
Category-Based Composition in
Object-Oriented Languages

Paulo Jorge Lopes de Moura
Department of Mathematics and Informatics

University of Beira Interior

6200 Covilhã, Portugal

Phone: +351 275319700

pmoura@noe.ubi.pt

ABSTRACT
In pure object-oriented languages like Smalltalk or Java, sharing a
method between a set of unrelated objects requires the use of either
inheritance or composition mechanisms. These two solutions can
be problematic and cumbersome. Using inheritance, shared
methods must be stored in a common ancestor, implying the use of
multi-inheritance or, in single-inheritance systems, root objects
with large collections of methods and complex interfaces. The use
of instance variables to implement composition implies a level of
indirection with the consequent need of glue code whenever we
need to add the composed object methods to the container’s
interface. Logtalk, a Prolog object-oriented extension, features
categories as a new composition mechanism that solves these
problems. Categories complement instance variable based
composition and provide alternative solutions to multi-inheritance
designs for single inheritance languages. Categories also provide
several developing benefits such as incremental compilation and
splitting of complex objects into more manageable and reusable
components.

Keywords
Categories, composition, inheritance, logic programming.

1. INTRODUCTION
Sometimes we want to define and reuse a set of methods and
variables that, even if functionally cohesive, do not fit the notion of
an object and only make sense when composed with other code to
construct new objects. Take for example the Smalltalk [1]
dependency mechanism. This mechanism enables an object to
notify a set of dependent objects that some relevant event have
occurred. We may need this mechanism for some of our objects
but certainly not for all. In Smalltalk this is an all–or–nothing
preposition. For example, in VisualWorks [2, 3] the code is
contained in a parcel and is an optional feature that one can

load/add to the base system. The dependent methods (and
associated data structures) are always added to the root class,
Object, making them available for all objects. We either have
dependents support for all objects or for none. In other systems
where the dependency code is included by default, it is also stored
in the root class Object. There are two issues here: how do we
encapsulate and how do we reuse such a set of methods? We seek
a solution that enables us to add the methods that we want to reuse
to the interface of only those objects that will use them, and at the
same level as the object’s locally defined methods. In hybrid
languages like C++ [4] we can always write generic code like
utility functions without encapsulating them inside objects.
However, in pure object-oriented languages like Smalltalk or Java
[5], all the code that we write must be encapsulated in some object.
Sharing a method among a set of unrelated objects requires then
the use of either inheritance or composition mechanisms.

1.1 Reuse via Inheritance
Using inheritance, shared methods must be stored in a common
ancestor. If the chosen language supports multi-inheritance, we can
encapsulate our methods in a parent class for of all the objects that
need to inherit such methods. Implementation multi-inheritance
usually causes no problem for independent sets of cohesive
methods and variables. However, languages like Smalltalk only
support single-inheritance1 and others like Objective-C [6, 7] or
Java only supports multi-inheritance of protocols or interfaces.
Without stepping into the single- versus multi-inheritance
controversy [8], we need a solution that can be adopted in single-
inheritance languages like Smalltalk or Java.

With single-inheritance, shared methods must be added to
some common ancestor object. The outcome is often root objects
with large collections of methods and complex interfaces, despite
the fact that most descendant objects never use most of the
methods [9]. For example, the root class of VisualWorks 3.0 has
94 methods in 25 categories while Squeak 2.5 [10, 11], another
Smalltalk system, has 96 methods in 9 categories. The numbers for
Java and Objective-C are better. In Java 1.2 [12] we have 12
methods in class Object but 35 methods in class Class (the root
of the instantiation graph), while in Apple’s Objective-C
frameworks [13] we have 38 instance and class methods in the root
class NSObject. Single-inheritance may also force hierarchy
relations that do not reflect the application domain but are rather
workarounds for language limitations [14], although the problem
can be mitigated by multi-inheritance of interfaces or protocols.

1.2 Reuse via Instance-Based Composition
Common object-oriented languages like Smalltalk, Objective-C,
Java, or C++ lack native support for composition at the same level
as inheritance. The customary solution to implement composition
is to use an instance variable to hold a reference to an instance of
the class that contains the methods we need to reuse. This implies a
level of indirection when we want to add the composed object
methods to the container’s interface, with the consequent need of
cumbersome glue code and some performance penalties. Also,
updating the composed object will not automatically update the
container object’s interface. Note that these drawbacks of what we
call instance-based composition result from our need of a different
kind of composition solution, not from any inherent problem of
this reusing method.

1 There are however some research Smalltalk systems that support

multi-inheritance.

1.3 Reuse via Category-Based Composition
In this paper, we present the category concept, a new composition
mechanism, as a possible solution for these problems, especially in
the context of single-inheritance languages. Categories are
implemented in the Logtalk 2.x system [15, 16], an object-oriented
extension to the programming language Prolog [17]. First, we start
with a brief description of the Logtalk system. Second, we describe
the category concept, its roots and its implementation in Logtalk,
comparing it to related work. Third, several examples are
presented. Last, we conclude by summarizing some cases where
categories can be a useful tool and discuss some possible
extensions of the category concept.

