), A),

 append(A, B, C),

 select(Y, C, R),

 ...

Logtalk also supports an extended version of this directive that allows the declaration of predicate alias using the notation
Predicate as Alias (or the alternative notation Predicate::Alias). For example:

:- uses(btrees, [new/1 as new_btree/1]).

:- uses(queues, [new/1 as new_queue/1]).

You may use this extended version for solving conflicts between predicates declared on several uses/2 directives or just
for giving new names to the predicates that will be more meaningful on their using context.

The uses/2 directive allows simpler predicate definitions as long as there are no conflicts between the predicates declared
in the directive and the predicates defined in the object (or category) containing the directive. A predicate (or its alias if
defined) cannot be listed in more than one uses/2 directive. In addition, a uses/2 directive cannot list a predicate (or
its alias if defined) which is defined in the object (or category) containing the directive. Any conflicts are reported by
Logtalk as compilation errors.

Alias directive

Logtalk allows the definition of an alternative name for an inherited or imported predicate (or for an inherited or imported
grammar rule non-terminal) through the use of the alias/2 directive:

:- alias(Entity, [Predicate1 as Alias1, Predicate2 as Alias2, ...]).

This directive can be used in objects, protocols, or categories. The first argument, Entity, must be an entity referenced
in the opening directive of the entity containing the alias/2 directive. It can be an implemented protocol, an imported
category, an extended prototype, an instantiated class, or a specialized class. The second argument is a list of pairs of
predicate indicators (or grammar rule non-terminal indicators) using the as infix operator as connector.

52

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A common use for the alias/2 directive is to give an alternative name to an inherited predicate in order to improve
readability. For example:

:- object(square,

 extends(rectangle)).

 :- alias(rectangle, [width/1 as side/1]).

 ...

:- end_object.

The directive allows both width/1 and side/1 to be used as messages to the object square. Thus, using this directive,
there is no need to explicitly declare and define a "new" side/1 predicate. Note that the alias/2 directive does not rename
a predicate, only provides an alternative, additional name; the original name continues to be available (although it may be
masked due to the default inheritance conflict mechanism).

Another common use for this directive is to solve conflicts when two inherited predicates have the same functor and arity.
We may want to call the predicate which is masked out by the Logtalk lookup algorithm (see the Inheritance section) or
we may need to call both predicates. This is simply accomplished by using the alias/2 directive to give alternative names
to masked out or conflicting predicates. Consider the following example:

:- object(my_data_structure,

 extends(list, set)).

 :- alias(list, [member/2 as list_member/2]).

 :- alias(set, [member/2 as set_member/2]).

 ...

:- end_object.

Assuming that both list and set objects define a member/2 predicate, without the alias/2 directives, only the defin-
ition of member/2 predicate in the object list would be visible on the object my_data_structure, as a result of the
application of the Logtalk predicate lookup algorithm. By using the alias/2 directives, all the following messages would
be valid (assuming a public scope for the predicates):

| ?- my_data_structure::list_member(X, L). % uses list member/2

| ?- my_data_structure::set_member(X, L). % uses set member/2

| ?- my_data_structure::member(X, L). % uses list member/2

When used this way, the alias/2 directive provides functionality similar to programming constructs of other object-
oriented languages which support multi-inheritance (the most notable example probably being the renaming of inherited
features in Eiffel).

Note that the alias/2 directive never hides a predicate which is visible on the entity containing the directive as a result
of the Logtalk lookup algorithm. However, it may be used to make visible a predicate which otherwise would be masked
by another predicate, as illustrated in the above example.

53

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

inheritance.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The alias/2 directive may also be used to give access to an inherited predicate, which otherwise would be masked by
another inherited predicate, while keeping the original name as follows:

:- object(my_data_structure,

 extends(list, set)).

 :- alias(list, [member/2 as list_member/2]).

 :- alias(set, [member/2 as set_member/2]).

 member(X, L) :-

 ::set_member(X, L).

 ...

:- end_object.

Thus, when sending the message member/2 to my_data_structure, the predicate definition in set will be used instead
of the one contained in list.

Documenting directive

A predicate can be documented with arbitrary user-defined information by using the info/2 directive:

:- info(Functor/Arity, List).

The second argument is a list of Key is Value terms. See the Documenting Logtalk programs section for details.

Multifile directive

A predicate can be declared multifile by using the multifile/1 directive:

:- multifile(Functor/Arity).

This allows clauses for a predicate to be defined in several objects and/or categories. This is a directive that should be
used with care. Support for this directive have been added to Logtalk primarily to support migration of Prolog module
code. Spreading clauses for a predicate among several Logtalk entities can be handy in some cases but can also make your
code difficult to understand. Logtalk precludes using a multifile predicate for breaking object encapsulation by checking
that the object (or category) declaring the predicate (using a scope directive) defines it also as multifile. This entity is said
to contain the primary declaration for the multifile predicate. In addition, note that the multifile/1 directive is mandatory
when defining multifile predicates.

Consider the following simple example:

:- object(main).

 :- public(a/1).

 :- multifile(a/1).

 a(1).

:- end_object.

54

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/info_2.html
documenting.html
../refman/directives/multifile_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

After compiling and loading the main object, we can define other objects (or categories) that contribute with clauses for
the multifile predicate. For example:

:- object(other).

 :- multifile(main::a/1).

 main::a(2).

 main::a(X) :-

 b(X).

 b(3).

 b(4).

:- end_object.

After compiling and loading the above objects, you can use queries such as:

| ?- main::a(X).

X = 1 ;

X = 2 ;

X = 3 ;

X = 4

yes

Entities containing primary multifile predicate declarations must always be compiled before entities defining clauses for
those multifile predicates. The Logtalk compiler will print a warning if the scope directive is missing.

Multifile predicates may also be declared dynamic using the same Entity::Functor/Arity notation (multifile predicates
are static by default).

When a clause of a multifile predicate is a rule, its body is compiled within the context of the object or category defining
the clause. This allows clauses for multifile predicates to call local object or category predicates. But the values of the
sender, this, and self in the implicit execution context are passed from the clause head to the clause body. This is necessary
to ensure that these values are always valid and to allow multifile predicate clauses to be defined in categories. A call to
the parameter/2 execution context methods, however, retrieves parameters of the entity defining the clause, not from
the entity for which the clause is defined. The parameters of the entity for which the clause is defined can be accessed by
simple unification at the clause head.

Local calls to the database methods from multifile predicate clauses defined in an object take place in the object own
database instead of the database of the entity holding the multifile predicate primary declaration. Similarly, local calls to
the expand_term/2 and expand_goal/2 methods from a multifile predicate clause look for clauses of the
term_expansion/2 and goal_expansion/2 hook predicates starting from the entity defining the clause instead of the
entity holding the multifile predicate primary declaration. Local calls to the current_predicate/1,
predicate_property/2, and current_op/3 methods from multifile predicate clauses defined in an object also lookup
predicates and their properties in the object own database instead of the database of the entity holding the multifile predicate
primary declaration.

55

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Coinductive directive

A predicate can be declared coinductive by using the coinductive/1 directive. For example:

:- coinductive(comember/2).

Logtalk support for coinductive predicates is experimental and requires a back-end Prolog compiler with minimal support
for cyclic terms.

Defining predicates

Object predicates

We define object predicates as we have always defined Prolog predicates, the only difference be that we have four more
control structures (the three message sending operators plus the external call operator) to play with. For example, if we
wish to define an object containing common utility list predicates like append/2 or member/2 we could write something
like:

:- object(list).

 :- public(append/3).

 :- public(member/2).

 append([], L, L).

 append([H| T], L, [H| T2]) :-

 append(T, L, T2).

 member(H, [H| _]).

 member(H, [_| T]) :-

 member(H, T).

:- end_object.

Note that, abstracting from the opening and closing object directives and the scope directives, what we have written is
plain Prolog. Calls in a predicate definition body default to the local predicates, unless we use the message sending oper-
ators or the external call operator. This enables easy conversion from Prolog code to Logtalk objects: we just need to add
the necessary encapsulation and scope directives to the old code.

Category predicates

Because a category can be imported by multiple objects, dynamic private predicates must be called either in the context
of self, using the message to self control structure, ::/1, or in the context of this (i.e. in the context of the object importing

56

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/coinductive_1.html
../refman/control/send_to_self_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

the category). For example, if we want to define a category implementing variables using destructive assignment where
the variable values are stored in self we could write:

:- category(variable).

 :- public(get/2).

 :- public(set/2).

 :- private(value_/2).

 :- dynamic(value_/2).

 get(Var, Value) :-

 ::value_(Var, Value).

 set(Var, Value) :-

 ::retractall(value_(Var, _)),

 ::asserta(value_(Var, Value).

:- end_category.

In this case, the get/2 and set/2 predicates will always access/update the correct definition, contained in the object re-
ceiving the messages. The alternative, storing the variable values in this, such that each object importing the category will
have its own definition for the value_/2 private predicate is simple: just omit the use of the ::/1 control construct in
the code above.

A category can only contain clauses for static predicates. Nevertheless, as the example above illustrates, there are no re-
strictions in declaring and calling dynamic predicates from inside a category.

Meta-predicates

Meta-predicates may be defined inside objects (and categories) as any other predicate. A meta-predicate is declared using
the meta_predicate/1 directive as described earlier on this section. When defining a meta-predicate, the arguments in
the clause heads corresponding to the meta-arguments must be variables. All meta-arguments are called in the context of
the entity calling the meta-predicate.

Some meta-predicates have meta-arguments which are not goals but closures. Logtalk supports the definition of meta-
predicates that are called with closures instead of goals as long as the definition uses the Logtalk built-in predicate call/N
to call the closure with the additional arguments. For example:

:- public(all_true/2).

:- meta_predicate(all_true(1, *)).

all_true(_, []).

all_true(Closure, [Arg| Args]) :-

 call(Closure, Arg),

 all_true(Closure, Args).

Note that in this case the meta-predicate directive specifies that the closure will be extended with exactly one extra argument.

When calling a meta-predicate, a closure can correspond to a user-defined predicate, a built-in predicate, a lambda expression,
or a control construct.

57

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/call_N.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lambda expressions

The use of lambda expressions as meta-predicate goal and closure arguments often saves writing auxiliary predicates for
the sole purpose of calling the meta-predicates. A simple example of a lambda expression is:

| ?- meta::map([X,Y]>>(Y is 2*X), [1,2,3], Ys).

Ys = [2,4,6]

yes

In this example, a lambda expression, [X,Y]>>(Y is 2*X), is used as an argument to the map/3 list mapping predicate,
defined in the library object meta, in order to double the elements of a list of integers. Using a lambda expression avoids
writing an auxiliary predicate for the sole purpose of doubling the list elements. The lambda parameters are represented
by the list [X,Y], which is connected to the lambda goal, (Y is 2*X), by the (>>)/2 operator.

Currying is supported. I.e. it is possible to write a lambda expression whose goal is another lambda expression. The above
example can be rewritten as:

| ?- meta::map([X]>>([Y]>>(Y is 2*X)), [1,2,3], Ys).

Ys = [2,4,6]

yes

Lambda expressions may also contain lambda free variables. I.e. variables that are global to the lambda expression. For
example, using GNU Prolog as the back-end compiler, we can write:

| ?- meta::map({Z}/[X,Y]>>(Z#=X+Y), [1,2,3], Zs).

Z = _#22(3..268435455)

Zs = [_#3(2..268435454),_#66(1..268435453),_#110(0..268435452)]

yes

The ISO Prolog construct {}/1 for representing the lambda free variables as this representation is often associated with
set representation. Note that the order of the free variables is of no consequence (on the other hand, a list is used for the
lambda parameters as their order does matter).

Both lambda free variables and lambda parameters can be any Prolog term. Consider the following example by Markus
Triska:

| ?- meta::map([A-B,B-A]>>true, [1-a,2-b,3-c], Zs).

Zs = [a-1,b-2,c-3]

yes

58

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Lambda_calculus
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lambda expressions can be used, as expected, in non-deterministic queries as in the following example using SWI-Prolog
as the back-end compiler and Markus Triska's CLP(FD) library:

| ?- meta::map({Z}/[X,Y]>>(clpfd:(Z#=X+Y)), Xs, Ys).

Xs = [],

Ys = [] ;

Xs = [_G1369],

Ys = [_G1378],

_G1369+_G1378#=Z ;

Xs = [_G1579, _G1582],

Ys = [_G1591, _G1594],

_G1582+_G1594#=Z,

_G1579+_G1591#=Z ;

Xs = [_G1789, _G1792, _G1795],

Ys = [_G1804, _G1807, _G1810],

_G1795+_G1810#=Z,

_G1792+_G1807#=Z,

_G1789+_G1804#=Z ;

...

As illustrated by the above examples, lambda expression syntax reuses the ISO Prolog construct {}/1 and the standard
operators (/)/2 and (>>)/2, thus avoiding defining new operators, which is always tricky for a portable system such as
Logtalk. The operator (>>)/2 was chosen as it suggests an arrow, similar to the syntax used in other languages such as
OCaml and Haskell to connect lambda parameters with lambda functions. This syntax was also chosen in order to simplify
parsing, error checking, and compilation of lambda expressions. The full specification of the lambda expression syntax
can be found in the reference manual.

The compiler checks whenever possible that all variables in a lambda expression are either classified as free variables or
as lambda parameters. The use of non-classified variables in a lambda expression should be regarded as a programming
error. Unfortunately, the dynamic features of the language and lack of sufficient information at compile time may prevent
the compiler of checking all uses of lambda expressions. The compiler also checks if a variable is classified as both a free
variable and a lambda parameter. An optimizing meta-predicate and lambda expression compiler, based on the term-ex-
pansion mechanism, is provided for practical performance.

Definite clause grammar rules

Definite clause grammar rules provide a convenient notation to represent the rewrite rules common of most grammars in
Prolog. In Logtalk, definite clause grammar rules can be encapsulated in objects and categories. Currently, the ISO/IEC
WG17 group is working on a draft specification for a definite clause grammars Prolog standard. Therefore, in the mean
time, Logtalk follows the common practice of Prolog compilers supporting definite clause grammars, extending it to

59

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://logtalk.org/manuals/refman/grammar.html#grammar_lambdas
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

support calling grammar rules contained in categories and objects. A common example of a definite clause grammar is
the definition of a set of rules for parsing simple arithmetic expressions:

:- object(calculator).

 :- public(parse/2).

 parse(Expression, Value) :-

 phrase(expr(Value), Expression).

 expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.

 expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.

 expr(X) --> term(X).

 term(Z) --> number(X), "*", term(Y), {Z is X * Y}.

 term(Z) --> number(X), "/", term(Y), {Z is X / Y}.

 term(Z) --> number(Z).

 number(C) --> "+", number(C).

 number(C) --> "-", number(X), {C is -X}.

 number(X) --> [C], {0'0 =< C, C =< 0'9, X is C - 0'0}.

:- end_object.

The predicate phrase/2 called in the definition of predicate parse/2 above is a Logtalk built-in method, similar to the
predicate with the same name found on most Prolog compilers that support definite clause grammars. After compiling
and loading this object, we can test the grammar rules with calls such as the following one:

| ?- calculator::parse("1+2-3*4", Result).

Result = -9

yes

In most cases, the predicates resulting from the translation of the grammar rules to regular clauses are not declared. Instead,
these predicates are usually called by using the built-in methods phrase/2 and phrase/3 as shown in the example above.
When we want to use the built-in methods phrase/2 and phrase/3, the non-terminal used as first argument must be
within the scope of the sender. For the above example, assuming that we want the predicate corresponding to the expr//1
non-terminal to be public, the corresponding scope directive would be:

:- public(expr//1).

The // infix operator used above tells the Logtalk compiler that the scope directive refers to a grammar rule non-terminal,
not to a predicate. The idea is that the predicate corresponding to the translation of the expr//1 non-terminal will have
a number of arguments equal to one plus the number of additional arguments necessary for processing the subjacent lists
of tokens.

In the body of a grammar rule, we can call rules that are inherited from ancestor objects, imported from categories, or
contained in other objects. This is accomplished by using non-terminals as messages. Using a non-terminal as a message
to self allows us to call grammar rules in categories and ancestor objects. To call grammar rules encapsulated in other

60

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/phrase_2.html
../refman/methods/phrase_2.html
../refman/methods/phrase_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

objects, we use a non-terminal as a message to those objects. Consider the following example, containing grammar rules
for parsing natural language sentences:

:- object(sentence,

 imports(determiners, nouns, verbs)).

 :- public(parse/2).

 parse(List, true) :-

 phrase(sentence, List).

 parse(_, false).

 sentence --> noun_phrase, verb_phrase.

 noun_phrase --> ::determiner, ::noun.

 noun_phrase --> ::noun.

 verb_phrase --> ::verb.

 verb_phrase --> ::verb, noun_phrase.

:- end_object.

The categories imported by the object would contain the necessary grammar rules for parsing determiners, nouns, and
verbs. For example:

:- category(determiners).

 :- private(determiner//0).

 determiner --> [the].

 determiner --> [a].

:- end_category.

Along with the message sending operators (::/1, ::/2, and ^^/1), we may also use other control constructs such as
\+/1, !/0, ;/2, ->/2, and {}/1 in the body of a grammar. In addition, grammar rules may contain meta-calls (a variable
taking the place of a non-terminal), which are translated to calls of the built-in method phrase/3.

You may have noticed that Logtalk defines {}/1 as a control construct for bypassing the compiler when compiling a
clause body goal. As exemplified above, this is the same control construct that is used in grammar rules for bypassing the
expansion of rule body goals when a rule is converted into a clause. Both control constructs can be combined in order to

61

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

call a goal from a grammar rule body, while bypassing at the same time the Logtalk compiler. Consider the following
example:

bar :-

 write('bar predicate called'), nl.

:- object(bypass).

 :- public(foo//0).

 foo --> {{bar}}.

:- end_object.

After compiling and loading this code, we may try the following query:

| ?- logtalk << phrase(bypass::foo, _, _).

bar predicate called

yes

This is the expected result as the expansion of the grammar rule into a clause leaves the {bar} goal untouched, which, in
turn, is converted into the goal bar when the clause is compiled.

A grammar rule non-terminal may be declared as dynamic or discontiguous, as any object predicate, using the same
Functor//Arity notation illustrated above for the scope directives. In addition, grammar rule non-terminals can be
documented using the info/2 directive, as in the following example:

:- public(sentence//0).

:- info(sentence//0, [

 comment is 'Rewrites a sentence into a noun phrase and a verb phrase.']).

Built-in object predicates (methods)

Logtalk defines a set of built-in object predicates or methods to access message execution context, to find sets of solutions,
to inspect objects, for database handling, for term and goal expansion, and for printing messages. Similar to Prolog built-
in predicates, these built-in methods should not be redefined.

Execution context methods

Logtalk defines four built-in private methods to access an object execution context. These methods (with the possible ex-
ception of parameter/2) are translated to a single unification performed at compile time with a clause head context ar-
gument. Therefore, they can be freely used without worrying about performance penalties. When called from inside a
category, these methods refer to the execution context of the object importing the category. These methods cannot be used
as messages to objects.