2. THE LOGTALK SYSTEM
Logtalk 2.x is an Open Source [18] object-oriented extension to
Prolog, available under Perl’s Artistic License [19]. It is
implemented as a pre-processor: Logtalk source files are compiled
to Prolog source code that is then compiled by the chosen Prolog
compiler. Logtalk major features are: support for prototypes and
classes in the same application; parametric objects; object aliases;
protocols (similar to Objective-C protocols or Java interfaces);
event-driven programming; instance defined methods; dynamic
binding; multiple inheritance of both protocol and implementation;
public, protected and private inheritance; public, protected and
private predicates; static and dynamic predicates; and categories,
the subject of this paper. Logtalk is compatible with any operating
system running a Prolog compiler complying with the Prolog ISO
Standard [20]. It currently includes configuration files for nineteen
commercial and academic Prolog compilers. Logtalk 1.0 has
released in February 17, 1995, while the first public (non-beta) 2.x
version has been released in February 9, 1999. The current
distribution includes several examples, user and reference manuals,
and a programming tutorial. Logtalk users are developing
applications ranging from power network fault diagnosis [21] to
multi-agents systems, web interfaces, expert systems, OODBMS
prototypes, CAD systems, and several academic research projects
on OOP [22] and knowledge representation languages [23].

Using Logtalk/Prolog as a research tool in object-oriented
programming has several advantages but also some drawbacks.
Prolog provides an excellent tool for prototyping new ideas in
object-orientation, testified by the amount of research being done
in object-oriented logic programming systems [24, 25]. Code can
be interpreted either as procedures or as data, enabling easy meta-
programming. Interactive programming environments allow quick
prototyping of new ideas. However, because Prolog is a logic
programming language, it also implies an additional effort when
translating Logtalk concepts and ideas to the more common jargon
of languages like Smalltalk, C++ or Java. Prolog programs are
made of predicate directives and definitions. Predicate definitions
describe what we know to be true about the application domain.
Indeed, Prolog programs can be seen as executable specifications.
Predicate directives describe predicate properties, usually affecting
how predicate definitions are compiled. For those not familiar with
logic programming and Prolog in particular, in this paper we may
equate Prolog/Logtalk predicates with C++ object members. That
is, predicates can play the role of both methods and variables.
Mutable state is usually represented by dynamic predicates, i.e.
predicates whose definition may be changed during runtime.

3. CATEGORY CONCEPT AND
IMPLEMENTATION
The starting point for the Logtalk category concept comes from the
Smalltalk-80 language where methods can be partitioned into
named functional categories. However, Smalltalk-80 categories
have only a documentation meaning, used to organize source code,
and implemented by the language class browser. Logtalk extends
this concept by making a category an encapsulation unit, at the
same level as objects or protocols. The main idea is that we can
compose a set of categories in order to define new objects,
enabling code reuse without using inheritance or instance-variable
based composition. Conversely, any object may be split in a set of
categories. The splitting is straightforward and the code only
requires elementary changes if predicates in one category need to
call predicates in other category (because we are no longer calling
code in the same encapsulation unit). Categories intended use is
encapsulation of cohesive sets of predicates and should be
regarded as object building blocks. The current implementation of
categories in Logtalk has the following properties:

• Categories have the same encapsulation power as objects: a
category may contain both predicates directives and
definitions. A category may also implement one or more
protocols.

• Category predicates are reused by importing the category into
an object. The predicates are virtually added to the object’s
protocol, along with any local object predicates.

• Categories provide runtime transparency: predicates added via
a category are inherited by all the descendants of the
importing object and can be called, redefined or specialized
like any other object predicate2. One important consequence
of this property is that an object can be factored in categories
without breaking its clients or its descendants.

• An object may import one or more categories. Any number of
objects can import a category. A category is always shared
between all importing objects with no duplication of code.

• A category may declare and use dynamic predicates. In this
case, each importing object will have its own set of clauses
for each dynamic predicate. This enables a category to define
and manage object state.

• An object can restrict the scope of imported category
predicates by prefixing the category name with one of the
keywords public, protected, or private, in a similar way
to public, protected and private inheritance. By default,
importation is public if the scope keyword is omitted.

• Categories are compilation units; i.e. they are independently
compiled from importing objects or implemented protocols,
enabling incremental compilation.

• There is no inheritance mechanism for categories. They can
not inherit from, or be inherited by, other categories or
objects. It is also both meaningless and an error to send a
message to a category.

• Categories enable an object to be virtually assembled only
when created or loaded to memory. By importing one or more
categories, an object will have a distributed dictionary of
predicates composed of its own dictionary and of the
dictionaries of each imported category. An object may then be

2 Nevertheless, Logtalk includes reflection methods that enable us

to determine if a predicate is defined in either a category or an
object.

updated simply by updating an imported category, without
any need to recompile it or to access its source code.

• Both classes and prototypes can import a category at the same
time; its implementation is independent of the implementation
of either type of object. The use of categories is orthogonal to
the choice of the most appropriated object concept, enabling
the development of category libraries that can be reused in
either prototype or class based designs.

• Categories can be dynamically created and abolished at
runtime (just like objects or protocols).

Categories can be seen as a dual concept of Logtalk protocols:
protocols provide interface reuse, while categories enable
implementation reuse without using inheritance. Both protocols
and categories are intended to encapsulate cohesive data. Both are
used as building blocks in the definition of new, possibly
unrelated, objects, allowing finer grain reuse. Also, similar to a
protocol, a category can be imported by several objects and an
object can import several categories.