To find the object that received the message under execution we may use the self/1 method. We may also retrieve the
object that has sent the message under execution using the sender/1 method.

62

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/info_2.html
../refman/methods/self_1.html
../refman/methods/sender_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The method this/1 enables us to retrieve the name of the object for which the predicate clause whose body is being ex-
ecuted is defined instead of using the name directly. This helps to avoid breaking the code if we decide to change the object
name and forget to change the name references. This method may also be used from within a category. In this case, the
method returns the object importing the category on whose behalf the predicate clause is being executed.

Here is a short example including calls to these three object execution context methods:

:- object(test).

 :- public(test/0).

 test :-

 this(This),

 write('Calling a predicate definition contained in '), writeq(This), nl,

 self(Self),

 write('to answer a message received by '), writeq(Self), nl,

 sender(Sender),

 write('that was sent by '), writeq(Sender), nl, nl.

:- end_object.

:- object(descendant,

 extends(test)).

:- end_object.

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Calling a predicate definition contained in test

to answer a message received by descendant

that was sent by user

yes

Note that the goals self(Self), sender(Sender), and this(This), being translated to unifications with the clause
head context arguments at compile time, are effectively removed from the clause body. Therefore, a clause such as:

predicate(Arg) :-

 self(Self),

 atom(Arg),

is compiled with the goal atom(Arg) as the first condition on the clause body. As such, the use of these context execution
methods do not interfere with the optimizations that some Prolog compilers perform when the first clause body condition
is a call to a built-in type-test predicate or a comparison operator.

63

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/this_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For parametric objects and categories, the method parameter/2 enables us to retrieve current parameter values (see the
section on parametric objects for a detailed description). For example:

:- object(block(_Color)).

 :- public(test/0).

 test :-

 parameter(1, Color),

 write('Color parameter value is '), writeq(Color), nl.

:- end_object.

After compiling and loading these two objects, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue

yes

Calls to the parameter/2 method are translated to a compile time unification when the second argument is a variable.
When the second argument is bound, the calls are translated to a call to the built-in predicate arg/3.

Database methods

Logtalk provides a set of built-in methods for object database handling similar to the usual database Prolog predicates:
abolish/1, asserta/1, assertz/1, clause/2, retract/1, and retractall/1. These methods always operate on
the database of the object receiving the corresponding message.

When working with dynamic grammar rule non-terminals, you may use the built-in method expand_term/2 convert a
grammar rule into a clause that can than be used with the database methods.

Meta-call methods

Logtalk supports the generalized call/1-N meta-predicate. This built-in private meta-predicate must be used in the im-
plementation of meta-predicates which work with closures instead of goals. In addition, Logtalk supports the built-in
private meta-predicates ignore/1, once/1, and \+/1. These methods cannot be used as messages to objects.

All solutions methods

The usual all solutions meta-predicates are built-in private methods in Logtalk: bagof/3, findall/3, findall/4, and
setof/3. There is also a forall/2 method that implements generate and test loops. These methods cannot be used as
messages to objects.

Reflection methods

Logtalk provides a comprehensive set of built-in predicates and built-in methods for querying about entities and predicates.
Some of information, however, requires that the source files are compiled with the source_data flag turned on.

The reflection API supports two different views on entities and their contents, which we may call the transparent box view
and the black box view. In the transparent box view, we look into an entity disregarding how it will be used and returning
all information available on it, including predicate declarations and predicate definitions. This view is supported by the

64

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/parameter_2.html
objects.html#objects_parametric
../refman/methods/abolish_1.html
../refman/methods/asserta_1.html
../refman/methods/assertz_1.html
../refman/methods/clause_2.html
../refman/methods/retract_1.html
../refman/methods/retractall_1.html
../refman/methods/expand_term_2.html
../refman/methods/call_N.html
../refman/methods/ignore_1.html
../refman/methods/once_1.html
../refman/methods/not_1.html
../refman/methods/bagof_3.html
../refman/methods/findall_3.html
../refman/methods/findall_4.html
../refman/methods/setof_3.html
../refman/methods/forall_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

entity property built-in predicates. In the black box view, we look into an entity from an usage point-of-view using built-
in methods for inspecting object operators and predicates that are within scope from where we are making the call:
current_op/3, which returns operator specifications, predicate_property/2, which returns predicate properties,
and current_predicate/1, which enables us to query about predicate definitions. See below for a more detailed de-
scription of these methods.

Definite clause grammar parsing methods and non-terminals

Logtalk supports two definite clause grammar parsing built-in private methods, phrase/2 and phrase/3, with definitions
similar to the predicates with the same name found on most Prolog compilers that support definite clause grammars. These
methods cannot be used as messages to objects.

Logtalk also supports phrase//1, call//1-N, and eos//0 built-in non-terminals. The call//1-N non-terminals takes
a closure (which can be a lambda expression) plus zero or more additional arguments and are processed by appending the
input list of tokens and the list of remaining tokens to the arguments.

Term and goal expansion methods

Logtalk supports a expand_term/2 built-in method for expanding a term into another term or a list of terms. This
method is mainly used to translate grammar rules into Prolog clauses. It can be customized, e.g. for bypassing the default
Logtalk grammar rule translator, by defining clauses for the term_expansion/2 hook predicate. Logtalk also supports
a expand_goal/2 built-in method for expanding a goal. This method can also be customized by defining clauses for the
goal_expansion/2 hook predicate.

Term and goal expansion may be performed either by calling the expand_term/2 and expand_goal/2 built-in methods
explicitly or by using hook objects. An hook object is simply an object defining clauses for the term- and goal-expansion
hook predicates. To compile a source file using a hook object for expanding its terms and goals, you can use the hook/1
compiler flag in the second argument of the logtalk_compile/2 or logtalk_load/2 built-in predicates. In alternative,
you can use a set_logtalk_flag/2 directive in the source file itself. When compiling a source file, the compiler will
first try the source file specific hook object, if defined. If that fails, it tries the default hook object, if defined. If that also
fails, the compiler tries the Prolog dialect specific expansion predicate definitions if defined in the adapter file.

Sometimes we have multiple hook objects that we need to use in the compilation of a source file. The Logtalk library includes
support for two basic expansion workflows: a pipeline of hook objects, where the expansion results from an hook object
are feed to the next hook object in the pipeline, and a set of hook objects, where expansions are tried until one of is found
that succeeds. These workflows are implemented as parametric objects allowing combining them to implement more
sophisticated expansion workflows.

Clauses for the term_expansion/2 and goal_expansion/2 predicates defined within an object or a category are
never used in the compilation of the object or the category itself, however. In order to use clauses for the
term_expansion/2 and goal_expansion/2 predicates defined in plain Prolog, simply specify the pseudo-object user
as the hook object when compiling source files. When using backend Prolog compilers that support a module system, it
can also be specified a module containing clauses for the expanding predicates as long as the module name doesn't coincide
with an object name.

Logtalk provides a logtalk_load_context/2 built-in predicate that can be used to access the compilation/loading
context when performing term-expansion or goal-expansion.

Printing messages

Logtalk features a structured message printing mechanism. This mechanism gives the programmer full control of message
printing, allowing it to filter, rewrite, or redirect any message. The origins of the message printing mechanism that inspired
the Logtalk implementation goes back to Quintus Prolog, where it was apparently implemented by Dave Bowen (thanks

65

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/current_op_3.html
../refman/methods/predicate_property_2.html
../refman/methods/current_predicate_1.html
../refman/methods/phrase_2.html
../refman/methods/phrase_3.html
../refman/methods/phrase_1.html
../refman/methods/call_1.html
../refman/methods/eos_0.html
../refman/methods/expand_term_2.html
../refman/methods/term_expansion_2.html
../refman/methods/expand_goal_2.html
../refman/methods/goal_expansion_2.html
programming.html#programming_flags
../refman/predicates/logtalk_compile_2.html
../refman/predicates/logtalk_load_2.html
../refman/directives/set_logtalk_flag_2.html
../refman/predicates/logtalk_load_context_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

to Richard O'Keefe for the historical bits). Variations of this mechanism can also be found currently on e.g. SICStus Prolog,
SWI-Prolog, and YAP.

Why a mechanism for printing messages? Consider the different components in a Logtalk application development and
execution. At the bottom level, you have the Logtalk compiler and runtime. The Logtalk compiler writes messages related
to e.g. compiling and loading files, compiling entities, compilation warnings and errors. The Logtalk runtime may write
banner messages and handles execution errors that may result in printing human-level messages. The development envir-
onment can be console-based or you may be using a GUI tool such as PDT. In the latter case, PDT needs to intercept the
Logtalk compiler and runtime messages to present the relevant information using its GUI. Then you have all the other
components in a typical application. For example, your own libraries and third-party libraries. The libraries may want to
print messages on its own, e.g. banners, debugging information, or logging information. As you assemble all your applic-
ation components, you want to have the final word on which messages are printed, where, an in what conditions. Uncon-
trolled message printing by libraries could potentially e.g. disturb application flow, expose implementation details, spam
the user with irrelevant details, or break user interfaces.

The Logtalk message printing mechanism provides you with a set of predicates, defined in the logtalk built-in object,
and some hook predicates. Two of the most important predicates are print_message(Kind, Component, Term),
which is used for printing a message, and message_hook(Term, Kind, Component, Tokens), a user-defined hook
predicate used for intercepting messages. The Kind argument is used to represent the nature of the message being printed.
It can be e.g. a logging message, a warning message or an error message, In Logtalk this argument can be either an atom,
e.g. error, or a compound term, e.g. comment(loading). Using a compound term allows easy partitioning of messages
of the same kind in different groups. The following kinds of message are recognized by default:

banner

banner messages (used e.g. when loading tools or main application components; can be suppressed by setting
the report flag to warnings or off)

help

messages printed in reply for the user asking for help (mostly for helping port existing Prolog code)
information and information(Group)

messages printed usually in reply to a user request for information
silent and silent(Group)

not printed by default (but can be intercepted using the message_hook/4 predicate)
comment and comment(Group)

useful but usually not essential messages (can be suppressed by setting the report flag to warnings or off)
warning and warning(Group)

warning messages (generated e.g. by the compiler; can be suppressed by turning off the report flag)
error and error(Group)

error messages (generated e.g. by the compiler)

Note that you can define your own alternative message kind identifiers, for your own components, together with suitable
definitions for their associated prefixes and output streams.

Messages are represented by atoms or compound terms, handy for machine-processing, and converted into a list of tokens,
for human consumption. This conversion is performed using the multifile non-terminal message_tokens(Term,
Component). A simple example is:

:- multifile(logtalk::message_tokens//2).

:- dynamic(logtalk::message_tokens//2).

logtalk::message_tokens(loaded_settings_file(Path), core) -->

 ['Loaded settings file found on directory ~w'-[Path], nl, nl].

66

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/print_message_3.html
../refman/methods/message_hook_4.html
../refman/methods/message_tokens_2.html
../refman/methods/message_tokens_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The Component argument is new in the Logtalk implementation and is useful to filter messages belonging to a specific
component (e.g. the Logtalk compiler and runtime is identified by the atom core) and also to avoid conflicts when two
components define the same message term (e.g. banner).

The following tokens can be used when translating a message:

at_same_line

Signals a following part to a multi-part message with no line break in between; this token is ignored when it's
not the first in the list of tokens

flush

Flush the output stream (by calling the flush_output/1 standard predicate)
nl

Change line in the output stream
Format-Arguments

Format must be an atom and Arguments must be a list of format arguments (the token arguments are passed
to a call to the format/3 de facto standard predicate)

term(Term, Options)

Term can be any term and Options must be a list of valid write_term/3 output options (the token arguments
are passed to a call to the write_term/3 standard predicate)

ansi(Attributes, Format, Arguments)

Taken from SWI-Prolog; by default, do nothing; can be used for styled output
begin(Kind, Var)

Taken from SWI-Prolog; by default, do nothing; can be used together with end(Var) to wrap a sequence of
message tokens

end(Var)

Taken from SWI-Prolog; by default, do nothing

There are also predicates for printing a list of tokens, print_message_tokens(Stream, Prefix, Tokens), for
hooking into printing an individual token, print_message_token(Stream, Prefix, Token, Tokens), and for
setting default output stream and message prefixes, message_prefix_stream(Kind, Component, Prefix, Stream).
For example, the SWI-Prolog adapter file uses the print_message_token/4 hook predicate to enable coloring of
messages printed on a console.

Using the message printing mechanism in your applications and libraries is easy. Simply chose a unique component name
for your application (e.g. the name of the application itself), call logtalk::print_message/3 for every message that
you may want to print, and define default translations for your message terms using the multifile non-terminal
logtalk::message_tokens/2. For a full programming example, see e.g. the lgtunit tool source code.

Asking questions

Logtalk features a structured question asking mechanism that complements the message printing mechanism. This feature
provides an abstraction for the common task of asking a user a question and reading back its reply. By default, this
mechanism writes the question, writes a prompt, and reads the answer from the current user input and output streams but
allows both steps to be intercepted, filtered, rewritten, and redirected. Two typical examples are using a GUI dialog for
asking questions and automatically providing answers to specific questions.

The question asking mechanism works in tandem with the message printing mechanism, using it to print the question text
and a prompt. It provides a asking predicate and a hook predicate, both declared and defined in the logtalk built-in object.
The asking predicate, ask_question(Kind, Component, Question, Check, Answer), is used for ask a question
and read the answer. The hook predicate, question_hook(Question, Kind, Component, Tokens, Check,
Answer), is used for intercepting questions. The Kind argument is used to represent the nature of the question being
asked. Its default value is question but it can be any atom or compound term, e.g. question(parameters). Using a

67

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/print_message_tokens_3.html
../refman/methods/print_message_token_4.html
../refman/methods/message_prefix_stream_4.html
../refman/methods/ask_question_5.html
../refman/methods/question_hook_6.html
../refman/methods/question_hook_6.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

compound term allows easy partitioning of messages of the same kind in different groups. The Check argument is a
closure that is converted into a checking goal taking as argument the user answer. The ask_question/5 implements a
read loop that terminates when this checking predicate is true. The question itself is a term that is translated into printing
tokens using the message_tokens/2 multifile predicate described above.

There is also a user-defined multifile predicate for setting default prompt and input streams,
question_prompt_stream(Kind, Component, Prompt, Stream).

An usage example of this mechanism can be found in the debugger tool where it's used to abstract the user interaction
when tracing a goal execution in debug mode.

Predicate properties

We can find the properties of visible predicates by calling the predicate_property/2 built-in method. For example:

| ?- bar::predicate_property(foo(_), Property).

Note that this method respects the predicate's scope declarations. For instance, the above call will only return properties
for public predicates.

An object's set of visible predicates is the union of all the predicates declared for the object with all the built-in methods
and all the Logtalk and Prolog built-in predicates.

The following predicate properties are supported:

scope(Scope)

The predicate scope (useful for finding the predicate scope with a single call to predicate_property/2)
public, protected, private

The predicate scope (useful for testing if a predicate have a specific scope)
static, dynamic

All predicates are either static or dynamic (note, however, that a dynamic predicate can only be abolished if it
was dynamically declared)

logtalk, prolog, foreign
A predicate can be defined in Logtalk source code, Prolog code, or in foreign code (e.g. in C)

built_in

The predicate is a built-in predicate
multifile

The predicate is declared multifile (i.e. it can have clauses defined in several entities)
meta_predicate(Template)

The predicate is declared as a meta-predicate with the specified template
coinductive(Template)

The predicate is declared as a coinductive predicate with the specified template
declared_in(Entity)

The predicate is declared (using a scope directive) in the specified entity
defined_in(Entity)

The predicate definition is looked up in the specified entity (note that this property does not necessarily imply
that clauses for the predicate exist in Entity; the predicate can simply be false as per the closed-world assump-
tion)

redefined_from(Entity)

The predicate is a redefinition of a predicate definition inherited from the specified entity

68

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/question_prompt_stream_4.html
../refman/methods/predicate_property_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

non_terminal(NonTerminal//Arity)

The predicate resulted from the compilation of the specified grammar rule non-terminal
alias_of(Predicate)

The predicate (name) is an alias for the specified predicate
alias_declared_in(Entity)

The predicate alias is declared in the specified entity
synchronized

The predicate is declared as synchronized (i.e. it's a deterministic predicate synchronized using a mutex when
using a backend Prolog compiler supporting a compatible multi-threading implementation)

Some properties are only available when the entities are defined in source files and when those source files are compiled
with the source_data flag turned on:

inline

The predicate definition is inlined
auxiliary

The predicate is not user-defined but rather automatically generated by the compiler or the term-expansion
mechanism

mode(Mode, Solutions)

Instantiation, type, and determinism mode for the predicate (which can have multiple modes)
info(ListOfPairs)

Documentation key-value pairs as specified in the user-defined info/2 directive
number_of_clauses(N)

The number of clauses for the predicate existing at compilation time (note that this property is not updated at
runtime when asserting and retracting clauses for dynamic predicates)

number_of_rules(N)

The number of rules for the predicate existing at compilation time (note that this property is not updated at
runtime when asserting and retracting clauses for dynamic predicates)

declared_in(Entity, Line)

The predicate is declared (using a scope directive) in the specified entity in a source file at the specified line
(if applicable)

defined_in(Entity, Line)

The predicate is defined in the specified entity in a source file at the specified line (if applicable)
redefined_from(Entity, Line)

The predicate is a redefinition of a predicate definition inherited from the specified entity, which is defined in
a source file at the specified line (if applicable)

alias_declared_in(Entity, Line)

The predicate alias is declared in the specified entity in a source file at the specified line (if applicable)

The properties declared_in/1-2, defined_in/1-2, and redefined_from/1-2 do not apply to built-in methods
and Logtalk or Prolog built-in predicates. Note that if a predicate is declared in a category imported by the object, it will
be the category name — not the object name — that will be returned by the property declared_in/1. The same is true
for protocol declared predicates.

Finding declared predicates

We can find, by backtracking, all visible user predicates by calling the current_predicate/1 built-in method. This
method respects the predicate's scope declarations. For instance, the following call:

| ?- some_object::current_predicate(Functor/Arity).

69

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/current_predicate_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

will only return user predicates that are declared public. The predicate property non_terminal/1 may be used to retrieve
all grammar rule non-terminals declared for an object. For example:

current_non_terminal(Object, NonTerminal//Args) :-

 Object::current_predicate(Functor/Arity),

 functor(Predicate, Functor, Arity),

 Object::predicate_property(Predicate, non_terminal(NonTerminal//Args)).

Usually, the non-terminal and the corresponding predicate share the same functor but users should not rely on this always
being true.

Calling Prolog built-in predicates

In predicate definitions, predicate calls which are not prefixed with a message sending operator (either :: or ^^), are
compiled to either calls to local predicates or as calls to Logtalk/Prolog built-in predicates. A predicate call is compiled
as a call to a local predicate if the object (or category) contains a scope directive, a definition for the called predicate, or
a dynamic declaration for it. When the object (or category) does not contain either a definition of the called predicate or
a corresponding dynamic declaration, Logtalk tests if the call corresponds to a Logtalk or Prolog built-in predicate. Calling
a predicate which is neither a local predicate nor a Logtalk/Prolog built-in predicate results in a compile time warning.
This means that, in the following example:

foo :-

 ...,

 write(bar),

 ...

the call to the predicate write/1 will be compiled as a call to the corresponding Prolog built-in predicate unless the object
(or category) encapsulating the above definition also contains a predicate named write/1 or a dynamic declaration for
the predicate.

When calling non-standard Prolog built-in predicates or using non-standard Prolog arithmetic functions, you may run into
portability problems while trying your applications with different back-end Prolog compilers (non-standard predicates
and non-standard arithmetic functions are often specific to a Prolog compiler). You may use the Logtalk compiler flag
portability/1 to help check for problematic calls in your code.

Calling Prolog non-standard meta-predicates

Prolog built-in meta-predicates may only be called locally within objects or categories, i.e. they cannot be used as messages.
Compiling calls to non-standard, Prolog built-in meta-predicates can be tricky, however, as there is no standard way of
checking if a built-in predicate is also a meta-predicate and finding out which are its meta-arguments. But Logtalk supports
override the original meta-predicate template if not programmatically available or usable. For example, assume a
det_call/1 Prolog built-in meta-predicate that takes a goal as argument. We can add to the object (or category) calling
it the directive:

:- meta_predicate(user:det_call(0)).

70

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Another solution is to explicitly declare all non-standard Prolog meta-predicates in the corresponding adapter file using
the internal predicate '$lgt_prolog_meta_predicate'/3. For example:

'$lgt_prolog_meta_predicate'(det_call(_), det_call(0), predicate).

The third argument can be either the atom predicate or the atom control_construct, a distinction that is useful
when compiling in debug mode.

Calling Prolog user-defined predicates

Prolog user-defined predicates can be called from within objects or categories by using the {}/1 compiler bypass control
construct. For example:

foo :-

 ...,

 {bar},

 ...

In alternative, you can also use the uses/2 directive and write:

:- uses(user, [bar/0]).

foo :-

 ...,

 bar,

 ...

Note that user is a pseudo-object in Logtalk containing all predicate definitions that are not encapsulated (either in a
Logtalk entity or a Prolog module).

Calling Prolog module predicates

To call Prolog module predicates from within objects or categories you can use simply write:

foo :-

 ...,

 module:bar,

 ...

You can also use in alternative the use_module/2 directive:

:- use_module(module, [bar/0]).

foo :-

 ...,

 bar,

 ...

71

Predicates

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/external_call_1.html
../refman/directives/uses_2.html
../refman/directives/use_module_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note that the first argument of the use_module/2, when used within an object or a category, is a module name, not a file
name. The actual module code should be loaded prior to compilation of Logtalk that uses it. In particular, programmers
should not expect that the module be auto-loaded (when using back-end Prolog compilers supporting an autoloading
mechanism).

When the module predicate is a meta-predicate but for some reason you don't want its calls to be compiled as such, you
can use the {}/1 compiler bypass control construct as before:

foo :-

 ...,

 {module:bar},

 ...

This workaround is sometimes necessary when calling module meta-predicates whose meta-predicate templates are am-
biguous and cannot be processed by the Logtalk compiler (note, however, that it's often possible to specify an overriding
meta-predicate directive within the object or category making the call as explained above).

72

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/external_call_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Inheritance

The inheritance mechanisms found on object-oriented programming languages allow us the specialization of previously
defined objects, avoiding the unnecessary repetition of code. In the context of logic programming, we can interpret inher-
itance as a form of theory extension: an object will virtually contain, besides its own predicates, all the predicates inherited
from other objects that are not redefined by itself.

Logtalk uses a depth-first lookup procedure for finding predicate declarations and predicate definitions, as explained below.
The lookup procedures locate the entities holding the predicate declaration and the predicate definition using, respectively,
the predicate indicator and the predicate template (constructed from the predicate indicator).

The alias/2 predicate directive may be used to defining alternative names for inherited predicates for solving inheritance
conflicts and for giving access to all inherited definitions.

Protocol inheritance

Protocol inheritance refers to the inheritance of predicate declarations (scope directives). These can be contained in objects,
in protocols, or in categories. Logtalk supports single and multi-inheritance of protocols: an object or a category may im-
plement several protocols and a protocol may extend several protocols.

Search order for prototype hierarchies

The search order for predicate declarations is first the object, second the implemented protocols (and the protocols that
these may extend), third the imported categories (and the protocols that they may implement), and last the objects that the
object extends. This search is performed in a depth-first way. When an object inherits two different declarations for the
same predicate, by default, only the first one will be considered.

Search order for class hierarchies

The search order for predicate declarations starts in the object classes. Following the classes declaration order, the search
starts in the classes implemented protocols (and the protocols that these may extend), third the classes imported categories
(and the protocols that they may implement), and last the superclasses of the object classes. This search is performed in
a depth-first way. If the object inherits two different declarations for the same predicate, by default only the first one will
be considered.

Implementation inheritance

Implementation inheritance refers to the inheritance of predicate definitions. These can be contained in objects or in cat-
egories. Logtalk supports multi-inheritance of implementation: an object may import several categories or extend, specialize,
or instantiate several objects.

73

Inheritance

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Search order for prototype hierarchies

The search order for predicate definitions is similar to the search for predicate declarations except that implemented pro-
tocols are ignored (as they can only contain predicate directives).

Search order for class hierarchies

The search order for predicate definitions is similar to the search for predicate declarations except that implemented pro-
tocols are ignored (as they can only contain predicate directives) and that the search starts at the instance itself (that received
the message) before proceeding, if no predicate definition is found there, to the instance classes.

Inheritance versus predicate redefinition

When we define a predicate that is already inherited from other object, the inherited definitions are hidden by the new
definitions. This is called overriding inheritance: a local definition overrides any inherited ones. For example, assume that
we have the following two objects:

:- object(root).

 :- public(bar/1).

 :- public(foo/1).

 bar(root).

 foo(root).

:- end_object.

:- object(descendant,

 extends(root)).

 foo(descendant).

:- end_object.

After compiling and loading these objects, we can check the overriding behavior by trying the following queries:

| ?- root::(bar(Bar), foo(Foo)).

Bar = root

Foo = root

yes

| ?- descendant::(bar(Bar), foo(Foo)).

Bar = root

Foo = descendant

yes

However, we can explicitly program other behaviors. Let us see a few examples.

74

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specialization inheritance

Specialization of inherited definitions: the new definition uses the inherited definitions, adding to this new code. This is
accomplished by calling the ^^/1 operator in the new definition.

:- object(root).

 :- public(init/0).

 init :-

 write('root init'), nl.

:- end_object.

:- object(descendant,

 extends(root)).

 init :-

 write('descendant init'), nl,

 ^^init.

:- end_object.

| ?- descendant::init.

descendant init

root init

yes

Union inheritance

Union of the new with the inherited definitions: all the definitions are taken into account, the calling order being defined
by the inheritance mechanisms. This can be accomplished by writing a clause that just calls, using the ^^/1 operator, the

75

Inheritance

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/call_super_1.html
../refman/control/call_super_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

inherited definitions. The relative position of this clause among the other definition clauses sets the calling order for the
local and inherited definitions.

:- object(root).

 :- public(foo/1).

 foo(1).

 foo(2).

:- end_object.

:- object(descendant,

 extends(root)).

 foo(3).

 foo(Foo) :-

 ^^foo(Foo).

:- end_object.

| ?- descendant::foo(Foo).

Foo = 3 ;

Foo = 1 ;

Foo = 2 ;

no

76

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Selective inheritance

Hiding some of the inherited definitions, or differential inheritance: this form of inheritance is normally used in the repres-
entation of exceptions to generic definitions. Here we will need to use the ^^/1 operator to test and possibly reject some
of the inherited definitions.

:- object(bird).

 :- public(mode/1).

 mode(walks).

 mode(flies).

:- end_object.

:- object(penguin,

 extends(bird)).

 mode(swims).

 mode(Mode) :-

 ^^mode(Mode),

 Mode \= flies.

:- end_object.

| ?- penguin::mode(Mode).

Mode = swims ;

Mode = walks ;

no

Public, protected, and private inheritance

To make all public predicates declared via implemented protocols, imported categories, or inherited objects protected or
to make all public and protected predicates private we prefix the entity's name with the corresponding keyword. For instance:

:- object(Object,

 implements(private::Protocol)). % all the Protocol public and protected

 ... % predicates become private predicates

:- end_object. % for the Object clients

or:

:- object(Class,

 specializes(protected::Superclass)). % all the Superclass public predicates become

 ... % protected predicates for the Class clients

:- end_object.

77

Inheritance

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/call_super_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Omitting the scope keyword is equivalent to using the public scope keyword. For example:

:- object(Object,

 imports(public::Category)).

 ...

:- end_object.

This is the same as:

:- object(Object,

 imports(Category)).

 ...

:- end_object.

This way we ensure backward compatibility with older Logtalk versions and a simplified syntax when protected or private
inheritance are not used.

Composition versus multiple inheritance

It is not possible to discuss inheritance mechanisms without referring to the long and probably endless debate on single
versus multiple inheritance. The single inheritance mechanism can be implemented in an very efficient way, but it imposes
several limitations on reusing, even if the multiple characteristics we intend to inherit are orthogonal. On the other hand,
the multiple inheritance mechanisms are attractive in their apparent capability of modeling complex situations. However,
they include a potential for conflict between inherited definitions whose variety does not allow a single and satisfactory
solution for all the cases.

Until now, no solution that we might consider satisfactory for all the problems presented by the multiple inheritance
mechanisms has been found. From the simplicity of some extensions that use the Prolog search strategy like [McCabe 92]
or [Moss 94] and to the sophisticated algorithms of CLOS [Bobrow 88], there is no adequate solution for all the situations.
Besides, the use of multiple inheritance carries some complex problems in the domain of software engineering, particularly
in the reuse and maintenance of the applications. All these problems are substantially reduced if we preferably use in our
software development composition mechanisms instead of specialization mechanisms [Taenzer 89]. Multiple inheritance
can and should be seen more as a useful analysis and project abstraction, than as an implementation technique [Shan 93].
Logtalk provides first-class support for software composition using categories.

Nevertheless, Logtalk supports multi-inheritance by enabling an object to extend, instantiate, or specialize more than one
object. The current Logtalk release provides a predicate directive, alias/2, which may be used to solve some multi-in-
heritance conflicts. Lastly, it should be noted that the multi-inheritance support does not compromise performance when
we use single-inheritance.

78

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#McCabe92
../bibliography.html#Moss94
../bibliography.html#Bobrow88
../bibliography.html#Taenzer89
../bibliography.html#Shan93
categories.html
../refman/directives/alias_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Event-driven programming

The addition of event-driven programming capacities to the Logtalk language [Moura 94] is based on a simple but
powerful idea:

The computations must result, not only from message sending, but also from the observation of message
sending.

The need to associate computations to the occurrence of events was very early recognized in several knowledge represent-
ation languages, in some programming languages [Stefik 86, Moon 86], and in the implementation of operative systems
[Tanenbaum 87] and graphical user interfaces.

With the integration between object-oriented and event-driven programming, we intend to achieve the following goals:

• Minimize the coupling between objects. An object should only contain what is intrinsic to it. If an object observes an-
other object, that means that it should depend only on the (public) protocol of the object observed, and not on the imple-
mentation of that same protocol.

• Provide a mechanism for building reflexive systems in Logtalk based on the dynamic behavior of objects in complement
to the reflective information of the object's contents and relations.

• Provide a mechanism for easily defining method pre- and post-conditions that can be toggled using the events compiler
flag. The pre- and post-conditions may be defined in the same object containing the methods or distributed between
several objects acting as method monitors.

Definitions

The words event and monitor have multiple meanings in computer science, so, to avoid misunderstandings, it is advisable
that we start by defining them in the Logtalk context.

Event

In an object-oriented system, all computations start through message sending. It thus becomes quite natural to declare that
the only event that can occur in this kind of system is precisely the sending of a message. An event can thus be represented
by the ordered tuple (Object, Message, Sender).

If we consider message processing an indivisible activity, we can interpret the sending of a message and the return of the
control to the object that has sent the message as two distinct events. This distinction allows us to have a more precise
control over a system dynamics. In Logtalk, these two types of events have been named before and after, respectively

79

Event-driven programming

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#Moura94
../bibliography.html#Stefik86
../bibliography.html#Moon86
../bibliography.html#Tanenbaum87
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

for message sending and returning. Therefore, we end up by representing an event by the ordered tuple (Event, Object,
Message, Sender).

The implementation of the event notion in Logtalk enjoys the following properties:

Independence between the two types of events
We can choose to watch only one event type or to process each one of the events associated to a message
sending in an independent way.

All events are automatically generated by the message sending mechanism
The task of generating events is accomplished, in a transparent way, by the message sending mechanism. The
user just defines which are the events in which he is interested in.

The events watched at any moment can be dynamically changed during program execution
The notion of event allows the user not only to have the possibility of observing, but also of controlling and
modifying an application behavior, namely by dynamically changing the observed events during program exe-
cution. It is our goal to provide the user with the possibility of modeling the largest possible number of situations.

Monitor

Complementary to the notion of event is the notion of monitor. A monitor is an object that is automatically notified by
the message sending mechanisms whenever certain events occur. A monitor should naturally define the actions to be carried
out whenever a monitored event occurs.

The implementation of the monitor notion in Logtalk enjoys the following properties:

Any object can act as a monitor
The monitor status is a role that any object can perform during its existence. The minimum protocol necessary
is declared in the built-in protocol monitoring. Strictly speaking, the reference to this protocol is only needed
when specializing event handlers. Nevertheless, it is considered good programming practice to always refer
the protocol when defining event handlers.

Unlimited number of monitors for each event
Several monitors can observe the same event because of distinct reasons. Therefore, the number of monitors
per event is bounded only by the available computing resources.

The monitor status of an object can be dynamically changed in runtime
This property does not imply that an object must be dynamic to act as a monitor (the monitor status of an object
is not stored in the object).

The execution of actions, defined in a monitor, associated to each event, never affects the term that denotes the message
involved

In other words, if the message contains uninstantiated variables, these are not affected by the acting of monitors
associated to the event.

Event generation

For each message that is sent (using the ::/2 message sending mechanism) the runtime system automatically generates
two events. The first — before event — is generated when the message is sent. The second — after event — is
generated after the message has successfully been executed.

Communicating events to monitors

Whenever a spied event occurs, the message sending mechanisms call the corresponding event handlers directly for all
registered monitors. These calls are made bypassing the message sending primitives in order to avoid potential endless

80

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/send_to_object_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

loops. The event handlers consist in user definitions for the public predicates declared in the monitoring built-in protocol
(one for each event kind; see below for more details).

Performance concerns

Ideally, the existence of monitored messages should not affect the processing of the remaining messages. On the other
hand, for each message that has been sent, the system must verify if its respective event is monitored. Whenever possible,
this verification should be performed in constant time and independently from the number of monitored events. The events
representation takes advantage of the first argument indexing performed by most Prolog compilers, which ensure — in
the general case — an access in constant time.

Event-support can be turned off on a per-object (or per-category) basis using the compiler flag events/1. With event-
support turned off, Logtalk uses optimized code for processing message sending calls that skips the checking of monitored
events, resulting in a small but measurable performance improvement.

Monitor semantics

The established semantics for monitors actions consists on considering its success as a necessary condition so that a message
can succeed:

• All actions associated to events of type before must succeed, so that the message processing can start.

• All actions associated to events of type after also have to succeed so that the message itself succeeds. The failure of
any action associated to an event of type after forces backtracking over the message execution (the failure of a mon-
itor never causes backtracking over the preceding monitor actions).

Note that this is the most general choice. If we wish a transparent presence of monitors in a message processing, we just
have to define the monitor actions in such a way that they never fail (which is very simple to accomplish).

Activation order of monitors

Ideally, whenever there are several monitors defined for the same event, the calling order should not interfere with the
result. However, this is not always possible. In the case of an event of type before, the failure of a monitor prevents a
message from being sent and prevents the execution of the remaining monitors. In case of an event of type after, a
monitor failure will force backtracking over message execution. Different orders of monitor activation can therefore lead
to different results if the monitor actions imply object modifications unrecoverable in case of backtracking. Therefore, the
order for monitor activation should be assumed as arbitrary. In effect, to assume or to try to impose a specific sequence
requires a global knowledge of an application dynamics, which is not always possible. Furthermore, that knowledge can
reveal itself as incorrect if there is any changing in the execution conditions. Note that, given the independence between
monitors, it does not make sense that a failure forces backtracking over the actions previously executed.

Event handling

Logtalk provides three built-in predicates for event handling. These predicates enable you to find what events are defined,
to define new events and to abolish events when they are no longer needed. If you plan to use events extensively in your
application, then you should probably define a set of objects that use the built-in predicates described below to implement
more sophisticated and high-level behavior.

81

Event-driven programming

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Defining new events

New events can be defined using the Logtalk built-in predicate define_events/5:

| ?- define_events(Event, Object, Message, Sender, Monitor).

Note that if any of the Event, Object, Message, and Sender arguments is a free variable or contains free variables, this
call will define a set of matching events.

Abolishing defined events

Events that are no longer needed may be abolished using the abolish_events/5 built-in predicate:

| ?- abolish_events(Event, Object, Message, Sender, Monitor).

If called with free variables, this goal will remove all matching events.

Finding defined events

The events that are currently defined can be retrieved using the Logtalk built-in predicate current_event/5:

| ?- current_event(Event, Object, Message, Sender, Monitor).

Note that this predicate will return sets of matching events if some of the returned arguments are free variables or contain
free variables.

Defining event handlers

The monitoring built-in protocol declares two public predicates, before/3 and after/3, that are automatically called
to handle before and after events. Any object that plays the role of monitor must define one or both of these event
handler methods:

before(Object, Message, Sender) :-

after(Object, Message, Sender) :-

82

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/define_events_5.html
../refman/predicates/abolish_events_5.html
../refman/predicates/current_event_5.html
../refman/methods/before_3.html
../refman/methods/after_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The arguments in both methods are instantiated by the message sending mechanisms when a monitored event occurs. For
example, assume that we want to define a monitor called tracer that will track any message sent to an object by printing
a describing text to the standard output. Its definition could be something like:

:- object(tracer,

 implements(monitoring)). % built-in protocol for event handler methods

 before(Object, Message, Sender) :-

 write('call: '), writeq(Object), write(' <-- '), writeq(Message),

 write(' from '), writeq(Sender), nl.

 after(Object, Message, Sender) :-

 write('exit: '), writeq(Object), write(' <-- '), writeq(Message),

 write(' from '), writeq(Sender), nl.

:- end_object.

Assume that we also have the following object:

:- object(any).

 :- public(bar/1) .