Conflicts may arise if two imported categories define the
same predicate. This is akin to multi–inheritance conflicts but
much simpler to spot and solve because categories do not inherit
from other categories or objects. Also, a category is mainly used to
encapsulate a set of functionally cohesive predicates, thus
minimizing the chances of name conflicts. The current Logtalk
version uses a simple depth-first lookup when searching for a
predicate, implicitly solving any possible name clashes.

3.1 Related Concepts
The Flavors [26] system, an object-oriented extension to LISP
[27], introduced the concept of mixins [28], a coding convention
that uses abstract sub-classes to specialize behavior in parent
classes. Mixins are combined, using multi-inheritance, with other
mixins to build regular classes. Mixins, like Logtalk categories,
often encapsulate a set of functionally cohesive methods and
attributes. However, categories are reused by composition while
mixins are reused through multi-inheritance. In a language that
supports multi-inheritance, mixins enable flexible reusing without
the need to introducing a new kind of entity. Another important
difference is that, while mixins rely on specialization of parent
methods (using the call-next-method primitive), categories do not
need to depend on importing objects. Categories are often used to
encapsulate independent, self-contained code, resulting in more
flexible and powerful reusing mechanism. We can only use a
mixin if the class that inherits the mixin also inherits a parent that
defines the method specialized by the mixin. No such constraints
exist in reusing Logtalk categories.

Regarding Smalltalk, most systems define interface
primitives for loading and saving fragments of code. These
primitives, historically named FileIn and FileOut, enable the
programmer to add or remove methods and variables from a class.
Recent Smalltalk implementations like VisualWorks improve upon
this idea introducing the concept of parcel. The fragments of code
or parcels correspond often to a category or a set of categories,
giving a useful operational meaning to an otherwise documentation
only concept of categories. However, a Smalltalk category is
always associated with a specific class and can not be shared
between two or more classes. Logtalk removes this restriction,
generalizing the category concept to enable a category to be
imported into any object.

The Objective-C language also implements a category
concept but intended as a way to extend an existing class with new

methods, even when the extended class source code is not
available. It can be seen as an alternative to a sub-class. One can
not however extend a class other than the one specified in the
category declaration. This differs from Logtalk where categories
are independent of objects and any category can be imported by
any object. Although two different concepts, aiming at different
goals, they share some important properties such as run-time
transparency, encapsulation of related methods, incremental
compilation, and easier maintenance of complex objects.

The Self [29] prototype programming language defines a
concept of traits prototypes that are used to store common
behavior, playing a similar role to classes in class–based
languages. One drawback of traits is that although they are objects,
they cannot answer most messages because the corresponding
methods need access to slots only available in descendant
prototypes [30]. Logtalk categories can play the role of traits as a
way to store shared methods with the advantage that is not possible
to send a message to a category.

3.2 Implementation
Objects that import categories and/or implement protocols have a
distributed dictionary of predicates. That is, in addition to a list of
local predicates, objects have links, defined at compile time, to the
dictionaries of imported categories and implemented protocols.
These links are always searched before inheritance links.
Categories (and protocols) are compiled such that the encapsulated
code can be shared and used by several objects (either prototypes
or instances/classes) at the same time. This is accomplished in two
steps. First, category predicates are compiled like object
predicates, with extended arguments to represent context
information like self (object that received the original message),
this (object, importing the category, that virtually contains the
predicate under execution) and sender (object that has sent the
original message). Second, at runtime, the object–category
dictionary links propagate the current execution context to the
category predicates, enabling them to be used like they have been
defined in the importing object. In the case of dynamic predicates
(that is, predicates whose definition can be modified at runtime),
the implementation of the predefined methods that allow us to add,
change and delete definitions ensure that each importing object
will have its own set of definitions.

It should be noted that the Prolog/Logtalk feature of
interpreting code either as data or executable procedures arguably
makes it easier to implement features like categories when
compared to languages like C++, Smalltalk or Java. Logtalk source
files can be downloaded from the Logtalk web site to close
examine of the implementation details.

An important point is the performance cost of adding
categories to an object-oriented language. If all imported
categories only contain predicate directives, then performance
should be similar to languages like Objective-C or Java that
implement multi-inheritance of protocols. In the more common
situation where a category contains both predicate directives and
definitions, searching for a predicate can require looking inside an
imported category. This has a small performance penalty that is
proportional to the number of imported categories and results from
the need to access several encapsulation units. Because categories
can be used to implement alternative solutions to the use of multi-
inheritance (see the points example in the next section), we should
also compare the costs of these two reusing methods. While an
inheritance link may lead to several other inheritance links,
following an imported category link implies only a level of
indirection when searching an importing object predicate
dictionary: a category can not inherit code from other categories or

objects. This ensures that a design using single-inheritance and
categories has a more predicable and better method lookup
performance than an equivalent multi-inheritance solution.

3.3 Syntax
In order to make the examples in the next section easier to grasp,
let us briefly describe the Logtalk syntax for defining and using
categories and for sending messages (Logtalk uses standard Prolog
syntax with the addition of a few directives and message sending
operators). To define a new category we use a starting directive,
either category/13 or category/2, and an ending directive,
end_category/0, to encapsulate the predicates directives and
clauses:

:- category(Ctg).
...

:- end_ category.

If a category implements one or more protocols we use the
category/2 opening directive. Protocols implemented by a
category are listed after the category name:

:- category(Ctg,
implements(Ptc1, Ptc2, ...)).
...

:- end_ category.

To import a set of categories into an object we write:

:- object(Obj,
imports(Ctg1, Ctg2, ...)).
...

:- end_object.

We can restrict the scope of the imported category predicates by
using a scope keyword, either public, protected, or private.
For example:

:- object(Obj,
imports(protected::Ctg)).
...

:- end_object.

By default, if the scope keyword is omitted, category importation
is public. To send a message to an object we write:

..., Object::Message, ...

Messages to self, used when defining methods, have the syntax:

..., ::Message, ...

To call redefined definitions when specializing methods (Smalltalk
like super calls) we write:

..., ^^Message, ...

3 In Prolog and in Logtalk directives and predicates are identified
by <name>/<number of arguments>.

There are also syntax constructs that allow us to send a set of
messages to an object or the same message to a set of objects in a
compact way.

4. EXAMPLES
The following examples compare instance- with category-based
composition and illustrate how categories can be used for sharing
code between selected objects and to implement alternative
solutions to multi-inheritance. The current Logtalk distribution
contains several more examples of the use of categories.

4.1 Splitting an Object in Categories
Let us start with the most basic benefits of categories: code
documentation and organization. Most Smalltalk implementations
already classify methods in several functional categories. In these
cases, splitting a class using the Logtalk category concept is a
trivial job. Only elementary code changes may be needed if a
method in one category needs to call a method in other category.
Let us turn instead our attention to Java. Take for example the
class Float, contained in the java.lang package [12]. This class
declares twenty-three new methods that can be easily classified in
four categories named constructors, comparing, testing and
converting as follows:

constructors
Float(double value)
Float(float value)
Float(String s)

comparing
compareTo(Object o)
compareTo(Float anotherFloat)
equals(Object obj)

testing
isNaN(),isNaN(float v)
isInfinite(),isInfinite(float v)

converting
hashCode()
toString(), toString(float f)
valueOf(String s)
...

The immediate benefit is to the programmers browsing the class to
locate a method to perform a specific kind of service, and results
from the simple fact of classifying the methods in appropriated
functional categories. The Java docs present them in alphabetical
order, handy only if we are looking for the details of a known
method.

4.2 Categories as a Complementary
Composition Tool
The category concept here presented provides a composition
mechanism different from what we may call instance-variable
composition. Usually, composition is accomplished by storing
references to other objects in instance variables. Comparing the
two mechanisms shows they are complementary, addressing
different needs, rather than competing ways of doing composition.
Instance-variable based composition is mainly used to implement
part-of hierarchies. The implied level of indirection is often used to

our advantage to control which methods (if any) are made
available to the clients of the container object. By contrast, the
methods imported from a category are transparently used and are
conceptually at the same level of any object-defined method.
Instance-variable composition also implies the creation of new
objects every time a container object is instantiated and, therefore,
a policy to control the process. It is however free from name
clashes that may affect multi-inheritance or category-based
composition solutions.

Let us start by defining a category that implements a set of
predicates for handling a dictionary of attributes. We will need
public predicates to set, get, and delete attributes, and a private
dynamic predicate to store the dictionary entries. Let us name these
predicates set_attribute/2 and get_attribute/2, for getting
and setting an attribute value, del_attribute/2 for deleting
attributes, and attr_/2, for storing the attribute–value pairs:

:- category(attributes).

% set a pair attribute-value
:- public(set_attribute/2).
% test/get a pair attribute-value
:- public(get_attribute/2).
% delete a pair attribute-value
:- public(del_attribute/2).
% attributes storage
:- private(attr_/2).
:- dynamic(attr_/2).

set_attribute(Attr, Value):-
::retractall(attr_(Attr, _)),

 ::assertz(attr_(Attr, Value)).

get_attribute(Attr, Value):-
::attr_(Attr, Value).

del_attribute(Attr, Value):-
::retract(attr_(Attr, Value)).

:- end_category.

If needed, we can put the predicate directives inside a protocol that
will be implemented by the category:

:- category(attributes,
implements(attributes_protocol)).
...

:- end_category.

We reuse the category predicates by importing them into an object:

:- object(person,
imports(attributes)).
...

:- end_object.

After compiling and loading this object and our category, we can
now try queries like:

| ?- person::(set_attribute(name, paulo),
set_attribute(gender, male)).
yes

| ?- person::get_attribute(Attr, Value).
Attribute = name, Value = paulo ;
Attribute = gender, Value = male ;
no

Note that the attributes category interface is now part of the person
object interface. Most object-oriented programming language
libraries provide dictionary classes that we can reuse in our
applications, either by multi-inheritance or by composition. In this
example, multi-inheritance would result in viewing person as a
kind of dictionary, hardly an elegant solution. With instance-based
composition glue code will be needed to add the desired dictionary
methods to the public interface of person. Category-based
composition thus provides an alternative solution without any of
these problems. Moreover, the resulting category could be reused
in other places of our application or in other applications.

To further illustrate the differences between instance
variable-based and category-based composition let us give another
example using input/output operations. Assuming a stream-based
input/output model, any object may need to define, redirect, open,
read, write or close new streams. Using a category-based approach,
we may start by defining a streaming category, containing
predicates to maintain a dictionary of currently defined streams:

:- category(streaming).

% test/get pair name-stream
:- public(stream/2).
% define a new pair name-stream
:- public(set_stream/2).
...

:- end_category.

This category may also implement common stream operations.
Any object whose interface must include stream input/output
operations can then import this category:

:- object(an_object,
imports(streaming)).
...