 :- public(foo/1) .

 bar(bar).

 foo(foo).

:- end_object.

After compiling and loading both objects (note that the object any must be compiled with the flag events(allow)), we
can start tracing every message sent to any object by calling the define_events/5 built-in predicate:

| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent to any object will be traced to the standard output stream:

| ?- any::bar(X).

call: any <-- bar(X) from user

exit: any <-- bar(bar) from user

X = bar

yes

83

Event-driven programming

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

To stop tracing, we can use the abolish_events/5 built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

The monitoring protocol declares the event handlers as public predicates. If necessary, protected or private implement-
ation of the protocol may be used in order to change the scope of the event handler predicates. Note that the message
sending processing mechanisms are able to call the event handlers irrespective of their scope. Nevertheless, the scope of
the event handlers may be restricted in order to prevent other objects from calling them.

84

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Multi-threading programming

Logtalk provides experimental support for multi-threading programming on selected Prolog compilers. Logtalk makes
use of the low-level Prolog built-in predicates that implement message queues and interface with POSIX threads and
mutexes (or a suitable emulation), providing a small set of high-level predicates and directives that allows programmers
to easily take advantage of modern multi-processor and multi-core computers without worrying about the details of creating,
synchronizing, or communicating with threads. Logtalk multi-threading programming integrates with object-oriented
programming providing a threaded engines API, enabling objects and categories to prove goals concurrently, and supporting
synchronous and asynchronous messages.

Enabling multi-threading support

Multi-threading support may be disabled by default. It can be enabled on the Prolog adapter files of supported compilers
by setting the read-only compiler flag threads to supported.

Enabling objects to make multi-threading calls

The threaded/0 object directive is used to enable an object to make multi-threading calls:

:- threaded.

This directive results in the automatic creation and set up of an object message queue when the object is loaded or created
at runtime. Object message queues are used for exchanging thread notifications and for storing concurrent goal solutions
and replies to the multi-threading calls made within the object. The message queue for the pseudo-object user is automat-
ically created at Logtalk startup (provided that multi-threading programming is supported and enabled for the chosen
Prolog compiler).

Multi-threading built-in predicates

Logtalk provides a small set of built-in predicates for multi-threading programming. For simple tasks where you simply
want to prove a set of goals, each one in its own thread, Logtalk provides a threaded/1 built-in predicate. The remaining
predicates allow for fine-grained control, including postponing retrieving of thread goal results at a later time, supporting
non-deterministic thread goals, and making one-way asynchronous calls. Together, these predicates provide high-level
support for multi-threading programming, covering most common use cases.

Proving goals concurrently using threads

A set of goals may be proved concurrently by calling the Logtalk built-in predicate threaded/1. Each goal in the set
runs in its own thread.

85

Multi-threading programming

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/threaded_0.html
../refman/predicates/threaded_1.html
../refman/predicates/threaded_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When the threaded/1 predicate argument is a conjunction of goals, the predicate call is akin to and-parallelism. For
example, assume that we want to find all the prime numbers in a given interval, [N, M]. We can split the interval in two
parts and then span two threads to compute the primes numbers in each sub-interval:

prime_numbers(N, M, Primes) :-

 M > N,

 N1 is N + (M - N) // 2,

 N2 is N1 + 1,

 threaded((

 prime_numbers(N2, M, [], Acc),

 prime_numbers(N, N1, Acc, Primes)

)).

prime_numbers(N, M, Acc, Primes) :-

 ...

The threaded/1 call terminates when the two implicit threads terminate. In a computer with two or more processors (or
with a processor with two or more cores) the code above can be expected to provide better computation times when
compared with single-threaded code for sufficiently large intervals.

When the threaded/1 predicate argument is a disjunction of goals, the predicate call is akin to or-parallelism, here rein-
terpreted as a set of goals competing to find a solution. For example, consider the different methods that we can use to
find the roots of real functions. Depending on the function, some methods will faster than others. Some methods will
converge into the solution while others may diverge and never find it. We can try all the methods simultaneously by
writing:

find_root(Function, A, B, Error, Zero, Algorithm) :-

 threaded((

 (bisection::find_root(Function, A, B, Error, Zero), Algorithm = bisection)

 ; (newton::find_root(Function, A, B, Error, Zero), Algorithm = newton)

 ; (muller::find_root(Function, A, B, Error, Zero), Algorithm = muller)

)).

The above threaded/1 goal succeeds when one of the implicit threads succeeds in finding the function root, leading to
the termination of all the remaining competing threads.

The threaded/1 built-in predicate is most useful for lengthy, independent deterministic computations where the compu-
tational costs of each goal outweigh the overhead of the implicit thread creation and management.

Proving goals asynchronously using threads

A goal may be proved asynchronously using a new thread by calling the Logtalk built-in predicate threaded_call/1.
Calls to this predicate are always true and return immediately (assuming a callable argument). The term representing the
goal is copied, not shared with the thread. The thread computes the first solution to the goal, posts it to the message queue
of the object from where the threaded_call/1 predicate was called, and suspends waiting for either a request for an
alternative solution or for the program to commit to the current solution.

The results of proving a goal asynchronously in a new thread may be later retrieved by calling the Logtalk built-in predicate
threaded_exit/1 within the same object where the call to the threaded_call/1 predicate was made. The
threaded_exit/1 calls suspend execution until the results of the threaded_call/1 calls are sent back to the object
message queue.

86

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/threaded_call_1_2.html
../refman/predicates/threaded_exit_1_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The threaded_exit/1 predicate allow us to retrieve alternative solutions through backtracking (if you want to commit
to the first solution, you may use the threaded_once/1 predicate instead of the threaded_call/1 predicate). For
example, assuming a lists object implementing the usual member/2 predicate, we could write:

| ?- threaded_call(lists::member(X, [1,2,3])).

X = _G189

yes

| ?- threaded_exit(lists::member(X, [1,2,3])).

X = 1 ;

X = 2 ;

X = 3 ;

no

In this case, the threaded_call/1 and the threaded_exit/1 calls are made within the pseudo-object user. The implicit
thread running the lists::member/2 goal suspends itself after providing a solution, waiting for a request to an alternative
solution; the thread is automatically terminated when the runtime engine detects that backtracking to the threaded_exit/1
call is no longer possible.

Calls to the threaded_exit/1 predicate block the caller until the object message queue receives the reply to the asyn-
chronous call. The predicate threaded_peek/1 may be used to check if a reply is already available without removing
it from the thread queue. The threaded_peek/1 predicate call succeeds or fails immediately without blocking the caller.
However, keep in mind that repeated use of this predicate is equivalent to polling a message queue, which may severely
hurt performance.

Be careful when using the threaded_exit/1 predicate inside failure-driven loops. When all the solutions have been
found (and the thread generating them is therefore terminated), re-calling the predicate will generate an exception. Note
that failing instead of throwing an exception is not an acceptable solution as it could be misinterpreted as a failure of the
threaded_exit/1 argument.

The example on the previous section with prime numbers could be rewritten using the threaded_call/1 and
threaded_exit/1 predicates:

prime_numbers(N, M, Primes) :-

 M > N,

 N1 is N + (M - N) // 2,

 N2 is N1 + 1,

 threaded_call(prime_numbers(N2, M, [], Acc)),

 threaded_call(prime_numbers(N, N1, Acc, Primes)),

 threaded_exit(prime_numbers(N2, M, [], Acc)),

 threaded_exit(prime_numbers(N, N1, Acc, Primes)).

prime_numbers(N, M, Acc, Primes) :-

 ...

When using asynchronous calls, the link between a threaded_exit/1 call and the corresponding threaded_call/1
call is established using unification. If there are multiple threaded_call/1 calls for a matching threaded_exit/1

87

Multi-threading programming

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/threaded_once_1_2.html
../refman/predicates/threaded_peek_1_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

call, the connection can potentially be established with any of them. Nevertheless, you can easily use a tag the calls by
using the extended threaded_call/2 and threaded_exit/2 built-in predicates. For example:

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 1

yes

?- threaded_call(member(X, [1,2,3]), Tag).

Tag = 2

yes

?- threaded_exit(member(X, [1,2,3]), 2).

X = 1 ;

X = 2 ;

X = 3

yes

When using these predicates, the tags shall be considered as an opaque term; users shall not rely on its type.

One-way asynchronous calls

Sometimes we want to prove a goal in a new thread without caring about the results. This may be accomplished by using
the built-in predicate threaded_ignore/1. For example, assume that we are developing a multi-agent application where
an agent may send an "happy birthday" message to another agent. We could write:

..., threaded_ignore(agent::happy_birthday), ...

The call succeeds with no reply of the goal success, failure, or even exception ever being sent back to the object making
the call. Note that this predicate implicitly performs a deterministic call of its argument.

Asynchronous calls and synchronized predicates

Proving a goal asynchronously using a new thread may lead to problems when the goal results in side-effects such as in-
put/output operations or modifications to an object database. For example, if a new thread is started with the same goal
before the first one finished its job, we may end up with mixed output, a corrupted database, or unexpected goal failures.
In order to solve this problem, predicates (and grammar rule non-terminals) with side-effects can be declared as synchronized
by using the synchronized/1 predicate directive. Proving a query to a synchronized predicate (or synchronized non-
terminal) is internally protected by a mutex, thus allowing for easy thread synchronization. For example:

:- synchronized(db_update/1). % ensure thread synchronization

db_update(Update) :- % predicate with side-effects

 ...

88

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/threaded_call_1_2.html
../refman/predicates/threaded_exit_1_2.html
../refman/predicates/threaded_ignore_1.html
../refman/directives/synchronized_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A second example: assume an object defining two predicates for writing, respectively, even and odd numbers in a given
interval to the standard output. Given a large interval, a goal such as:

| ?- threaded_call(obj::odd_numbers(1,100)), threaded_call(obj::even_numbers(1,100)).

1 3 2 4 6 8 5 7 10 ...

...

will most likely result in a mixed up output. By declaring the odd_numbers/2 and even_numbers/2 predicates syn-
chronized:

:- synchronized([

 odd_numbers/2,

 even_numbers/2]).

one goal will only start after the other one finished:

| ?- threaded_ignore(obj::odd_numbers(1,99)), threaded_ignore(obj::even_numbers(1,99)).

1 3 5 7 9 11 ...

...

2 4 6 8 10 12 ...

...

Note that, in a more realistic scenario, the two threaded_ignore/1 calls would be made concurrently from different
objects. Using the same synchronized directive for a set of predicates imply that they all use the same mutex, as required
for this example.

As each Logtalk entity is independently compiled, this directive must be included in every object or category that contains
a definition for the described predicate, even if the predicate declaration is inherited from another entity, in order to ensure
proper compilation. Note that a synchronized predicate cannot be declared dynamic. To ensure atomic updates of a dynamic
predicate, declare as synchronized the predicate performing the update.

Synchronized predicates may be used as wrappers to messages sent to objects that are not multi-threading aware. For ex-
ample, assume a random object defining a random/1 predicate that generates random numbers, using side-effects on its
implementation (e.g. for storing the generator seed). We can specify and define e.g. a sync_random/1 predicate as follows:

:- synchronized(sync_random/1).

sync_random(Random) :-

 random::random(Random).

and then always use the sync_random/1 predicate instead of the predicate random/1 from multi-threaded code.

The synchronization entity and predicate directives may be used when defining objects that may be reused in both single-
threaded and multi-threaded Logtalk applications. The directives are simply ignored (i.e. the synchronized predicates are
interpreted as normal predicates) when the objects are used in a single-threaded application.

89

Multi-threading programming

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synchronizing threads through notifications

Declaring a set of predicates as synchronized can only ensure that they are not executed at the same time by different
threads. Sometimes we need to suspend a thread not on a synchronization lock but on some condition that must hold true
for a thread goal to proceed. I.e. we want a thread goal to be suspended until a condition becomes true instead of simply
failing. The built-in predicate threaded_wait/1 allows us to suspend a predicate execution (running in its own thread)
until a notification is received. Notifications are posted using the built-in predicate threaded_notify/1. A notification
is a Prolog term that a programmer chooses to represent some condition becoming true. Any Prolog term can be used as
a notification argument for these predicates. Related calls to the threaded_wait/1 and threaded_notify/1 must be
made within the same object, this, as the object message queue is used internally for posting and retrieving notifications.

Each notification posted by a call to the threaded_notify/1 predicate is consumed by a single threaded_wait/1
predicate call (i.e. these predicates implement a peer-to-peer mechanism). Care should be taken to avoid deadlocks when
two (or more) threads both wait and post notifications to each other.

Engines

Threaded engines provide an alternative to the multi-threading predicates described in the previous sections. An engine
is a computing thread whose solutions can be lazily computed and retrieved. In addition, an engine also supports a term
queue that allows passing arbitrary terms to the engine.

An engine is created by calling the threaded_engine_create/3 built-in predicates. For example:

| ?- threaded_engine_create(X, member(X, [1,2,3]), worker).

yes

The first argument is an answer template to be used for retrieving solution bindings. The user can name the engine, as in
this example where the atom worker is used, or have the runtime generate a name, which should be treated as an opaque
term.

Engines are scoped by the object within which the threaded_engine_create/3 call takes place. Thus, different objects
can create engines with the same names with no conflicts. Morevover, engines share the visible predicates of the object
creating them.

The engine computes the first solution of its goal argument and suspends waiting for it to be retrieved. Solutions can be
retrieved one at a time using the threaded_engine_next/2 built-in predicate:

| ?- threaded_engine_next(worker, X).

X = 1

yes

The call blocks until a solution is available and fails if there are no solutions left. After returning a solution, this predicate
signals the engine to start computing the next one. Note that this predicate is deterministic. In constrast with the
threaded_exit/1-2 built-in predicates, retrieving the next solution requires calling the predicate again instead of by
backtracking into its call.

There is also an alternative reified version of the predicate, threaded_engine_next_reified/2, which returns
the(Answer), no, and exception(Error) terms as answers.

90

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/threaded_wait_1.html
../refman/predicates/threaded_notify_1.html
../refman/predicates/threaded_engine_create_3.html
../refman/predicates/threaded_engine_next_2.html
../refman/predicates/threaded_engine_next_reified_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Engines must be explicitly terminated using the threaded_engine_destroy/1 built-in predicate:

| ?- threaded_engine_destroy(worker).

yes

A common usage pattern for engines is to define a recursive predicate that uses the engine term queue to retrieve a task
to be performed. For example, assume we define the following predicate:

loop :-

 threaded_engine_fetch(Task),

 handle(Task),

 loop.

The threaded_engine_fetch/1 built-in predicate fetches a task for the engine term queue. The engine clients would
use the threaded_engine_post/2 built-in predicate to post tasks into the engine term queue. The engine would be
created using the call:

| ?- threaded_engine_create(none, loop, worker).

yes

The handle/1 predicate, after performing a task, can use the threaded_engine_yield/1 built-in predicate to make
the task results available for consumption using the threaded_engine_next/2 built-in predicate. Blocking semantics
are used by these two predicates: the threaded_engine_yield/1 predicate blocks until the returned solution is consumed
while the threaded_engine_next/2 predicate blocks until a solution becomes available.

Multi-threading performance

The performance of multi-threading applications is highly dependent on the back-end Prolog compiler, on the operating-
system, and on the use of dynamic binding and dynamic predicates. All compatible back-end Prolog compilers that support
multi-threading features make use of POSIX threads or pthreads. The performance of the underlying pthreads implement-
ation can exhibit significant differences between operating systems. An important point is synchronized access to dynamic
predicates. As different threads may try to simultaneously access and update dynamic predicates, these operations must
be protected by a lock, usually implemented using a mutex. Poor mutex lock operating-system performance, combined
with a large number of collisions by several threads trying to acquire the same lock, often result in severe performance
penalties. Thus, whenever possible, avoid using dynamic predicates and dynamic binding.

91

Multi-threading programming

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/threaded_engine_destroy_1.html
../refman/predicates/threaded_engine_fetch_1.html
../refman/predicates/threaded_engine_post_2.html
../refman/predicates/threaded_engine_yield_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

92

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Error handling

All error handling is done in Logtalk by using the ISO defined catch/3 and throw/1 predicates [ISO 95]. Errors thrown
by Logtalk have the following format:

error(Error, logtalk(Goal, Entity))

In this exception term, Goal is the goal that triggered the error Error and Entity is the entity in whose context Goal is
called. For example:

error(permission_error(modify,private_predicate,p), logtalk(foo::abolish(p/0),user))

Note, however, that Goal and Entity can be variables when the corresponding information is not available (usually due
to compiler optimizations that throw away the necessary error context information).

Compiler warnings and errors

The current Logtalk compiler uses the read_term/3 ISO Prolog defined built-in predicate to read and compile a Logtalk
source file. One consequence of this is that invalid Prolog terms or syntax errors may abort the compilation process with
limited information given to the user (due to the inherent limitations of the read_term/3 predicate).

If all the terms in a source file are valid, then there is a set of errors or potential errors, described below, that the compiler
will try to detect and report, depending on the used compiler flags (see the Writing, running, and debugging programs
section of this manual for details).

Unknown entities

The Logtalk compiler warns about any referenced entity that is not currently loaded. The warning may reveal a misspell
entity name or just an entity that it will be loaded later. Out-of-oder loading should be avoided when possible as it prevents
some code optimizations such as static binding od messages to methods.

Singleton variables

Singleton variables in a clause are often misspell variables and, as such, one of the most common errors when programming
in Prolog. when the backend Prolog compiler complies with the Prolog ISO standard or at least supports the ISO predicate
read_term/3 called with the option singletons(S), the Logtalk compiler warns about any singleton variable found
while compiling a source file.

Redefinition of Prolog built-in predicates

The Logtalk compiler will warn us of any redefinition of a Prolog built-in predicate inside an object or category. Sometimes
the redefinition is intended. In other cases, the user may not be aware that the subjacent Prolog compiler may already

93

Error handling

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#ISO95
programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

provide the predicate as a built-in or we may want to ensure code portability among several Prolog compilers with different
sets of built-in predicates.

Redefinition of Logtalk built-in predicates

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn us if we try to redefine a Logtalk
built-in. The redefinition will probably be an error in almost all (if not all) cases.

Redefinition of Logtalk built-in methods

An error will be thrown if we attempt to redefine a Logtalk built-in method inside an entity. The default behavior is to
report the error and abort the compilation of the offending entity.

Misspell calls of local predicates

A warning will be reported if Logtalk finds (in the body of a predicate definition) a call to a local predicate that is not
defined, built-in (either in Prolog or in Logtalk) or declared dynamic. In most cases these calls are simple misspell errors.

Portability warnings

A warning will be reported if a predicate clause contains a call to a non-ISO specified built-in predicate or arithmetic
function, Portability warnings are also reported for non-standard flags or flag values. These warnings often cannot be
avoided due to the limited scope of the ISO Prolog standard.

Missing directives

A warning will be reported for any missing dynamic, discontiguous, meta-predicate, and public predicate directive.