:- end_object.

This way we are able, for example, to query the object (or its
descendants) about the streams it defines by using messages like:

| ?- an_object::stream(Name, Stream).

If an instance variable-based solution is preferred or needed, we
can still reuse the streaming category by first importing the
category into a class:

:- object(streams,
imports(streaming),
% some suitable metaclass:
instantiates(class),
% some appropriated inheritance root:
specilizes(object)).

...

:- end_ object.

We can now store instances of this object in instance-variables of
any object that needs to perform stream input/output operations.
For example:

:- object(an_object,
% from the previous example:
imports(attributes)).

init :-
streams::new(Strs),
::set_attribute(streams, Strs),
...

...

:- end_ object.

However, the streaming methods can no longer be used directly:

| ?- an_object::set_stream(Name, Stream).

uncaught exception:
error(existence_error(predicate_declaration,
set_stream(Name, Stream)),
an_object::set_stream(Name, Stream), user)

Messages like this will now generate unknown message exceptions
because the streaming protocol is no longer part of the object
protocol.

4.3 Hierarchy Relations
One of the Logtalk companion examples defines a set of categories
implementing methods for inspecting hierarchy relations between
objects. Some methods can be defined for both prototype and class
hierarchies and can be abstracted in a common protocol:

:- protocol(hierarchyp).

% test/get an hierarchy leaf
:- public(leaf/1).
% get a list of all hierarchy leaves
:- public(leaves/1).
...

:- end_protocol.

For prototype hierarchies we can define methods such as
parent/1, ancestor/1, or descendant/1:

:- category(p_hierarchy,
implements(hierarchyp)).

% test/get an ancestor prototype
:- public(ancestor/1).
% test/get a descendant prototype
:- public(descendant/1).
% test/get a parent prototype
:- public(parent/1).
...

:- end_category.

While for instance/class relations we can have methods like
class/1, superclass/1, or instance/1:

:- category(ic_hierarchy,
implements(hierarchyp)).

% test/get an instance class
:- public(class/1).
% test/get a class instance
:- public(instance/1).
% test/get a class superclass
:- public(superclass/1).
...

:- end_category.

Although these methods are potentially useful for any object, most
objects will never use them. Most applications do not need to
perform reflective computations. In languages like Smalltalk or
Java, this kind of methods must be added to the root object in order
to be available for any object that may need them. By
encapsulating these methods in a category, they can be added to
the interface of only those objects that really need them.

4.4 Monitoring Category
Besides integrating logic and object-oriented programming,
Logtalk also supports event-driven programming where an event is
generated every time a message is exchanged between objects.
Any object may act as a monitor for a registered event. A minimal
monitor protocol consists only of a callback method, but more
sophisticated behavior is possible. For instance, an object may
need to keep a dictionary of events that can be modified, activated,
and suspended. However, not all application objects will act as
monitors and, among those they do, some may only need basic
behavior. Encapsulating the monitor methods in a root object will
ensure the requirement that any object may perform a monitor role
but will also just clutter the interface of non-monitor objects.
Moreover, not all applications use event-driven programming.
Defining a monitoring category solves these problems easily:

:- category(monitoring).

% activate events, start monitoring
:- public(activate/0).
% define a new event
:- public(add_event/4).
% delete a defined event
:- public(del_event/4).
% test/get a defined event
:- public(event/4).
% stop and delete all events
:- public(reset/0).
% suspend monitoring
:- public(suspend/0).
...

:- end_category.

Any object that needs more complex monitor behavior just needs
to import this category:

:- object(my_monitor,
imports(monitoring).

...
:- end_object.

Alternatively, the root of any sub-hierarchy of monitor objects may
import the category. This way, objects that will never perform the
role of monitors will not need to inherit a set of useless methods.
Applications that do not use event–driven programming will not
need to include code that will never be called.

4.5 Points
This example shows how categories may be used as an alternative
to multi-inheritance solutions4. The description of the original
problem can be found in [31]. Assume that we want to represent
points in a two-dimensional space. We can start by defining a
point class that will include a method move/2 to translate a point
to a new position, and a method print/0 that outputs the current
position (to save space, code related to instance initialization is
omitted in this example):

:- object(point,
instantiates(class),
specializes(object)).

% move point to a new position
:- public(move/2).
% test/get point position
:- public(position/2).
% output current point position
:- public(print/0).
% point position storage
:- private(xy_/2).
:- dynamic(xy_/2).

move(X, Y) :-
::retractall(xy_(_, _)),
::assertz(xy_(X, Y)).

position(X, Y) :-
::xy_(X, Y).

print :-
self(Self),
::xy_(X, Y),
writeq(Self), write(' @ '),
write((X, Y)), nl.

:- end_object.

From this base class we want to derive two sub-classes: bd_point
and hst_point. Instances of bd_point can only move around in
a restricted area. Instances of hst_point remember its previous
positions. The new classes are easily defined by specialization of
the move/2 and print/0 methods:

:- object(bd_point,
instantiates(class),
specializes(point)).

% coordinate bounds storage
:- private(bds_/3).

4 The full source code of this example is available with the current

Logtalk release.

:- dynamic(bds_/3).

move(X, Y) :-
::bds_(x, MinX, MaxX),
X >= MinX, X =< MaxX,
::bds_(y, MinY, MaxY),
Y >= MinY, Y =< MaxY,
^^move(X, Y).

print :-
::bds_(x, MinX, MaxX),
writeq(bds(x)), write(': '),
write((MinX, MaxX)), nl,
::bds_(y, MinY, MaxY),
writeq(bds(y)), write(': '),
write((MinY, MaxY)), nl,
^^print.

:- end_object.

Similar for the hst_point class:

:- object(hst_point,
instantiates(class),
specializes(point)).

% position history storage
:- private(hst_/1).
:- dynamic(hst_/1).

move(X, Y) :-
::position(X0, Y0),
^^move(X, Y),
::retract(hst_(Hst)),
::assertz(hst_([(X0,Y0)| Hst])).

print :-
::hst_(Hst),
write('history: '),
write(Hst), nl.
^^print.

:- end_object.

Now assume that we want to define another sub-class, named
bd_hst_point, which combines the behavior of both bd_point
and hst_point. This suggests a multiple inheritance solution:
bd_hst_point clearly specialize both b d _ p o i n t and
hst_point, sub-classes of point. However, this solution, even if
possible, hides several problems. The first obstacle is that the
bounded and the history behavior are embedded in the
specialization of methods move/2 and print/0. Defining new
methods such as check_bds/2 and print_bds/2 in class
bd_point and add_to_hst/2 and print_hst/0 in class
hst_point can easily solve this particular problem. A bigger
problem is that the basic behavior for moving or printing a point is
defined in class point. But because the corresponding methods
are redefined in classes bd_point and hst_point how does one
call the original definitions stored in point? Note that if the
methods move/2 and print/0 are inherited from both
hst_point and bd_point then a point will be moved and printed
twice. If the inheritance is carried out, for each method, only from
one of the superclasses, then we will be breaking the problem
symmetry. The class bd_hst_point could build its own
definitions of methods move/2 and print/0, adding to the

inherited definitions from one of the superclasses the calls to the
methods specific of the other superclass. However, this solution is
also problematic. Let us assume that the method move/2 is
inherited from class hst_point (by using some suitable super
call). Then, any change on the definition of the same method in
class bd_point will be ignored by bd_hst_point. In a large
program, such problems can easily get unnoticed because the
symmetry suggested by the multiple inheritance design is not
reflected by the actual implementation. Such problem could be
avoided by explicitly adding the class point as a base class for
bd_hst_point. For example, in Eiffel we will need to rename
(and discard!) the conflicting inherited methods of both base
classes:

class
bd_hst_point

inherit
bd_point

rename
move as bp_move,
print as bp_print

end
hst_point

rename
move as hp_move,
print as hp_print

end
point

redefine move, print end
feature

print is
do

precursor
print_bds
print_hst

end
...

end

This solution could also be implemented in C++ using virtual base
classes:

class bd_hst_point
: public virtual point,
public bd_point, public hst_point {

...
void print();
...

}

void bd_hst_point::print()
{

point::print();
bd_point::print();
hst_point::print();

}

This way the class point will provide the basic behavior for the
move/2 and print/0 methods. These two methods are redefined
in order to include the needed calls to the methods inherited from
classes bd_point and hst_point that implement the bounded
and the history behavior.

In Logtalk we can use categories to solve this problem in a clean
and extensible way without using multi-inheritance. In order to do

so, we will start by defining two new categories, bd_coord and
point_hst. The bd_coord category will contain the methods
associated with point coordinate bounds:

:- category(bd_coord).

% store a coordinate bounds
:- public(set_bds/3).
% test/get a coordinate bounds
:- public(bds/3).
% checks coordinate value
:- public(check_bds/2).
% print a coordinate bounds
:- public(print_bds/1).
% coordinate bounds storage
:- private(bds_/3).
:- dynamic(bds_/3).

set_bds(Coord, Min, Max) :-
::retractall(bds_(Coord, _, _)),
::assertz(bds_(Coord, Min, Max)).

bds(Coord, Min, Max) :-
::bds_(Coord, Min, Max).

check_bds(Coord, Value) :-
::bds_(Coord, Min, Max),
Value >= Min, Value =< Max.

print_bds(Coord) :-
::bds_(Coord, Min, Max),
writeq(bds(Coord)),
write(': '),
write((Min, Max)), nl.

:- end_category.

The methods for storing previous point positions will be
encapsulated in the point_hst category:

:- category(point_hst).

% store a point position
:- public(add_to_hst/1).
% initialize position history
:- public(init_hst/1).
% get the point position history
:- public(hst/1).
% print the point position history
:- public(print_hst/0).
% position history storage
:- private(hst_/1).
:- dynamic(hst_/1).

add_to_hst(Pos) :-
::retract(hst_(Hst)),
::assertz(hst_([Pos| Hst])).

init_hst(Hst) :-
::retractall(hst_(_)),
::assertz(hst_(Hst)).

hst(Hst) :-
::hst_(Hst).

print_hst :-
::hst_(Hst),
write('history: '),
write(Hst), nl.

:- end_category.

Each one of the bd_point , hst_point and bd_hst_point
classes will import the related categories in order to provide the
intended behavior:

:- object(bd_point,
imports(bd_coord),
instantiates(class),
specializes(point)).

move(X, Y) :-
::check_bds(x, X),
::check_bds(y, Y),
^^move(X, Y).

print :-
::print_bds(x),
::print_bds(y),
^^print.

:- end_object.