Redefinition of predicates declared in uses/2 and use_module/2 directives

A error will be reported for any attempt to define locally a predicate that is already listed in a uses/2 or in a use_module/2
directive.

Other warnings and errors

The Logtalk compiler will throw an error if it finds a predicate clause or a directive that cannot be parsed. The default
behavior is to report the error and abort the compilation of the offending entity.

Runtime errors

This section briefly describes runtime errors that result from misuse of Logtalk built-in predicates, built-in methods or
from message sending. For a complete and detailed description of runtime errors please consult the Reference Manual.

Logtalk built-in predicates

Most Logtalk built-in predicates checks the type and mode of the calling arguments, throwing an exception in case of
misuse.

Logtalk built-in methods

Most Logtalk built-in method checks the type and mode of the calling arguments, throwing an exception in case of misuse.

94

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Message sending

The message sending mechanisms always check if the receiver of a message is a defined object and if the message corres-
ponds to a declared predicate within the scope of the sender. The built-in protocol forwarding declares a predicate,
forward/1, which is automatically called (if defined) by the runtime for any message that the receiving object does not
understand. The usual definition for this error handler is to delegate or forward the message to another object that might
be able to answer it:

forward(Message) :-

 [Object::Message]. % forward the message while preserving the original sender

If preserving the original sender is not required, this definition can be simplified to:

forward(Message) :-

 Object::Message.

More sophisticated definitions are, of course, possible.

95

Error handling

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

96

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Documenting Logtalk programs

By setting the compiler flag source_data, Logtalk saves all relevant documenting information collected when compiling
a source file. The provided lgtdoc tool can access this information by using Logtalk's reflection support and generate a
documentation file for each compiled entity (object, protocol, or category) in XML format. Contents of the XML file include
the entity name, type, and compilation mode (static or dynamic), the entity relations with other entities, and a description
of any declared predicates (name, compilation mode, scope, ...).

The XML documentation files can be enriched with arbitrary user-defined information, either about an entity or about its
predicates, by using the two directives described below.

Documenting directives

Logtalk supports two documentation directives for providing arbitrary user-defined information about an entity or a pre-
dicate. These two directives complement other Logtalk directives that also provide important documentation information
like mode/2.

Entity directives

Arbitrary user-defined entity information can be represented using the info/1 directive:

:- info([

 Key1 is Value1,

 Key2 is Value2,

 ...

]).

In this pattern, keys should be atoms and values should be ground terms. The following keys are pre-defined and may be
processed specially by Logtalk:

comment

Comment describing entity purpose (an atom).
author

Entity author(s) (an atom or a compound term {entity} where entity is the name of a XML entity defined
in the custom.ent file).

version

Version number (a number).
date

Date of last modification (formatted as Year/Month/Day).
parameters

Parameter names and descriptions for parametric entities (a list of key-values where both keys and values are
atoms).

97

Documenting Logtalk programs

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.w3.org/XML/
../refman/directives/mode_2.html
../refman/directives/info_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

parnames

Parameter names for parametric entities (a list of atoms; a simpler version of the previous key, used when
parameter descriptions are deemed unnecessary).

copyright

Copyright notice for the entity source code (an atom or a compound term {entity} where entity is the name
of a XML entity defined in the custom.ent file).

license

License terms for the entity source code; usually, just the license name (an atom or a compound term {entity}
where entity is the name of a XML entity defined in the custom.ent file).

remarks

List of general remarks about the entity using the format Topic - Text. Both the topic and the text must be
atoms.

see_also

List of related entities.

For example:

:- info([

 version is 2.1,

 author is 'Paulo Moura',

 date is 2000/4/20,

 comment is 'Building representation.',

 diagram is 'UML Class Diagram #312'

]).

Use only the keywords that make sense for your application and remember that you are free to invent your own keywords.
All key-value pairs can be retrieved programmatically using the reflection API and are visible to lgtdoc tool.

Predicate directives

Arbitrary user-defined predicate information can be represented using the info/2 directive:

:- info(Functor/Arity, [

 Key1 is Value1,

 Key2 is Value2,

 ...

]).

The first argument can also a grammar rule non-terminal indicator, Functor//Arity. Keys should be atoms and values
should be bound terms. The following keys are pre-defined and may be processed specially by Logtalk:

comment

Comment describing predicate purpose (an atom).
arguments

Names and descriptions of predicate arguments for pretty print output (a list of key-values where both keys
and values are atoms).

argnames

Names of predicate arguments for pretty print output (a list of atoms; a simpler version of the previous key,
used when argument descriptions are deemed unnecessary).

98

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/info_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

allocation

Objects where we should define the predicate. Some possible values are container, descendants, instances,
classes, subclasses, and any.

redefinition

Describes if predicate is expected to be redefined and, if so, in what way. Some possible values are never,
free, specialize, call_super_first, call_super_last.

exceptions

List of possible exceptions throw by the predicate using the format Description - Exception term. The description
must be an atom. The exception term must be a non-variable term.

examples

List of typical predicate call examples using the format Description - Predicate call - Variable bindings. The
description must be an atom. The predicate call term must be a non-variable term. The variable bindings term
uses the format {Variable=Term, ...}. When there are no variable bindings, the success or failure of the predicate
call should be represented by the terms {yes} or {no}, respectively.

remarks

List of general remarks about the predicate using the format Topic - Text. Both the topic and the text must be
atoms.

For example:

:- info(color/1, [

 comment is 'Table of defined colors.',

 argnames is ['Color'],

 constraint is 'Only a maximum of four visible colors allowed.'

]).

As with the info/1 directive, use only the keywords that make sense for your application and remember that you are free
to invent your own keywords. All key-value pairs can also be retrieved programmatically using the reflection API and are
visible to lgtdoc tool.

Processing and viewing documenting files

The lgtdoc tool generates a XML documenting file per entity. It can also generate directory, entity, and predicate indexes
when documenting libraries and directories. For example, assuming the default filename extensions, a trace object and
a sort(_) parametric object will result in trace_0.xml and sort_1.xml XML files.

Each entity XML file contains references to two other files, a XML specification file and a XSL style-sheet file. The XML
specification file can be either a DTD file (logtalk_entity.dtd) or a XML Scheme file (logtalk_entity.xsd).
The XSL style-sheet file is responsible for converting the XML files to some desired format such as HTML or PDF. The
default names for the XML specification file and the XSL style-sheet file are defined by the lgtdoc tool but can be
overiden by passing a list of options to the tool predicates. The lgtdoc/xml sub-directory in the Logtalk installation
directory contains the XML specification files described above, along with several sample XSL style-sheet files and sample
scripts for converting XML documenting files to several formats (e.g. Markdown, HTML, and PDF). Please read the
NOTES file included in the directory for details. You may use the supplied sample files as a starting point for generating
the documentation of your Logtalk applications.

The Logtalk DTD file, logtalk_entity.dtd, contains a reference to a user-customizable file, custom.ent, which
declares XML entities for source code author names, license terms, and copyright string. After editing the custom.ent

99

Documenting Logtalk programs

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.w3.org/Style/XSL/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

file to reflect your personal data, you may use the XML entities on info/1 documenting directives. For example, assuming
that the XML entities are named author, license, and copyright we may write:

:- info([

 version is 1.1,

 author is {author},

 license is {license},

 copyright is {copyright}

]).

The entity references are replaced by the value of the corresponding XML entity when the XML documenting files are
processed (not when they are generated; this notation is just a shortcut to take advantage of XML entities).

The lgtdoc tool supports a set of options that can be used to control the generation of the XML documentation files.
Please see the tool documentation for details.

Inline formatting in comments text

Inline formatting in comments text can be accomplished by using Markdown syntax and converting XML documenting
files to Markdown files (and these, if required, to e.g. HTML or PDF).

100

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Installing Logtalk

This page provides an overview of Logtalk installation requirements and instructions and a description of the files contained
on the Logtalk distribution. For detailed, up-to-date installation and configuration instructions, please see the README.md,
INSTALL.md, and CUSTOMIZE.md files distributed with Logtalk. The broad compatibility of Logtalk, both with Prolog
compilers and operating-systems, together with all the possible user scenarios, means that installation can vary from very
simple by running an installer or a couple of scripts to the need of patching both Logtalk and Prolog compilers to workaround
the lack of strong Prolog standards or to cope with the requirements of less common operating-systems.

The preferred installation scenario is to have Logtalk installed in a system-wide location, thus available for all users, and
a local copy of user-modifiable files on each user home directory (even when you are the single user of your computer).
This scenario allows each user to independently customize Logtalk and to freely modify the provided libraries and pro-
gramming examples. Logtalk installers, installation shell scripts, and Prolog integration scripts favor this installation
scenario, although alternative installation scenarios are always possible. The installers set two environment variables,
LOGTALKHOME and LOGTALKUSER, pointing, respectively, to the Logtalk installation folder and to the Logtalk user folder.

User applications should preferable be kept outside of the Logtalk user folder created by the installation process, however,
as updating Logtalk often results in updating the contents of this folder. If your applications depend on customizations to
the distribution files, backup those changes before updating Logtalk.

Hardware and software requirements

Computer and operating system

Logtalk is compatible with almost any computer/operating-system with a modern, standars compliant, Prolog compiler
available.

Prolog compiler

Logtalk requires a backend Prolog compiler supporting official and de facto standards. Capabilities needed by Logtalk
that are not defined in the official ISO Prolog Core standard include:

• access to predicate properties

• operating-system access predicates

• de facto standard predicates not (yet) specified in the official standard

Logtalk needs access to the predicate property built_in to properly compile objects and categories that contain Prolog
built-in predicates calls. In addition, some Logtalk built-ins need to know the dynamic/static status of predicates to ensure
correct application. The ISO standard for Prolog modules defines a predicate_property/2 predicate that is already
implemented by most Prolog compilers. Note that if these capabilities are not built-in the user cannot easily define them.

101

Installing Logtalk

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For optimal performance, Logtalk requires that the Prolog compiler supports first-argument indexing for both static and
dynamic code (most modern compilers support this feature).

Since most Prolog compilers are moving closer to the ISO Prolog standard [ISO 95], it is advisable that you try to use the
most recent version of your favorite Prolog compiler.

Logtalk installers

Logtalk installers are available for MacOS X, Linux, and Microsoft Windows. Depending on the chosen installer, some
tasks (e.g. setting environment variables or integrating Logtalk with some Prolog compilers) may need to be performed
manually.

Source distribution

Logtalk sources are available in a tar archive compressed with bzip2, lgt3xxx.tar.bz2. You may expand the archive
by using a decompressing utility or by typing the following commands at the command-line:

% tar -jxvf lgt3xxx.tar.bz2

This will create a sub-directory named lgt3xxx in your current directory. Almost all files in the Logtalk distribution are
text files. Different operating-systems use different end-of-line codes for text files. Ensure that your decompressing utility
converts the end-of-lines of all text files to match your operating system.

Directories and files organization

In the Logtalk installation directory, you will find the following files and directories:

BIBLIOGRAPHY.bib – Logtalk bibliography in BibTeX format
CUSTOMIZE.md – Logtalk end-user customization instructions
INSTALL.md – Logtalk installation instructions
LICENSE.txt – Logtalk user license
NOTICE.txt – Logtalk copyright notice
QUICK_START.md – Quick start instructions for those that do not like to read manuals
README.md – several useful information
RELEASE_NOTES.md – release notes for this version
UPGRADING.md – instructions on how to upgrade your programs to the current Logtalk version
VERSION.txt – file containing the current Logtalk version number (used for compatibility checking when upgrading
Logtalk)

loader-sample.lgt – sample loader file for user applications
settings-sample.lgt – sample file for user-defined Logtalk settings
tester-sample.lgt – sample file for helping automating running user application unit tests

adapters

NOTES.md – notes on the provided adapter files
template.pl – template adapter file
... – specific adapter files

coding

NOTES.md – notes on syntax highlighter and text editor support files providing syntax coloring for publishing
and editing Logtalk source code

102

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#ISO95
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

... – syntax coloring support files

contributions

NOTES.md – notes on the user-contributed code
... – user-contributed code files

core

NOTES.md – notes on the current status of the compiler and runtime
... – core source files

docs

NOTES.md – notes on the provided documentation for core, library, tools, and contributions entities
index.html – root document for all entities documentation
... – other entity documentation files

examples

NOTES.md – short description of the provided examples
bricks

NOTES.md – example description and other notes
SCRIPT.txt – step by step example tutorial
loader.lgt – loader utility file for the example objects
... – bricks example source files

... – other examples

integration

NOTES.md – notes on scripts for Logtalk integration with Prolog compilers
... – Prolog integration scripts

library

NOTES.md – short description of the library contents
all_loader.lgt – loader utility file for all library entities
... – library source files

man

... – POSIX man pages for the shell scripts

manuals

NOTES.md – notes on the provided documentation
bibliography.html – bibliography
glossary.html – glossary
index.html – root document for all documentation
... – other documentation files

paths

NOTES.md – description on how to setup library and examples paths
paths.pl – default library and example paths

scratch

NOTES.md – notes on the scratch directory

scripts

NOTES.md – notes on scripts for Logtalk user setup, packaging, and installation

103

Installing Logtalk

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

... – packaging, installation, and setup scripts

tests

NOTES.md – notes on the current status of the unit tests
... – unit tests for built-in features

tools

NOTES.md – notes on the provided programming tools
... – programming tools

Adapter files

Adapter files provide the glue code between the Logtalk compiler/runtime and a Prolog compiler. Each adapter file contains
two sets of predicates: ISO Prolog standard predicates and directives not built-in in the target Prolog compiler and Logtalk-
specific predicates.

Logtalk already includes ready to use adapter files for most academic and commercial Prolog compilers. If a adapter file
is not available for the compiler that you intend to use, then you need to build a new one, starting from the included
template.pl file. Start by making a copy of the template file. Carefully check (or complete if needed) each listed
definition. If your Prolog compiler conforms to the ISO standard, this task should only take you a few minutes. In most
cases, you can borrow code from some of the predefined adapter files. If you are unsure that your Prolog compiler provides
all the ISO predicates needed by Logtalk, try to run the system by setting the unknown predicate error handler to report
as an error any call to a missing predicate. Better yet, switch to a modern, ISO compliant, Prolog compiler. If you send
me your adapter file, with a reference to the target Prolog compiler, maybe I can include it in the next release of Logtalk.

The adapter files specifies default values for most of the Logtalk compiler flags. Most of these compiler flags are described
in the next section. A few of these flags have read-only values and cannot be changed at runtime. These are:

settings_file

Allows or disables loading of settings files at startup. Possible values are allow, restrict, and deny. The
usual default value is allow but it can be changed by editing the adapter file when e.g. embedding Logtalk in
a compiled application. With a value of allow, settings files are searched in the startup directory, in the Logtalk

104

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

programming.html#programming_flags
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

user directory, and in the user home directory. With a value of restrict, settings files are only searched in
the Logtalk user directory and in the user home directory.

prolog_dialect

Name of the back-end Prolog compiler (an atom). This flag can be used for conditional compilation of Prolog
specific code.

prolog_version

Version of the back-end Prolog compiler (a compound term, (Major, Minor, Patch), whose arguments
are integers). This flag availability depends on the Prolog compiler. Checking the value of this flag fails for
any Prolog compiler that does not provide access to version data.

prolog_compatible_version

Compatible version of the back-end Prolog compiler (a compound term, usually with the format @>=((Major,
Minor, Patch)), whose arguments are integers). This flag availability depends on the Prolog compiler.
Checking the value of this flag fails for any Prolog compiler that does not provide access to version data.

prolog_conformance

Level of conformance of the back-end Prolog compiler with the ISO Prolog Core standard. The possible values
are strict for compilers claiming strict conformance and lax for compilers claiming only broad conformance.

unicode

Informs Logtalk if the back-end Prolog compiler supports the Unicode standard. Possible flag values are
unsupported, full (all Unicode planes supported), and bmp (supports only the Basic Multilingual Plane).

encoding_directive

Informs Logtalk if the back-end Prolog compiler supports the encoding/1 directive. This directive is used
for declaring the text encoding of source files. Possible flag values are unsupported, full (can be used in
both Logtalk source files and compiler generated Prolog files), and source (can be used only in Logtalk source
files).

tabling

Informs Logtalk if the back-end Prolog compiler provides tabling programming support. Possible flag values
are unsupported and supported.

threads

Informs Logtalk if the back-end Prolog compiler provides suitable multi-threading programming support.
Possible flag values are unsupported and supported.

modules

Informs Logtalk if the back-end Prolog compiler provides suitable module support. Possible flag values are
unsupported and supported (Logtalk provides limited support for compiling Prolog modules as objects).

coinduction

Informs Logtalk if the back-end Prolog compiler provides the minimal support for cyclic terms necessary for
working with coinductive predicates. Possible flag values are unsupported and supported.

Settings files

Although is always possible to edit the back-end Prolog compiler adapter files, the recommended solution to customize
compiler flags is to edit the settings.lgt file in the Logtalk user folder or in the user home folder. Depending on the
back-end Prolog compiler and on the operating-system, is also possible to define per-project settings files by creating a
settings.lgt file in the project directory and by starting Logtalk from this directory. At startup, Logtalk tries to load
a settings.lgt file from the startup directory (assuming that the read-only settings flag is set to allow). If not found,

105

Installing Logtalk

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/encoding_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk tries to load a settings.lgt file from the Logtalk user folder. If still not found, Logtalk tries to load a
settings.lgt file from the user home folder. If no settings files are found, Logtalk will use the default compiler flag
values set on the back-end Prolog compiler adapter files. When limitations of the back-end Prolog compiler or on the op-
erating-system prevent Logtalk from finding the settings files, these can always be loaded manually after Logtalk startup.

Settings files are normal Logtalk source files (although when automatically loaded by Logtalk they are compiled silently
with any errors being simply ignored). The usual contents is an initialization/1 Prolog directive containing calls to
the set_logtalk_flag/2 Logtalk built-in predicate and asserting clauses for the logtalk_library_path/2 multifile
dynamic predicate. Note that the set_logtalk_flag/2 directive cannot be used as its scope is local to the source file
being compiled. For example, one of the troubles of writing portable applications is the different feature sets of Prolog
compilers. A typical issue is the lack of support for tabling. Using the Logtalk support for conditional compilation you
could write:

:- if(current_logtalk_flag(tabling, supported)).

 % add tabling directives to the source code

 :- table(foo/1).

 :- table(bar/2).

:- endif.

The Logtalk flag prolog_dialect may also be used with the conditional compilation directives in order to define a
single settings file that can be used with several back-end Prolog compilers. For example:

:- if(current_logtalk_flag(prolog_dialect, yap)).

 % YAP specific settings

 ...

:- elif(current_logtalk_flag(prolog_dialect, gnu)).

 % GNU Prolog specific settings

 ...

:- else.

 % generic Prolog settings

:- endif.

Logtalk compiler and runtime

The compiler sub-directory contains the Prolog source file(s) that implement the Logtalk compiler and the Logtalk
runtime. The compiler and the runtime may be split in two (or more) separate files or combined in a single file, depending
on the Logtalk release that you are installing.