Likewise for the hst_point class:

:- object(hst_point,
imports(point_hst),
instantiates(class),
specializes(point)).

move(X, Y) :-
::position(X0, Y0),
^^move(X, Y),
::add_to_hst((X0, Y0)).

print :-
::print_hst,
^^print.

:- end_object.

The bd_hst_point class will be defined as a point subclass,
importing both point_hst and bd_coord categories:

:- object(bd_hst_point,
imports(bd_coord, point_hst),
instantiates(class),
specializes(point)).

move(X, Y) :-
::check_bds(x, X),
::check_bds(y, Y),
::position(X0, Y0),
^^move(X, Y),
::add_to_hst((X0, Y0)).

print :-
::print_bds(x),
::print_bds(y),

::print_hst,
^^print.

:- end_object.

Note that the redefinition of our classes using the newly defined
categories is transparent to the classes clients and descendants.
Also, bd_hst_point is independent of both bd_point and
hst_point yet it shares their behavior via the common imported
categories. This solution can be easily extended if we need to add
other point flavors besides coordinate bounds or position history.
Using categories, no matter how many flavors and flavors
combinations we may have, the solution will always be to simply
import into an object each category implementing a desired flavor.
Contrast this with a multi-inheritance solution where each new
flavor will need to be implemented as a new sub-class, possibly
inheriting from several other flavor sub-classes, resulting in high
levels of coupling between objects. We have thus found not only
an alternative solution to the use of multi-inheritance but also a
better one: a way to freely combine multiple orthogonal
implementations without applying multi-inheritance mechanisms.

To end this example here are some possible messages sent
using the Logtalk/Prolog top-level interpreter:

| ?- point::new(Point,[xy-(1, 3)]),
Point::(print, move(7, 4), print).

p1 @ (1, 3)

p1 @ (7, 4)

Point = p1
yes

Similar messages but with bounds on coordinate values:

| ?- bd_point::new(Point,[xy-(1, 3), bds(x)-
(0, 13), bds(y)-(-7, 7)]), Point::(print,
move(7, 4), print).

bds(x): 0,13
bds(y): -7,7
bp11 @ (1, 3)

bds(x): 0,13
bds(y): -7,7
bp2 @ (7, 4)

Point = bp2
yes

Same problem but storing the history of past point positions:

| ?- hst_point::new(Point,[xy-(1, 3)]),
Point::(print, move(7, 4), print).

history: []
hp3 @ (1, 3)

history: [(1,3)]
hp3 @ (7, 4)

Point = hp3
yes

Same problem but with bounds on coordinate values and storing
past positions:

| ?- bd_hst_point::new(Point,[xy-(1, 3),
bds(x)-(0, 13), bds(y)-(-7, 7)]),
Point::(print, move(7, 4), print).

bds(x): 0,13
bds(y): -7,7
history: []
bhp4 @ (1, 3)

bds(x): 0,13
bds(y): -7,7
history: [(1,3)]
bhp4 @ (7, 4)

Point = bhp4
yes

5. CONCLUSIONS
The category concept is being actively used in the development of
the Logtalk standard library and is also being evaluated by writing
Logtalk applications. Logtalk is an object-oriented programming
research language and, as such, a natural environment for trying
out new ideas. However, adding a new feature to an established
language must always be carefully pondered. We believe that the
category concept here presented brings several important
advantages to object-oriented languages and, in particular, to single
inheritance languages. Summarizing our main results, categories
can be used to:

• Provide alternative solutions to the use of multi-inheritance
for single-inheritance languages. Even for multi-inheritance
languages, categories enable elegant implementations that
minimize object coupling.

• Complement instance variable based composition by
providing a composition mechanism where composed methods
are at the same level as the container object methods, with full
run-time transparency: category imported methods are called,
redefined and otherwise used like any container object method.

• Enable different, unrelated objects, to share and reuse
methods without using inheritance. This way methods can be
made available to only those objects that really need them,
avoiding large root objects populated with code that most
descendants will never use.

• Split complex objects into a set of more manageable
components, each containing a functionally cohesive set of
methods that can be independently developed, compiled, and
reused. Besides the advantages of incremental compilation, and
categories also make it possible to update an object without
accessing its full source code.

• Encapsulate code that does not fit the notion of, or does not
make sense as, an object. Two good examples are the
Smalltalk dependency mechanism and the Logtalk monitoring
methods.

It is also important not to forget the benefits that are inherited from
the original Smalltalk-80 concept of methods functional categories,
regarding code documentation and organization. Tacked together,
all these features promote cleaner and simpler object-oriented
designs and help improve reuse across object-oriented applications.

6. FUTURE WORK
An interesting research path will be to implement categories in
common languages like Java or Smalltalk, either by using a pre-
processor approach like in Logtalk, or by modifying an existing
compiler. A good candidate will be a language like Squeak, a
Smalltalk system written using Smalltalk itself, making it easy to
modify and try out new features. We expect categories to be easy
to implement in dynamically type checked languages and, with
some more work, in statically type checked languages like C++,
retaining all the features listed in the conclusions.

Future work may also include extending the Logtalk
concept of categories to include some of the features of Objective-
C categories. More specifically, the possibility of augmenting a
class protocol without modifying its source code. Note that Logtalk
categories already enable us to update an object interface by
updating an imported category, but the imports clause can not be
added or changed at runtime. A possible solution may be to adopt a
mechanism to establish an import link without requiring sources
changes on either importing objects or imported categories.
Another possible, more explicit and declarative solution, will be to
allow an object to import a set of matching categories. Assuming
that the identity concept is extended to allow category names with
the same functor but different arguments, we could then write:

:- object(an_obj,
% import all matching categories
imports(a_ctg(_)).
...

:- end_object.

If we then have the following two matching categories:

:- category(a_ctg(foo)).
:- public(foo/1).
...

:- end_category.

:- category(a_ctg(bar)).
:- public(bar/1).
...

:- end_category.

Our object could then answer messages defined in all matching
categories. For example:

| ?- an_obj::(foo(X), bar(Y)).

This solution is not difficult to implement but as a language feature
it probably be a source of misunderstandings because it uses the
same syntax of parametric objects with a very different semantics.
It is also not clear that its benefits will outweigh the added
complexity.

7. REFERENCES
[1] Goldberg, A., Robson, D., Smalltalk-80 The language and its

implementation, Addison-Wesley Series in Computer
Science, 1983

[2] ObjectShare, Inc., VisualWorks Application Developer’s
Guide, VisualWorks Software Release 3.0, 1998

[3] ObjectShare, Inc. web site: http://www.objectshare.com

[4] Stroustrup, B., The C++ Programming Language, Addison-
Wesley Series in Computer Science, 1991 (Second Edition)

[5] Gosling, J., Joy, B., Steele, G., The Java Language
Specification, Addison-Wesley, 1996

[6] Cox, B., Novobilski, A., Object-Oriented Programming: An
Evolutionary Approach, Addison-Wesley, 2nd edition, 1992

[7] Apple Computer Technical Documentation: Object-Oriented
Programming and the Objective-C Language
http://www.apple.com/developer/SWTechPubs/Documents/O
PENSTEP/ObjectiveC/objctoc.htm

[8] Shan, Y., Cargil, T., Cox, B., Cook, W., Loomis, M., Snyder,
A., Is Multiple Inheritance Essential to OOP? (Panel), in
Proceedings OOPLSLA 93, ACM

[9] Taenzer, D., Ganti, M., Podar, S., Problems in Object-
Oriented Software Reuse, in Proceedings ECOOP 89, British
Computer Society Workshop Series, Cambridge University
Press

[10] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.,
Back to the Future – The Story of Squeak, A Practical
Smalltalk Written in Itself, in Proceedings OOPSLA 97,
ACM

[11] Squeak home page, http://www.squeak.org/

[12] Java web site, http://www.javasoft.com

[13] Apple Computer Technical Documentation: MacOS X Server
– Foundation Framework Classes, 1999

[14] Cook, W. R., Interfaces and Specifications for the Smalltalk-
80 Collection Classes, in Proceedings OOPSLA 92, ACM

[15] Moura, P., Costa, E., Logtalk: Object-Oriented Programming
in Prolog, in Proceedings 2nd Portuguese Conference on
Object-Oriented Technology, 3i Consultores, Lisboa, 1994

[16] Logtalk web site, http://www.ci.uc.pt/logtalk/logtalk.html

[17] Clocksin, W.F., Mellish, C.S., Programming in Prolog,
Springer Verlag, New York, 1981

[18] Open Source web site, http://www.opensource.org/

[19] Perl programming language Artistic License,
http://www.perl.com/pub/language/misc/Artistic.html

[20] ISO/IEC DIS 13211-1 International Standard – Programming
Language Prolog Part I: General Core, 1995

[21] Rayudu, R. K., Samarasinghe, S., Maharaj, A., A Cooperative
hybrid algorithm for fault diagnosis in power transmission,
2000 IEEE Power Engineering Society Winter Meeting,
January 2000, Singapore

[22] Zimányi, E., Implementing materialization in Logtalk,
Technical Report YEROOS TR-97/09, Laboratoire de Bases
de Données, Département d'Informatique, Ecole
Polytechnique Fédérale de Lausanne, Switzerland, April
1997

[23] Chen, Y., Shieh, J. S., KSL: A Specification Language for
Knowledge Organization and Representation, International
Conference Intelligent Information Management Systems,
Washington, D.C., U.S.A., 1996

[24] Alexiev, V., A (Not Very Much) Annotated Bibliography on
Integrating Object-Oriented and Logic Programming, URL:
ftp://menaik.cs.ualberta.ca/pub/oolog/

[25] Davison, A., A survey of logic programming-based object
oriented languages, Tech Report 92/3, Dept. of Computer
Science, The University of Melbourne, Australia, 1993

[26] Moon, D. Object-Oriented Programming in Flavors, in
Proceedings OOPSLA 86:1-8, ACM

[27] Steele Jr, G. L., Common LISP: The Language, Digital Press,
Bedford, Massachusetts, 1984

[28] Bracha, G., Mixin-based Inheritance, in Proceedings
OOPLSLA 90, ACM

[29] Ungar, D., Smith, R. B., Self: The Power of Simplicity, in
Lisp And Symbolic Computation, 4, 3, Kluwer Academic
Publishers, 1991

[30] Smith, R. B., Ungar, D., Programming as an Experience: The
Inspiration of Self, in Proceedings ECOOP 95:303-330,
Lecture Notes in Computer Science, Vol. 952,
Springer–Verlag, 1995

[31] SICStus Objects: http://www.sics.se/isl/sicstus.html