Library

Starting from version 2.7.0, Logtalk contains a standard library of useful objects, categories, and protocols. Read the cor-
responding NOTES.md file for details about the library contents.

106

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/logtalk_library_path_2.html
../refman/directives/set_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Logtalk 2.x contains new implementations of some of the examples provided with previous 1.x versions. The sources of
each one of these examples can be found included in a subdirectory with the same name, inside the directory examples.
The majority of these examples include a file named SCRIPT.txt that contains cases of simple utilization. Some examples
may depend on other examples and library objects to work properly. Read the corresponding NOTES.md file for details
before running an example.

Logtalk source files

Logtalk source files are text files containing one or more entity definitions (objects, categories, or protocols). The Logtalk
source files may also contain plain Prolog code. The extension .lgt is normally used. Logtalk compiles these files to
plain Prolog by appending to the file name a suffix derived from the extension and by replacing the .lgt extension with
.pl (.pl is the default Prolog extension; if your Prolog compiler expects the Prolog source filenames to end with a spe-
cific, different extension, you can set it in the corresponding adapter file).

107

Installing Logtalk

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

108

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Writing, running, and debugging applications

Writing applications

For a successful programming in Logtalk, you need a good working knowledge of Prolog and an understanding of the
principles of object-oriented programming. Most guidelines for writing good Prolog code apply as well to Logtalk pro-
gramming. To those guidelines, you should add the basics of good object-oriented design.

One of the advantages of a system like Logtalk is that it enable us to use the currently available object-oriented methodo-
logies, tools, and metrics [Champaux 92] in Prolog programming. That said, writing applications in Logtalk is similar to
writing applications in Prolog: we define new predicates describing what is true about our domain objects, about our
problem solution. We encapsulate our predicate directives and definitions inside new objects, categories and protocols
that we create by hand with a text editor or by using the Logtalk built-in predicates. Some of the information collected
during the analysis and design phases can be integrated in the objects, categories and protocols that we define by using
the available entity and predicate documenting directives.

Source files

Logtalk source files may define any number of entities (objects, categories, or protocols) and Prolog code. If you prefer
to define each entity in its own source file, then it is recommended that the source file be named after the entity identifier.
For parametric objects, the identifier arity can be appended to the identifier functor. By default, all Logtalk source files
use the extension .lgt but this is optional and can be set in the adapter files. Intermediate Prolog source files (generated
by the Logtalk compiler) have, by default, a _lgt suffix and a .pl extension. Again, this can be set to match the needs
of a particular Prolog compiler in the corresponding adapter file. For example, we may define an object named vehicle
and save it in a vehicle.lgt source file that will be compiled to a vehicle_lgt.pl Prolog file. If we have a sort(_)
parametric object we can save it on a sort_1.lgt source file that will be compiled to a sort_1_lgt.pl Prolog file.
This name scheme helps avoid file name conflicts (remember that all Logtalk entities share the same name space). To
further prevent file name conflicts, depending on the backend compiler, the names of the intermediate Prolog files may
include a directory hash.

Logtalk source files may contain Prolog code interleaved with Logtalk entity definitions. Plain Prolog code is copied as-
is to the corresponding Prolog output file (except, of course, if subject to the term-expansion mechanism). Prolog modules
are compiled as objects. The following Prolog directives are processed when read (thus affecting the compilation of the
source code that follows): ensure_loaded/1, use_module/1-2, op/3, and set_prolog_flag/2. The
initialization/1 Prolog directive may be used for defining an initialization goal to be executed when loading a source
file.

The text encoding used in a source file may be declared using the encoding/1 directive when running Logtalk with back-
end Prolog compilers that support multiple encodings (check the encoding_directive flag in the adapter file of your
Prolog compiler). The encoding used (and, in the case of a Unicode encoding, any BOM present) in a source file will be
used for the intermediate Prolog file generated by the compiler. Logtalk uses the encoding names specified by IANA (in
those cases where a preferred MIME name alias is specified, the alias is used instead).

109

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../bibliography.html#Champaux92
../refman/directives/encoding_1.html
http://www.iana.org/assignments/character-sets
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk source files can include the text of other files by using the include/1 directive. Although there's also a standard
Prolog include/1 directive, any occurrences of this directive in a Logtalk source file is handled by the Logtalk compiler,
not by the backend Prolog compiler.

Portable applications

Logtalk is compatible with almost all modern Prolog compilers. However, this does not necessarily imply that your Logtalk
applications will have the same level of portability. If possible, you should only use in your applications Logtalk built-in
predicates and ISO Prolog specified built-in predicates and arithmetic functions. If you need to use built-in predicates (or
built-in arithmetic functions) that may not be available in other Prolog compilers, you should try to encapsulate the non-
portable code in a small number of objects and provide a portable interface for that code through the use of Logtalk pro-
tocols. An example will be code that access operating-system specific features. The Logtalk compiler can warn you of the
use of non-ISO specified built-in predicates and arithmetic functions by using the portability/1 compiler flag.

Conditional compilation

Logtalk supports conditional compilation within source files using the if/1, elif/1, else/0, and endif/0 directives.
This support is similar to the support found in some Prolog compilers such as ECLiPSe, SWI-Prolog, or YAP.

Avoiding common errors

Try to write objects and protocol documentation before writing any other code; if you are having trouble documenting a
predicate perhaps we need to go back to the design stage.

Try to avoid lengthy hierarchies. Besides performance penalties, composition is often a better choice over inheritance for
defining new objects (Logtalk supports component-based programming through the use of categories). In addition, prototype-
based hierarchies are conceptually simpler and more efficient than class-based hierarchies.

Dynamic predicates or dynamic entities are sometimes needed, but we should always try to minimize the use of non-logical
features like destructive assignment (asserts and retracts).

Since each Logtalk entity is independently compiled, if an object inherits a dynamic or a meta-predicate predicate, then
we must repeat the respective directives in order to ensure a correct compilation.

In general, Logtalk does not verify if a user predicate call/return arguments comply with the declared modes. On the other
hand, Logtalk built-in predicates, built-in methods, and message sending control structures are carefully checked for
calling mode errors.

Logtalk error handling strongly depends on the ISO compliance of the chosen Prolog compiler. For instance, the error
terms that are generated by some Logtalk built-in predicates assume that the Prolog built-in predicates behave as defined
in the ISO standard regarding error conditions. In particular, if your Prolog compiler does not support a read_term/3
built-in predicate compliant with the ISO Prolog Standard definition, then the current version of the Logtalk compiler may
not be able to detect misspell variables in your source code.

Coding style guidelines

It is suggested that all code between an entity opening and closing directives be indented by one tab stop. When defining
entity code, both directives and predicates, Prolog coding style guidelines may be applied. All Logtalk source files, examples,
and standard library entities use tabs (the recommended setting is a tab width equivalent to 4 spaces) for laying out code.
Closed related entities can be defined in the same source file. However, for best performance, is often necessary to have
an entity per source file. Entities that might be useful in different contexts (such as library entities) are best defined in their
own source files.

110

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/include_1.html
../refman/directives/if_1.html
../refman/directives/elif_1.html
../refman/directives/else_0.html
../refman/directives/endif_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Running a Logtalk session

We run Logtalk inside a normal Prolog session, after loading the necessary files. Logtalk extends but does not modify
your Prolog compiler. We can freely mix Prolog queries with the sending of messages and our applications can be made
of both normal Prolog clauses and object definitions.

Starting Logtalk

Depending on your Logtalk installation, you may use a script or a shortcut to start Logtalk with your chosen Prolog compiler.
On POSIX operating systems, the scripts should be available from the command-line; scripts are named upon the used
Prolog compilers. On Windows, the shortcuts should be available from the Start Menu. If no scripts or shortcuts are
available for your installation, operating-system, or Prolog compiler, you can always start a Logtalk session by performing
the following steps:

1 Start your Prolog compiler.

2 Load the appropriate adapter file for your compiler. Adapter files for most common Prolog compilers can be found in
the adapters subdirectory.

3 Load the library paths file corresponding to your Logtalk installation contained in the paths subdirectory.

4 Load the Logtalk compiler/runtime files contained in the compiler subdirectory.

Note that the adapter files, compiler/runtime files, and library paths file are Prolog source files. The predicate called to
load (and compile) them depends on your Prolog compiler. In case of doubt, consult your Prolog compiler reference
manual or take a look at the definition of the predicate '$lgt_load_prolog_code'/3 in the corresponding adapter file.

Most Prolog compilers support automatic loading of an initialization file, which can include the necessary directives to
load both the Prolog adapter file and the Logtalk compiler. This feature, when available, allows automatic loading of Logtalk
when you start your Prolog compiler.

Compiling and loading your applications

Your applications will be made of source files containing your objects, protocols, and categories. The source files can be
compiled to disk by calling the Logtalk built-in predicate logtalk_compile/1:

| ?- logtalk_compile([source_file1, source_file2, ...]).

This predicate runs the compiler on each file and, if no fatal errors are found, outputs Prolog source files that can then be
consulted or compiled in the usual way by your Prolog compiler.

To compile to disk and also load into memory the source files we can use the Logtalk built-in predicate logtalk_load/1:

| ?- logtalk_load([source_file1, source_file2, ...]).

This predicate works in the same way of the predicate logtalk_compile/1 but also loads the compiled files into memory.

Both predicates expect a source file name or a list of source file names as an argument. The Logtalk source file name ex-
tension, as defined in the adapter file (by default, .lgt), can be omitted.

111

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/logtalk_compile_1.html
../refman/predicates/logtalk_load_1.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

If you have more than a few source files then you may want to use a loader helper file containing the calls to the
logtalk_load/1-2 predicates. Consulting or compiling the loader file will then compile and load all your Logtalk en-
tities into memory (see below for details).

With most Prolog back-end compilers, you can use the shorthands {File} for logtalk_load(File) and {File1,
File2, ...} for logtalk_load([File1, File2, ...]). The use these shorthands should be restricted to the Lo-
gtalk/Prolog top-level interpreter as their are not part of the language specification and may be commented out in case of
conflicts with backend Prolog compiler features.

The built-in predicate logtalk_make/0 can be used to reload all modified source files. Files are also reloaded when the
compilation mode changes. For example, assume that you have loaded your application files and found a bug. You can
easily recompile the files in debug mode by using the queries:

| ?- set_logtalk_flag(debug, on).

...

| ?- logtalk_make.

...

After debugging and fixing the bugs, you can reload the files in normal (or optimized) mode by turning the debug flag off
and calling the logtalk_make/0 predicate again.

An extended version of this predicate, logtalk_make/1, accepts all, clean, missing, and circular arguments for,
respectively, reloading modified Logtalk source files, deleting any intermediate files generated by the compilation of Logtalk
source files, listing of missing entities and predicates, and listing of circular dependencies. With most Prolog backend
compilers, you can use the shorthands {*} for logtalk_make(all), {!} for logtalk_make(clean), {?} for
logtalk_make(missing), and {@} for logtalk_make(circular). The logtalk_make(clean) goal can be specially
useful before switching backend Prolog compilers as the generated intermediate files may not be compatible.

Loader utility files

Most examples directories contain a Logtalk utility file that can be used to load all included source files. These loader
utility files are usually named loader.lgt or contain the word "loader" in their name. Loader files are ordinary source
file and thus compiled and loaded like any source file. For an example loader file named loader.lgt we would type:

| ?- logtalk_load(loader).

Usually these files contain a call to the Logtalk built-in predicates set_logtalk_flag/2 (e.g. for setting global, project-
specific, flag values) and logtalk_load/1 or logtalk_load/2 (for loading project files), wrapped inside a Prolog
initialization/1 directive. For instance, if your code is split in three Logtalk source files named source1.lgt,
source2.lgt, and source3.lgt, then the contents of your loader file could be:

:- initialization((

 % set project-specific global flags

 set_logtalk_flag(events, allow),

 % load the project source files

 logtalk_load([source1, source2, source3])

)).

112

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/logtalk_make_0.html
../refman/predicates/logtalk_make_1.html
../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/logtalk_load_1.html
../refman/predicates/logtalk_load_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Another example of directives that are often used in a loader file would be op/3 directives declaring global operators
needed by your application. Loader files are also often used for setting source file-specific compiler flags (this is useful
even when you only have a single source file if you always load it with using the same set of compiler flags). For example:

:- initialization((

 % set project-specific global flags

 set_logtalk_flag(underscore_variables, dont_care),

 set_logtalk_flag(source_data, off),

 % load the project source files

 logtalk_load(

 [source1, source2, source3],

 [portability(warning)]), % source file-specific flags

 logtalk_load(

 [source4, source5],

 [portability(silent)]) % source file-specific flags

)).

To take the best advantage of loader files, define a clause for the multifile and dynamic logtalk_library_path/2
predicate for the directory containing your source files as explained in the next section.

A common mistake is to try to set compiler flags using logtalk_load/2 with a loader file. For example, by writing:

| ?- logtalk_load(loader, [underscore_variables(dont_care), source_data(off)]).

This will not work as you might expect as the compiler flags will only be used in the compilation of the loader.lgt file
itself and will not affect the compilation of files loaded through the initialization/1 directive contained on the
loader file.

Libraries of source files

Logtalk defines a library simply as a directory containing source files. Library locations can be specified by defining or
asserting clauses for the dynamic and multifile predicate logtalk_library_path/2. For example:

:- multifile(logtalk_library_path/2).

:- dynamic(logtalk_library_path/2).

logtalk_library_path(shapes, '$LOGTALKUSER/examples/shapes/').

The first argument of the predicate is used as an alias for the path on the second argument. Library aliases may also be
used on the second argument. For example:

:- multifile(logtalk_library_path/2).

:- dynamic(logtalk_library_path/2).

logtalk_library_path(lgtuser, '$LOGTALKUSER/').

logtalk_library_path(examples, lgtuser('examples/')).

logtalk_library_path(viewpoints, examples('viewpoints/')).

113

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/logtalk_library_path_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This allows us to load a library source file without the need to first change the current working directory to the library
directory and then back to the original directory. For example, in order to load a loader.lgt file, contained in a library
named viewpoints, we just need to type:

| ?- logtalk_load(viewpoints(loader)).

The best way to take advantage of this feature is to load at startup a source file containing clauses for the
logtalk_library_path/2 predicate needed for all available libraries. This allows us to load library source files or
entire libraries without worrying about libraries paths, improving code portability. The directory paths on the second argu-
ment should always end with the path directory separator character. Most back-end Prolog compilers allows the use of
environment variables in the second argument of the logtalk_library_path/2 predicate. Use of POSIX relative paths
(e.g. '../' or './') for top-level library directories (e.g. lgtuser in the example above) is not advised as different
back-end Prolog compilers may start with different initial working directories, which may result in portability problems
of your loader files.

The library notation provides functionality inspired by the file_search_path/2 mechanism introduced by Quintus
Prolog and later adopted by some other Prolog compilers.

Compiler flags

The logtalk_load/1 and logtalk_compile/1 always use the current set of default compiler flags as specified in
your settings file and the Logtalk adapter files or changed for the current session using the built-in predicate
set_logtalk_flag/2. Although the default flag values cover the usual cases, you may want to use a different set of
flag values while compiling or loading some of your Logtalk source files. This can be accomplished by using the
logtalk_load/2 or the logtalk_compile/2 built-in predicates. These two predicates accept a list of options affecting
how a Logtalk source file is compiled and loaded:

| ?- logtalk_compile(Files, Options).

or:

| ?- logtalk_load(Files, Options).

In fact, the logtalk_load/1 and logtalk_compile/1 predicates are just shortcuts to the extended versions called
with the default compiler flag values. The options are represented by a compound term where the functor is the flag name
and the sole argument is the flag value.

We may also change the default flag values from the ones loaded from the adapter file by using the set_logtalk_flag/2
built-in predicate. For example:

| ?- set_logtalk_flag(unknown_entities, silent).

The current default flags values can be enumerated using the current_logtalk_flag/2 built-in predicate:

| ?- current_logtalk_flag(unknown_entities, Value).

Value = silent

yes

114

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/logtalk_load_1.html
../refman/predicates/logtalk_compile_1.html
../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/logtalk_load_2.html
../refman/predicates/logtalk_compile_2.html
../refman/predicates/set_logtalk_flag_2.html
../refman/predicates/current_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk also implements a set_logtalk_flag/2 directive, which can be used to set flags within a source file or within
an entity. For example:

% compile all objects in the source file with event support

:- set_logtalk_flag(events, allow).

:- object(foo).

 % compile this object with support for dynamic predicate declarations

 :- set_logtalk_flag(dynamic_declarations, allow).

 ...

:- end_object.

...

Note that the scope of the set_logtalk_flag/2 directive is local to the entity or to the source file containing it.

Version flags

version_data(Value)

Read-only flag whose value is the compound term logtalk(Major,Minor,Patch,Status). The first three
arguments are integers and the last argument is an atom, possibly empty, representing version status: aN for
alpha versions, bN for beta versions, rcN for release candidates (with N being a natural number), and stable
for stable versions. The version_data flag is also a de facto standard for Prolog compilers.

version(Value)

Deprecated read-only flag, inherited from Logtalk 2.x, whose value is the compound term
version(Major,Minor,Patch). The arguments are integers. New applications that are not required to
support Logtalk 2.x should use the version_data flag instead.

115

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/set_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lint flags

unknown_entities(Option)

Controls the unknown entity warnings, resulting from loading an entity that references some other entity that
is not currently loaded. Possible option values are warning (the usual default) and silent. Note that these
warnings are not always avoidable, specially when using reflective designs of class-based hierarchies.

unknown_predicates(Option)

Defines the compiler behavior when calls to unknown predicates (or non-terminals) are found. An unknown
predicate is a called predicate that is neither locally declared or defined. Possible option values are error,
warning (the usual default), and silent (not recommended).

undefined_predicates(Option)

Defines the compiler behavior when calls to declared but undefined predicates (or non-terminals) are found.
Note that calls to declared but undefined predicates (or non-terminals) fail as per closed-world assumption.
Possible option values are error, warning (the usual default), and silent (not recommended).

portability(Option)

Controls the non-ISO specified Prolog built-in predicate and non-ISO specified Prolog built-in arithmetic
function calls warnings plus use of non-standard Prolog flags and/or flag values. Possible option values are
warning and silent (the usual default).

missing_directives(Option)

Controls the missing predicate directive warnings. Possible option values are warning (the usual default) and
silent (not recommended).

redefined_built_ins(Option)

Controls the Logtalk and Prolog built-in predicate redefinition warnings. Possible option values are warning
(the usual default) and silent. Warnings about redefined Prolog built-in predicates are often the result of
running a Logtalk application on several Prolog compilers as each Prolog compiler defines its set of built-in
predicates.

singleton_variables(Option)

Controls the singleton variable warnings. Possible option values are warning (the usual default) and silent
(not recommended).

underscore_variables(Option)

Controls the interpretation of variables that start with an underscore (excluding the anonymous variable) that
occur once in a term as either don't care variables or singleton variables. Possible option values are dont_care
and singletons (the usual default). Note that, depending on your Prolog compiler, the read_term/3 built-
in predicate may report variables that start with an underscore as singleton variables. There is no standard be-
havior, hence this option.

Optional features compilation flags

complements(Option)

Allows objects to be compiled with support for complementing categories turned off in order to improve per-
formance and security. Possible option values are allow (allow complementing categories to override local
object predicate declarations and definitions), restrict (allow complementing categories to add predicate
declarations and definitions to an object but not to override them), and deny (ignore complementing categories;

116

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

the usual default). This option can be used on a per-object basis. Note that changing this option is of no con-
sequence for objects already compiled and loaded.

dynamic_declarations(Option)

Allows objects to be compiled with support for dynamic declaration of new predicates turned off in order to
improve performance and security. Possible option values are allow and deny (the usual default). This option
can be used on a per-object basis. Note that changing this option is of no consequence for objects already
compiled and loaded. This option is only checked when sending an asserta/1 or assertz/1 message to an
object. Local asserting of new predicates is always allowed.

events(Option)

Allows message sending calls to be compiled with event-driven programming support disable in order to improve
performance. Possible option values are allow and deny (the usual default). Objects (and categories) compiled
with this option set to deny use optimized code for message-sending calls that does not trigger events. As such,
this option can be used on a per-object (or per-category) basis. Note that changing this option is of no consequence
for objects already compiled and loaded.

context_switching_calls(Option)

Allows context switching calls (<</2) to be either allowed or denied. Possible option values are allow and
deny. The default flag vale is allow. Note that changing this option is of no consequence for objects already
compiled and loaded.

Back-end Prolog compiler and loader flags

prolog_compiler(Flags)

List of compiler flags for the generated Prolog files. The valid flags are specific to the used Prolog backend
compiler. The usual default is the empty list. These flags are passed to the backend Prolog compiler built-in
predicate that is responsible for compiling to disk a Prolog file. For Prolog compilers that don't provide separate
predicates for compiling and loading a file, use instead the prolog_loader/1 flag.

prolog_loader(Flags)

List of loader flags for the generated Prolog files. The valid flags are specific to the used Prolog backend
compiler. The usual default is the empty list. These flags are passed to the backend Prolog compiler built-in
predicate that is responsible for loading a (compiled) Prolog file.

Other flags

scratch_directory(Directory)

Sets the directory to be used to store the temporary files generated when compiling Logtalk source files. This
directory can be specified using an atom or using library notation. The directory must always end with a slash.
The default value is a sub-directory of the source files directory, either './lgt_tmp/' or './.lgt_tmp/'
(depending on the back-end Prolog compiler and operating-system). Relative directories must always start with
'./' due to the lack of a portable solution to check if a path is relative or absolute.

report(Option)

Controls the default printing of messages. Possible option values are on (by usual default, print all messages
that are not intercepted by the user), warnings (only print warning and error messages that are not intercepted
by the user), and off (do not print any messages that are not intercepted by the user).

code_prefix(Character)

Enables the definition of prefix for all functors of Prolog code generated by the Logtalk compiler. The option
value must be a single character atom. Its default value is '$'. Specifying a code prefix provides a way to solve
possible conflicts between Logtalk compiled code and other Prolog code. In addition, some Prolog compilers

117

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

automatically hide predicates whose functor start with a specific prefix such as the character $. Although this
is not a read-only flag, it should only be changed at startup time and before loading any source files.

optimize(Option)

Controls the compiler optimizations. Possible option values are on (used by default for deployment) and off
(used by default for development). Compiler optimizations include the use of static binding whenever possible,
the removal of redundant calls to true/0 from predicate clauses, the removal of redundant unifications when
compiling grammar rules, and inlining of predicate definitions with a single clause that links to a local predicate,
to a plain Prolog built-in (or foreign) predicate, or to a Prolog module predicate with the same arguments. Care
should be taken when developing applications with this flag turned on as changing and reloading a file may
render static binding optimizations invalid for code defining in other loaded files. Turning on this flag automat-
ically turns off the debug flag.

source_data(Option)

Defines how much information is retained when compiling a source file. Possible option values are on (the
usual default for development) and off. With this flag set to on, Logtalk will keep the information represented
using documenting directives plus source location data (including source file names and line numbers). This
information can be retrieved using reflection and is useful for documenting, debugging, and integration with
third-party development tools. This flag can be turned off in order to generate more compact code.

debug(Option)

Controls the compilation of source files in debug mode (the Logtalk default debugger can only be used with
files compiled in this mode). Possible option values are on and off (the usual default). Turning on this flag
automatically turns off the optimize flag.

reload(Option)

Defines the reloading behavior for source files. Possible option values are skip (skip loading of already loaded
files; this value can be used to get similar functionality to the Prolog directive ensure_loaded/1 but should
be used only with fully debugged code), changed (the usual default; reload files only when they are changed
since last loaded provided that the any explicit flags and the compilation mode are the same as before), and
always (always reload files).

hook(Object)

Allows the definition of compiler hooks that are called for each term read form a source file and for each
compiled goal. This option specifies an object (which can be the pseudo-object user) implementing the
expanding built-in protocol. The hook object must be compiled and loaded when this option is used. It's also
possible to specify a Prolog module instead of a Logtalk object but the module must be pre-loaded and its
identifier must be different from any object identifier. The object is expected to define clauses for the
term_expansion/2 and goal_expansion/2 predicates. In the case of the term_expansion/2 predicate,
the first argument is the term read form the source file while the second argument returns a list of terms corres-
ponding to the expansion of the first argument. In the case of the goal_expansion/2 predicate, the second
argument should be a goal resulting from the expansion of the goal in the first argument. The predicate
goal_expansion/2 is recursively called on the expanded goal until a fixed point is reached. Care must be
taken to avoid compilation loops.

clean(Option)

Controls cleaning of the intermediate Prolog files generated when compiling Logtalk source files. Possible
option values are off and on (the usual default). When turned on, this flag also forces recompilation of all
source files, disregarding any existing intermediate files. Thus, it is strong advisable to turn on this flag when
switching backend Prolog compilers as the intermediate files generated by the compilation of source files may
not be portable (due to differences in the implementation of the standard write_canonical/2 predicate).

118

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/methods/term_expansion_2.html
../refman/methods/goal_expansion_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

User-defined flags

Logtalk provides a create_logtalk_flag/3 predicate that can be used for defining new flags.

Reloading and smart compilation of source files

As a general rule, reloading source files should never occur in production code and should be handled with care in devel-
opment code. Reloading a Logtalk source file usually requires reloading the intermediate Prolog file that is generated by
the Logtalk compiler. The problem is that there is no standard behavior for reloading Prolog files. For static predicates,
almost all Prolog compilers replace the old definitions with the new ones. However, for dynamic predicates, the behavior
depends on the Prolog compiler. Most compilers replace the old definitions but some of them simply append the new ones,
which usually leads to trouble. See the compatibility notes for the back-end Prolog compiler you intend to use for more
information. There is an additional potential problem when using multi-threading programming. Reloading a threaded
object does not recreate from scratch its old message queue, which may still be in use (e.g. threads may be waiting on it).

When using library entities and stable code, you can avoid reloading the corresponding source files (and, therefore, recom-
piling them) by setting the compiler flag reload to skip. For code under development, you can turn off the clean flag
to avoid recompiling files that have not been modified since last compilation (assuming that back-end Prolog compiler
that you are using supports retrieving of file modification dates). You can disable deleting the intermediate files generated
when compiling source files by changing the default flag value in your settings file, by using the corresponding compiler
flag with the compiling and loading built-in predicates, or, for the remaining of a working session, by using the call:

| ?- set_logtalk_flag(clean, off).

Some caveats that you should be aware. First, some warnings that might be produced when compiling a source file will
not show up if the corresponding object file is up-to-date because the source file is not being (re)compiled. Second, if you
are using several Prolog compilers with Logtalk, be sure to perform the first compilation of your source files with smart
compilation turned off: the intermediate Prolog files generated by the Logtalk compiler may be not compatible across
Prolog compilers or even for the same Prolog compiler across operating systems (e.g. due to the use of different character
encodings or end-of-line characters).

Using Logtalk for batch processing

If you use Logtalk for batch processing, you probably want to turn off the option report to suppress all messages of type
banner, comment, comment(_), warning, and warning(_) that are normally printed. Note that error messages and
messages providing information requested by the user will still be printed.

Optimizing performance

The default compiler flag settings are appropriated for the development but not necessarily for the deployment of applic-
ations. To minimize the generated code size, turn the source_data flag off. To optimize runtime performance, turn on
the optimize flag.

Pay special attention to file compilation/loading order. Whenever possible, compile/load your files taking into account
file dependencies to enable static binding optimizations. The easiest way to find the dependencies and thus the best com-
pilation/loading order is to use the diagrams tool to generate a file dependency diagram for your application.

Minimize the use of dynamic predicates. Parametric objects can often be used in alternative. When dynamic predicates
cannot be avoided, try to make them private. Declaring a dynamic predicate also as a private predicate allows the compiler
to optimize local calls to the database methods (e.g. assertz/1 and retract/1) that handle the predicate.

119

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/predicates/create_logtalk_flag_3.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Sending a message to self implies dynamic binding but there are often cases where ::/1 is misused to call an imported
or inherited predicate that is never going to be redefined in a descendant. In these cases, a super call, ^^/1, can be used
instead with the benefit of enabling static binding. Most of the guidelines for writing efficient Prolog code also apply to
Logtalk code. In particular, define your predicates to take advantage of first-argument indexing. In the case of recursive
predicates, define them as tail-recursive predicates whenever possible.

Debugging Logtalk applications

The Logtalk distribution includes in its tools directory a command-line debugger, implemented as a Logtalk application.
It can be loaded by typing:

| ?- logtalk_load(debugger(loader)).

This tool implements debugging features similar to those found on most Prolog systems. There are some differences,
however, between the usual implementation of Prolog debuggers and the current implementation of the Logtalk debugger
that you should be aware. First, unlike some Prolog debuggers, the Logtalk debugger is not implemented as a meta-inter-
preter. This translates to a different, although similar, set of debugging features when compared with some of the more
sophisticated Prolog debuggers. Second, debugging is only possible for entities compiled in debug mode. When compiling
an entity in debug mode, Logtalk decorates clauses with source information to allow tracing of the goal execution. Third,
implementation of spy points allows the user to specify the execution context for entering the debugger. This feature is a
consequence of the encapsulation of predicates inside objects.

Compiling source files and entities in debug mode

Compilation of source files in debug mode is controlled by the compiler flag debug. The default value for this flag, usually
off, is defined in the adapter files. Its value may be changed at runtime by writing:

| ?- set_logtalk_flag(debug, on).

In alternative, if we want to compile only some source files in debug mode, we may instead write:

| ?- logtalk_load([file1, file2, ...], [debug(on)]).

The compiler flag clean should be turned on whenever the debug flag is turned on at runtime. This is necessary because
debug code would not be generated for files previously compiled in normal mode if there are no changes to the source
files.

After loading the debugger, we may check or enumerate, by backtracking, all loaded entities compiled in debug mode as
follows:

| ?- debugger::debugging(Entity).

To compile only a specific entity in debug mode, use the set_logtalk_flag/2 directive inside the entity.

120

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/set_logtalk_flag_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Logtalk Procedure Box model

Logtalk uses a Procedure Box model similar to those found on most Prolog compilers. The traditional Prolog procedure
box model uses four ports (call, exit, redo, and fail) for describing control flow when a predicate clause is used during
program execution:

call

predicate call
exit

success of a predicate call
redo

backtracking into a predicate
fail

failure of a predicate call

Logtalk, as found on some recent Prolog compilers, adds a port for dealing with exceptions thrown when calling a predicate:

exception

predicate call throws an exception

In addition to the ports described above, Logtalk adds two more ports, fact and rule, which show the result of the unification
of a goal with, respectively, a fact and a rule head:

fact

unification success between a goal and a fact
rule

unification success between a goal and a rule head

The user may define for which ports the debugger should pause for user interaction by specifying a list of leashed ports.
For example:

| ?- debugger::leash([call, exit, fail]).

Alternatively, the user may use an atom abbreviation for a pre-defined set of ports. For example:

| ?- debugger::leash(loose).

The abbreviations defined in Logtalk are similar to those defined on some Prolog compilers:

none

[]

loose

[fact, rule, call]

half

[fact, rule, call, redo]

tight

[fact, rule, call, redo, fail, exception]

full

[fact, rule, call, exit, redo, fail, exception]

By default, the debugger pauses at every port for user interaction.

121

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Defining spy points

Logtalk spy points can be defined by simply stating which file line numbers or predicates should be spied, as in most
Prolog debuggers, or by fully specifying the context for activating a spy point. In the case of line number spy points, the
line number must correspond to the first line of an entity clause. To simplify the definition of line number spy points, these
are specified using the entity identifier instead of the file name (as all entities share a single namespace, an entity can only
be defined in a single file).

Defining line number and predicate spy points

Line number and predicate spy points are specified using the method spy/1. The argument can be either a pair entity
identifier - line number (Entity-Line) or a predicate indicator (Functor/Arity) or a list of spy points. For example:

| ?- debugger::spy(person-42).

Spy points set.

yes

| ?- debugger::spy(foo/2).

Spy points set.

yes

| ?- debugger::spy([foo/4, bar/1]).

Spy points set.

yes

Line numbers and predicate spy points can be removed by using the method nospy/1. The argument can be a spy point,
a list of spy points, or a non-instantiated variable in which case all spy points will be removed. For example:

| ?- debugger::nospy(_).

All matching predicate spy points removed.

yes

Defining context spy points

A context spy point is a term describing a message execution context and a goal:

(Sender, This, Self, Goal)

The debugger is evoked whenever the execution context is true and when the spy point goal unifies with the goal currently
being executed. Variable bindings resulting from the unification between the current goal and the goal argument are dis-

122

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

carded. The user may establish any number of context spy points as necessary. For example, in order to call the debugger
whenever a predicate defined on an object named foo is called we may define the following spy point:

| ?- debugger::spy(_, foo, _, _).

Spy point set.

yes

For example, we can spy all calls to a foo/2 predicate by setting the condition:

| ?- debugger::spy(_, _, _, foo(_, _)).

Spy point set.

yes

The method nospy/4 may be used to remove all matching spy points. For example, the call:

| ?- debugger::nospy(_, _, foo, _).

All matching context spy points removed.

yes

will remove all context spy points where the value of Self matches the name foo.

Removing all spy points

We may remove all line number, predicate, and context spy points by using the method nospyall/0:

| ?- debugger::nospyall.

All line number spy points removed.

All predicate spy points removed.

All context spy points removed.

yes

Tracing program execution

Logtalk allows tracing of execution for all objects compiled in debug mode. To start the debugger in trace mode, write:

| ?- debugger::trace.

yes

Note that, when tracing, spy points will be ignored. While tracing, the debugger will pause for user input at each leashed
port, printing an informative message with the port name and the current goal. Before the port number, when a spy point
is set for the current clause or goal, the debugger will print a # character for line number spy points, a + character for
predicate spy points, and a * character for context spy points. The debugger also provides determinism information by
prefixing the exit port with a * character when a call succeeds with choice-points pending. After the port name, the de-

123

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bugger prints the goal invocation number. This invocation number is unique and can be used to correlate the port trace
messages.

To stop tracing and turning off the debugger, write:

| ?- debugger::notrace.

yes

Debugging using spy points

Tracing a program execution may generate large amounts of debugging data. Debugging using spy points allows the user
to concentrate its attention in specific points of its code. To start a debugging session using spy points, write:

| ?- debugger::debug.

yes

At the beginning of a port description, the debugger will print a #, +, or * character before the current goal if there is, re-
spectively, a line number, a predicate, or a context spy point defined.

To stop the debugger, write:

| ?- debugger::nodebug.

yes

Note that stopping the debugger does not remove any defined spy points.

Debugging commands

The debugger pauses at leashed posts when tracing or when finding a spy point for user interaction. The commands
available are as follows:

c — creep
go on; you may use the spacebar, return, or enter keys in alternative

l — leap
continues execution until the next spy point is found

s — skip
skips debugging for the current goal; valid at call, redo, and unification ports

q — quasi-skip
skips debugging until returning to the current goal or reaching a spy point; valid at call and redo ports

r — retry
retries the current goal but side-effects are not undone; valid at the fail port

j — jump
reads invocation number and continues execution until a port is reached for that number

z — zap
reads port name and continues execution until that port is reached
reads negated port name and continues execution until a port other than the negated port is reached

124

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

i — ignore
ignores goal, assumes that it succeeded; valid at call and redo ports

f — fail
forces backtracking; may also be used to convert an exception into a failure

n — nodebug
turns off debugging

@ — command; ! can be used in alternative
reads and executes a query

b — break
suspends execution and starts new interpreter; type end_of_file to terminate

a — abort
returns to top level interpreter

Q — quit
quits Logtalk

p — print
writes current goal using the print/1 predicate if available

d — display
writes current goal without using operator notation

w — write
writes current goal quoting atoms if necessary

$ — dollar
outputs the compiled form of the current goal (for low-level debugging)

x — context
prints execution context

. — context
prints file, entity, predicate, and line number information at an unification port

e — exception
prints exception term thrown by the current goal

= — debugging
prints debugging information

< — write depth
sets the write term depth (set to 0 to reset)

* — add
adds a context spy point for the current goal

/ — remove
removes a context spy point for the current goal

+ — add
adds a predicate spy point for the current goal

- — remove
removes a predicate spy point for the current goal

— add
adds a line number spy point for the current clause

| — remove
removes a line number spy point for the current clause

h — condensed help
prints list of command options

? — extended help
prints list of command options

125

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Context-switching calls

Logtalk provides a control construct, <</2, which allows the execution of a query within the context of an object. Common
debugging uses include checking an object local predicates (e.g. predicates representing internal dynamic state) and
sending a message from within an object. This control construct may also be used to write unit tests.

Consider the following toy example:

:- object(broken).

 :- public(a/1).

 :- private([b/2, c/1]).

 :- dynamic(c/1).

 a(A) :- b(A, B), c(B).

 b(1, 2). b(2, 4). b(3, 6).

 c(3). % in a real-life example, this would be a clause asserted at runtime

:- end_object.

Something is wrong when we try the object public predicate, a/1:

| ?- broken::a(A).

no

For helping diagnosing the problem, instead of compiling the object in debug mode and doing a trace of the query to check
the clauses for the non-public predicates, we can instead simply type:

| ?- broken << c(C).

C = 3

yes

The <</2 control construct works by switching the execution context to the object in the first argument and then compiling
and executing the second argument within that context:

| ?- broken << (self(Self), sender(Sender), this(This)).

Self = broken

Sender = broken

This = broken

yes

As exemplified above, the <</2 control construct allows you to call an object local and private predicates. However, it is
important to stress that we are not bypassing or defeating an object predicate scope directives. The calls take place within
the context of the specified object, not within the context of the object making the <</2 call. Thus, the <</2 control
construct implements a form of execution-context switching.

126

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/control/context_switch_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The availability of the <</2 control construct is controlled by the compiler flag context_switching_calls (its default
value is defined in the adapter files of the back-end Prolog compilers).

Using compilation hooks and term expansion for debugging

It is possible to use compilation hooks and the term expansion mechanism for conditional compilation of debugging goals.
Assume that we chose the predicate debug/1 to represent debug goals. For example:

append([], List, List) :-

 debug((write('Base case: '), writeq(append([], List, List)), nl)).

append([Head| Tail], List, [Head| Tail2]) :-

 debug((write('Recursive case: '), writeq(append(Tail, List, Tail2)), nl)),

 append(Tail, List, Tail2).

When debugging, we want to call the argument of the predicate debug/1. This can be easily accomplished by defining a
hook object containing the following definition for goal_expansion/2:

goal_expansion(debug(Goal), Goal).

When not debugging, we can use a second hook object to discard the debug/1 calls by defining the predicate
goal_expansion/2 as follows:

goal_expansion(debug(_), true).

The Logtalk compiler automatically removes any redundant calls to the built-in predicate true/0 when compiling object
predicates.

127

Writing, running, and debugging applications

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

128

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Prolog Integration and Migration Guide

An application may include plain Prolog files, Prolog modules, and Logtalk objects. This is a perfectly valid way of devel-
oping a complex application and, in some cases, it might be the most appropriated solution. Modules may be used for
legacy code or when a simple encapsulation mechanism is adequate. Logtalk objects may be used when more powerful
encapsulation, abstraction, and reuse features are necessary. Logtalk supports the compilation of source files containing
both plain Prolog and Prolog modules. This guide provides tips for helping integrating and migrating plain Prolog code
and Prolog module code to Logtalk. Step-by-step instructions are provided for encapsulating plain Prolog code in objects,
converting Prolog modules into objects, and compiling and reusing Prolog modules as objects from inside Logtalk. An
interesting application of the techniques described in this guide is a solution for running a Prolog application which uses
modules on a Prolog compiler with no module system.

Source files with both Prolog code and Logtalk code

Logtalk source files may contain plain Prolog code intermixed with Logtalk code. The Logtalk compiler simply copies
the plain Prolog code as-is to the generated Prolog file. With Prolog modules, it is assumed that the module code starts
with a module/1-2 directive and ends at the end of the file. There is no module ending directive which would allowed
us to define more than one module per file. In fact, most if not all Prolog module systems always define a single module
per file. Some of them mandate that the module/1-2 directive be the first term on a source file. As such, when the Logtalk
compiler finds a module/1-2 directive, it assumes that all code that follows until the end of the file belongs to the module.

Encapsulating plain Prolog code in objects

Most applications consist of several plain Prolog source files, each one defining a few top-level predicates and auxiliary
predicates that are not meant to be directly called by the user. Encapsulating plain Prolog code in objects allows us to
make clear the different roles of each predicate, to hide implementation details, to prevent auxiliary predicates from being
called outside the object, and to take advantage of Logtalk advanced code encapsulating and reusing features.

Encapsulating Prolog code using Logtalk objects is simple. First, for each source file, add an opening object directive,
object/1, to the beginning of the file and an ending object directive, end_object/0, to end of the file. Choose an object
name that reflects the purpose of source file code (this is a good opportunity for code refactoring if necessary). Second,
add public predicate directives, public/1, for the top-level predicates that are used directly by the user or called from
other source files. Third, we need to be able to call from inside an object predicates defined in other source files/objects.
The easiest solution, which has the advantage of not requiring any changes to the predicate definitions, is to use the uses/2
directive. If your Prolog compiler supports cross-referencing tools, you may use them to help you make sure that all calls
to predicates on other source files/objects are listed in the uses/2 directives. In alternative, compiling the resulting objects
with the Logtalk unknown_predicates and portability flags set to warning will help you identify calls to predicates
defined on other converted source files and possible portability issues.

129

Prolog Integration and Migration Guide

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/object_1_5.html
../refman/directives/end_object_0.html
../refman/directives/public_1.html
../refman/directives/uses_2.html
../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Prolog multifile predicates

Prolog multifile predicates are used when clauses for the same predicate are spread among several source files. When en-
capsulating plain Prolog code that uses multifile predicates, is often the case that the clauses of the multifile predicates
get spread between different objects and categories but conversion is straight-forward. In the Logtalk object (or category)
holding the multifile predicate primary declaration, add a predicate scope directive and a multifile/1 directive. In all
other objects (or categories) defining clauses for the multifile predicate, add a multifile/1 directive and predicate
clauses using the format:

:- multifile(Entity::Functor/Arity).

Entity::Functor(...) :-

 ...

See the User Manual section on the multifile/1 predicate directive for more information. An alternative solution is to
simply keep the clauses for the multifile predicates as plain Prolog code and define, if necessary, a parametric object to
encapsulate all predicates working with the multifile predicate clauses. For example, assume the following multifile/1
directive:

% city(Name, District, Population, Neighbors)

:- multifile(city/4).

We can define a parametric object with city/4 as its identifier:

:- object(city(_Name, _District, _Population, _Neighbors)).

 % predicates for working with city/4 clauses

:- end_object.

This solution is preferred when the multifile predicates are used to represent large tables of data. See the section on para-
metric objects for more details.

Converting Prolog modules into objects

Converting Prolog modules into objects may allow an application to run on a wider range of Prolog compilers, overcoming
compatibility problems. Some Prolog compilers don't support a module system. Among those Prolog compilers which
support a module system, the lack of standardization leads to several issues, specially with semantics, operators, and meta-
predicates. In addition, the conversion allows you to take advantage of Logtalk more powerful abstraction and reuse
mechanisms such as separation between interface from implementation, inheritance, parametric objects, and categories.

Converting a Prolog module into an object is easy as long as the directives used in the module are supported by Logtalk
(see below). Assuming that this is the case, apply the following steps:

1 Convert the module module/1 directive into an opening object directive, object/1, using the module name as the
object name. For module/2 directives apply the same conversion and convert the list of exported predicates into
Logtalk public/1 predicate directives.

2 Add a closing object directive, end_object/0, at the end of the module code.

130

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

predicates.html#predicates_scope
predicates.html#predicates_multifile
objects.html#objects_parametric
objects.html#objects_parametric
../refman/directives/object_1_5.html
../refman/directives/public_1.html
../refman/directives/end_object_0.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3 Convert any export/1 directives into public/1 predicate directives.

4 Convert any use_module/1 directives into use_module/2 directives (see next section).

5 Convert any use_module/2 directives referencing other modules also being converted to objects into Logtalk
uses/2 directives. If the referenced modules are not being converted into objects, simply keep the use_module/2
directives unchanged.

6 Convert any meta_predicate/1 directives into Logtalk meta-predicate/1 directives by replacing the module
meta-argument indicator, :, into the Logtalk meta-predicate indicator, 0. Closures must be represented using an integer
denoting the number of additional arguments that will be appended to construct a goal. Arguments which are not
meta-arguments are represented by the * character.

7 Convert any explicit qualified calls to module predicates to messages by replacing the :/2 operator with the ::/2
message sending operator, assuming that the referenced modules are also being converted into objects. Calls in the
pseudo-module user can simply be encapsulated using the {}/1 Logtalk external call control construct. You can
also use instead a uses/2 directive where the first argument would be the atom user and the second argument a list
of all external predicates. This alternative have the advantage of not requiring changes to the code making the predicate
calls.

8 If your module uses the database built-in predicates to implement module local mutable state using dynamic predicates,
add both private/1 and dynamic/1 directives for each dynamic predicate.

9 If your module declares or defines clauses for multifile module predicates, replace the :/2 functor by ::/2 in the
multifile/1 directives and in the clause heads (assuming that all modules defining the multifile predicates are
converted into objects; if that is not the case, just keep the multifile/1 directives and the clause heads as-is).

10 Compile the resulting objects with the Logtalk unknown_predicates, and portability flags set to warning to
help you locate possible issues and calls to proprietary Prolog built-in predicates and to predicates defined on other
converted modules. In order to improve code portability, check the Logtalk library for possible alternatives to the
use of proprietary Prolog built-in predicates.

Before converting your modules to objects, you may try to compile them first as objects (using the logtalk_compile/1-2
Logtalk built-in predicates) to help identify any issues that must be dealt with when doing the conversion to objects. Note
that Logtalk supports compiling Prolog files as Logtalk source code without requiring changes to the file name extensions.

Compiling Prolog modules as objects

An alternative to convert Prolog modules into objects is to just compile the Prolog source files using the logtalk_load/1-2
and logtalk_compile/1-2 predicates (set the Logtalk portability flag set to warning to help you catch any unnoticed
cross-module predicate calls). This allows you to reuse existing module code as objects. This has the advantage of requiring
little if any code changes. There are, however, some limitations that you must be aware. These limitations are a consequence
of the lack of standardization of Prolog module systems.

Supported module directives

Currently, Logtalk supports the following module directives:

module/1

The module name becomes the object name.

131

Prolog Integration and Migration Guide

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/uses_2.html
../refman/directives/meta_predicate_1.html
../refman/control/send_to_object_2.html
../refman/control/external_call_1.html
../refman/directives/uses_2.html
../refman/directives/private_1.html
../refman/directives/dynamic_1.html
../refman/predicates/logtalk_compile_1.html
../userman/programming.html#compiling
../userman/programming.html#compiling
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

module/2

The module name becomes the object name. The exported predicates become public object predicates. The
exported grammar rule non-terminals become public grammar rule non-terminals. The exported operators become
public object operators but are not active elsewhere when loading the code.

use_module/2

This directive is compiled as a Logtalk uses/2 directive in order to ensure correct compilation of the module
predicate clauses. The first argument of this directive must be the module name (an atom), not a module file
specification (the adapter files attempt to use the Prolog dialect level term-expansion mechanism to find the
module name from the module file specification). Note that the module is not automatically loaded by Logtalk
(as it would be when compiling the directive using Prolog instead of Logtalk; the programmer may also want
the specified module to be compiled as an object). The second argument must be a predicate indicator
(Functor/Arity), a grammar rule non-terminal indicator (Functor//Arity), a operator declaration, or a
list of predicate indicators, grammar rule non-terminal indicators, and operator declarations.

export/1

Exported predicates are compiled as public object predicates. The argument must be a predicate indicator
(Functor/Arity), a grammar rule non-terminal indicator (Functor//Arity), a operator declaration, or a
list of predicate indicators, grammar rule non-terminal indicators, and operator declarations.

reexport/2

Reexported predicates are compiled as public object predicates. The first argument is the module name. The
second argument must be a predicate indicator (Functor/Arity), a grammar rule non-terminal indicator
(Functor//Arity), a operator declaration, or a list of predicate indicators, grammar rule non-terminal indic-
ators, and operator declarations.

meta_predicate/1

Module meta-predicates become object meta-predicates. Only predicate arguments marked as goals or closures
(using an integer) are interpreted as meta-arguments. In addition, Prolog module meta-predicates and Logtalk
meta-predicates don't share the same explicit-qualification calling semantics: in Logtalk, meta-arguments are
always called in the context of the sender.

A common issue when compiling modules as objects is the use of the atoms dynamic, discontiguous, and multifile
as operators in directives. For better portability avoid this usage. For example, write:

:- dynamic([foo/1, bar/2]).

instead of:

:- dynamic foo/1, bar/2.

Another common issue is missing meta_predicate/1, dynamic/1, discontiguous/1, and multifile/1 predicate
directives. Logtalk allows detection of most missing directives (by setting its missing_directives flag to warning).

When compiling modules as objects, you probably don't need event support turned on. You may use the compiler flag
events(deny) with the Logtalk compiling and loading built-in methods for a small performance gain for the compiled
code.

Current limitations and workarounds

The reexport/1 and use_module/1 directives are not directly supported by the Logtalk compiler. But most Prolog
adapter files provide support for compiling these directives using Logtalk's first stage of its term-expansion mechanism.
Nevertheless, these directives can be converted, respectively, into reexport/2 and use_module/2 directives by finding
which predicates exported by the specified modules are reexported or imported into the module containing the directive.

132

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Finding the names of the imported predicates that are actually used is easy. First, comment out the use_module/1 directives
and compile the file (making sure that the compiler flag unknown_predicates is set to warning). Logtalk will print a
warning with a list of predicates that are called but never defined. Second, use these list to replace the reexport/1 and
use_module/1 directives by, respectively, reexport/2 and use_module/2 directives. You should then be able to
compile the modified Prolog module as an object.

Although Logtalk supports term and goal expansion mechanisms, the semantics are different from similar mechanisms
found in some Prolog compilers. In particular, Logtalk does not support defining term and goal expansions clauses in a
source file for expanding the source file itself. Logtalk forces a clean separation between expansions clauses and the source
files that will be subject to source-to-source expansions by using hook objects.

Dealing with proprietary Prolog directives and predicates

Most Prolog compilers define proprietary, non-standard, directives and predicates that may be used in both plain code and
module code. Non-standard Prolog built-in predicates are usually not problematic, as Logtalk is usually able to identify
and compile them correctly (but see the notes on built-in meta-predicates for possible caveats). However, Logtalk will
generate compilation errors on source files containing proprietary directives unless you first specify how the directives
should be handled. Several actions are possible on a per-directive basis: ignoring the directive (i.e. do not copy the directive,
although a goal can be proved as a consequence), rewriting and copy the directive to the generated Prolog files, or rewriting
and recompiling the resulting directive. To specify these actions, the adapter files contain clauses for the
'$lgt_prolog_term_expansion'/2 predicate. For example, assume that a given Prolog compiler defines a comment/2
directive for predicates using the format:

:- comment(foo/2, "Brief description of the predicate").

We can rewrite this predicate into a Logtalk info/2 directive by defining a suitable clause for the
'$lgt_prolog_term_expansion'/2 predicate:

'$lgt_prolog_term_expansion'(comment(F/A, String), info(F/A, [comment is Atom])) :-

 atom_codes(Atom, String).

This Logtalk feature can be used to allow compilation of legacy Prolog code without the need of changing the sources.
When used, is advisable to set the portability/1 compiler flag to warning in order to more easily identify source files
that are likely non-portable across Prolog compilers.

A second example, where a proprietary Prolog directive is discarded after triggering a side-effect:

'$lgt_prolog_term_expansion'(load_foreign_files(Files,Libs,InitRoutine), []) :-

 load_foreign_files(Files,Libs,InitRoutine).

In this case, although the directive is not copied to the generated Prolog file, the foreign library files are loaded as a side-
effect of the Logtalk compiler calling the '$lgt_prolog_term_expansion'/2 hook predicate.

Calling Prolog module predicates

Prolog module predicates can be called from within objects or categories by simply using explicit module qualification,
i.e. by writing Module:Goal or Goal@Module (depending on the module system). Logtalk also supports the use of
use_module/2 directives in object and categories (with the restriction that the first argument of the directive must be the
actual module name and not the module file name or the module file path). In this case, these directives are parsed in a

133

Prolog Integration and Migration Guide

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../glossary.html#hook
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

similar way to Logtalk uses/2 directives, with calls to the specified module predicates being automatically translated to
Module:Goal calls. For example, assume a clpfd Prolog module implementing a finite domain constraint solver. You
could write:

:- object(puzzle).

 :- public(puzzle/1).

 :- use_module(clpfd, [

 all_different/1, ins/2, label/1, (#=)/2, (#\=)/2,

 op(700, xfx, #=), op(700, xfx, #\=)

]).

 puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-

 Vars = [S,E,N,D,M,O,R,Y],

 Vars ins 0..9,

 all_different(Vars),

 S*1000 + E*100 + N*10 + D +

 M*1000 + O*100 + R*10 + E #=

 M*10000 + O*1000 + N*100 + E*10 + Y,

 M #\= 0, S #\= 0,

 label([M,O,N,E,Y]).

:- end_object.

As a general rule, the Prolog modules should be loaded (e.g. in the auxiliary Logtalk loader files) before compiling objects
that make use of module predicates. Moreover, the Logtalk compiler does not generate code for the automatic loading of
modules referenced in use_module/1-2 directives. This is a consequence of the lack of standardization of these directives,
whose first argument can be a module name, a straight file name, or a file name using some kind of library notation, de-
pending on the back-end Prolog compiler. Worse, modules are sometimes defined in files with names different from the
module names requiring finding, opening, and reading the file in order to find the actual module name.

Logtalk supports the declaration of predicate aliases in use_module/2 directives used within object and categories. For
example, the ECLiPSe IC Constraint Solvers define a ::/2 variable domain operator that clashes with the Logtalk ::/2
message sending operator. We can solve the conflict by writing:

:- use_module(ic, [(::)/2 as ins/2]).

With this directive, calls to the ins/2 predicate alias will be automatically compiled by Logtalk to calls to the ::/2 pre-
dicate in the ic module.

When calling Prolog module meta-predicates, the Logtalk compiler may need help to understand the corresponding meta-
predicate template. Despite some recent progress in standardization of the syntax of meta_predicate/1 directives and
of the meta_predicate/1 property returned by the predicate_property/2 reflection predicate, portability is still a
problem. Thus, Logtalk allows the original meta_predicate/1 directive to be overridden with a local one that Logtalk
can make sense of. Note that the Logtalk library provides implementations of common meta-predicates, which can be
used in place of module meta-predicates.

Logtalk allows you to send a message to a module in order to call one of its predicates. This is usually not advised as it
implies a performance penalty when compared to just using the Module:Call notation. Moreover, this works only if
there is no object with the same name as the module you are targeting. This feature is necessary, however, in order to

134

Logtalk user manual

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../refman/directives/uses_2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

properly support compilation of modules containing use_module/2 directives as objects. If the modules specified in the
use_module/2 directives are not compiled as objects but are instead loaded as-is by Prolog, the exported predicates
would need to be called using the Module:Call notation but the converted module will be calling them through message
sending. Thus, this feature ensures that, on a module compiled as an object, any predicate calling other module predicates
will work as expected either these other modules are loaded as-is or also compiled as objects.

Compiling Prolog module multifile predicates

Some Prolog module libraries, e.g. constraint packages, expect clauses for some library predicates to be defined in other
modules. This is accomplished by declaring the library predicate multifile and by explicitly prefixing predicate clause
heads with the library module identifier. For example:

:- multifile(clpfd:run_propagator/2).

clpfd:run_propagator(..., ...) :-

 ...

Logtalk supports the compilation of such clauses within objects and categories. While the clause head is compiled as-is,
the clause body is compiled in the same way as a regular object or category predicate, thus allowing calls to local object
or category predicates. For example:

:- object(...).

 :- multifile(clpfd:run_propagator/2).

 clpfd:run_propagator(..., ...) :-

 ... % calls to local object predicates

:- end_object.

The Logtalk compiler will print a warning if the multifile/1 directive is missing. These multifile predicates may also
be declared dynamic using the same Module:Functor/Arity notation.

135

Prolog Integration and Migration Guide

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

